research communications
Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives
aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bR&D Center, Vietnam Education and Technology Transfer JSC, Hanoi, Vietnam, cBac Giang Upper Secondary School for the Gifted, Bac Giang, Vietnam, dUniversity of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
Three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives, namely, [4-methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cycloplatinated arylolefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hydroxyquinoline (C9H6NO) and quinoline-2-carboxylic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and π–π [for (I)] interactions.
1. Chemical context
In cancer chemotherapy, three generations of platinum-based drugs, namely cisplatin, carboplatin and oxaliplatin, have been approved all over the world. In addition, some other platinum-based drugs are used in Asia, such as Japan (nedaplatin), China (lobaplatin) and Korea (heptaplatin) (Johnstone et al., 2016). However, these drugs cause several undesirable side effects and are not universally effective in all types of human cancer. Recently, many organoplatinum(II) complexes possessing natural arylolefin ligands and either amine or N-heterocyclic carbene have been synthesized with the aim of minimizing toxicity and diversifying hopeful anti-cancer agents. The tested cytotoxicity results show that many of them exhibit higher activity than cisplatin on some human cancer cell lines such as KB, Lu-1, Hep G2 and MCF-7 (Da et al., 2012, 2015; Thi Hong Hai et al., 2019; Nguyen Thi Thanh et al., 2017; Chi et al., 2018, 2020; Van Thong et al., 2022).
In this paper, the synthesis and η2-2-allyl-4-methoxy-5-{[(methyloxy)carbonyl]methoxy}phenyl-Cκ1)(quinolin-8-olato-κ2N,O)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), (η2-2-allyl-4-methoxy-5-{[(propan-1-yloxy)carbonyl]methoxy}phenyl-Cκ1)(quinolin-2-carboxylato-κ2N,O)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II) and (η2-2-allyl-4-methoxy-5-{[(propan-1-yloxy)carbonyl]methoxy}phenyl-Cκ1)chlorido(quinolin-κ1N)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), are reported. Complexes (I)–(III) were synthesized by the reaction between the dimer complexes (1a/1b) and amine (QOH/QCOOH/Q with Q = quinoline) in an ethanol/acetone solvent with the molar ratio of the dimer complex:amine being 1:2 (Fig. 1). The crystals of complexes (I)–(III) were obtained in high yields of 82–87% and were suitable for X-ray diffraction studies.
of three organoplatinum(II) complexes containing a natural arylolefin, namely (The assigned results of the IR and 1H NMR spectra (see section 5) show that the cleave the dimers to form monomeric complexes (I)–(III), in which the coordinate with PtII through the N atoms. For QOH and QCOOH, they were deprotonated at the OH/COOH group and further bonded with PtII via the O atom to produce the chelating complexes (I) and (II). These conclusions were further strengthened by the single-crystal XRD results. Moreover, the XRD results indicate that the donor N atoms of the amine ligands and the allyl group of arylolefin in complexes (I)–(III) are in the cis position with respect to each other.
2. Structural commentary
Complex (I) crystallizes in the monoclinic P21/c with one complex and a water molecule with partial occupancy of 0.473 (11) in the (Fig. 2). No hydrogen atoms could be located for this water molecule, the oxygen atom O30 is in close contact with O12 [O30⋯O12 = 2.718 (8) Å] and O22 [O30⋯O22 = 2.945 (8) Å] suggesting the likelihood that the water forms hydrogen bonds to O12 and O22. The central PtII atom displays a distorted square-planar coordination with the N2 and O12 atoms of the quinolin-8-olate ligand and the C13 atom and C=C double bond of the arylolefin as coordination sphere. The PtII atom deviates by 0.012 (1) Å from the best plane through atoms N2, O12, C13 and the midpoint of the double bond (r.m.s. deviation = 0.005 Å). The C=C double bond and N2 atom are cis with respect to each other. The arylolefin ring C13–C18 (r.m.s. deviation = 0.007 Å) makes a dihedral angle of 25.79 (11)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.014 Å).
Crystals of complex (II) crystallize in the monoclinic P21/n with one molecule in the (Fig. 3). The cis position of quinoline N atom and the allyl group and the coordination of the PtII atom is similar to that in (I) with a deviation of PtII of 0.033 (1) Å from the best plane through atoms N21, O33, C6 and the midpoint of the double bond. The dihedral angle between the best planes through the C5–C10 ring (r.m.s. deviation = 0.008 Å) and through the quinoline ring system (r.m.s. deviation = 0.048 Å) is 41.72 (16)°.
Complex (III) crystallizes in the monoclinic P21/c with one complex in the (Fig. 4). The PtII atom was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7) and a distance between both Pt components of 0.529 (17) Å. In the subsequent discussion, only the main position of the disordered Pt atom is used. The distorted square-planar coordination of the PtII atom is again characterized by a cis position of the C=C double bond and atom N3. The PtII atom deviates by 0.005 (1) Å from the best plane through atoms Cl2, N3, C21 and the midpoint of the double bond (r.m.s. deviation = 0.026 Å). Complex (III) displays a short intramolecular contact O22⋯H25B (2.40 Å) resulting from a different orientation of the side chain at C19 compared to complexes (I) and (II). This is further illustrated by the different torsion angles determining the orientation of the side chain in the three complexes: 178.4 (4)° for C16—C15—O19—C20 in (I), 179.8 (4)° for C9—C8—O13—C14 (II), and −69.9 (5)° for C18—C19—O24—C25 (III). Compared to the two other complexes, the C16–C21 arylolefin ring (r.m.s. deviation = 0.013 Å) makes a larger dihedral angle of 57.38 (18)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.017 Å).
3. Supramolecular features
The crystal packing of (I) is characterized by π–π and C—H⋯π interactions (Fig. 5). The shortest centroid–centroid distance is observed for the stacking of rings C6–C11 resulting in inversion dimers [Cg⋯Cgi = 3.566 (2) Å; slippage = 1.369 Å; symmetry code: (i) −x, 1 − y, 1 − z]. Neighboring dimers are connected in the c-axis direction via C—H⋯π interactions of the same ring with C27—H27A (Table 1). As mentioned above, oxygen atom O30 [occupancy 0.473 (11)] occupies a small cavity in the packing and is in close contact with atoms O12 and O22.
|
In the crystal, molecules of (II) are connected by C—H⋯O and C—H⋯π interactions (Fig. 6). Inversion dimers are formed by C29—H29⋯O32 interactions. These dimers are further linked by C20—H20C⋯O33, C28—H28⋯O16, C18—H18A⋯π and C20—H20A⋯π interactions. Details are given in Table 2. No π–π interactions are present in the packing, but a short contact distance between Pt1 and ring N21,C22,C27–C30 is noted [Cg3⋯Pt1vi = 3.670 (2) Å; Cg3 is the centroid of ring N21,C22,C27–C30; symmetry code: (vi) −x, 1 − y, −z].
For complex (III), the molecules are linked together by C—H⋯O, C—H⋯Cl and C—H⋯π interactions (Fig. 7, Table 3). Atoms H6 and H9 of the quinoline ring system interact with ring C16–C21 and O27, respectively. At the other end of the complex, the methoxy group links with a neighboring Cl2 atom and the propyloxy group connects with an neighboring atom O24. Again, despite the presence of aromatic rings, no π–π interactions are observed in the packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016) for Pt complexes coordinated to C=C, C, N and O or Cl resulted in 15 hits. For three hits, the N-containing ligand is a quinoline derivative: {5-(2-ethoxy-2-oxoethoxy)-4-methoxy-2-[prop-2-en-1-yl]phenyl}(2-methylquinolin-8-olato)platinum(II) (refcode LOJDEW; Hai et al., 2019), [η2-4,5-dimethoxy-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II) (refcode GACYUH; Bui et al., 2016) and [5-(2-ethoxy-2-oxoethoxy)-4-methoxy-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II) (refcode MEKGER; Da et al., 2015).
Entries LOJDEW and GACYUH are comparable to complex (I), but crystallize with different unit cells. An overlay of Pt and its coordination sphere (N, O, C, C=C) gives for (I) and LOJDEW an r.m.s. deviation of 0.106 Å, and for (I) and GACYUH 0.120 Å (Fig. 8a). Compared to (II) and LOJDEW, the double bond of the allyl chain in GACYUH complexes is in a different orientation with Pt. This causes also a different orientation of the aromatic ring of the arylolefin ligand.
Entry MEKGER is comparable to complex (II) and both structures are isomorphous. The somewhat longer b axis in (II) (18.500 versus 17.326 Å) is caused by the longer propyl chain (compared to ethyl in MEKGER), which is oriented in the b-axis direction. The r.m.s. deviation for an overlay of Pt and its coordination sphere is 0.0371 Å (Fig. 8b).
5. Synthesis and crystallization
The synthetic protocol for complexes (I)–(III) is shown in Fig. 1. The starting complexes [Pt(μ-Cl)(MeEug)]2 and [Pt(μ-Cl)(PrEug)]2 were synthesized according to the procedures of Da et al. (2010) and Chi et al. (2013).
Synthesis of complex [Pt(MeEug)(QO)] (I). A solution of 8-hydroxyquinoline (15 mg, 0.1 mmol) in 3 mL of ethanol was dropped into a suspension of [Pt(μ-Cl)(MeEug)]2 (47 mg, 0.05 mmol) in 2 mL of acetone. The reaction mixture was stirred at ambient temperature (AT) for 2 h until a clear solution was obtained. Orange crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of the obtained solution at AT within 12 h. The yield was 47 mg (82%). 1H NMR (chloroform-d1, 500 MHz): δ 8.33 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.11 (d, 3J = 4.5 Hz, 1H, Ar-H), 8.56 (t, 3J = 8.0 Hz, 1H, Ar-H), 7.46 (dd, 3J = 8.0 Hz, 4.5 Hz, 1H, Ar-H), 7.26 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.08 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.10 (s, 1H, Ar-H), 6.69 (s, 1H, Ar-H), 4.78 (s, 2H, OCH2), 4.74 (m, 1H, CH=CH2), 4.06 (d, 3J = 7.5 Hz, 2JPtH = 60 Hz, 1H, CH=CH2), 3.85 (s, 3H, CH3), 3.83 (ov, 4H, CH=CH2, OCH3), 3.72 (dd, 2J = 16.5 Hz, 3J = 6.0 Hz, 1H, CH2), 2.86 (d, 2J = 16.5 Hz, 1H, CH2). FT–IR (KBr pellet, cm−1): 2928 (CH), 1751 (C=O), 1578, 1497 (C=C).
