research communications
of 1-(1,3-benzothiazol-2-yl)-3-(4-bromobenzoyl)thiourea
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartment of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa, cDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: i6thiam@yahoo.fr
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The chemical reaction of 4-bromobenzoylchloride and 2-aminothiazole in the presence of potassium thiocyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromobenzamido and 2-benzothiazolyl moieties connected by a thiourea group. The 4-bromobenzamido and 2-benzothiazolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromophenyl and the 2-benzothiazolyl units is 10.45 (11)°. The thiourea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromophenyl ring and is almost coplanar with the 2-benzothiazolyl moiety, with a dihedral angle of 1.94 (11)°. The molecular structure is stabilized by intramolecular N—H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent molecules interact via intermolecular hydrogen bonds of type C—H⋯N, C—H⋯S and N—H⋯S, resulting in molecular layers parallel to the ac plane.
Keywords: crystal structure; 4-bromobenzoylchloride; 2-benzothiazole; potassium cyanate; thiourea.
CCDC reference: 2341267
1. Chemical context
Benzimidazole is a heterocycle widely used in the development of therapeutic molecules. Several drugs are being developed around the world and researchers continue to be interested in benzimidazole derivatives and their applications (Awadh, 2023; Dhanamjayulu et al., 2023; Mavvaji & Akkoc, 2024; Bandaru et al., 2023). Benzimidazole derivatives with anticancer (Abbade et al., 2024), antihistamine (Wang et al., 2012), antiviral (Mahurkar et al., 2023), antimicrobial (Bhoi et al., 2023), antituberculous (Kalalbandi et al., 2014), antidiabetic (Saeedian Moghadam et al., 2023), anti-inflammatory (Nagesh et al., 2022), antioxidant (Patagar et al., 2023) and antifungal (Çevik et al., 2022) properties have been reported in the literature. Thiourea has interesting chemical properties, which have made it possible to develop several applications (AbdElgawad et al., 2023; Fiaz et al., 2024; Huang et al., 2023; Eshkil et al., 2017). Its high reactivity has made it possible to synthesize a very large number of derivatives with analgesic (Lee et al., 2002), anticancer (Pingaew et al., 2022), antimicrobial (Madasani et al., 2023), and antidiabetic (Faidallah et al., 2011) properties. The combination of thiourea and benzimidazole made it possible to generate new molecules with properties better than those of derivatives of the two uncombined molecules (Ganesh et al., 2015; Harrouche et al., 2016; Shang et al., 2023). Molecules derived from benzimidazole-thiourea presenting potent antiproliferative activity, compared to reference drugs, have been synthesized (Ullah et al., 2022; Siddig et al., 2021). It is in this context that thiourea derivatives are the subject of particular interest for researchers seeking to develop molecules containing one or more metal ions to improve the properties of these compounds (Muhammed et al., 2024; Albrekht et al., 2024; Nair et al., 2022; Masaryk et al., 2021). Complexes exhibiting biological properties are reported in the literature (Zhao et al., 2024; Swaminathan et al., 2024; Muhammed et al., 2024; Albrekht et al., 2024). For several years, our research group has been developing compounds containing the thiourea moiety (Faye, Gaye et al., 2022; Faye, Mbow et al., 2022; Thiam et al., 2008; Samb et al., 2019). In this work, we report the synthesis and characterization of a molecule containing both thiourea and benzimidazole moieties.
