research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(1,3-benzo­thia­zol-2-yl)-3-(4-bromo­benzo­yl)thio­urea

crossmark logo

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartment of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa, cDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 18 April 2024; accepted 21 May 2024; online 31 May 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The chemical reaction of 4-bromo­benzoyl­chloride and 2-amino­thia­zole in the presence of potassium thio­cyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromo­benzamido and 2-benzo­thia­zolyl moieties connected by a thio­urea group. The 4-bromo­benzamido and 2-benzo­thia­zolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromo­phenyl and the 2-benzo­thia­zolyl units is 10.45 (11)°. The thio­urea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromo­phenyl ring and is almost coplanar with the 2-benzo­thia­zolyl moiety, with a dihedral angle of 1.94 (11)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent mol­ecules inter­act via inter­molecular hydrogen bonds of type C—H⋯N, C—H⋯S and N—H⋯S, resulting in mol­ecular layers parallel to the ac plane.

1. Chemical context

Benzimidazole is a heterocycle widely used in the development of therapeutic mol­ecules. Several drugs are being developed around the world and researchers continue to be inter­ested in benzimidazole derivatives and their applications (Awadh, 2023[Awadh, A. A. A. (2023). Saudi Pharm. J. 31, 101698.]; Dhanamjayulu et al., 2023[Dhanamjayulu, P., Boga, R. B., Das, R. & Mehta, A. (2023). J. Biotechnol. 376, 33-44.]; Mavvaji & Akkoc, 2024[Mavvaji, M. & Akkoc, S. (2024). Coord. Chem. Rev. 505, 215714.]; Bandaru et al., 2023[Bandaru, P. K., Rao, N. S., Radhika, G. & Rao, B. V. (2023). Chem. Data Collect. 44, 100994.]). Benzimidazole derivatives with anti­cancer (Abbade et al., 2024[Abbade, Y., Kisla, M. M., Hassan, M. A.-K., Celik, I., Dogan, T. S., Mutlu, P. & Ates-Alagoz, Z. (2024). ACS Omega, 9, 9547-9563.]), anti­histamine (Wang et al., 2012[Wang, X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L. & You, Q. D. (2012). Chin. Chem. Lett. 23, 707-710.]), anti­viral (Mahurkar et al., 2023[Mahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J. & Kodape, M. M. (2023). Results Chem. 6, 101139.]), anti­microbial (Bhoi et al., 2023[Bhoi, R. T., Bhoi, C. N., Nikume, S. R. & Bendre, R. S. (2023). Results Chem. 6, 101112.]), anti­tuberculous (Kalalbandi et al., 2014[Kalalbandi, V. K. A., Seetharamappa, J., Katrahalli, U. & Bhat, K. G. (2014). Eur. J. Med. Chem. 79, 194-202.]), anti­diabetic (Saeedian Moghadam et al., 2023[Saeedian Moghadam, E., Al-Sadi, A. M., Al-Harthy, T., Faramarzi, M. A., Shongwe, M., Amini, M. & Abdel-Jalil, R. (2023). J. Mol. Struct. 1278, 134931.]), anti-inflammatory (Nagesh et al., 2022[Nagesh, K. M. J., Prashanth, T., Khamees, H. A. & Khanum, S. A. (2022). J. Mol. Struct. 1259, 132741.]), anti­oxidant (Patagar et al., 2023[Patagar, D. N., Batakurki, S. R., Kusanur, R., Patra, S. M., Saravanakumar, S. & Ghate, M. (2023). J. Mol. Struct. 1274, 134589.]) and anti­fungal (Çevik et al., 2022[Çevik, U. A., Celik, I., Işık, A., Pillai, R. R., Tallei, T. E., Yadav, R., Özkay, Y. & Kaplancıklı, Z. A. (2022). J. Mol. Struct. 1252, 132095.]) properties have been reported in the literature. Thio­urea has inter­esting chemical properties, which have made it possible to develop several applications (AbdElgawad et al., 2023[AbdElgawad, H., Negi, P., Zinta, G., Mohammed, A. E., Alotaibi, M. O., Beemster, G., Saleh, A. M. & Srivastava, A. K. (2023). Sci. Total Environ. 873, 162295.]; Fiaz et al., 2024[Fiaz, K., Maqsood, M. F., Shahbaz, M., Zulfiqar, U., Naz, N., Gaafar, A. Z., Tariq, A., Farhat, F., Haider, F. U. & Shahzad, B. (2024). Heliyon, 10, e25510.]; Huang et al., 2023[Huang, Y.-C., Chu, X., Li, W.-H., Zhao, S.-S., Zhang, J.-X., Qin, Z.-Q., Li, H.