Synthesis of complex [Pt(PrEug)(QCOO)] (II). This complex was prepared starting from [Pt(μ-Cl)(PrEug)]2 (49 mg, 0.05 mmol) and quinoline-2-carboxylic acid (18 mg, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (85%), and the orange crystals obtained were suitable for X-ray diffraction. 1H NMR (acetone-d6, 500 MHz): δ 8.86 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.30 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.27 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.09 (m, 1H, Ar-H), 7.89 (t, 3J = 7.0 Hz, 1H, Ar-H), 7.77 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.02 (s, 3JPtH = 40 Hz, 1H, Ar-H), 6.77 (s, 1H, Ar-H), 5.75 (m, 2JPtH = 70 Hz, 1H, CH=CH2), 4.71 (d, 3J = 7.5 Hz, 2JPtH = 60 Hz, 1H, CH=CH2), 4.67 (s, 2H, OCH2), 4.19 (m, 2H, CH2CH2CH3), 3.94 (d, 3J = 13.5 Hz, 2JPtH = 65 Hz, 1H, CH=CH2), 3.82–3.78 (ov, 4H, CH2, OCH3), 1.74 (m, 2H, CH2CH2CH3), 0.97 (t, 3J = 7.0 Hz, 3H, CH2CH2CH3). FT–IR (KBr pellet, cm−1): 3030, 2925 (CH), 1750, 1666 (C=O), 1593, 1465 (C=C).
Synthesis of complex [PtCl(PrEug)(Q)] (III). This complex was prepared starting from [Pt(μ-Cl)(PrEug)]2 (49 mg, 0.05 mmol) and quinoline (12 µL, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (87%), and the yellow crystals obtained were suitable for X-ray diffraction. 1H NMR (acetone-d6, 500 MHz): δ 9.06 (ov, 2H, Ar-H), 8.52 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.04 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.89 (m, 1H, Ar-H), 7.67–7.61 (ov, 2H, Ar-H), 7.0 (s, 3JPtH = 40 Hz, 1H, Ar-H), 6.58 (s, 1H, Ar-H), 4.65 (br, 1H, CH=CH2), 4.49 (s, 2H, OCH2), 4.0 (t, 3J = 7.0 Hz, 2H, CH2CH2CH3), 3.74–3.62 (ov, 6H, CH=CH2, CH2, OCH3), 2.55 (d, 2J = 16.5 Hz, 1H, CH2), 1.56 (m, 2H, CH2CH2CH3), 0.81 (t, 3J = 7.0 Hz, 3H, CH2CH2CH3). FT–IR (KBr pellet, cm−1): 3060, 2936 (CH), 1745 (C=O), 1576, 1471 (C=C).
6. Refinement
Crystal data, data collection and structure . Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) (1.5 for methyl groups). The Pt atom in (III) was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7).
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989024004572/pk2707sup1.cif
contains datablocks I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004572/pk2707Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024004572/pk2707IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989024004572/pk2707IIIsup4.hkl
[Pt(C13H15O4)(C9H6NO)] | F(000) = 1127.2 |
Mr = 582.49 | Dx = 1.961 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.1510 (4) Å | Cell parameters from 19506 reflections |
b = 8.5584 (2) Å | θ = 2.9–29.0° |
c = 18.2071 (6) Å | µ = 7.15 mm−1 |
β = 105.714 (3)° | T = 100 K |
V = 1972.65 (10) Å3 | Plate, light brown |
Z = 4 | 0.3 × 0.15 × 0.1 mm |
SuperNova, Single source at offset, Eos diffractometer | 4046 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 3672 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.4° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −10→10 |
Tmin = 0.300, Tmax = 1.000 | l = −22→22 |
41833 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0191P)2 + 6.3477P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
4046 reflections | Δρmax = 0.90 e Å−3 |
274 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.10321 (2) | 0.48502 (2) | 0.33132 (2) | 0.01955 (6) | |
N2 | −0.0487 (3) | 0.4601 (4) | 0.34836 (18) | 0.0235 (7) | |
C3 | −0.1264 (3) | 0.3610 (5) | 0.3186 (2) | 0.0277 (9) | |
H3 | −0.1190 | 0.2926 | 0.2807 | 0.033* | |
C4 | −0.2193 (3) | 0.3556 (5) | 0.3422 (3) | 0.0335 (10) | |
H4 | −0.2720 | 0.2840 | 0.3202 | 0.040* | |
C5 | −0.2325 (3) | 0.4558 (5) | 0.3975 (3) | 0.0313 (9) | |
H5 | −0.2937 | 0.4517 | 0.4136 | 0.038* | |
C6 | −0.1525 (3) | 0.5657 (5) | 0.4300 (2) | 0.0250 (8) | |
C7 | −0.0605 (3) | 0.5634 (4) | 0.4035 (2) | 0.0206 (7) | |
C8 | −0.1587 (3) | 0.6759 (5) | 0.4861 (2) | 0.0266 (9) | |
H8 | −0.2177 | 0.6783 | 0.5050 | 0.032* | |
C9 | −0.0776 (3) | 0.7795 (5) | 0.5129 (2) | 0.0265 (9) | |
H9 | −0.0828 | 0.8525 | 0.5496 | 0.032* | |
C10 | 0.0138 (3) | 0.7779 (4) | 0.4862 (2) | 0.0216 (8) | |
H10 | 0.0672 | 0.8504 | 0.5049 | 0.026* | |
C11 | 0.0246 (3) | 0.6696 (4) | 0.4326 (2) | 0.0199 (7) | |
O12 | 0.11072 (19) | 0.6615 (3) | 0.40694 (14) | 0.0202 (5) | |
C13 | 0.2494 (3) | 0.5222 (4) | 0.3234 (2) | 0.0217 (8) | |
C14 | 0.3317 (3) | 0.5838 (5) | 0.3820 (2) | 0.0260 (8) | |
H14 | 0.3192 | 0.6096 | 0.4284 | 0.031* | |
C15 | 0.4312 (3) | 0.6068 (5) | 0.3723 (2) | 0.0276 (8) | |
C16 | 0.4526 (3) | 0.5653 (5) | 0.3038 (2) | 0.0261 (8) | |
C17 | 0.3717 (4) | 0.5003 (5) | 0.2454 (2) | 0.0333 (10) | |
H17 | 0.3853 | 0.4708 | 0.1998 | 0.040* | |
C18 | 0.2703 (3) | 0.4794 (5) | 0.2550 (2) | 0.0287 (9) | |
O19 | 0.5173 (2) | 0.6665 (4) | 0.42784 (16) | 0.0332 (7) | |
C20 | 0.4963 (3) | 0.7129 (5) | 0.4966 (2) | 0.0305 (9) | |
H20A | 0.5622 | 0.7404 | 0.5334 | 0.037* | |
H20B | 0.4657 | 0.6256 | 0.5172 | 0.037* | |
C21 | 0.4215 (3) | 0.8507 (5) | 0.4859 (2) | 0.0314 (9) | |
O22 | 0.4065 (2) | 0.9443 (4) | 0.43373 (18) | 0.0378 (7) | |
O23 | 0.3748 (2) | 0.8571 (4) | 0.54280 (19) | 0.0391 (7) | |
C24 | 0.3069 (5) | 0.9896 (6) | 0.5401 (4) | 0.0515 (14) | |
H24A | 0.2574 | 0.9958 | 0.4905 | 0.077* | |
H24B | 0.3486 | 1.0832 | 0.5496 | 0.077* | |
H24C | 0.2692 | 0.9784 | 0.5782 | 0.077* | |
O25 | 0.5533 (2) | 0.5945 (4) | 0.29926 (17) | 0.0372 (7) | |
C26 | 0.5731 (4) | 0.5677 (7) | 0.2266 (3) | 0.0484 (13) | |
H26A | 0.5261 | 0.6308 | 0.1886 | 0.073* | |
H26B | 0.5615 | 0.4594 | 0.2132 | 0.073* | |
H26C | 0.6448 | 0.5949 | 0.2294 | 0.073* | |
C27 | 0.1773 (4) | 0.4205 (5) | 0.1925 (2) | 0.0351 (10) | |
H27A | 0.1998 | 0.3353 | 0.1655 | 0.042* | |
H27B | 0.1506 | 0.5038 | 0.1563 | 0.042* | |
C28 | 0.0905 (4) | 0.3645 (5) | 0.2267 (2) | 0.0356 (10) | |
H28 | 0.0194 | 0.3587 | 0.1916 | 0.043* | |
C29 | 0.1124 (4) | 0.2580 (5) | 0.2867 (3) | 0.0355 (10) | |
H29A | 0.1808 | 0.2204 | 0.3062 | 0.043* | |
H29B | 0.0588 | 0.2243 | 0.3072 | 0.043* | |
O30 | 0.1772 (6) | 0.9369 (8) | 0.3617 (4) | 0.043 (3) | 0.474 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02183 (8) | 0.01695 (8) | 0.02025 (8) | −0.00247 (5) | 0.00636 (6) | −0.00315 (5) |