2. Structural commentary
The X-ray P21/n with one molecule in the The molecular geometry is illustrated in Fig. 1. The S1—C1 [1.745 (2) Å] and the S1—C7 [1.751 (2) Å] distances indicate that these correspond to single bonds. The S2—C8 [1.663 (2) Å] and the O1—C9 [1.220 (2) Å] and N1—C7 [1.291 (3) Å] distances indicate that these correspond to double bonds and are comparable to those observed for 1,2-bis(N′-benzoylthioureido)benzene [1.6574 (18) Å for C—S, 1.219 (2) Å and 1.224 (3) Å for C—O; Thiam et al., 2008]. The N1—C7 [1.291 (3) Å] distance indicates double-bond character, similar to the corresponding bond length in (Z)-2-[(E)-2-(1-benzothiophen-3-ylmethylidene)hydrazin-1-ylidene]-1,2-diphenylethanone [1.281 (3) Å; Pekdemir et al., 2012]. The N1—C6 [1.392 (3) Å], N2—C7 [1.390 (3) Å], N3—C8 [1.386 (3) Å] and N3—C9 [1.383 (3) Å] distances are in the normal range observed for a single C—N bond (Samb et al., 2019; Chen et al., 2001). The bond angles around N2, N3 and C8 fall in the range 115.40 (17)–128.81 (17)° and are comparable to the ideal value of 120° observed for sp2 The phenyl ring and the benzothiazole ring are essentially planar with r.m.s deviations of 0.0081 and 0.0070 Å, respectively. The thiourea fragment (S2/N3/N2/C8/C9) is planar with a maximum deviation from its mean plane of 0.0519 (1) Å for N3. The 4-bromophenyl ring and the 2-benzothiazolyl groups are twisted relative to each other and form a dihedral angle of 10.45 (11)°. The two rings make dihedral angles of 8.64 (12) and 1.94 (11)°, respectively, with the thiourea fragment. The 4-bromobenzoyl group is trans with respect to the thiono S atom across the N3—C8 bond. The 2-benzothiazolyl ring adopts a cis conformation with respect to the thiono S atom across the N2—C8 bond. The molecule exhibits an intramolecular N—H⋯O hydrogen bond (Table 1) between the carbonyl oxygen atom and the thioamide hydrogen atom, which forms an S(6) ring. This phenomenon is regularly noted in the case of carbonoylurea and benzoyl thiourea (Sow et al., 2009; Woei Hung & Kassim, 2010) derivatives.
revealed that the title compound crystallizes in the monoclinic3. Supramolecular features
In the crystal, the molecules are linked into chains that are connected by intermolecular hydrogen bonds of type C—H⋯N, C—H⋯S, and N—H⋯S (Table 1), forming molecular layers running parallel to the ac plane. Intermolecular N—H⋯S and C—H⋯N hydrogen bonds further link the molecules, forming a zigzag chain through R22(8) rings. The intermolecular C—H⋯S hydrogen bond consolidates the structure, forming rings of type R21(8) (Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.44, updates of September 2023; Groom et al., 2016) with the search fragment benzothiazole thiourea yielded seventeen hits. For some hits, the bromine atom is replaced by a chlorine atom (BUDZIK; Yusof et al., 2009) or nitro group (HUWIM; Cui et al., 2009). Other results give the same chemical formula and structure but have the bromine atom in the ortho or meta position on the benzene ring [IVEWEO (Zeng et al., 2017) and SURGOE (Odame et al., 2020)]. Coordination complexes based on transition metals such as rhenium (INOXUG; Schoultz et al., 2016), ruthenium (NODLUQ; Shadap et al. 2019) and rhodium (NODMAX; Shadap et al., 2019) have organic ligands that are analogues of the reported molecule.
5. Synthesis and crystallization
The title compound was synthesized following the procedure reported by Odame et al. (2020) with slight modification. The thiourea derivative was obtained by the reaction of potassium thiocyanate (1.9388 g, 20 mmol) with 4-bromobenzoyl chloride (4.3892 g, 20 mmol) in 25 mL of acetone and heating under reflux for 2 h to yield the 4-bromobenzoyl isothiocyanate. To the above solution was added a solution of 2-aminobenzothiazole (3 g, 20 mmol) in 25 mL of acetone. The resulting mixture was heated overnight. The solvent was removed by evaporation and the crude product was recrystallized in methanol. Yield 77%, m.p. 504 K. Analysis calculated for C15H10BrN3OS2: C, 45.92; H, 2.57; N, 10.71; S, 16.35. Found: C, 45.90; H, 2.55; N, 10.69; S, 16.32. FTIR: (ν, cm−1): 3075 (N—H), 3015 (N—H), 1675 (C=O), 1563 (C=C), 1546 (C=C), 1451 (C—N), 1439 (C—N).