-Y. & Xue, W. (2023). Dyes Pigments, 217, 111427.]; Eshkil et al., 2017[Eshkil, F., Eshghi, H., Saljooghi, A. S., Bakavoli, M. & Rahimizadeh, M. (2017). Russ. J. Bioorg. Chem. 43, 576-582.]). Its high reactivity has made it possible to synthesize a very large number of derivatives with analgesic (Lee et al., 2002[Lee, J., Lee, J., Kang, M.-S., Kim, K.-P., Chung, S.-J., Blumberg, P. M., Yi, J.-B. & Park, Y. H. (2002). Bioorg. Med. Chem. 10, 1171-1179.]), anti­cancer (Pingaew et al., 2022[Pingaew, R., Prachayasittikul, V., Worachartcheewan, A., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2022). Heliyon, 8, e10067.]), anti­microbial (Madasani et al., 2023[Madasani, S., Devineni, S. R., Chamarthi, N. R., Pavuluri, C. M., Vejendla, A. & Chintha, V. (2023). Polycyclic Aromat. Compd. 43, 5915-5939.]), and anti­diabetic (Faidallah et al., 2011[Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131-137.]) properties. The combination of thio­urea and benzimidazole made it possible to generate new mol­ecules with properties better than those of derivatives of the two uncombined mol­ecules (Ganesh et al., 2015[Ganesh, M., Sahoo, S. K., Khatun, N. & Patel, B. K. (2015). Eur. J. Org. Chem. pp. 7534-7543.]; Harrouche et al., 2016[Harrouche, K., Renard, J.-F., Bouider, N., de Tullio, P., Goffin, E., Lebrun, P., Faury, G., Pirotte, B. & Khelili, S. (2016). Eur. J. Med. Chem. 115, 352-360.]; Shang et al., 2023[Shang, J., Zhang, Y., Yang, N., Xiong, L., Bian, Q. & Wang, B. (2023). Phosphorus Sulfur Silicon, 198, 659-672.]). Mol­ecules derived from benzimidazole-thio­urea presenting potent anti­proliferative activity, compared to reference drugs, have been synthesized (Ullah et al., 2022[Ullah, H., Zada, H., Khan, F., Hayat, S., Rahim, F., Hussain, A., Manzoor, A., Wadood, A., Ayub, K., Rehman, A. U. & Sarfaraz, S. (2022). J. Mol. Struct. 1270, 133941.]; Siddig et al., 2021[Siddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. & Wadaan, M. A. (2021). Open Chem. 19, 1062-1073.]). It is in this context that thio­urea derivatives are the subject of particular inter­est for researchers seeking to develop mol­ecules containing one or more metal ions to improve the properties of these compounds (Muhammed et al., 2024[Muhammed, R. A., Abdullah, B. H. & Rahman, H. S. (2024). J. Mol. Struct. 1295, 136519.]; Albrekht et al., 2024[Albrekht, Y., Plyusnin, V. F., Glebov, E. M., Milutka, M. S., Burlov, A. S., Koshchienko, Y. V., Vlasenko, V. G., Lazarenko, V. A. & Popov, L. D. (2024). J. Lumin. 266, 120286.]; Nair et al., 2022[Nair, P. P., Jayaraj, A. & Swamy, P. C. A. (2022). ChemistrySelect, 7, e202103517.]; Masaryk et al., 2021[Masaryk, L., Tesarova, B., Choquesillo-Lazarte, D., Milosavljevic, V., Heger, Z. & Kopel, P. (2021). J. Inorg. Biochem. 217, 111395.]). Complexes exhibiting biological properties are reported in the literature (Zhao et al., 2024[Zhao, D., Zhen, H., Xue, J., Tang, Z., Han, X. & Chen, Z. (2024). J. Inorg. Biochem. 251, 112437.]; Swaminathan et al., 2024[Swaminathan, S., Jerome, P., Deepak, R. J., Karvembu, R. & Oh, T. H. (2024). Coord. Chem. Rev. 503, 215620.]; Muhammed et al., 2024[Muhammed, R. A., Abdullah, B. H. & Rahman, H. S. (2024). J. Mol. Struct. 1295, 136519.]; Albrekht et al., 2024[Albrekht, Y., Plyusnin, V. F., Glebov, E. M., Milutka, M. S., Burlov, A. S., Koshchienko, Y. V., Vlasenko, V. G., Lazarenko, V. A. & Popov, L. D. (2024). J. Lumin. 266, 120286.]). For several years, our research group has been developing compounds containing the thio­urea moiety (Faye, Gaye et al., 2022[Faye, N., Gaye, A. A., Fall, A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Mod. Chem. 10, 113-120.]; Faye, Mbow et al., 2022[Faye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Earthline J. Chem. Sci. pp. 189-208.]; Thiam et al., 2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]; Samb et al., 2019[Samb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. (2019). Acta Cryst. E75, 642-645.]). In this work, we report the synthesis and characterization of a mol­ecule containing both thio­urea and benzimidazole moieties.