N2 | 0.0254 (17) | 0.0211 (16) | 0.0221 (16) | −0.0012 (13) | 0.0034 (13) | 0.0037 (13) |
C3 | 0.027 (2) | 0.0211 (19) | 0.031 (2) | −0.0032 (16) | 0.0027 (17) | 0.0019 (16) |
C4 | 0.024 (2) | 0.028 (2) | 0.044 (3) | −0.0073 (17) | 0.0023 (19) | 0.0074 (19) |
C5 | 0.020 (2) | 0.031 (2) | 0.043 (2) | −0.0008 (17) | 0.0088 (18) | 0.0131 (19) |
C6 | 0.0229 (19) | 0.0227 (19) | 0.030 (2) | 0.0037 (15) | 0.0080 (16) | 0.0129 (16) |
C7 | 0.0220 (18) | 0.0165 (17) | 0.0231 (18) | 0.0017 (14) | 0.0058 (15) | 0.0065 (14) |
C8 | 0.025 (2) | 0.027 (2) | 0.032 (2) | 0.0074 (16) | 0.0144 (17) | 0.0112 (17) |
C9 | 0.033 (2) | 0.024 (2) | 0.026 (2) | 0.0113 (17) | 0.0139 (17) | 0.0086 (16) |
C10 | 0.027 (2) | 0.0167 (18) | 0.0210 (19) | 0.0015 (15) | 0.0065 (15) | 0.0028 (14) |
C11 | 0.0224 (18) | 0.0157 (17) | 0.0216 (18) | 0.0031 (14) | 0.0059 (15) | 0.0055 (14) |
O12 | 0.0213 (13) | 0.0191 (13) | 0.0217 (13) | −0.0015 (10) | 0.0084 (10) | −0.0020 (10) |
C13 | 0.0231 (19) | 0.0185 (18) | 0.0234 (19) | 0.0023 (14) | 0.0063 (15) | 0.0007 (14) |
C14 | 0.029 (2) | 0.026 (2) | 0.026 (2) | 0.0003 (16) | 0.0114 (17) | −0.0068 (16) |
C15 | 0.026 (2) | 0.028 (2) | 0.029 (2) | 0.0002 (16) | 0.0074 (17) | −0.0045 (17) |
C16 | 0.024 (2) | 0.031 (2) | 0.026 (2) | 0.0091 (17) | 0.0104 (16) | 0.0040 (16) |
C17 | 0.035 (2) | 0.040 (3) | 0.028 (2) | 0.0075 (19) | 0.0138 (19) | −0.0071 (18) |
C18 | 0.034 (2) | 0.026 (2) | 0.028 (2) | 0.0000 (17) | 0.0120 (18) | −0.0068 (16) |
O19 | 0.0257 (15) | 0.0421 (18) | 0.0327 (16) | −0.0013 (13) | 0.0093 (12) | −0.0056 (13) |
C20 | 0.030 (2) | 0.030 (2) | 0.030 (2) | −0.0008 (17) | 0.0057 (17) | −0.0048 (17) |
C21 | 0.028 (2) | 0.033 (2) | 0.035 (2) | −0.0085 (18) | 0.0109 (18) | −0.0052 (19) |
O22 | 0.0391 (18) | 0.0350 (17) | 0.0384 (18) | −0.0060 (14) | 0.0092 (14) | 0.0021 (14) |
O23 | 0.0390 (18) | 0.0357 (18) | 0.0486 (19) | 0.0007 (14) | 0.0220 (15) | −0.0002 (15) |
C24 | 0.056 (3) | 0.043 (3) | 0.065 (4) | 0.009 (2) | 0.032 (3) | 0.004 (2) |
O25 | 0.0225 (15) | 0.061 (2) | 0.0305 (16) | 0.0052 (14) | 0.0120 (12) | 0.0008 (15) |
C26 | 0.027 (2) | 0.089 (4) | 0.035 (3) | 0.010 (3) | 0.017 (2) | 0.002 (3) |
C27 | 0.040 (3) | 0.035 (2) | 0.031 (2) | −0.004 (2) | 0.0107 (19) | −0.0076 (19) |
C28 | 0.040 (3) | 0.039 (3) | 0.031 (2) | −0.016 (2) | 0.0144 (19) | −0.0216 (19) |
C29 | 0.036 (2) | 0.027 (2) | 0.046 (3) | −0.0042 (18) | 0.015 (2) | −0.0167 (19) |
O30 | 0.043 (4) | 0.033 (4) | 0.051 (5) | 0.001 (3) | 0.008 (3) | −0.009 (3) |
Pt1—N2 | 2.114 (3) | C15—O19 | 1.395 (5) |
Pt1—O12 | 2.028 (2) | C16—C17 | 1.399 (6) |
Pt1—C13 | 1.993 (4) | C16—O25 | 1.372 (5) |
Pt1—C28 | 2.132 (4) | C17—H17 | 0.9300 |
Pt1—C29 | 2.123 (4) | C17—C18 | 1.402 (6) |
N2—C3 | 1.326 (5) | C18—C27 | 1.513 (6) |
N2—C7 | 1.377 (5) | O19—C20 | 1.411 (5) |
C3—H3 | 0.9300 | C20—H20A | 0.9700 |
C3—C4 | 1.401 (6) | C20—H20B | 0.9700 |
C4—H4 | 0.9300 | C20—C21 | 1.514 (6) |
C4—C5 | 1.369 (6) | C21—O22 | 1.217 (5) |
C5—H5 | 0.9300 | C21—O23 | 1.341 (5) |
C5—C6 | 1.416 (6) | O23—C24 | 1.436 (6) |
C6—C7 | 1.420 (5) | C24—H24A | 0.9600 |
C6—C8 | 1.409 (6) | C24—H24B | 0.9600 |
C7—C11 | 1.427 (5) | C24—H24C | 0.9600 |
C8—H8 | 0.9300 | O25—C26 | 1.434 (5) |
C8—C9 | 1.371 (6) | C26—H26A | 0.9600 |
C9—H9 | 0.9300 | C26—H26B | 0.9600 |
C9—C10 | 1.414 (5) | C26—H26C | 0.9600 |
C10—H10 | 0.9300 | C27—H27A | 0.9700 |
C10—C11 | 1.381 (5) | C27—H27B | 0.9700 |
C11—O12 | 1.339 (4) | C27—C28 | 1.519 (6) |
C13—C14 | 1.401 (5) | C28—H28 | 0.9800 |
C13—C18 | 1.394 (5) | C28—C29 | 1.391 (7) |
C14—H14 | 0.9300 | C29—H29A | 0.9300 |
C14—C15 | 1.382 (5) | C29—H29B | 0.9300 |
C15—C16 | 1.396 (5) | ||
N2—Pt1—C28 | 103.50 (15) | O25—C16—C15 | 116.0 (4) |
N2—Pt1—C29 | 96.79 (15) | O25—C16—C17 | 125.1 (4) |
O12—Pt1—N2 | 81.35 (11) | C16—C17—H17 | 119.7 |
O12—Pt1—C28 | 160.78 (15) | C16—C17—C18 | 120.6 (4) |
O12—Pt1—C29 | 160.82 (15) | C18—C17—H17 | 119.7 |
C13—Pt1—N2 | 174.70 (14) | C13—C18—C17 | 120.1 (4) |
C13—Pt1—O12 | 93.43 (13) | C13—C18—C27 | 116.4 (4) |
C13—Pt1—C28 | 81.74 (16) | C17—C18—C27 | 123.4 (4) |
C13—Pt1—C29 | 87.83 (16) | C15—O19—C20 | 115.6 (3) |
C29—Pt1—C28 | 38.17 (18) | O19—C20—H20A | 109.1 |
C3—N2—Pt1 | 131.3 (3) | O19—C20—H20B | 109.1 |
C3—N2—C7 | 118.8 (3) | O19—C20—C21 | 112.4 (3) |
C7—N2—Pt1 | 109.8 (2) | H20A—C20—H20B | 107.9 |
N2—C3—H3 | 118.8 | C21—C20—H20A | 109.1 |
N2—C3—C4 | 122.4 (4) | C21—C20—H20B | 109.1 |
C4—C3—H3 | 118.8 | O22—C21—C20 | 125.1 (4) |
C3—C4—H4 | 120.0 | O22—C21—O23 | 124.4 (4) |
C5—C4—C3 | 120.0 (4) | O23—C21—C20 | 110.5 (4) |
C5—C4—H4 | 120.0 | C21—O23—C24 | 114.6 (4) |
C4—C5—H5 | 120.1 | O23—C24—H24A | 109.5 |
C4—C5—C6 | 119.7 (4) | O23—C24—H24B | 109.5 |
C6—C5—H5 | 120.1 | O23—C24—H24C | 109.5 |
C5—C6—C7 | 117.0 (4) | H24A—C24—H24B | 109.5 |
C8—C6—C5 | 124.5 (4) | H24A—C24—H24C | 109.5 |
C8—C6—C7 | 118.5 (4) | H24B—C24—H24C | 109.5 |
N2—C7—C6 | 122.1 (3) | C16—O25—C26 | 116.4 (3) |
N2—C7—C11 | 116.6 (3) | O25—C26—H26A | 109.5 |
C6—C7—C11 | 121.3 (4) | O25—C26—H26B | 109.5 |
C6—C8—H8 | 120.0 | O25—C26—H26C | 109.5 |
C9—C8—C6 | 119.9 (4) | H26A—C26—H26B | 109.5 |
C9—C8—H8 | 120.0 | H26A—C26—H26C | 109.5 |
C8—C9—H9 | 119.2 | H26B—C26—H26C | 109.5 |
C8—C9—C10 | 121.5 (4) | C18—C27—H27A | 109.7 |
C10—C9—H9 | 119.2 | C18—C27—H27B | 109.7 |
C9—C10—H10 | 119.7 | C18—C27—C28 | 110.0 (4) |
C11—C10—C9 | 120.6 (4) | H27A—C27—H27B | 108.2 |
C11—C10—H10 | 119.7 | C28—C27—H27A | 109.7 |
C10—C11—C7 | 118.0 (3) | C28—C27—H27B | 109.7 |
O12—C11—C7 | 119.3 (3) | Pt1—C28—H28 | 116.0 |
O12—C11—C10 | 122.7 (3) | C27—C28—Pt1 | 109.1 (3) |
C11—O12—Pt1 | 112.7 (2) | C27—C28—H28 | 116.0 |
C14—C13—Pt1 | 124.5 (3) | C29—C28—Pt1 | 70.5 (2) |
C18—C13—Pt1 | 116.8 (3) | C29—C28—C27 | 120.6 (4) |
C18—C13—C14 | 118.7 (4) | C29—C28—H28 | 116.0 |
C13—C14—H14 | 119.4 | Pt1—C29—H29A | 108.6 |
C15—C14—C13 | 121.2 (4) | Pt1—C29—H29B | 90.1 |
C15—C14—H14 | 119.4 | C28—C29—Pt1 | 71.3 (2) |
C14—C15—C16 | 120.3 (4) | C28—C29—H29A | 120.0 |
C14—C15—O19 | 124.7 (3) | C28—C29—H29B | 120.0 |