6. Refinement
Crystal data, data collection and structure . H atoms were geometrically optimized (C—H = 0.95 Å, N—H = 0.88 Å) and refined as riding on their carriers with Uiso(H) = 1.2Ueq(C,N).
details are summarized in Table 2Supporting information
CCDC reference: 2341267
https://doi.org/10.1107/S2056989024004742/pk2706sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004742/pk2706Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004742/pk2706Isup3.cml
C15H10BrN3OS2 | F(000) = 784 |
Mr = 392.29 | Dx = 1.728 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5009 (5) Å | Cell parameters from 9123 reflections |
b = 6.4130 (2) Å | θ = 3.1–33.9° |
c = 17.9147 (7) Å | µ = 3.01 mm−1 |
β = 103.606 (4)° | T = 100 K |
V = 1507.54 (10) Å3 | Block, light colourless |
Z = 4 | 0.10 × 0.06 × 0.06 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2581 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.041 |
ω scans | θmax = 26.4°, θmin = 3.1° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −16→16 |
Tmin = 0.804, Tmax = 0.986 | k = −8→8 |
18792 measured reflections | l = −22→21 |
3074 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0191P)2 + 1.3729P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3074 reflections | Δρmax = 0.35 e Å−3 |
199 parameters | Δρmin = −0.30 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.07298 (2) | −0.50717 (3) | 0.27034 (2) | 0.01865 (7) | |
S1 | 0.24869 (4) | 0.98772 (8) | 0.63447 (3) | 0.01659 (12) | |
S2 | 0.10718 (4) | 0.61809 (8) | 0.59446 (3) | 0.02191 (13) | |
O1 | 0.29683 (11) | 0.3918 (2) | 0.43225 (8) | 0.0182 (3) | |
N3 | 0.16341 (14) | 0.3897 (3) | 0.48987 (10) | 0.0172 (4) | |
H3 | 0.106967 | 0.322341 | 0.490909 | 0.021* | |
N1 | 0.38000 (13) | 0.9461 (3) | 0.54899 (10) | 0.0155 (4) | |
N2 | 0.26397 (13) | 0.6774 (3) | 0.52923 (10) | 0.0148 (4) | |
H2 | 0.298111 | 0.627829 | 0.496902 | 0.018* | |
C10 | 0.18323 (16) | 0.1035 (3) | 0.40497 (12) | 0.0145 (4) | |
C11 | 0.24401 (17) | 0.0071 (3) | 0.36228 (12) | 0.0183 (4) | |
H11 | 0.307296 | 0.068130 | 0.359855 | 0.022* | |
C8 | 0.18301 (16) | 0.5657 (3) | 0.53592 (12) | 0.0167 (4) | |
C9 | 0.22053 (16) | 0.3057 (3) | 0.44251 (12) | 0.0152 (4) | |
C13 | 0.12063 (17) | −0.2631 (3) | 0.32704 (12) | 0.0162 (4) | |
C6 | 0.40504 (15) | 1.1298 (3) | 0.59049 (11) | 0.0139 (4) | |
C4 | 0.49993 (17) | 1.4411 (3) | 0.62991 (13) | 0.0208 (5) | |
H4 | 0.553913 | 1.533414 | 0.626970 | 0.025* | |
C12 | 0.21305 (17) | −0.1773 (3) | 0.32321 (13) | 0.0199 (5) | |
H12 | 0.254784 | −0.243387 | 0.294303 | 0.024* | |
C14 | 0.05956 (16) | −0.1731 (3) | 0.37025 (13) | 0.0178 (4) | |
H14 | −0.003263 | −0.235813 | 0.372947 | 0.021* | |
C3 | 0.43652 (17) | 1.4872 (3) | 0.67971 (13) | 0.0200 (5) | |
H3A | 0.448160 | 1.611081 | 0.709576 | 0.024* | |
C2 | 0.35797 (17) | 1.3570 (3) | 0.68620 (12) | 0.0196 (5) | |
H2A | 0.315825 | 1.387679 | 0.720416 | 0.023* | |
C1 | 0.34260 (16) | 1.1782 (3) | 0.64059 (12) | 0.0158 (4) | |