[Scheme 1]

2. Structural commentary

The X-ray structure determination revealed that the title compound crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The mol­ecular geometry is illustrated in Fig. 1[link]. The S1—C1 [1.745 (2) Å] and the S1—C7 [1.751 (2) Å] distances indicate that these correspond to single bonds. The S2—C8 [1.663 (2) Å] and the O1—C9 [1.220 (2) Å] and N1—C7 [1.291 (3) Å] distances indicate that these correspond to double bonds and are comparable to those observed for 1,2-bis­(N′-benzoyl­thio­ureido)benzene [1.6574 (18) Å for C—S, 1.219 (2) Å and 1.224 (3) Å for C—O; Thiam et al., 2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]]. The N1—C7 [1.291 (3) Å] distance indicates double-bond character, similar to the corresponding bond length in (Z)-2-[(E)-2-(1-benzo­thio­phen-3-yl­methyl­idene)hydrazin-1-yl­idene]-1,2-di­phenyl­ethanone [1.281 (3) Å; Pekdemir et al., 2012[Pekdemir, M., Işık, Ş., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2579-o2580.]]. The N1—C6 [1.392 (3) Å], N2—C7 [1.390 (3) Å], N3—C8 [1.386 (3) Å] and N3—C9 [1.383 (3) Å] distances are in the normal range observed for a single C—N bond (Samb et al., 2019[Samb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. (2019). Acta Cryst. E75, 642-645.]; Chen et al., 2001[Chen, S.-Y., Nie, J.-J., You, J.-Z., Xu, D.-J. & Chen, Y.-Z. (2001). J. Chem. Crystallogr. 31, 339-343.]). The bond angles around N2, N3 and C8 fall in the range 115.40 (17)–128.81 (17)° and are comparable to the ideal value of 120° observed for sp2 hybridization. The phenyl ring and the benzo­thia­zole ring are essentially planar with r.m.s deviations of 0.0081 and 0.0070 Å, respectively. The thio­urea fragment (S2/N3/N2/C8/C9) is planar with a maximum deviation from its mean plane of 0.0519 (1) Å for N3. The 4-bromo­phenyl ring and the 2-benzo­thia­zolyl groups are twisted relative to each other and form a dihedral angle of 10.45 (11)°. The two rings make dihedral angles of 8.64 (12) and 1.94 (11)°, respectively, with the thio­urea fragment. The 4-bromo­benzoyl group is trans with respect to the thiono S atom across the N3—C8 bond. The 2-benzo­thia­zolyl ring adopts a cis conformation with respect to the thiono S atom across the N2—C8 bond. The mol­ecule exhibits an intra­molecular N—H⋯O hydrogen bond (Table 1[link]) between the carbonyl oxygen atom and the thio­amide hydrogen atom, which forms an S(6) ring. This phenomenon is regularly noted in the case of carbonoylurea and benzoyl thio­urea (Sow et al., 2009[Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.]; Woei Hung & Kassim, 2010[Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.]) derivatives.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S2i 0.88 2.96 3.6102 (19) 132
N2—H2⋯O1 0.88 1.90 2.633 (2) 139
C14—H14⋯S2ii 0.95 2.95 3.779 (2) 146
C2—H2A⋯S1iii 0.95 3.00 3.908 (2) 161
C5—H5⋯N1iv 0.95 2.68 3.604 (3) 165
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, -y, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked into chains that are connected by inter­molecular hydrogen bonds of type C—H⋯N, C—H⋯S, and N—H⋯S (Table 1[link]), forming mol­ecular layers running parallel to the ac plane. Inter­molecular N—H⋯S and C—H⋯N hydrogen bonds further link the mol­ecules, forming a zigzag chain through R22(8) rings. The inter­molecular C—H⋯S hydrogen bond consolidates the structure, forming rings of type R21(8) (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Partial packing view along the a axis, H atoms are omitted for clarity.