O19—C15—C16 | 114.9 (3) | H29A—C29—H29B | 120.0 |
C15—C16—C17 | 119.0 (4) | ||
Pt1—N2—C3—C4 | 174.8 (3) | C10—C11—O12—Pt1 | 178.0 (3) |
Pt1—N2—C7—C6 | −176.0 (3) | C13—C14—C15—C16 | −1.6 (6) |
Pt1—N2—C7—C11 | 4.4 (4) | C13—C14—C15—O19 | −179.6 (4) |
Pt1—C13—C14—C15 | −179.8 (3) | C13—C18—C27—C28 | −21.0 (5) |
Pt1—C13—C18—C17 | −179.3 (3) | C14—C13—C18—C17 | −1.0 (6) |
Pt1—C13—C18—C27 | 4.3 (5) | C14—C13—C18—C27 | −177.4 (4) |
N2—C3—C4—C5 | 0.5 (6) | C14—C15—C16—C17 | 0.1 (6) |
N2—C7—C11—C10 | 178.1 (3) | C14—C15—C16—O25 | 179.2 (4) |
N2—C7—C11—O12 | −1.6 (5) | C14—C15—O19—C20 | −3.5 (6) |
C3—N2—C7—C6 | 0.8 (5) | C15—C16—C17—C18 | 1.0 (6) |
C3—N2—C7—C11 | −178.8 (3) | C15—C16—O25—C26 | −173.7 (4) |
C3—C4—C5—C6 | 0.7 (6) | C15—O19—C20—C21 | −65.7 (5) |
C4—C5—C6—C7 | −1.1 (6) | C16—C15—O19—C20 | 178.4 (4) |
C4—C5—C6—C8 | 178.8 (4) | C16—C17—C18—C13 | −0.5 (6) |
C5—C6—C7—N2 | 0.4 (5) | C16—C17—C18—C27 | 175.6 (4) |
C5—C6—C7—C11 | 179.9 (3) | C17—C16—O25—C26 | 5.4 (6) |
C5—C6—C8—C9 | −178.8 (4) | C17—C18—C27—C28 | 162.8 (4) |
C6—C7—C11—C10 | −1.5 (5) | C18—C13—C14—C15 | 2.0 (6) |
C6—C7—C11—O12 | 178.8 (3) | C18—C27—C28—Pt1 | 26.3 (5) |
C6—C8—C9—C10 | −0.7 (6) | C18—C27—C28—C29 | −51.9 (5) |
C7—N2—C3—C4 | −1.2 (6) | O19—C15—C16—C17 | 178.3 (4) |
C7—C6—C8—C9 | 1.1 (5) | O19—C15—C16—O25 | −2.6 (5) |
C7—C11—O12—Pt1 | −2.3 (4) | O19—C20—C21—O22 | −22.6 (6) |
C8—C6—C7—N2 | −179.6 (3) | O19—C20—C21—O23 | 158.3 (3) |
C8—C6—C7—C11 | 0.0 (5) | C20—C21—O23—C24 | 176.5 (4) |
C8—C9—C10—C11 | −0.8 (6) | O22—C21—O23—C24 | −2.6 (6) |
C9—C10—C11—C7 | 1.9 (5) | O25—C16—C17—C18 | −178.1 (4) |
C9—C10—C11—O12 | −178.4 (3) | C27—C28—C29—Pt1 | 101.2 (4) |
Cg1 is the centroid of ring C6–C11. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27A···Cg1i | 0.97 | 2.81 | 3.465 (4) | 125 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
[Pt(C15H19O4)(C10H6NO2)] | F(000) = 1232 |
Mr = 630.55 | Dx = 1.910 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2857 (4) Å | Cell parameters from 8290 reflections |
b = 18.5001 (9) Å | θ = 2.9–29.0° |
c = 14.6282 (7) Å | µ = 6.44 mm−1 |
β = 102.014 (5)° | T = 100 K |
V = 2193.18 (19) Å3 | Block, orange |
Z = 4 | 0.4 × 0.4 × 0.3 mm |
SuperNova, Single source at offset, Eos diffractometer | 5366 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 4652 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.057 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 29.1°, θmin = 2.6° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −25→24 |
Tmin = 0.669, Tmax = 1.000 | l = −19→19 |
23965 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0204P)2 + 5.0718P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
5366 reflections | Δρmax = 2.16 e Å−3 |
300 parameters | Δρmin = −1.73 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | −0.05560 (2) | 0.61639 (2) | 0.09345 (2) | 0.01722 (6) | |
C2 | −0.3155 (5) | 0.6274 (2) | 0.0693 (3) | 0.0219 (9) | |
H2A | −0.3776 | 0.6082 | 0.0108 | 0.026* | |
H2B | −0.3664 | 0.6180 | 0.1221 | 0.026* | |
C3 | −0.2450 (5) | 0.6967 (2) | 0.0656 (3) | 0.0204 (9) | |
H3 | −0.2631 | 0.7194 | 0.0038 | 0.024* | |
C4 | −0.2226 (6) | 0.7476 (2) | 0.1480 (3) | 0.0233 (10) | |
H4A | −0.3286 | 0.7671 | 0.1538 | 0.028* | |
H4B | −0.1520 | 0.7875 | 0.1385 | 0.028* | |
C5 | −0.1454 (5) | 0.7072 (2) | 0.2364 (3) | 0.0183 (9) | |
C6 | −0.0619 (5) | 0.6442 (2) | 0.2243 (3) | 0.0164 (8) | |
C7 | 0.0167 (5) | 0.6048 (2) | 0.3027 (3) | 0.0195 (9) | |
H7 | 0.0717 | 0.5621 | 0.2947 | 0.023* | |
C8 | 0.0134 (5) | 0.6286 (2) | 0.3922 (3) | 0.0191 (9) | |
C9 | −0.0748 (5) | 0.6916 (2) | 0.4044 (3) | 0.0180 (9) | |
C10 | −0.1524 (5) | 0.7309 (2) | 0.3268 (3) | 0.0194 (9) | |
H10 | −0.2091 | 0.7730 | 0.3347 | 0.023* | |
O11 | −0.0792 (4) | 0.70854 (15) | 0.4954 (2) | 0.0207 (6) | |
C12 | −0.1635 (6) | 0.7729 (2) | 0.5106 (3) | 0.0248 (10) | |
H12A | −0.1152 | 0.8133 | 0.4850 | 0.037* | |
H12B | −0.1546 | 0.7800 | 0.5765 | 0.037* | |
H12C | −0.2777 | 0.7689 | 0.4805 | 0.037* | |
O13 | 0.0916 (4) | 0.59562 (16) | 0.4739 (2) | 0.0228 (7) | |
C14 | 0.1812 (6) | 0.5321 (2) | 0.4651 (3) | 0.0219 (9) | |
H14A | 0.2499 | 0.5392 | 0.4196 | 0.026* | |
H14B | 0.1061 | 0.4924 | 0.4442 | 0.026* | |
C15 | 0.2864 (5) | 0.5154 (2) | 0.5592 (3) | 0.0204 (9) | |
O16 | 0.3081 (4) | 0.55414 (18) | 0.6260 (2) | 0.0335 (8) | |
O17 | 0.3562 (4) | 0.45000 (16) | 0.5567 (2) | 0.0259 (7) | |
C18 | 0.4476 (6) | 0.4221 (2) | 0.6464 (3) | 0.0262 (10) | |
H18A | 0.3748 | 0.4161 | 0.6899 | 0.031* | |
H18B | 0.5357 | 0.4550 | 0.6736 | 0.031* | |
C19 | 0.5177 (6) | 0.3497 (2) | 0.6249 (3) | 0.0298 (11) | |
H19A | 0.6013 | 0.3571 | 0.5883 | 0.036* | |
H19B | 0.4307 | 0.3202 | 0.5886 | 0.036* | |
C20 | 0.5934 (6) | 0.3109 (3) | 0.7157 (3) | 0.0348 (12) | |
H20A | 0.6450 | 0.2670 | 0.7016 | 0.052* | |
H20B | 0.5084 | 0.2997 | 0.7491 | 0.052* | |
H20C | 0.6744 | 0.3415 | 0.7533 | 0.052* | |
N21 | 0.0072 (4) | 0.59004 (18) | −0.0416 (2) | 0.0165 (7) | |
C22 | −0.0717 (6) | 0.6046 (2) | −0.1330 (3) | 0.0210 (9) | |
C23 | −0.2406 (6) | 0.6240 (2) | −0.1543 (3) | 0.0229 (10) | |
H23 | −0.2981 | 0.6286 | −0.1063 | 0.027* | |
C24 | −0.3208 (7) | 0.6363 (2) | −0.2454 (3) | 0.0295 (11) | |
H24 | −0.4326 | 0.6477 | −0.2585 | 0.035* | |
C25 | −0.2346 (7) | 0.6316 (2) | −0.3190 (3) | 0.0301 (11) | |
H25 | −0.2888 | 0.6408 | −0.3802 | 0.036* | |
C26 | −0.0716 (7) | 0.6135 (2) | −0.2999 (3) | 0.0272 (11) | |
H26 | −0.0144 | 0.6117 | −0.3482 | 0.033* | |
C27 | 0.0111 (6) | 0.5975 (2) | −0.2081 (3) | 0.0225 (10) | |
C28 | 0.1770 (6) | 0.5718 (2) | −0.1873 (3) | 0.0262 (10) | |
H28 | 0.2359 | 0.5675 | −0.2346 | 0.031* | |
C29 | 0.2488 (6) | 0.5537 (2) | −0.0978 (3) | 0.0228 (10) | |
H29 | 0.3547 | 0.5344 | −0.0840 | 0.027* | |
C30 | 0.1604 (5) | 0.5647 (2) | −0.0265 (3) | 0.0201 (9) | |
C31 | 0.2456 (5) | 0.5489 (2) | 0.0731 (3) | 0.0194 (9) | |
O32 | 0.3826 (4) | 0.52108 (16) | 0.0902 (2) | 0.0251 (7) | |
O33 | 0.1638 (3) | 0.56700 (16) | 0.13703 (19) | 0.0205 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01864 (10) | 0.01974 (10) | 0.01431 (10) | 0.00199 (6) | 0.00582 (7) | 0.00078 (6) |