C7 | 0.30166 (16) | 0.8612 (3) | 0.56641 (12) | 0.0144 (4) | |
C15 | 0.09165 (17) | 0.0100 (3) | 0.40956 (13) | 0.0185 (4) | |
H15 | 0.050806 | 0.072576 | 0.439944 | 0.022* | |
C5 | 0.48474 (16) | 1.2633 (3) | 0.58523 (12) | 0.0179 (4) | |
H5 | 0.527660 | 1.232504 | 0.551582 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02144 (12) | 0.01489 (11) | 0.01875 (12) | −0.00221 (8) | 0.00297 (8) | −0.00376 (8) |
S1 | 0.0190 (3) | 0.0164 (2) | 0.0168 (3) | −0.0037 (2) | 0.0090 (2) | −0.0033 (2) |
S2 | 0.0203 (3) | 0.0227 (3) | 0.0263 (3) | −0.0068 (2) | 0.0127 (2) | −0.0073 (2) |
O1 | 0.0163 (8) | 0.0172 (7) | 0.0223 (8) | −0.0017 (6) | 0.0071 (6) | −0.0016 (6) |
N3 | 0.0164 (9) | 0.0160 (9) | 0.0212 (10) | −0.0064 (7) | 0.0087 (8) | −0.0048 (7) |
N1 | 0.0149 (9) | 0.0163 (8) | 0.0154 (9) | −0.0014 (7) | 0.0036 (7) | 0.0004 (7) |
N2 | 0.0159 (9) | 0.0147 (8) | 0.0158 (9) | −0.0021 (7) | 0.0074 (7) | −0.0038 (7) |
C10 | 0.0162 (11) | 0.0115 (10) | 0.0150 (11) | −0.0002 (8) | 0.0020 (9) | 0.0018 (8) |
C11 | 0.0174 (11) | 0.0187 (11) | 0.0199 (11) | −0.0035 (9) | 0.0070 (9) | −0.0006 (9) |
C8 | 0.0173 (11) | 0.0165 (10) | 0.0160 (11) | −0.0008 (8) | 0.0035 (9) | 0.0001 (8) |
C9 | 0.0150 (11) | 0.0161 (10) | 0.0136 (11) | 0.0012 (8) | 0.0014 (9) | 0.0034 (8) |
C13 | 0.0204 (12) | 0.0114 (9) | 0.0147 (11) | −0.0012 (8) | −0.0002 (9) | −0.0008 (8) |
C6 | 0.0139 (11) | 0.0141 (10) | 0.0123 (10) | 0.0006 (8) | 0.0004 (8) | 0.0003 (8) |
C4 | 0.0182 (12) | 0.0189 (11) | 0.0231 (12) | −0.0050 (9) | 0.0004 (9) | 0.0008 (8) |
C12 | 0.0209 (12) | 0.0195 (11) | 0.0210 (12) | 0.0005 (9) | 0.0086 (10) | −0.0024 (9) |
C14 | 0.0147 (11) | 0.0166 (10) | 0.0233 (12) | −0.0020 (8) | 0.0066 (9) | 0.0003 (8) |
C3 | 0.0231 (12) | 0.0151 (10) | 0.0185 (11) | −0.0018 (9) | −0.0016 (9) | −0.0037 (8) |
C2 | 0.0219 (12) | 0.0198 (11) | 0.0161 (11) | 0.0002 (9) | 0.0026 (9) | −0.0021 (8) |
C1 | 0.0158 (11) | 0.0171 (10) | 0.0142 (11) | −0.0009 (8) | 0.0029 (9) | 0.0011 (8) |
C7 | 0.0155 (11) | 0.0152 (10) | 0.0124 (10) | −0.0002 (8) | 0.0031 (8) | 0.0013 (8) |
C15 | 0.0187 (11) | 0.0175 (10) | 0.0210 (12) | −0.0002 (9) | 0.0081 (9) | −0.0018 (9) |
C5 | 0.0155 (11) | 0.0184 (10) | 0.0197 (11) | −0.0024 (8) | 0.0037 (9) | −0.0008 (8) |
Br1—C13 | 1.894 (2) | C11—C12 | 1.388 (3) |
S1—C1 | 1.745 (2) | C13—C12 | 1.380 (3) |
S1—C7 | 1.751 (2) | C13—C14 | 1.383 (3) |
S2—C8 | 1.663 (2) | C6—C1 | 1.403 (3) |
O1—C9 | 1.220 (2) | C6—C5 | 1.396 (3) |
N3—H3 | 0.8800 | C4—H4 | 0.9500 |
N3—C8 | 1.386 (3) | C4—C3 | 1.406 (3) |
N3—C9 | 1.383 (3) | C4—C5 | 1.380 (3) |
N1—C6 | 1.392 (3) | C12—H12 | 0.9500 |
N1—C7 | 1.291 (3) | C14—H14 | 0.9500 |
N2—H2 | 0.8800 | C14—C15 | 1.386 (3) |
N2—C8 | 1.335 (3) | C3—H3A | 0.9500 |
N2—C7 | 1.390 (3) | C3—C2 | 1.376 (3) |
C10—C11 | 1.391 (3) | C2—H2A | 0.9500 |
C10—C9 | 1.492 (3) | C2—C1 | 1.395 (3) |
C10—C15 | 1.394 (3) | C15—H15 | 0.9500 |
C11—H11 | 0.9500 | C5—H5 | 0.9500 |
C1—S1—C7 | 87.61 (9) | C5—C4—H4 | 119.6 |