[Figure 3]
Figure 3
Partial packing view down the b axis showing the formation of R22(8) graph-set motifs. Hydrogen bonds are drawn as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.44, updates of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment benzo­thia­zole thio­urea yielded seventeen hits. For some hits, the bromine atom is replaced by a chlorine atom (BUDZIK; Yusof et al., 2009[Yusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, o2519.]) or nitro group (HUWIM; Cui et al., 2009[Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216.]). Other results give the same chemical formula and structure but have the bromine atom in the ortho or meta position on the benzene ring [IVEWEO (Zeng et al., 2017[Zeng, Z., Huang, Q., Wei, Y., Huang, Q. & Wang, Q. (2017). Chem. Reag. 39, 241-246.]) and SURGOE (Odame et al., 2020[Odame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.])]. Coordination complexes based on transition metals such as rhenium (INOXUG; Schoultz et al., 2016[Schoultz, X., Gerber, T. I. A. & Hosten, E. C. (2016). Polyhedron, 113, 55-60.]), ruthenium (NODLUQ; Shadap et al. 2019[Shadap, L., Diamai, S., Banothu, V., Negi, D. P. S., Adepally, U., Kaminsky, W. & Kollipara, M. R. (2019). J. Organomet. Chem. 884, 44-54.]) and rhodium (NODMAX; Shadap et al., 2019[Shadap, L., Diamai, S., Banothu, V., Negi, D. P. S., Adepally, U., Kaminsky, W. & Kollipara, M. R. (2019). J. Organomet. Chem. 884, 44-54.]) have organic ligands that are analogues of the reported mol­ecule.

5. Synthesis and crystallization

The title compound was synthesized following the procedure reported by Odame et al. (2020[Odame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.]) with slight modification. The thio­urea derivative was obtained by the reaction of potassium thio­cyanate (1.9388 g, 20 mmol) with 4-bromo­benzoyl chloride (4.3892 g, 20 mmol) in 25 mL of acetone and heating under reflux for 2 h to yield the 4-bromo­benzoyl iso­thio­cyanate. To the above solution was added a solution of 2-amino­benzo­thia­zole (3 g, 20 mmol) in 25 mL of acetone. The resulting mixture was heated overnight. The solvent was removed by evaporation and the crude product was recrystallized in methanol. Yield 77%, m.p. 504 K. Analysis calculated for C15H10BrN3OS2: C, 45.92; H, 2.57; N, 10.71; S, 16.35. Found: C, 45.90; H, 2.55; N, 10.69; S, 16.32. FTIR: (ν, cm−1): 3075 (N—H), 3015 (N—H), 1675 (C=O), 1563 (C=C), 1546 (C=C), 1451 (C—N), 1439 (C—N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were geometrically optimized (C—H = 0.95 Å, N—H = 0.88 Å) and refined as riding on their carriers with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrN3OS2
Mr 392.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.5009 (5), 6.4130 (2), 17.9147 (7)
β (°) 103.606 (4)
V3) 1507.54 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.01
Crystal size (mm) 0.10 × 0.06 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.804, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 18792, 3074, 2581
Rint 0.041
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.03
No. of reflections 3074