C2 | 0.019 (2) | 0.024 (2) | 0.023 (2) | 0.0026 (18) | 0.0041 (19) | −0.0017 (18) |
C3 | 0.019 (2) | 0.026 (2) | 0.016 (2) | 0.0077 (18) | 0.0024 (17) | 0.0028 (17) |
C4 | 0.027 (2) | 0.015 (2) | 0.026 (2) | 0.0021 (18) | 0.002 (2) | −0.0026 (17) |
C5 | 0.019 (2) | 0.0157 (19) | 0.019 (2) | −0.0028 (17) | 0.0017 (17) | 0.0021 (16) |
C6 | 0.017 (2) | 0.0179 (19) | 0.016 (2) | −0.0012 (17) | 0.0053 (16) | 0.0001 (16) |
C7 | 0.018 (2) | 0.019 (2) | 0.023 (2) | 0.0052 (17) | 0.0076 (18) | 0.0005 (17) |
C8 | 0.020 (2) | 0.023 (2) | 0.016 (2) | −0.0004 (18) | 0.0055 (17) | 0.0013 (17) |
C9 | 0.019 (2) | 0.0162 (19) | 0.020 (2) | −0.0033 (17) | 0.0058 (18) | −0.0026 (16) |
C10 | 0.021 (2) | 0.0148 (19) | 0.022 (2) | 0.0019 (17) | 0.0044 (18) | −0.0035 (17) |
O11 | 0.0299 (17) | 0.0166 (14) | 0.0164 (15) | 0.0046 (13) | 0.0064 (13) | −0.0026 (12) |
C12 | 0.026 (2) | 0.023 (2) | 0.025 (2) | 0.0059 (19) | 0.005 (2) | −0.0056 (19) |
O13 | 0.0315 (18) | 0.0233 (15) | 0.0135 (15) | 0.0115 (14) | 0.0043 (13) | 0.0014 (12) |
C14 | 0.028 (2) | 0.021 (2) | 0.019 (2) | 0.0087 (19) | 0.0093 (19) | 0.0023 (17) |
C15 | 0.023 (2) | 0.022 (2) | 0.019 (2) | 0.0069 (18) | 0.0114 (18) | 0.0034 (17) |
O16 | 0.045 (2) | 0.0364 (19) | 0.0175 (17) | 0.0176 (17) | 0.0040 (15) | −0.0044 (14) |
O17 | 0.0318 (18) | 0.0206 (16) | 0.0248 (17) | 0.0071 (14) | 0.0050 (14) | 0.0029 (13) |
C18 | 0.029 (3) | 0.030 (2) | 0.021 (2) | 0.007 (2) | 0.0062 (19) | 0.0090 (19) |
C19 | 0.040 (3) | 0.016 (2) | 0.034 (3) | 0.000 (2) | 0.009 (2) | 0.0036 (19) |
C20 | 0.037 (3) | 0.027 (3) | 0.037 (3) | −0.002 (2) | 0.001 (2) | 0.007 (2) |
N21 | 0.0200 (18) | 0.0166 (17) | 0.0143 (17) | 0.0002 (14) | 0.0067 (14) | 0.0017 (13) |
C22 | 0.030 (3) | 0.0138 (19) | 0.020 (2) | −0.0051 (18) | 0.0066 (19) | −0.0021 (16) |
C23 | 0.030 (3) | 0.021 (2) | 0.018 (2) | 0.0016 (19) | 0.007 (2) | −0.0034 (17) |
C24 | 0.037 (3) | 0.029 (2) | 0.020 (2) | 0.003 (2) | −0.002 (2) | 0.0030 (19) |
C25 | 0.050 (3) | 0.020 (2) | 0.017 (2) | 0.002 (2) | 0.001 (2) | 0.0040 (18) |
C26 | 0.044 (3) | 0.019 (2) | 0.020 (2) | −0.009 (2) | 0.010 (2) | −0.0025 (17) |
C27 | 0.036 (3) | 0.0148 (19) | 0.020 (2) | −0.0104 (19) | 0.013 (2) | −0.0057 (17) |
C28 | 0.037 (3) | 0.023 (2) | 0.024 (2) | −0.005 (2) | 0.019 (2) | −0.0091 (19) |
C29 | 0.023 (2) | 0.021 (2) | 0.027 (2) | −0.0051 (18) | 0.011 (2) | −0.0051 (18) |
C30 | 0.024 (2) | 0.0136 (19) | 0.025 (2) | −0.0048 (17) | 0.0101 (19) | −0.0045 (17) |
C31 | 0.021 (2) | 0.017 (2) | 0.021 (2) | −0.0026 (17) | 0.0062 (18) | −0.0045 (17) |
O32 | 0.0193 (16) | 0.0266 (17) | 0.0302 (18) | 0.0015 (14) | 0.0067 (14) | −0.0010 (14) |
O33 | 0.0195 (16) | 0.0270 (16) | 0.0147 (15) | 0.0020 (13) | 0.0034 (12) | −0.0008 (12) |
Pt1—C2 | 2.118 (4) | C15—O17 | 1.345 (5) |
Pt1—C3 | 2.138 (4) | O17—C18 | 1.466 (5) |
Pt1—C6 | 1.993 (4) | C18—H18A | 0.9700 |
Pt1—N21 | 2.200 (3) | C18—H18B | 0.9700 |
Pt1—O33 | 2.016 (3) | C18—C19 | 1.519 (6) |
C2—H2A | 0.9700 | C19—H19A | 0.9700 |
C2—H2B | 0.9700 | C19—H19B | 0.9700 |
C2—C3 | 1.413 (6) | C19—C20 | 1.524 (6) |
C3—H3 | 0.9800 | C20—H20A | 0.9600 |
C3—C4 | 1.511 (6) | C20—H20B | 0.9600 |
C4—H4A | 0.9700 | C20—H20C | 0.9600 |
C4—H4B | 0.9700 | N21—C22 | 1.387 (5) |
C4—C5 | 1.515 (6) | N21—C30 | 1.328 (5) |
C5—C6 | 1.385 (6) | C22—C23 | 1.415 (6) |
C5—C10 | 1.406 (6) | C22—C27 | 1.417 (6) |
C6—C7 | 1.400 (6) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C23—C24 | 1.378 (6) |
C7—C8 | 1.387 (6) | C24—H24 | 0.9300 |
C8—C9 | 1.407 (6) | C24—C25 | 1.413 (7) |
C8—O13 | 1.378 (5) | C25—H25 | 0.9300 |
C9—C10 | 1.388 (6) | C25—C26 | 1.362 (7) |
C9—O11 | 1.375 (5) | C26—H26 | 0.9300 |
C10—H10 | 0.9300 | C26—C27 | 1.405 (6) |
O11—C12 | 1.422 (5) | C27—C28 | 1.425 (7) |
C12—H12A | 0.9600 | C28—H28 | 0.9300 |
C12—H12B | 0.9600 | C28—C29 | 1.363 (6) |
C12—H12C | 0.9600 | C29—H29 | 0.9300 |
O13—C14 | 1.411 (5) | C29—C30 | 1.407 (6) |
C14—H14A | 0.9700 | C30—C31 | 1.510 (6) |
C14—H14B | 0.9700 | C31—O32 | 1.224 (5) |
C14—C15 | 1.500 (6) | C31—O33 | 1.307 (5) |
C15—O16 | 1.195 (5) | ||
C2—Pt1—C3 | 38.79 (16) | C15—C14—H14A | 110.2 |
C2—Pt1—N21 | 107.11 (15) | C15—C14—H14B | 110.2 |
C3—Pt1—N21 | 106.53 (14) | O16—C15—C14 | 125.9 (4) |
C6—Pt1—C2 | 84.62 (17) | O16—C15—O17 | 124.7 (4) |
C6—Pt1—C3 | 80.72 (16) | O17—C15—C14 | 109.4 (4) |
C6—Pt1—N21 | 167.94 (15) | C15—O17—C18 | 115.9 (3) |
C6—Pt1—O33 | 90.88 (14) | O17—C18—H18A | 110.6 |
O33—Pt1—C2 | 156.21 (14) | O17—C18—H18B | 110.6 |
O33—Pt1—C3 | 162.41 (14) | O17—C18—C19 | 105.9 (4) |
O33—Pt1—N21 | 79.46 (12) | H18A—C18—H18B | 108.7 |
Pt1—C2—H2A | 116.5 | C19—C18—H18A | 110.6 |
Pt1—C2—H2B | 116.5 | C19—C18—H18B | 110.6 |
H2A—C2—H2B | 113.5 | C18—C19—H19A | 109.7 |
C3—C2—Pt1 | 71.3 (2) | C18—C19—H19B | 109.7 |
C3—C2—H2A | 116.5 | C18—C19—C20 | 109.9 (4) |
C3—C2—H2B | 116.5 | H19A—C19—H19B | 108.2 |
Pt1—C3—H3 | 116.0 | C20—C19—H19A | 109.7 |
C2—C3—Pt1 | 69.9 (2) | C20—C19—H19B | 109.7 |
C2—C3—H3 | 116.0 | C19—C20—H20A | 109.5 |
C2—C3—C4 | 121.2 (4) | C19—C20—H20B | 109.5 |
C4—C3—Pt1 | 108.5 (3) | C19—C20—H20C | 109.5 |
C4—C3—H3 | 116.0 | H20A—C20—H20B | 109.5 |
C3—C4—H4A | 109.8 | H20A—C20—H20C | 109.5 |
C3—C4—H4B | 109.8 | H20B—C20—H20C | 109.5 |
C3—C4—C5 | 109.5 (3) | C22—N21—Pt1 | 132.1 (3) |
H4A—C4—H4B | 108.2 | C30—N21—Pt1 | 109.0 (3) |
C5—C4—H4A | 109.8 | C30—N21—C22 | 118.1 (4) |
C5—C4—H4B | 109.8 | N21—C22—C23 | 120.5 (4) |
C6—C5—C4 | 116.1 (4) | N21—C22—C27 | 121.4 (4) |
C6—C5—C10 | 120.1 (4) | C23—C22—C27 | 118.0 (4) |
C10—C5—C4 | 123.8 (4) | C22—C23—H23 | 119.7 |
C5—C6—Pt1 | 117.0 (3) | C24—C23—C22 | 120.6 (4) |
C5—C6—C7 | 119.6 (4) | C24—C23—H23 | 119.7 |
C7—C6—Pt1 | 123.5 (3) | C23—C24—H24 | 119.7 |
C6—C7—H7 | 119.7 | C23—C24—C25 | 120.5 (5) |
C8—C7—C6 | 120.7 (4) | C25—C24—H24 | 119.7 |
C8—C7—H7 | 119.7 | C24—C25—H25 | 120.2 |
C7—C8—C9 | 119.8 (4) | C26—C25—C24 | 119.7 (4) |
O13—C8—C7 | 125.5 (4) | C26—C25—H25 | 120.2 |
O13—C8—C9 | 114.8 (4) | C25—C26—H26 | 119.5 |
C10—C9—C8 | 119.6 (4) | C25—C26—C27 | 120.9 (5) |
O11—C9—C8 | 115.6 (4) | C27—C26—H26 | 119.5 |