C8—N3—H3 | 115.6 | C5—C4—C3 | 120.8 (2) |
C9—N3—H3 | 115.6 | C11—C12—H12 | 120.6 |
C9—N3—C8 | 128.78 (18) | C13—C12—C11 | 118.89 (19) |
C7—N1—C6 | 109.74 (17) | C13—C12—H12 | 120.6 |
C8—N2—H2 | 115.6 | C13—C14—H14 | 120.6 |
C8—N2—C7 | 128.81 (17) | C13—C14—C15 | 118.80 (19) |
C7—N2—H2 | 115.6 | C15—C14—H14 | 120.6 |
C11—C10—C9 | 116.96 (18) | C4—C3—H3A | 119.3 |
C11—C10—C15 | 119.18 (19) | C2—C3—C4 | 121.5 (2) |
C15—C10—C9 | 123.85 (18) | C2—C3—H3A | 119.3 |
C10—C11—H11 | 119.7 | C3—C2—H2A | 121.3 |
C12—C11—C10 | 120.6 (2) | C3—C2—C1 | 117.4 (2) |
C12—C11—H11 | 119.7 | C1—C2—H2A | 121.3 |
N3—C8—S2 | 118.68 (15) | C6—C1—S1 | 110.00 (15) |
N2—C8—S2 | 125.92 (16) | C2—C1—S1 | 128.16 (16) |
N2—C8—N3 | 115.40 (17) | C2—C1—C6 | 121.83 (19) |
O1—C9—N3 | 121.88 (19) | N1—C7—S1 | 117.69 (15) |
O1—C9—C10 | 122.19 (18) | N1—C7—N2 | 118.04 (18) |
N3—C9—C10 | 115.92 (18) | N2—C7—S1 | 124.26 (15) |
C12—C13—Br1 | 119.98 (16) | C10—C15—H15 | 119.7 |
C12—C13—C14 | 121.79 (19) | C14—C15—C10 | 120.69 (19) |
C14—C13—Br1 | 118.22 (16) | C14—C15—H15 | 119.7 |
N1—C6—C1 | 114.95 (18) | C6—C5—H5 | 120.7 |
N1—C6—C5 | 125.29 (18) | C4—C5—C6 | 118.65 (19) |
C5—C6—C1 | 119.76 (18) | C4—C5—H5 | 120.7 |
C3—C4—H4 | 119.6 | ||
Br1—C13—C12—C11 | 176.90 (16) | C12—C13—C14—C15 | 1.1 (3) |
Br1—C13—C14—C15 | −177.46 (16) | C14—C13—C12—C11 | −1.7 (3) |
N1—C6—C1—S1 | −0.6 (2) | C3—C4—C5—C6 | 0.0 (3) |
N1—C6—C1—C2 | 179.95 (19) | C3—C2—C1—S1 | −178.55 (17) |
N1—C6—C5—C4 | 179.7 (2) | C3—C2—C1—C6 | 0.8 (3) |
C10—C11—C12—C13 | 0.4 (3) | C1—S1—C7—N1 | 0.05 (18) |
C11—C10—C9—O1 | 5.2 (3) | C1—S1—C7—N2 | −178.98 (19) |
C11—C10—C9—N3 | −174.74 (18) | C1—C6—C5—C4 | 0.0 (3) |
C11—C10—C15—C14 | −2.0 (3) | C7—S1—C1—C6 | 0.32 (16) |
C8—N3—C9—O1 | −4.8 (3) | C7—S1—C1—C2 | 179.7 (2) |
C8—N3—C9—C10 | 175.1 (2) | C7—N1—C6—C1 | 0.7 (3) |
C8—N2—C7—S1 | 1.2 (3) | C7—N1—C6—C5 | −179.1 (2) |
C8—N2—C7—N1 | −177.8 (2) | C7—N2—C8—S2 | −2.1 (3) |
C9—N3—C8—S2 | −173.64 (17) | C7—N2—C8—N3 | 178.90 (19) |
C9—N3—C8—N2 | 5.5 (3) | C15—C10—C11—C12 | 1.5 (3) |
C9—C10—C11—C12 | −177.60 (19) | C15—C10—C9—O1 | −173.8 (2) |
C9—C10—C15—C14 | 177.0 (2) | C15—C10—C9—N3 | 6.2 (3) |
C13—C14—C15—C10 | 0.7 (3) | C5—C6—C1—S1 | 179.10 (16) |
C6—N1—C7—S1 | −0.4 (2) | C5—C6—C1—C2 | −0.3 (3) |
C6—N1—C7—N2 | 178.69 (17) | C5—C4—C3—C2 | 0.5 (3) |
C4—C3—C2—C1 | −0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···S2i | 0.88 | 2.96 | 3.6102 (19) | 132 |
N2—H2···O1 | 0.88 | 1.90 | 2.633 (2) | 139 |
C14—H14···S2ii | 0.95 | 2.95 | 3.779 (2) | 146 |
C2—H2A···S1iii | 0.95 | 3.00 | 3.908 (2) | 161 |
C5—H5···N1iv | 0.95 | 2.68 | 3.604 (3) | 165 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+1. |
References
Abbade, Y., Kisla, M. M., Hassan, M. A.-K., Celik, I., Dogan, T. S., Mutlu, P. & Ates-Alagoz, Z. (2024). ACS Omega, 9, 9547–9563. CrossRef CAS PubMed Google Scholar
AbdElgawad, H., Negi, P., Zinta, G., Mohammed, A. E., Alotaibi, M. O., Beemster, G., Saleh, A. M. & Srivastava, A. K. (2023). Sci. Total Environ. 873, 162295. CrossRef PubMed Google Scholar