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1-(1,3-Benzothiazol-2-yl)-3-(4-bromobenzoyl)thiourea top
Crystal data top
C15H10BrN3OS2F(000) = 784
Mr = 392.29Dx = 1.728 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5009 (5) ÅCell parameters from 9123 reflections
b = 6.4130 (2) Åθ = 3.1–33.9°
c = 17.9147 (7) ŵ = 3.01 mm1
β = 103.606 (4)°T = 100 K
V = 1507.54 (10) Å3Block, light colourless
Z = 40.10 × 0.06 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2581 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.041
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.804, Tmax = 0.986k = 88
18792 measured reflectionsl = 2221
3074 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0191P)2 + 1.3729P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3074 reflectionsΔρmax = 0.35 e Å3
199 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07298 (2)0.50717 (3)0.27034 (2)0.01865 (7)
S10.24869 (4)0.98772 (8)0.63447 (3)0.01659 (12)
S20.10718 (4)0.61809 (8)0.59446 (3)0.02191 (13)
O10.29683 (11)0.3918 (2)0.43225 (8)0.0182 (3)
N30.16341 (14)0.3897 (3)0.48987 (10)0.0172 (4)
H30.1069670.3223410.4909090.021*
N10.38000 (13)0.9461 (3)0.54899 (10)0.0155 (4)
N20.26397 (13)0.6774 (3)0.52923 (10)0.0148 (4)
H20.2981110.6278290.4969020.018*
C100.18323 (16)0.1035 (3)0.40497 (12)0.0145 (4)
C110.24401 (17)0.0071 (3)0.36228 (12)0.0183 (4)
H110.3072960.0681300.3598550.022*
C80.18301 (16)0.5657 (3)0.53592 (12)0.0167 (4)
C90.22053 (16)0.3057 (3)0.44251 (12)0.0152 (4)
C130.12063 (17)0.2631 (3)0.32704 (12)0.0162 (4)
C60.40504 (15)1.1298 (3)0.59049 (11)0.0139 (4)
C40.49993 (17)1.4411 (3)0.62991 (13)0.0208 (5)
H40.5539131.5334140.6269700.025*
C120.21305 (17)0.1773 (3)0.32321 (13)0.0199 (5)
H120.2547840.2433870.2943030.024*
C140.05956 (16)0.1731 (3)0.37025 (13)0.0178 (4)
H140.0032630.2358130.3729470.021*
C30.43652 (17)1.4872 (3)0.67971 (13)0.0200 (5)
H3A0.4481601.6110810.7095760.024*
C20.35797 (17)1.3570 (3)0.68620 (12)0.0196 (5)
H2A0.3158251.3876790.7204160.023*
C10.34260 (16)1.1782 (3)0.64059 (12)0.0158 (4)
C70.30166 (16)0.8612 (3)0.56641 (12)0.0144 (4)
C150.09165 (17)0.0100 (3)0.40956 (13)0.0185 (4)
H150.0508060.0725760.4399440.022*
C50.48474 (16)1.2633 (3)0.58523 (12)0.0179 (4)
H50.5276601.2325040.5515820.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02144 (12)0.01489 (11)0.01875 (12)0.00221 (8)0.00297 (8)0.00376 (8)
S10.0190 (3)0.0164 (2)0.0168 (3)0.0037 (2)0.0090 (2)0.0033 (2)
S20.0203 (3)0.0227 (3)0.0263 (3)0.0068 (2)0.0127 (2)0.0073 (2)
O10.0163 (8)0.0172 (7)0.0223 (8)0.0017 (6)0.0071 (6)0.0016 (6)
N30.0164 (9)0.0160 (9)0.0212 (10)0.0064 (7)0.0087 (8)0.0048 (7)
N10.0149 (9)0.0163 (8)0.0154 (9)0.0014 (7)0.0036 (7)0.0004 (7)
N20.0159 (9)0.0147 (8)0.0158 (9)0.0021 (7)0.0074 (7)0.0038 (7)
C100.0162 (11)0.0115 (10)0.0150 (11)0.0002 (8)0.0020 (9)0.0018 (8)
C110.0174 (11)0.0187 (11)0.0199 (11)0.0035 (9)0.0070 (9)0.0006 (9)
C80.0173 (11)0.0165 (10)0.0160 (11)0.0008 (8)0.0035 (9)0.0001 (8)
C90.0150 (11)0.0161 (10)0.0136 (11)0.0012 (8)0.0014 (9)0.0034 (8)
C130.0204 (12)0.0114 (9)0.0147 (11)0.0012 (8)0.0002 (9)0.0008 (8)
C60.0139 (11)0.0141 (10)0.0123 (10)0.0006 (8)0.0004 (8)0.0003 (8)
C40.0182 (12)0.0189 (11)0.0231 (12)0.0050 (9)0.0004 (9)0.0008 (8)