O11—C9—C10 | 124.8 (4) | C22—C27—C28 | 117.8 (4) |
C5—C10—H10 | 119.9 | C26—C27—C22 | 120.1 (5) |
C9—C10—C5 | 120.2 (4) | C26—C27—C28 | 122.1 (4) |
C9—C10—H10 | 119.9 | C27—C28—H28 | 120.1 |
C9—O11—C12 | 117.1 (3) | C29—C28—C27 | 119.7 (4) |
O11—C12—H12A | 109.5 | C29—C28—H28 | 120.1 |
O11—C12—H12B | 109.5 | C28—C29—H29 | 120.5 |
O11—C12—H12C | 109.5 | C28—C29—C30 | 119.1 (4) |
H12A—C12—H12B | 109.5 | C30—C29—H29 | 120.5 |
H12A—C12—H12C | 109.5 | N21—C30—C29 | 123.7 (4) |
H12B—C12—H12C | 109.5 | N21—C30—C31 | 117.8 (4) |
C8—O13—C14 | 116.8 (3) | C29—C30—C31 | 118.5 (4) |
O13—C14—H14A | 110.2 | O32—C31—C30 | 120.3 (4) |
O13—C14—H14B | 110.2 | O32—C31—O33 | 124.0 (4) |
O13—C14—C15 | 107.7 (3) | O33—C31—C30 | 115.7 (4) |
H14A—C14—H14B | 108.5 | C31—O33—Pt1 | 117.2 (3) |
Pt1—C2—C3—C4 | −100.0 (4) | O13—C14—C15—O17 | 171.5 (3) |
Pt1—C3—C4—C5 | −30.0 (4) | C14—C15—O17—C18 | −173.1 (4) |
Pt1—C6—C7—C8 | 177.3 (3) | C15—O17—C18—C19 | −178.4 (4) |
Pt1—N21—C22—C23 | −18.3 (6) | O16—C15—O17—C18 | 8.0 (6) |
Pt1—N21—C22—C27 | 164.5 (3) | O17—C18—C19—C20 | −171.5 (4) |
Pt1—N21—C30—C29 | −169.3 (3) | N21—C22—C23—C24 | −177.9 (4) |
Pt1—N21—C30—C31 | 8.9 (4) | N21—C22—C27—C26 | −179.2 (4) |
C2—C3—C4—C5 | 47.2 (5) | N21—C22—C27—C28 | 2.6 (6) |
C3—C4—C5—C6 | 21.0 (5) | N21—C30—C31—O32 | 175.2 (4) |
C3—C4—C5—C10 | −160.3 (4) | N21—C30—C31—O33 | −5.0 (5) |
C4—C5—C6—Pt1 | 0.0 (5) | C22—N21—C30—C29 | 1.9 (6) |
C4—C5—C6—C7 | 178.3 (4) | C22—N21—C30—C31 | −180.0 (3) |
C4—C5—C10—C9 | −178.3 (4) | C22—C23—C24—C25 | −1.8 (7) |
C5—C6—C7—C8 | −0.8 (6) | C22—C27—C28—C29 | 1.4 (6) |
C6—C5—C10—C9 | 0.4 (6) | C23—C22—C27—C26 | 3.5 (6) |
C6—C7—C8—C9 | 2.4 (6) | C23—C22—C27—C28 | −174.7 (4) |
C6—C7—C8—O13 | −177.4 (4) | C23—C24—C25—C26 | 1.2 (7) |
C7—C8—C9—C10 | −2.5 (6) | C24—C25—C26—C27 | 1.7 (7) |
C7—C8—C9—O11 | 176.3 (4) | C25—C26—C27—C22 | −4.1 (6) |
C7—C8—O13—C14 | −0.4 (6) | C25—C26—C27—C28 | 174.0 (4) |
C8—C9—C10—C5 | 1.2 (6) | C26—C27—C28—C29 | −176.7 (4) |
C8—C9—O11—C12 | 178.3 (4) | C27—C22—C23—C24 | −0.6 (6) |
C8—O13—C14—C15 | 167.0 (4) | C27—C28—C29—C30 | −3.6 (6) |
C9—C8—O13—C14 | 179.8 (4) | C28—C29—C30—N21 | 2.0 (6) |
C10—C5—C6—Pt1 | −178.8 (3) | C28—C29—C30—C31 | −176.1 (4) |
C10—C5—C6—C7 | −0.5 (6) | C29—C30—C31—O32 | −6.5 (6) |
C10—C9—O11—C12 | −2.9 (6) | C29—C30—C31—O33 | 173.3 (4) |
O11—C9—C10—C5 | −177.5 (4) | C30—N21—C22—C23 | 173.0 (4) |
O13—C8—C9—C10 | 177.3 (4) | C30—N21—C22—C27 | −4.2 (6) |
O13—C8—C9—O11 | −4.0 (5) | C30—C31—O33—Pt1 | −2.6 (4) |
O13—C14—C15—O16 | −9.7 (6) | O32—C31—O33—Pt1 | 177.2 (3) |
Cg1 and Cg2 are the centroids of rings C5–C10 and C22–C27, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20C···O33i | 0.96 | 2.52 | 3.462 (6) | 168 |
C28—H28···O16ii | 0.93 | 2.26 | 3.159 (5) | 164 |
C29—H29···O32iii | 0.93 | 2.43 | 3.334 (6) | 166 |
C18—H18A···Cg1iv | 0.97 | 2.97 | 3.711 (5) | 134 |
C20—H20A···Cg2v | 0.96 | 2.78 | 3.605 (6) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z+1; (v) −x+1/2, y−1/2, −z+1/2. |
[Pt(C15H19O4)Cl(C9H7N)] | F(000) = 1216 |
Mr = 623.00 | Dx = 1.833 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.576 (2) Å | Cell parameters from 3865 reflections |
b = 11.0945 (9) Å | θ = 2.9–29.0° |
c = 15.700 (2) Å | µ = 6.36 mm−1 |
β = 117.197 (18)° | T = 114 K |
V = 2258.1 (6) Å3 | Block, colourless |
Z = 4 | 0.27 × 0.2 × 0.16 mm |
SuperNova, Single source at offset, Eos diffractometer | 4603 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3885 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.4° |
ω scans | h = −9→18 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −12→13 |
Tmin = 0.579, Tmax = 1.000 | l = −19→19 |
8975 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0148P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4603 reflections | Δρmax = 0.85 e Å−3 |
292 parameters | Δρmin = −1.07 e Å−3 |
288 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1A | 0.48946 (7) | 0.89396 (12) | 0.13147 (5) | 0.02532 (15) | 0.928 (7) |
Pt1B | 0.4763 (6) | 0.8600 (18) | 0.1469 (11) | 0.028 (2) | 0.072 (7) |
Cl2 | 0.38195 (9) | 0.97795 (9) | 0.18873 (8) | 0.0360 (3) | |
N3 | 0.6140 (3) | 0.9769 (3) | 0.2531 (2) | 0.0344 (9) | |
C4 | 0.6343 (3) | 1.0901 (3) | 0.2431 (3) | 0.0329 (10) | |
H4 | 0.6028 | 1.1231 | 0.1803 | 0.039* | |
C5 | 0.6988 (3) | 1.1655 (4) | 0.3182 (3) | 0.0340 (10) | |
H5 | 0.7100 | 1.2471 | 0.3072 | 0.041* | |
C6 | 0.7452 (3) | 1.1163 (4) | 0.4087 (3) | 0.0355 (11) | |
H6 | 0.7887 | 1.1645 | 0.4620 | 0.043* | |
C7 | 0.7282 (3) | 0.9938 (3) | 0.4222 (3) | 0.0257 (9) | |
C8 | 0.7764 (3) | 0.9375 (4) | 0.5128 (3) | 0.0389 (11) | |
H8 | 0.8211 | 0.9833 | 0.5672 | 0.047* | |
C9 | 0.7601 (4) | 0.8201 (4) | 0.5239 (3) | 0.0437 (12) | |
H9 | 0.7944 | 0.7827 | 0.5850 | 0.052* | |
C10 | 0.6917 (3) | 0.7542 (4) | 0.4435 (3) | 0.0370 (11) | |
H10 | 0.6798 | 0.6718 | 0.4516 | 0.044* | |
C11 | 0.6417 (3) | 0.8035 (4) | 0.3544 (3) | 0.0327 (10) | |
H11 | 0.5950 | 0.7565 | 0.3018 | 0.039* | |
C12 | 0.6604 (3) | 0.9264 (4) | 0.3413 (3) | 0.0285 (9) | |
C13 | 0.5817 (3) | 0.8736 (4) | 0.0623 (3) | 0.0350 (11) | |
H13C | 0.5462 | 0.8797 | −0.0084 | 0.042* | 0.928 (7) |
H13D | 0.6496 | 0.9145 | 0.0922 | 0.042* | 0.928 (7) |
H13A | 0.5452 | 0.8820 | −0.0082 | 0.042* | 0.072 (7) |
H13B | 0.6476 | 0.9184 | 0.0940 | 0.042* | 0.072 (7) |
C14 | 0.5759 (3) | 0.7628 (4) | 0.1010 (3) | 0.0329 (10) | |
H14A | 0.6406 | 0.7350 | 0.1570 | 0.039* | 0.928 (7) |
H14 | 0.6423 | 0.7337 | 0.1542 | 0.039* | 0.072 (7) |
C15 | 0.5035 (3) | 0.6634 (4) | 0.0397 (3) | 0.0346 (10) | |
H15A | 0.5298 | 0.6288 | −0.0030 | 0.042* | |
H15B | 0.5005 | 0.5982 | 0.0814 | 0.042* | |
C16 | 0.3968 (3) | 0.7144 (3) | −0.0195 (3) | 0.0280 (9) | |
C17 | 0.3226 (3) | 0.6564 (4) | −0.1006 (3) | 0.0300 (10) | |
H17 | 0.3400 | 0.5851 | −0.1234 | 0.036* | |
C18 | 0.2236 (3) | 0.7023 (4) | −0.1478 (3) | 0.0332 (10) | |
C19 | 0.2006 (3) | 0.8102 (4) | −0.1163 (3) | 0.0313 (10) | |
C20 | 0.2743 (3) | 0.8681 (4) | −0.0358 (3) | 0.0293 (10) | |
H20 | 0.2569 | 0.9412 | −0.0152 | 0.035* | |
C21 | 0.3737 (3) | 0.8207 (4) | 0.0156 (3) | 0.0271 (9) | |