Albrekht, Y., Plyusnin, V. F., Glebov, E. M., Milutka, M. S., Burlov, A. S., Koshchienko, Y. V., Vlasenko, V. G., Lazarenko, V. A. & Popov, L. D. (2024). J. Lumin. 266, 120286. CrossRef Google Scholar
Awadh, A. A. A. (2023). Saudi Pharm. J. 31, 101698. PubMed Google Scholar
Bandaru, P. K., Rao, N. S., Radhika, G. & Rao, B. V. (2023). Chem. Data Collect. 44, 100994. CrossRef Google Scholar
Bhoi, R. T., Bhoi, C. N., Nikume, S. R. & Bendre, R. S. (2023). Results Chem. 6, 101112. CrossRef Google Scholar
Çevik, U. A., Celik, I., Işık, A., Pillai, R. R., Tallei, T. E., Yadav, R., Özkay, Y. & Kaplancıklı, Z. A. (2022). J. Mol. Struct. 1252, 132095. Google Scholar
Chen, S.-Y., Nie, J.-J., You, J.-Z., Xu, D.-J. & Chen, Y.-Z. (2001). J. Chem. Crystallogr. 31, 339–343. CrossRef CAS Google Scholar
Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dhanamjayulu, P., Boga, R. B., Das, R. & Mehta, A. (2023). J. Biotechnol. 376, 33–44. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eshkil, F., Eshghi, H., Saljooghi, A. S., Bakavoli, M. & Rahimizadeh, M. (2017). Russ. J. Bioorg. Chem. 43, 576–582. CrossRef CAS Google Scholar
Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131–137. Web of Science CrossRef CAS Google Scholar
Faye, N., Gaye, A. A., Fall, A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Mod. Chem. 10, 113–120. CAS Google Scholar
Faye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Earthline J. Chem. Sci. pp. 189–208. CrossRef Google Scholar
Fiaz, K., Maqsood, M. F., Shahbaz, M., Zulfiqar, U., Naz, N., Gaafar, A. Z., Tariq, A., Farhat, F., Haider, F. U. & Shahzad, B. (2024). Heliyon, 10, e25510. CrossRef PubMed Google Scholar
Ganesh, M., Sahoo, S. K., Khatun, N. & Patel, B. K. (2015). Eur. J. Org. Chem. pp. 7534–7543. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrouche, K., Renard, J.-F., Bouider, N., de Tullio, P., Goffin, E., Lebrun, P., Faury, G., Pirotte, B. & Khelili, S. (2016). Eur. J. Med. Chem. 115, 352–360. CrossRef CAS PubMed Google Scholar
Huang, Y.-C., Chu, X., Li, W.-H., Zhao, S.-S., Zhang, J.-X., Qin, Z.-Q., Li, H.-Y. & Xue, W. (2023). Dyes Pigments, 217, 111427. CrossRef Google Scholar
Kalalbandi, V. K. A., Seetharamappa, J., Katrahalli, U. & Bhat, K. G. (2014). Eur. J. Med. Chem. 79, 194–202. CrossRef CAS PubMed Google Scholar
Lee, J., Lee, J., Kang, M.-S., Kim, K.-P., Chung, S.-J., Blumberg, P. M., Yi, J.-B. & Park, Y. H. (2002). Bioorg. Med. Chem. 10, 1171–1179. CrossRef PubMed CAS Google Scholar
Madasani, S., Devineni, S. R., Chamarthi, N. R., Pavuluri, C. M., Vejendla, A. & Chintha, V. (2023). Polycyclic Aromat. Compd. 43, 5915–5939. CrossRef CAS Google Scholar
Mahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J. & Kodape, M. M. (2023). Results Chem. 6, 101139. CrossRef Google Scholar
Masaryk, L., Tesarova, B., Choquesillo-Lazarte, D., Milosavljevic, V., Heger, Z. & Kopel, P. (2021). J. Inorg. Biochem. 217, 111395. CrossRef PubMed Google Scholar