C120.0209 (12)0.0195 (11)0.0210 (12)0.0005 (9)0.0086 (10)0.0024 (9)
C140.0147 (11)0.0166 (10)0.0233 (12)0.0020 (8)0.0066 (9)0.0003 (8)
C30.0231 (12)0.0151 (10)0.0185 (11)0.0018 (9)0.0016 (9)0.0037 (8)
C20.0219 (12)0.0198 (11)0.0161 (11)0.0002 (9)0.0026 (9)0.0021 (8)
C10.0158 (11)0.0171 (10)0.0142 (11)0.0009 (8)0.0029 (9)0.0011 (8)
C70.0155 (11)0.0152 (10)0.0124 (10)0.0002 (8)0.0031 (8)0.0013 (8)
C150.0187 (11)0.0175 (10)0.0210 (12)0.0002 (9)0.0081 (9)0.0018 (9)
C50.0155 (11)0.0184 (10)0.0197 (11)0.0024 (8)0.0037 (9)0.0008 (8)
Geometric parameters (Å, º) top
Br1—C131.894 (2)C11—C121.388 (3)
S1—C11.745 (2)C13—C121.380 (3)
S1—C71.751 (2)C13—C141.383 (3)
S2—C81.663 (2)C6—C11.403 (3)
O1—C91.220 (2)C6—C51.396 (3)
N3—H30.8800C4—H40.9500
N3—C81.386 (3)C4—C31.406 (3)
N3—C91.383 (3)C4—C51.380 (3)
N1—C61.392 (3)C12—H120.9500
N1—C71.291 (3)C14—H140.9500
N2—H20.8800C14—C151.386 (3)
N2—C81.335 (3)C3—H3A0.9500
N2—C71.390 (3)C3—C21.376 (3)
C10—C111.391 (3)C2—H2A0.9500
C10—C91.492 (3)C2—C11.395 (3)
C10—C151.394 (3)C15—H150.9500
C11—H110.9500C5—H50.9500
C1—S1—C787.61 (9)C5—C4—H4119.6
C8—N3—H3115.6C5—C4—C3120.8 (2)
C9—N3—H3115.6C11—C12—H12120.6
C9—N3—C8128.78 (18)C13—C12—C11118.89 (19)
C7—N1—C6109.74 (17)C13—C12—H12120.6
C8—N2—H2115.6C13—C14—H14120.6
C8—N2—C7128.81 (17)C13—C14—C15118.80 (19)
C7—N2—H2115.6C15—C14—H14120.6
C11—C10—C9116.96 (18)C4—C3—H3A119.3
C11—C10—C15119.18 (19)C2—C3—C4121.5 (2)
C15—C10—C9123.85 (18)C2—C3—H3A119.3
C10—C11—H11119.7C3—C2—H2A121.3
C12—C11—C10120.6 (2)C3—C2—C1117.4 (2)
C12—C11—H11119.7C1—C2—H2A121.3
N3—C8—S2118.68 (15)C6—C1—S1110.00 (15)
N2—C8—S2125.92 (16)C2—C1—S1128.16 (16)
N2—C8—N3115.40 (17)C2—C1—C6121.83 (19)
O1—C9—N3121.88 (19)N1—C7—S1117.69 (15)
O1—C9—C10122.19 (18)N1—C7—N2118.04 (18)
N3—C9—C10115.92 (18)N2—C7—S1124.26 (15)
C12—C13—Br1119.98 (16)C10—C15—H15119.7
C12—C13—C14121.79 (19)C14—C15—C10120.69 (19)
C14—C13—Br1118.22 (16)C14—C15—H15119.7
N1—C6—C1114.95 (18)C6—C5—H5120.7
N1—C6—C5125.29 (18)C4—C5—C6118.65 (19)
C5—C6—C1119.76 (18)C4—C5—H5120.7
C3—C4—H4119.6
Br1—C13—C12—C11176.90 (16)C12—C13—C14—C151.1 (3)
Br1—C13—C14—C15177.46 (16)C14—C13—C12—C111.7 (3)
N1—C6—C1—S10.6 (2)C3—C4—C5—C60.0 (3)
N1—C6—C1—C2179.95 (19)C3—C2—C1—S1178.55 (17)
N1—C6—C5—C4179.7 (2)C3—C2—C1—C60.8 (3)
C10—C11—C12—C130.4 (3)C1—S1—C7—N10.05 (18)
C11—C10—C9—O15.2 (3)C1—S1—C7—N2178.98 (19)
C11—C10—C9—N3174.74 (18)C1—C6—C5—C40.0 (3)
C11—C10—C15—C142.0 (3)C7—S1—C1—C60.32 (16)
C8—N3—C9—O14.8 (3)C7—S1—C1—C2179.7 (2)
C8—N3—C9—C10175.1 (2)C7—N1—C6—C10.7 (3)
C8—N2—C7—S11.2 (3)C7—N1—C6—C5179.1 (2)
C8—N2—C7—N1177.8 (2)C7—N2—C8—S22.1 (3)
C9—N3—C8—S2173.64 (17)C7—N2—C8—N3178.90 (19)
C9—N3—C8—N25.5 (3)C15—C10—C11—C121.5 (3)
C9—C10—C11—C12177.60 (19)C15—C10—C9—O1173.8 (2)
C9—C10—C15—C14177.0 (2)C15—C10—C9—N36.2 (3)
C13—C14—C15—C100.7 (3)C5—C6—C1—S1179.10 (16)
C6—N1—C7—S10.4 (2)C5—C6—C1—C20.3 (3)
C6—N1—C7—N2178.69 (17)C5—C4—C3—C20.5 (3)
C4—C3—C2—C10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S2i0.882.963.6102 (19)132
N2—H2···O10.881.902.633 (2)139
C14—H14···S2ii0.952.953.779 (2)146
C2—H2A···S1iii0.953.003.908 (2)161
C5—H5···N1iv0.952.683.604 (3)165
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y+2, z+1.