O22 | 0.1425 (2) | 0.6476 (3) | −0.2244 (2) | 0.0414 (8) | |
C23 | 0.1632 (4) | 0.5393 (4) | −0.2615 (3) | 0.0449 (13) | |
H23A | 0.0989 | 0.5085 | −0.3134 | 0.067* | |
H23B | 0.1921 | 0.4790 | −0.2104 | 0.067* | |
H23C | 0.2127 | 0.5560 | −0.2862 | 0.067* | |
O24 | 0.1004 (2) | 0.8561 (3) | −0.1605 (2) | 0.0408 (8) | |
C25 | 0.0681 (3) | 0.8996 (4) | −0.2554 (3) | 0.0401 (11) | |
H25A | −0.0078 | 0.8928 | −0.2920 | 0.048* | |
H25B | 0.0988 | 0.8486 | −0.2875 | 0.048* | |
C26 | 0.0989 (3) | 1.0276 (4) | −0.2567 (3) | 0.0400 (11) | |
O27 | 0.1496 (3) | 1.0896 (3) | −0.1889 (2) | 0.0551 (10) | |
O28 | 0.0592 (2) | 1.0647 (3) | −0.3482 (2) | 0.0442 (8) | |
C29 | 0.0798 (4) | 1.1888 (4) | −0.3643 (3) | 0.0493 (13) | |
H29A | 0.1551 | 1.2023 | −0.3376 | 0.059* | |
H29B | 0.0521 | 1.2452 | −0.3329 | 0.059* | |
C30 | 0.0280 (4) | 1.2087 (5) | −0.4703 (4) | 0.0563 (14) | |
H30A | −0.0463 | 1.1898 | −0.4964 | 0.068* | |
H30B | 0.0580 | 1.1533 | −0.5004 | 0.068* | |
C31 | 0.0407 (5) | 1.3383 (5) | −0.4953 (4) | 0.082 (2) | |
H31A | 0.0183 | 1.3446 | −0.5642 | 0.123* | |
H31B | 0.1133 | 1.3619 | −0.4599 | 0.123* | |
H31C | −0.0015 | 1.3917 | −0.4777 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1A | 0.03098 (18) | 0.0218 (3) | 0.02215 (15) | −0.00439 (19) | 0.01123 (11) | −0.00014 (15) |
Pt1B | 0.0265 (18) | 0.025 (4) | 0.034 (3) | −0.0041 (19) | 0.0147 (16) | −0.008 (3) |
Cl2 | 0.0431 (7) | 0.0342 (6) | 0.0336 (6) | −0.0016 (5) | 0.0199 (5) | −0.0052 (5) |
N3 | 0.043 (2) | 0.0285 (18) | 0.0320 (19) | −0.0023 (17) | 0.0173 (17) | 0.0005 (15) |
C4 | 0.041 (3) | 0.022 (2) | 0.037 (2) | 0.001 (2) | 0.019 (2) | −0.0007 (18) |
C5 | 0.046 (3) | 0.024 (2) | 0.041 (2) | −0.006 (2) | 0.027 (2) | −0.0057 (19) |
C6 | 0.039 (3) | 0.033 (2) | 0.040 (2) | −0.008 (2) | 0.024 (2) | −0.0127 (19) |
C7 | 0.028 (2) | 0.024 (2) | 0.028 (2) | −0.0006 (18) | 0.0148 (18) | −0.0030 (17) |
C8 | 0.036 (3) | 0.042 (2) | 0.034 (2) | 0.002 (2) | 0.012 (2) | 0.001 (2) |
C9 | 0.046 (3) | 0.044 (3) | 0.036 (3) | 0.006 (2) | 0.014 (2) | 0.005 (2) |
C10 | 0.044 (3) | 0.035 (2) | 0.034 (2) | 0.000 (2) | 0.019 (2) | 0.0068 (19) |
C11 | 0.039 (3) | 0.030 (2) | 0.031 (2) | −0.004 (2) | 0.017 (2) | 0.0006 (18) |
C12 | 0.027 (2) | 0.035 (2) | 0.028 (2) | 0.0028 (18) | 0.0154 (18) | 0.0003 (17) |
C13 | 0.032 (2) | 0.041 (2) | 0.029 (2) | 0.000 (2) | 0.011 (2) | −0.006 (2) |
C14 | 0.029 (2) | 0.035 (2) | 0.030 (2) | 0.0054 (19) | 0.010 (2) | −0.0046 (19) |
C15 | 0.043 (3) | 0.026 (2) | 0.033 (2) | 0.000 (2) | 0.015 (2) | −0.0003 (19) |
C16 | 0.032 (2) | 0.023 (2) | 0.030 (2) | −0.0052 (18) | 0.0152 (18) | −0.0013 (17) |
C17 | 0.039 (2) | 0.025 (2) | 0.032 (2) | −0.0077 (19) | 0.0208 (19) | −0.0044 (18) |
C18 | 0.036 (2) | 0.037 (2) | 0.027 (2) | −0.0155 (19) | 0.0151 (19) | −0.0079 (19) |
C19 | 0.028 (2) | 0.044 (2) | 0.026 (2) | −0.0048 (19) | 0.0158 (18) | −0.0027 (19) |
C20 | 0.035 (2) | 0.031 (2) | 0.027 (2) | −0.0017 (19) | 0.0176 (18) | −0.0036 (18) |
C21 | 0.031 (2) | 0.026 (2) | 0.027 (2) | −0.0050 (18) | 0.0158 (17) | 0.0036 (17) |
O22 | 0.0353 (18) | 0.0500 (18) | 0.0359 (18) | −0.0150 (16) | 0.0139 (15) | −0.0166 (15) |
C23 | 0.050 (3) | 0.048 (3) | 0.038 (3) | −0.022 (3) | 0.023 (3) | −0.017 (2) |
O24 | 0.0267 (16) | 0.063 (2) | 0.0324 (17) | −0.0006 (15) | 0.0134 (14) | −0.0076 (16) |
C25 | 0.029 (2) | 0.055 (3) | 0.029 (2) | 0.005 (2) | 0.007 (2) | −0.009 (2) |
C26 | 0.026 (2) | 0.051 (3) | 0.033 (2) | 0.009 (2) | 0.005 (2) | −0.010 (2) |
O27 | 0.053 (2) | 0.047 (2) | 0.0369 (19) | 0.0049 (18) | −0.0032 (18) | −0.0113 (16) |
O28 | 0.0387 (19) | 0.0484 (19) | 0.0340 (18) | 0.0061 (16) | 0.0068 (15) | −0.0079 (15) |
C29 | 0.043 (3) | 0.045 (3) | 0.048 (3) | 0.015 (2) | 0.011 (2) | −0.002 (2) |
C30 | 0.055 (3) | 0.069 (3) | 0.046 (3) | 0.019 (3) | 0.024 (3) | 0.004 (3) |
C31 | 0.118 (6) | 0.066 (4) | 0.057 (4) | 0.038 (4) | 0.036 (4) | 0.010 (3) |
Pt1A—Cl2 | 2.3281 (14) | C14—C15 | 1.526 (5) |
Pt1A—N3 | 2.149 (4) | C15—H15A | 0.9900 |
Pt1A—C13 | 2.091 (4) | C15—H15B | 0.9900 |
Pt1A—C14 | 2.117 (4) | C15—C16 | 1.510 (5) |
Pt1A—C21 | 2.003 (4) | C16—C17 | 1.395 (5) |
Pt1B—Cl2 | 2.205 (6) | C16—C21 | 1.406 (5) |
Pt1B—N3 | 2.330 (11) | C17—H17 | 0.9500 |
Pt1B—C13 | 2.45 (2) | C17—C18 | 1.383 (6) |
Pt1B—C14 | 2.178 (9) | C18—C19 | 1.394 (6) |
Pt1B—C21 | 1.965 (9) | C18—O22 | 1.382 (5) |
N3—C4 | 1.316 (5) | C19—C20 | 1.386 (5) |
N3—C12 | 1.354 (5) | C19—O24 | 1.395 (5) |
C4—H4 | 0.9500 | C20—H20 | 0.9500 |
C4—C5 | 1.400 (6) | C20—C21 | 1.400 (5) |
C5—H5 | 0.9500 | O22—C23 | 1.427 (5) |
C5—C6 | 1.377 (6) | C23—H23A | 0.9800 |
C6—H6 | 0.9500 | C23—H23B | 0.9800 |
C6—C7 | 1.415 (5) | C23—H23C | 0.9800 |
C7—C8 | 1.412 (5) | O24—C25 | 1.425 (5) |
C7—C12 | 1.414 (5) | C25—H25A | 0.9900 |
C8—H8 | 0.9500 | C25—H25B | 0.9900 |
C8—C9 | 1.350 (6) | C25—C26 | 1.492 (6) |
C9—H9 | 0.9500 | C26—O27 | 1.197 (5) |
C9—C10 | 1.404 (6) | C26—O28 | 1.344 (5) |
C10—H10 | 0.9500 | O28—C29 | 1.456 (5) |
C10—C11 | 1.362 (5) | C29—H29A | 0.9900 |
C11—H11 | 0.9500 | C29—H29B | 0.9900 |
C11—C12 | 1.424 (5) | C29—C30 | 1.496 (6) |
C13—H13C | 0.9900 | C30—H30A | 0.9900 |
C13—H13D | 0.9900 | C30—H30B | 0.9900 |
C13—H13A | 0.9900 | C30—C31 | 1.524 (7) |
C13—H13B | 0.9900 | C31—H31A | 0.9800 |
C13—C14 | 1.392 (5) | C31—H31B | 0.9800 |
C14—H14A | 1.0000 | C31—H31C | 0.9800 |
C14—H14 | 1.0000 | ||
N3—Pt1A—Cl2 | 85.99 (10) | C13—C14—H14 | 114.9 |
C13—Pt1A—Cl2 | 161.77 (14) | C13—C14—C15 | 121.7 (4) |
C13—Pt1A—N3 | 91.42 (16) | C15—C14—Pt1A | 109.2 (3) |
C13—Pt1A—C14 | 38.62 (14) | C15—C14—Pt1B | 101.2 (5) |
C14—Pt1A—Cl2 | 159.56 (15) | C15—C14—H14A | 115.7 |
C14—Pt1A—N3 | 98.43 (15) | C15—C14—H14 | 114.9 |
C21—Pt1A—Cl2 | 94.43 (13) | C14—C15—H15A | 109.7 |
C21—Pt1A—N3 | 178.23 (17) | C14—C15—H15B | 109.7 |
C21—Pt1A—C13 | 87.65 (17) | H15A—C15—H15B | 108.2 |
C21—Pt1A—C14 | 81.77 (16) | C16—C15—C14 | 109.7 (3) |
Cl2—Pt1B—N3 | 84.7 (3) | C16—C15—H15A | 109.7 |
Cl2—Pt1B—C13 | 139.1 (12) | C16—C15—H15B | 109.7 |
N3—Pt1B—C13 | 78.8 (6) | C17—C16—C15 | 122.7 (4) |
C14—Pt1B—Cl2 | 173.3 (14) | C17—C16—C21 | 121.3 (4) |
C14—Pt1B—N3 | 91.5 (4) | C21—C16—C15 | 115.9 (4) |
C14—Pt1B—C13 | 34.4 (3) | C16—C17—H17 | 119.8 |
C21—Pt1B—Cl2 | 99.5 (3) | C18—C17—C16 | 120.3 (4) |
C21—Pt1B—N3 | 150.2 (15) | C18—C17—H17 | 119.8 |
C21—Pt1B—C13 | 79.0 (6) | C17—C18—C19 | 119.1 (4) |
C21—Pt1B—C14 | 81.1 (4) | O22—C18—C17 | 125.0 (4) |
C4—N3—Pt1A | 116.6 (3) | O22—C18—C19 | 115.9 (4) |
C4—N3—Pt1B | 127.8 (7) | C18—C19—O24 | 120.2 (4) |
C4—N3—C12 | 118.8 (4) | C20—C19—C18 | 120.7 (4) |
C12—N3—Pt1A | 123.8 (3) | C20—C19—O24 | 118.9 (4) |
C12—N3—Pt1B | 111.5 (7) | C19—C20—H20 | 119.4 |
N3—C4—H4 | 117.6 | C19—C20—C21 | 121.2 (4) |
N3—C4—C5 | 124.8 (4) | C21—C20—H20 | 119.4 |
C5—C4—H4 | 117.6 | C16—C21—Pt1A | 116.3 (3) |
C4—C5—H5 | 121.4 | C16—C21—Pt1B | 113.2 (4) |
C6—C5—C4 | 117.2 (4) | C20—C21—Pt1A | 126.3 (3) |
C6—C5—H5 | 121.4 | C20—C21—Pt1B | 127.8 (4) |
C5—C6—H6 | 120.1 | C20—C21—C16 | 117.3 (4) |
C5—C6—C7 | 119.8 (4) | C18—O22—C23 | 117.9 (4) |
C7—C6—H6 | 120.1 | O22—C23—H23A | 109.5 |
C8—C7—C6 | 122.3 (4) | O22—C23—H23B | 109.5 |
C8—C7—C12 | 119.5 (4) | O22—C23—H23C | 109.5 |
C12—C7—C6 | 118.2 (4) | H23A—C23—H23B | 109.5 |
C7—C8—H8 | 119.3 | H23A—C23—H23C | 109.5 |
C9—C8—C7 | 121.4 (4) | H23B—C23—H23C | 109.5 |
C9—C8—H8 | 119.3 | C19—O24—C25 | 114.5 (3) |
C8—C9—H9 | 120.6 | O24—C25—H25A | 109.2 |
C8—C9—C10 | 118.7 (4) | O24—C25—H25B | 109.2 |
C10—C9—H9 | 120.6 | O24—C25—C26 | 112.2 (4) |
C9—C10—H10 | 118.6 | H25A—C25—H25B | 107.9 |
C11—C10—C9 | 122.8 (4) | C26—C25—H25A | 109.2 |
C11—C10—H10 | 118.6 | C26—C25—H25B | 109.2 |
C10—C11—H11 | 120.5 | O27—C26—C25 | 127.0 (5) |
C10—C11—C12 | 119.0 (4) | O27—C26—O28 | 124.3 (5) |
C12—C11—H11 | 120.5 | O28—C26—C25 | 108.7 (4) |
N3—C12—C7 | 121.1 (4) | C26—O28—C29 | 116.9 (4) |
N3—C12—C11 | 120.3 (4) | O28—C29—H29A | 110.3 |
C7—C12—C11 | 118.6 (4) | O28—C29—H29B | 110.3 |
Pt1A—C13—H13C | 116.4 | O28—C29—C30 | 107.1 (4) |
Pt1A—C13—H13D | 116.4 | H29A—C29—H29B | 108.6 |
Pt1B—C13—H13A | 117.6 | C30—C29—H29A | 110.3 |
Pt1B—C13—H13B | 117.6 | C30—C29—H29B | 110.3 |
H13C—C13—H13D | 113.4 | C29—C30—H30A | 109.3 |
H13A—C13—H13B | 114.7 | C29—C30—H30B | 109.3 |
C14—C13—Pt1A | 71.7 (3) | C29—C30—C31 | 111.5 (4) |
C14—C13—Pt1B | 62.0 (5) | H30A—C30—H30B | 108.0 |
C14—C13—H13C | 116.4 | C31—C30—H30A | 109.3 |
C14—C13—H13D | 116.4 | C31—C30—H30B | 109.3 |
C14—C13—H13A | 117.6 | C30—C31—H31A | 109.5 |
C14—C13—H13B | 117.6 | C30—C31—H31B | 109.5 |
Pt1A—C14—H14A | 115.7 | C30—C31—H31C | 109.5 |
Pt1B—C14—H14 | 114.9 | H31A—C31—H31B | 109.5 |
C13—C14—Pt1A | 69.7 (2) | H31A—C31—H31C | 109.5 |
C13—C14—Pt1B | 83.7 (8) | H31B—C31—H31C | 109.5 |
C13—C14—H14A | 115.7 | ||
Pt1A—N3—C4—C5 | 167.9 (3) | C15—C16—C17—C18 | 174.9 (4) |
Pt1A—N3—C12—C7 | −168.1 (3) | C15—C16—C21—Pt1A | 5.0 (5) |
Pt1A—N3—C12—C11 | 11.9 (5) | C15—C16—C21—Pt1B | −11.5 (9) |
Pt1A—C13—C14—C15 | 100.5 (4) | C15—C16—C21—C20 | −177.8 (3) |
Pt1A—C14—C15—C16 | 28.6 (4) | C16—C17—C18—C19 | 3.2 (6) |
Pt1B—N3—C4—C5 | 160.7 (5) | C16—C17—C18—O22 | −175.2 (4) |
Pt1B—N3—C12—C7 | −164.3 (4) | C17—C16—C21—Pt1A | −179.2 (3) |
Pt1B—N3—C12—C11 | 15.7 (5) | C17—C16—C21—Pt1B | 164.3 (9) |
Pt1B—C13—C14—C15 | 99.3 (4) | C17—C16—C21—C20 | −2.0 (6) |
Pt1B—C14—C15—C16 | 40.6 (8) | C17—C18—C19—C20 | −3.2 (6) |
N3—C4—C5—C6 | 1.0 (7) | C17—C18—C19—O24 | −177.7 (4) |
C4—N3—C12—C7 | 1.1 (6) | C17—C18—O22—C23 | −3.9 (6) |
C4—N3—C12—C11 | −178.9 (4) | C18—C19—C20—C21 | 0.5 (6) |
C4—C5—C6—C7 | 1.1 (6) | C18—C19—O24—C25 | −69.9 (5) |
C5—C6—C7—C8 | 178.0 (4) | C19—C18—O22—C23 | 177.7 (4) |
C5—C6—C7—C12 | −2.0 (6) | C19—C20—C21—Pt1A | 178.9 (3) |
C6—C7—C8—C9 | −179.1 (4) | C19—C20—C21—Pt1B | −162.0 (11) |
C6—C7—C12—N3 | 0.9 (6) | C19—C20—C21—C16 | 2.0 (6) |
C6—C7—C12—C11 | −179.1 (4) | C19—O24—C25—C26 | −86.2 (4) |
C7—C8—C9—C10 | −1.7 (7) | C20—C19—O24—C25 | 115.6 (4) |
C8—C7—C12—N3 | −179.1 (4) | C21—C16—C17—C18 | −0.6 (6) |
C8—C7—C12—C11 | 0.9 (6) | O22—C18—C19—C20 | 175.4 (4) |
C8—C9—C10—C11 | 0.7 (7) | O22—C18—C19—O24 | 0.9 (6) |
C9—C10—C11—C12 | 1.1 (7) | O24—C19—C20—C21 | 175.1 (3) |
C10—C11—C12—N3 | 178.1 (4) | O24—C25—C26—O27 | 4.0 (7) |
C10—C11—C12—C7 | −1.8 (6) | O24—C25—C26—O28 | −175.4 (3) |
C12—N3—C4—C5 | −2.1 (7) | C25—C26—O28—C29 | 179.3 (4) |
C12—C7—C8—C9 | 0.9 (6) | C26—O28—C29—C30 | −179.8 (4) |
C13—C14—C15—C16 | −48.9 (5) | O27—C26—O28—C29 | −0.1 (7) |
C14—C15—C16—C17 | 161.5 (4) | O28—C29—C30—C31 | 177.4 (4) |
C14—C15—C16—C21 | −22.8 (5) |
Cg1 is the centroid of ring C16–C21. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O27i | 0.95 | 2.59 | 3.445 (5) | 150 |
C23—H23C···Cl2ii | 0.98 | 2.70 | 3.618 (6) | 157 |
C29—H29B···O24iii | 0.99 | 2.50 | 3.381 (7) | 148 |
C6—H6···Cg1iv | 0.95 | 2.73 | 3.269 (5) | 117 |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, y+1/2, −z−1/2; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors sincerely thank Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Bui, T. Y. H., Nguyen Thi Thanh, C. & Van Meervelt, L. (2016). IUCrData, 1, x152428. Google Scholar
Chi, N. T. T., Mai, T. T. C., Nhan, N. T. T. & Da, T. T. (2013). V. J. Chem. (Vietnam.), pp. 51(3AB), 500–504. Google Scholar
Chi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, 39, 3505–3513. CSD CrossRef CAS Google Scholar
Chi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732–1743. Web of Science CSD CrossRef IUCr Journals Google Scholar
Da, T. T., Chien, L. X., Chi, N. T. T., Thi Hong Hai, L. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142. CrossRef CAS Google Scholar
Da, T. T., Thi Hong Hai, L., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536. CSD CrossRef CAS Google Scholar
Da, T. T., Kim, Y., Cam Mai, T. T., Cao Cuong, N. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486. Web of Science CrossRef CAS PubMed Google Scholar
Nguyen Thi Thanh, C., Truong Thi Cam, M., Pham Van, T., Nguyen, L., Nguyen Ha, M. & Van Meervelt, L. (2017). Acta Cryst. C73, 1030–1037. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637–1651. CSD CrossRef Google Scholar
Van Thong, P., Van Meervelt, L. & Chi, N. T. T. (2022). Polyhedron, 228, 116180. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.