Mavvaji, M. & Akkoc, S. (2024). Coord. Chem. Rev. 505, 215714. CrossRef Google Scholar
Muhammed, R. A., Abdullah, B. H. & Rahman, H. S. (2024). J. Mol. Struct. 1295, 136519. CrossRef Google Scholar
Nagesh, K. M. J., Prashanth, T., Khamees, H. A. & Khanum, S. A. (2022). J. Mol. Struct. 1259, 132741. CrossRef Google Scholar
Nair, P. P., Jayaraj, A. & Swamy, P. C. A. (2022). ChemistrySelect, 7, e202103517. CrossRef Google Scholar
Odame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359. Web of Science CSD CrossRef Google Scholar
Patagar, D. N., Batakurki, S. R., Kusanur, R., Patra, S. M., Saravanakumar, S. & Ghate, M. (2023). J. Mol. Struct. 1274, 134589. CrossRef Google Scholar
Pekdemir, M., Işık, Ş., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2579–o2580. CrossRef IUCr Journals Google Scholar
Pingaew, R., Prachayasittikul, V., Worachartcheewan, A., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2022). Heliyon, 8, e10067. CrossRef PubMed Google Scholar
Rigaku OD (2022). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saeedian Moghadam, E., Al-Sadi, A. M., Al-Harthy, T., Faramarzi, M. A., Shongwe, M., Amini, M. & Abdel-Jalil, R. (2023). J. Mol. Struct. 1278, 134931. CrossRef Google Scholar
Samb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. (2019). Acta Cryst. E75, 642–645. CrossRef IUCr Journals Google Scholar
Schoultz, X., Gerber, T. I. A. & Hosten, E. C. (2016). Polyhedron, 113, 55–60. CrossRef CAS Google Scholar
Shadap, L., Diamai, S., Banothu, V., Negi, D. P. S., Adepally, U., Kaminsky, W. & Kollipara, M. R. (2019). J. Organomet. Chem. 884, 44–54. CrossRef CAS Google Scholar
Shang, J., Zhang, Y., Yang, N., Xiong, L., Bian, Q. & Wang, B. (2023). Phosphorus Sulfur Silicon, 198, 659–672. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. & Wadaan, M. A. (2021). Open Chem. 19, 1062–1073. CrossRef CAS Google Scholar
Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569. Web of Science CSD CrossRef IUCr Journals Google Scholar
Swaminathan, S., Jerome, P., Deepak, R. J., Karvembu, R. & Oh, T. H. (2024). Coord. Chem. Rev. 503, 215620. CrossRef Google Scholar
Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ullah, H., Zada, H., Khan, F., Hayat, S., Rahim, F., Hussain, A., Manzoor, A., Wadood, A., Ayub, K., Rehman, A. U. & Sarfaraz, S. (2022). J. Mol. Struct. 1270, 133941. CrossRef Google Scholar
Wang, X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L. & You, Q. D. (2012). Chin. Chem. Lett. 23, 707–710. CrossRef CAS Google Scholar
Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, o2519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, Z., Huang, Q., Wei, Y., Huang, Q. & Wang, Q. (2017). Chem. Reag. 39, 241–246. CAS Google Scholar
Zhao, D., Zhen, H., Xue, J., Tang, Z., Han, X. & Chen, Z. (2024). J. Inorg. Biochem. 251, 112437. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.