 

References

First citationAbbade, Y., Kisla, M. M., Hassan, M. A.-K., Celik, I., Dogan, T. S., Mutlu, P. & Ates-Alagoz, Z. (2024). ACS Omega, 9, 9547–9563.  CrossRef CAS PubMed Google Scholar
First citationAbdElgawad, H., Negi, P., Zinta, G., Mohammed, A. E., Alotaibi, M. O., Beemster, G., Saleh, A. M. & Srivastava, A. K. (2023). Sci. Total Environ. 873, 162295.  CrossRef PubMed Google Scholar
First citationAlbrekht, Y., Plyusnin, V. F., Glebov, E. M., Milutka, M. S., Burlov, A. S., Koshchienko, Y. V., Vlasenko, V. G., Lazarenko, V. A. & Popov, L. D. (2024). J. Lumin. 266, 120286.  CrossRef Google Scholar
First citationAwadh, A. A. A. (2023). Saudi Pharm. J. 31, 101698.  PubMed Google Scholar
First citationBandaru, P. K., Rao, N. S., Radhika, G. & Rao, B. V. (2023). Chem. Data Collect. 44, 100994.  CrossRef Google Scholar
First citationBhoi, R. T., Bhoi, C. N., Nikume, S. R. & Bendre, R. S. (2023). Results Chem. 6, 101112.  CrossRef Google Scholar
First citationÇevik, U. A., Celik, I., Işık, A., Pillai, R. R., Tallei, T. E., Yadav, R., Özkay, Y. & Kaplancıklı, Z. A. (2022). J. Mol. Struct. 1252, 132095.  Google Scholar
First citationChen, S.-Y., Nie, J.-J., You, J.-Z., Xu, D.-J. & Chen, Y.-Z. (2001). J. Chem. Crystallogr. 31, 339–343.  CrossRef CAS Google Scholar
First citationCui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhanamjayulu, P., Boga, R. B., Das, R. & Mehta, A. (2023). J. Biotechnol. 376, 33–44.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEshkil, F., Eshghi, H., Saljooghi, A. S., Bakavoli, M. & Rahimizadeh, M. (2017). Russ. J. Bioorg. Chem. 43, 576–582.  CrossRef CAS Google Scholar
First citationFaidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131–137.  Web of Science CrossRef CAS Google Scholar
First citationFaye, N., Gaye, A. A., Fall, A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Mod. Chem. 10, 113–120.  CAS Google Scholar
First citationFaye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). Earthline J. Chem. Sci. pp. 189–208.  CrossRef Google Scholar
First citationFiaz, K., Maqsood, M. F., Shahbaz, M., Zulfiqar, U., Naz, N., Gaafar, A. Z., Tariq, A., Farhat, F., Haider, F. U. & Shahzad, B. (2024). Heliyon, 10, e25510.  CrossRef PubMed Google Scholar
First citationGanesh, M., Sahoo, S. K., Khatun, N. & Patel, B. K. (2015). Eur. J. Org. Chem. pp. 7534–7543.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrouche, K., Renard, J.-F., Bouider, N., de Tullio, P., Goffin, E., Lebrun, P., Faury, G., Pirotte, B. & Khelili, S. (2016). Eur. J. Med. Chem. 115, 352–360.  CrossRef CAS PubMed Google Scholar
First citationHuang, Y.-C., Chu, X., Li, W.-H., Zhao, S.-S., Zhang, J.-X., Qin, Z.-Q., Li, H.-Y. & Xue, W. (2023). Dyes Pigments, 217, 111427.  CrossRef Google Scholar
First citationKalalbandi, V. K. A., Seetharamappa, J., Katrahalli, U. & Bhat, K. G. (2014). Eur. J. Med. Chem. 79, 194–202.  CrossRef CAS PubMed Google Scholar
First citationLee, J., Lee, J., Kang, M.-S., Kim, K.-P., Chung, S.-J., Blumberg, P. M., Yi, J.-B. & Park, Y. H. (2002). Bioorg. Med. Chem. 10, 1171–1179.  CrossRef PubMed CAS Google Scholar
First citationMadasani, S., Devineni, S. R., Chamarthi, N. R., Pavuluri, C. M., Vejendla, A. & Chintha, V. (2023). Polycyclic Aromat. Compd. 43, 5915–5939.  CrossRef CAS Google Scholar
First citationMahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J. & Kodape, M. M. (2023). Results Chem. 6, 101139.  CrossRef Google Scholar
First citationMasaryk, L., Tesarova, B., Choquesillo-Lazarte, D., Milosavljevic, V., Heger, Z. & Kopel, P. (2021). J. Inorg. Biochem. 217, 111395.  CrossRef PubMed Google Scholar
First citationMavvaji, M. & Akkoc, S. (2024). Coord. Chem. Rev. 505, 215714.  CrossRef Google Scholar
First citationMuhammed, R. A., Abdullah, B. H. & Rahman, H. S. (2024). J. Mol. Struct. 1295, 136519.  CrossRef Google Scholar
First citationNagesh, K. M. J., Prashanth, T., Khamees, H. A. & Khanum, S. A. (2022). J. Mol. Struct. 1259, 132741.  CrossRef Google Scholar
First citationNair, P. P., Jayaraj, A. & Swamy, P. C. A. (2022). ChemistrySelect, 7, e202103517.  CrossRef Google Scholar
First citationOdame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.  Web of Science CSD CrossRef Google Scholar
First citationPatagar, D. N., Batakurki, S. R., Kusanur, R., Patra, S. M., Saravanakumar, S. & Ghate, M. (2023). J. Mol. Struct. 1274, 134589.  CrossRef Google Scholar
First citationPekdemir, M., Işık, Ş., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2579–o2580.  CrossRef IUCr Journals Google Scholar
First citationPingaew, R., Prachayasittikul, V., Worachartcheewan, A., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2022). Heliyon, 8, e10067.  CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaeedian Moghadam, E., Al-Sadi, A. M., Al-Harthy, T., Faramarzi, M. A., Shongwe, M., Amini, M. & Abdel-Jalil, R. (2023). J. Mol. Struct. 1278, 134931.  CrossRef Google Scholar
First citationSamb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. (2019). Acta Cryst. E75, 642–645.  CrossRef IUCr Journals Google Scholar
First citationSchoultz, X., Gerber, T. I. A. & Hosten, E. C. (2016). Polyhedron, 113, 55–60.  CrossRef CAS Google Scholar
First citationShadap, L., Diamai, S., Banothu, V., Negi, D. P. S., Adepally, U., Kaminsky, W. & Kollipara, M. R. (2019). J. Organomet. Chem. 884, 44–54.  CrossRef CAS Google Scholar
First citationShang, J., Zhang, Y., Yang, N., Xiong, L., Bian, Q. & Wang, B. (2023). Phosphorus Sulfur Silicon, 198, 659–672.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. & Wadaan, M. A. (2021). Open Chem. 19, 1062–1073.  CrossRef CAS Google Scholar
First citationSow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwaminathan, S., Jerome, P., Deepak, R. J., Karvembu, R. & Oh, T. H. (2024). Coord. Chem. Rev. 503, 215620.  CrossRef Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUllah, H., Zada, H., Khan, F., Hayat, S., Rahim, F., Hussain, A., Manzoor, A., Wadood, A., Ayub, K., Rehman, A. U. & Sarfaraz, S. (2022). J. Mol. Struct. 1270, 133941.  CrossRef Google Scholar
First citationWang, X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L. & You, Q. D. (2012). Chin. Chem. Lett. 23, 707–710.  CrossRef CAS Google Scholar
First citationWoei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, o2519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, Z., Huang, Q., Wei, Y., Huang, Q. & Wang, Q. (2017). Chem. Reag. 39, 241–246.  CAS Google Scholar
First citationZhao, D., Zhen, H., Xue, J., Tang, Z., Han, X. & Chen, Z. (2024). J. Inorg. Biochem. 251, 112437.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds