research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural aryl­olefin and quinoline derivatives

crossmark logo

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bR&D Center, Vietnam Education and Technology Transfer JSC, Hanoi, Vietnam, cBac Giang Upper Secondary School for the Gifted, Bac Giang, Vietnam, dUniversity of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by S. Parkin, University of Kentucky, USA (Received 8 May 2024; accepted 15 May 2024; online 21 May 2024)

Three organoplatinum(II) complexes bearing natural aryl­olefin and quinoline derivatives, namely, [4-meth­oxy-5-(2-meth­oxy-2-oxoeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-meth­oxy-5-(2-oxo-2-propoxyeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinoline-2-carboxy­l­ato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido­[4-meth­oxy-5-(2-oxo-2-propoxyeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinoline)­plat­inum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cyclo­platinated aryl­olefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hy­droxy­quinoline (C9H6NO) and quinoline-2-carb­oxy­lic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and ππ [for (I)] inter­actions.

1. Chemical context

In cancer chemotherapy, three generations of platinum-based drugs, namely cisplatin, carboplatin and oxaliplatin, have been approved all over the world. In addition, some other platinum-based drugs are used in Asia, such as Japan (nedaplatin), China (lobaplatin) and Korea (hepta­platin) (Johnstone et al., 2016[Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436-3486.]). However, these drugs cause several undesirable side effects and are not universally effective in all types of human cancer. Recently, many organoplatinum(II) complexes possessing natural aryl­olefin ligands and either amine or N-heterocyclic carbene have been synthesized with the aim of minimizing toxicity and diversifying hopeful anti-cancer agents. The tested cytotoxicity results show that many of them exhibit higher activity than cisplatin on some human cancer cell lines such as KB, Lu-1, Hep G2 and MCF-7 (Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Thi Hong Hai, L. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.], 2015[Da, T. T., Thi Hong Hai, L., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]; Thi Hong Hai et al., 2019[Thi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637-1651.]; Nguyen Thi Thanh et al., 2017[Nguyen Thi Thanh, C., Truong Thi Cam, M., Pham Van, T., Nguyen, L., Nguyen Ha, M. & Van Meervelt, L. (2017). Acta Cryst. C73, 1030-1037.]; Chi et al., 2018[Chi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732-1743.], 2020[Chi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, 39, 3505-3513.]; Van Thong et al., 2022[Van Thong, P., Van Meervelt, L. & Chi, N. T. T. (2022). Polyhedron, 228, 116180.]).

In this paper, the synthesis and crystal structure of three organoplatinum(II) complexes containing a natural aryl­olefin, namely (η2-2-allyl-4-meth­oxy-5-{[(meth­yloxy)carbon­yl]meth­oxy}phenyl-Cκ1)(quinolin-8-olato-κ2N,O)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), (η2-2-allyl-4-meth­oxy-5-{[(propan-1-yl­oxy)carbon­yl]meth­oxy}phenyl-Cκ1)(quinolin-2-carboxyl­ato-κ2N,O)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II) and (η2-2-allyl-4-meth­oxy-5-{[(propan-1-yl­oxy)carbon­yl]meth­oxy}phenyl-Cκ1)chlorido­(quinolin-κ1N)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), are reported. Complexes (I)–(III) were synthesized by the reaction between the dimer complexes (1a/1b) and amine (QOH/QCOOH/Q with Q = quinoline) in an ethanol/acetone solvent with the molar ratio of the dimer complex:amine being 1:2 (Fig. 1[link]). The crystals of complexes (I)–(III) were obtained in high yields of 82–87% and were suitable for X-ray diffraction studies.

[Scheme 1]
[Figure 1]
Figure 1
Preparation of organoplatinum(II) complexes (I)–(III).

The assigned results of the IR and 1H NMR spectra (see section 5) show that the amines cleave the dimers to form monomeric complexes (I)–(III), in which the amines coordinate with PtII through the N atoms. For QOH and QCOOH, they were deprotonated at the OH/COOH group and further bonded with PtII via the O atom to produce the chelating complexes (I) and (II). These conclusions were further strengthened by the single-crystal XRD results. Moreover, the XRD results indicate that the donor N atoms of the amine ligands and the allyl group of aryl­olefin in complexes (I)–(III) are in the cis position with respect to each other.

2. Structural commentary

Complex (I) crystallizes in the monoclinic space group P21/c with one complex and a water mol­ecule with partial occupancy of 0.473 (11) in the asymmetric unit (Fig. 2[link]). No hydrogen atoms could be located for this water mol­ecule, the oxygen atom O30 is in close contact with O12 [O30⋯O12 = 2.718 (8) Å] and O22 [O30⋯O22 = 2.945 (8) Å] suggesting the likelihood that the water forms hydrogen bonds to O12 and O22. The central PtII atom displays a distorted square-planar coordination with the N2 and O12 atoms of the quinolin-8-olate ligand and the C13 atom and C=C double bond of the aryl­olefin as coordination sphere. The PtII atom deviates by 0.012 (1) Å from the best plane through atoms N2, O12, C13 and the midpoint of the double bond (r.m.s. deviation = 0.005 Å). The C=C double bond and N2 atom are cis with respect to each other. The aryl­olefin ring C13–C18 (r.m.s. deviation = 0.007 Å) makes a dihedral angle of 25.79 (11)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.014 Å).

[Figure 2]
Figure 2
The mol­ecular structure of (I), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. Water oxygen atom O30 [occupancy 0.473 (11)] is in close contact with atoms O12 and O22 (red dotted lines).

Crystals of complex (II) crystallize in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 3[link]). The cis position of quinoline N atom and the allyl group and the coordination of the PtII atom is similar to that in (I) with a deviation of PtII of 0.033 (1) Å from the best plane through atoms N21, O33, C6 and the midpoint of the double bond. The dihedral angle between the best planes through the C5–C10 ring (r.m.s. deviation = 0.008 Å) and through the quinoline ring system (r.m.s. deviation = 0.048 Å) is 41.72 (16)°.

[Figure 3]
Figure 3
The mol­ecular structure of (II), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level.

Complex (III) crystallizes in the monoclinic space group P21/c with one complex in the asymmetric unit (Fig. 4[link]). The PtII atom was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7) and a distance between both Pt components of 0.529 (17) Å. In the subsequent discussion, only the main position of the disordered Pt atom is used. The distorted square-planar coordination of the PtII atom is again characterized by a cis position of the C=C double bond and atom N3. The PtII atom deviates by 0.005 (1) Å from the best plane through atoms Cl2, N3, C21 and the midpoint of the double bond (r.m.s. deviation = 0.026 Å). Complex (III) displays a short intra­molecular contact O22⋯H25B (2.40 Å) resulting from a different orientation of the side chain at C19 compared to complexes (I) and (II). This is further illustrated by the different torsion angles determining the orientation of the side chain in the three complexes: 178.4 (4)° for C16—C15—O19—C20 in (I), 179.8 (4)° for C9—C8—O13—C14 (II), and −69.9 (5)° for C18—C19—O24—C25 (III). Compared to the two other complexes, the C16–C21 aryl­olefin ring (r.m.s. deviation = 0.013 Å) makes a larger dihedral angle of 57.38 (18)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.017 Å).

[Figure 4]
Figure 4
The mol­ecular structure of (III), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. Only the major position of the disordered Pt atom is shown.

3. Supra­molecular features

The crystal packing of (I) is characterized by ππ and C—H⋯π inter­actions (Fig. 5[link]). The shortest centroid–centroid distance is observed for the stacking of rings C6–C11 resulting in inversion dimers [CgCgi = 3.566 (2) Å; slippage = 1.369 Å; symmetry code: (i) −x, 1 − y, 1 − z]. Neighboring dimers are connected in the c-axis direction via C—H⋯π inter­actions of the same ring with C27—H27A (Table 1[link]). As mentioned above, oxygen atom O30 [occupancy 0.473 (11)] occupies a small cavity in the packing and is in close contact with atoms O12 and O22.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of ring C6–C11.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27ACg1i 0.97 2.81 3.465 (4) 125
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Partial packing diagram for (I) showing the ππ and C—H⋯π inter­actions (gray dashed lines). The centroids of the C6–C11 rings are shown as orange dots. [Symmetry codes: (i) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) x, [{3\over 2}] − y, [{1\over 2}] + z; (iii) −x, 1 − y, 1 − z.]

In the crystal, mol­ecules of (II) are connected by C—H⋯O and C—H⋯π inter­actions (Fig. 6[link]). Inversion dimers are formed by C29—H29⋯O32 inter­actions. These dimers are further linked by C20—H20C⋯O33, C28—H28⋯O16, C18—H18Aπ and C20—H20Aπ inter­actions. Details are given in Table 2[link]. No ππ inter­actions are present in the packing, but a short contact distance between Pt1 and ring N21,C22,C27–C30 is noted [Cg3⋯Pt1vi = 3.670 (2) Å; Cg3 is the centroid of ring N21,C22,C27–C30; symmetry code: (vi) −x, 1 − y, −z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of rings C5–C10 and C22–C27, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20C⋯O33i 0.96 2.52 3.462 (6) 168
C28—H28⋯O16ii 0.93 2.26 3.159 (5) 164
C29—H29⋯O32iii 0.93 2.43 3.334 (6) 166
C18—H18ACg1iv 0.97 2.97 3.711 (5) 134
C20—H20ACg2v 0.96 2.78 3.605 (6) 144
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y, z-1]; (iii) [-x+1, -y+1, -z]; (iv) [-x, -y+1, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Partial packing diagram for (II) showing the C—H⋯O and C—H⋯π inter­actions (gray dashed lines). The centroids of rings C5–C10 (Cg1) and C22–C27 (Cg2) are shown as orange and gray dots, respectively. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, −z; (iii) x, y, −1 + z; (iv) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (v) −x, 1 − y, 1 − z.]

For complex (III), the mol­ecules are linked together by C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions (Fig. 7[link], Table 3[link]). Atoms H6 and H9 of the quinoline ring system inter­act with ring C16–C21 and O27, respectively. At the other end of the complex, the meth­oxy group links with a neighboring Cl2 atom and the prop­yloxy group connects with an neighboring atom O24. Again, despite the presence of aromatic rings, no ππ inter­actions are observed in the packing.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 is the centroid of ring C16–C21.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O27i 0.95 2.59 3.445 (5) 150
C23—H23C⋯Cl2ii 0.98 2.70 3.618 (6) 157
C29—H29B⋯O24iii 0.99 2.50 3.381 (7) 148
C6—H6⋯Cg1iv 0.95 2.73 3.269 (5) 117
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 7]
Figure 7
Partial packing diagram for (III) showing the C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions (gray dashed lines). Only the major position of the disordered Pt atom is shown. [Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, −[{1\over 2}] − z; (ii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iii) −x, [{1\over 2}] + y, −[{1\over 2}] − z; (iv) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (v) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z.]

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Pt complexes coordinated to C=C, C, N and O or Cl resulted in 15 hits. For three hits, the N-containing ligand is a quinoline derivative: {5-(2-eth­oxy-2-oxoeth­oxy)-4-meth­oxy-2-[prop-2-en-1-yl]phen­yl}(2-methyl­quinolin-8-olato)platinum(II) (ref­code LOJDEW; Hai et al., 2019[Thi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637-1651.]), [η2-4,5-dimeth­oxy-2-(prop-2-en-1-yl)phen­yl](quinolin-8-olato)platinum(II) (refcode GACYUH; Bui et al., 2016[Bui, T. Y. H., Nguyen Thi Thanh, C. & Van Meervelt, L. (2016). IUCrData, 1, x152428.]) and [5-(2-eth­oxy-2-oxoeth­oxy)-4-meth­oxy-2-(prop-2-en-1-yl)phen­yl](quinoline-2-carboxyl­ato)platinum(II) (refcode MEKGER; Da et al., 2015[Da, T. T., Thi Hong Hai, L., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]).

Entries LOJDEW and GACYUH are comparable to complex (I), but crystallize with different unit cells. An overlay of Pt and its coordination sphere (N, O, C, C=C) gives for (I) and LOJDEW an r.m.s. deviation of 0.106 Å, and for (I) and GACYUH 0.120 Å (Fig. 8[link]a). Compared to (II) and LOJDEW, the double bond of the allyl chain in GACYUH complexes is in a different orientation with Pt. This causes also a different orientation of the aromatic ring of the aryl­olefin ligand.

[Figure 8]
Figure 8
Overlay of the Pt, N, O, C and C=C atoms in (a) (I) (red), LOJDEW (green) and GACYUH (blue), and (b) (II) (red) and MEKGER (green).

Entry MEKGER is comparable to complex (II) and both structures are isomorphous. The somewhat longer b axis in (II) (18.500 versus 17.326 Å) is caused by the longer propyl chain (compared to ethyl in MEKGER), which is oriented in the b-axis direction. The r.m.s. deviation for an overlay of Pt and its coordination sphere is 0.0371 Å (Fig. 8[link]b).

5. Synthesis and crystallization

The synthetic protocol for complexes (I)–(III) is shown in Fig. 1[link]. The starting complexes [Pt(μ-Cl)(MeEug)]2 and [Pt(μ-Cl)(PrEug)]2 were synthesized according to the procedures of Da et al. (2010[Da, T. T., Kim, Y., Cam Mai, T. T., Cao Cuong, N. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473-483.]) and Chi et al. (2013[Chi, N. T. T., Mai, T. T. C., Nhan, N. T. T. & Da, T. T. (2013). V. J. Chem. (Vietnam.), pp. 51(3AB), 500-504.]).

Synthesis of complex [Pt(MeEug)(QO)] (I)[link]. A solution of 8-hy­droxy­quinoline (15 mg, 0.1 mmol) in 3 mL of ethanol was dropped into a suspension of [Pt(μ-Cl)(MeEug)]2 (47 mg, 0.05 mmol) in 2 mL of acetone. The reaction mixture was stirred at ambient temperature (AT) for 2 h until a clear solution was obtained. Orange crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of the obtained solution at AT within 12 h. The yield was 47 mg (82%). 1H NMR (chloro­form-d1, 500 MHz): δ 8.33 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.11 (d, 3J = 4.5 Hz, 1H, Ar-H), 8.56 (t, 3J = 8.0 Hz, 1H, Ar-H), 7.46 (dd, 3J = 8.0 Hz, 4.5 Hz, 1H, Ar-H), 7.26 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.08 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.10 (s, 1H, Ar-H), 6.69 (s, 1H, Ar-H), 4.78 (s, 2H, OCH2), 4.74 (m, 1H, CH=CH2), 4.06 (d, 3J = 7.5 Hz, 2JPtH = 60 Hz, 1H, CH=CH2), 3.85 (s, 3H, CH3), 3.83 (ov, 4H, CH=CH2, OCH3), 3.72 (dd, 2J = 16.5 Hz, 3J = 6.0 Hz, 1H, CH2), 2.86 (d, 2J = 16.5 Hz, 1H, CH2). FT–IR (KBr pellet, cm−1): 2928 (CH), 1751 (C=O), 1578, 1497 (C=C).

Synthesis of complex [Pt(PrEug)(QCOO)] (II)[link]. This complex was prepared starting from [Pt(μ-Cl)(PrEug)]2 (49 mg, 0.05 mmol) and quinoline-2-carb­oxy­lic acid (18 mg, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (85%), and the orange crystals obtained were suitable for X-ray diffraction. 1H NMR (acetone-d6, 500 MHz): δ 8.86 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.30 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.27 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.09 (m, 1H, Ar-H), 7.89 (t, 3J = 7.0 Hz, 1H, Ar-H), 7.77 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.02 (s, 3JPtH = 40 Hz, 1H, Ar-H), 6.77 (s, 1H, Ar-H), 5.75 (m, 2JPtH = 70 Hz, 1H, CH=CH2), 4.71 (d, 3J = 7.5 Hz, 2JPtH = 60 Hz, 1H, CH=CH2), 4.67 (s, 2H, OCH2), 4.19 (m, 2H, CH2CH2CH3), 3.94 (d, 3J = 13.5 Hz, 2JPtH = 65 Hz, 1H, CH=CH2), 3.82–3.78 (ov, 4H, CH2, OCH3), 1.74 (m, 2H, CH2CH2CH3), 0.97 (t, 3J = 7.0 Hz, 3H, CH2CH2CH3). FT–IR (KBr pellet, cm−1): 3030, 2925 (CH), 1750, 1666 (C=O), 1593, 1465 (C=C).

Synthesis of complex [PtCl(PrEug)(Q)] (III)[link]. This complex was prepared starting from [Pt(μ-Cl)(PrEug)]2 (49 mg, 0.05 mmol) and quinoline (12 µL, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (87%), and the yellow crystals obtained were suitable for X-ray diffraction. 1H NMR (acetone-d6, 500 MHz): δ 9.06 (ov, 2H, Ar-H), 8.52 (d, 3J = 8.0 Hz, 1H, Ar-H), 8.04 (d, 3J = 8.0 Hz, 1H, Ar-H), 7.89 (m, 1H, Ar-H), 7.67–7.61 (ov, 2H, Ar-H), 7.0 (s, 3JPtH = 40 Hz, 1H, Ar-H), 6.58 (s, 1H, Ar-H), 4.65 (br, 1H, CH=CH2), 4.49 (s, 2H, OCH2), 4.0 (t, 3J = 7.0 Hz, 2H, CH2CH2CH3), 3.74–3.62 (ov, 6H, CH=CH2, CH2, OCH3), 2.55 (d, 2J = 16.5 Hz, 1H, CH2), 1.56 (m, 2H, CH2CH2CH3), 0.81 (t, 3J = 7.0 Hz, 3H, CH2CH2CH3). FT–IR (KBr pellet, cm−1): 3060, 2936 (CH), 1745 (C=O), 1576, 1471 (C=C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) (1.5 for methyl groups). The Pt atom in (III) was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Pt(C13H15O4)(C9H6NO)] [Pt(C15H19O4)(C10H6NO2)] [Pt(C15H19O4)Cl(C9H7N)]
Mr 582.49 630.55 623.00
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100 114
a, b, c (Å) 13.1510 (4), 8.5584 (2), 18.2071 (6) 8.2857 (4), 18.5001 (9), 14.6282 (7) 14.576 (2), 11.0945 (9), 15.700 (2)
β (°) 105.714 (3) 102.014 (5) 117.197 (18)
V3) 1972.65 (10) 2193.18 (19) 2258.1 (6)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 7.15 6.44 6.36
Crystal size (mm) 0.3 × 0.15 × 0.1 0.4 × 0.4 × 0.3 0.27 × 0.2 × 0.16
 
Data collection
Diffractometer SuperNova, Single source at offset, Eos SuperNova, Single source at offset, Eos SuperNova, Single source at offset, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.300, 1.000 0.669, 1.000 0.579, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41833, 4046, 3672 23965, 5366, 4652 8975, 4603, 3885
Rint 0.039 0.057 0.028
(sin θ/λ)max−1) 0.625 0.685 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.10 0.033, 0.070, 1.05 0.030, 0.056, 1.04
No. of reflections 4046 5366 4603
No. of parameters 274 300 292
No. of restraints 0 0 288
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.60 2.16, −1.73 0.85, −1.07
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

[4-Methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II) (I) top
Crystal data top
[Pt(C13H15O4)(C9H6NO)]F(000) = 1127.2
Mr = 582.49Dx = 1.961 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1510 (4) ÅCell parameters from 19506 reflections
b = 8.5584 (2) Åθ = 2.9–29.0°
c = 18.2071 (6) ŵ = 7.15 mm1
β = 105.714 (3)°T = 100 K
V = 1972.65 (10) Å3Plate, light brown
Z = 40.3 × 0.15 × 0.1 mm
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
4046 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3672 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1010
Tmin = 0.300, Tmax = 1.000l = 2222
41833 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0191P)2 + 6.3477P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4046 reflectionsΔρmax = 0.90 e Å3
274 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.10321 (2)0.48502 (2)0.33132 (2)0.01955 (6)
N20.0487 (3)0.4601 (4)0.34836 (18)0.0235 (7)
C30.1264 (3)0.3610 (5)0.3186 (2)0.0277 (9)
H30.11900.29260.28070.033*
C40.2193 (3)0.3556 (5)0.3422 (3)0.0335 (10)
H40.27200.28400.32020.040*
C50.2325 (3)0.4558 (5)0.3975 (3)0.0313 (9)
H50.29370.45170.41360.038*
C60.1525 (3)0.5657 (5)0.4300 (2)0.0250 (8)
C70.0605 (3)0.5634 (4)0.4035 (2)0.0206 (7)
C80.1587 (3)0.6759 (5)0.4861 (2)0.0266 (9)
H80.21770.67830.50500.032*
C90.0776 (3)0.7795 (5)0.5129 (2)0.0265 (9)
H90.08280.85250.54960.032*
C100.0138 (3)0.7779 (4)0.4862 (2)0.0216 (8)
H100.06720.85040.50490.026*
C110.0246 (3)0.6696 (4)0.4326 (2)0.0199 (7)
O120.11072 (19)0.6615 (3)0.40694 (14)0.0202 (5)
C130.2494 (3)0.5222 (4)0.3234 (2)0.0217 (8)
C140.3317 (3)0.5838 (5)0.3820 (2)0.0260 (8)
H140.31920.60960.42840.031*
C150.4312 (3)0.6068 (5)0.3723 (2)0.0276 (8)
C160.4526 (3)0.5653 (5)0.3038 (2)0.0261 (8)
C170.3717 (4)0.5003 (5)0.2454 (2)0.0333 (10)
H170.38530.47080.19980.040*
C180.2703 (3)0.4794 (5)0.2550 (2)0.0287 (9)
O190.5173 (2)0.6665 (4)0.42784 (16)0.0332 (7)
C200.4963 (3)0.7129 (5)0.4966 (2)0.0305 (9)
H20A0.56220.74040.53340.037*
H20B0.46570.62560.51720.037*
C210.4215 (3)0.8507 (5)0.4859 (2)0.0314 (9)
O220.4065 (2)0.9443 (4)0.43373 (18)0.0378 (7)
O230.3748 (2)0.8571 (4)0.54280 (19)0.0391 (7)
C240.3069 (5)0.9896 (6)0.5401 (4)0.0515 (14)
H24A0.25740.99580.49050.077*
H24B0.34861.08320.54960.077*
H24C0.26920.97840.57820.077*
O250.5533 (2)0.5945 (4)0.29926 (17)0.0372 (7)
C260.5731 (4)0.5677 (7)0.2266 (3)0.0484 (13)
H26A0.52610.63080.18860.073*
H26B0.56150.45940.21320.073*
H26C0.64480.59490.22940.073*
C270.1773 (4)0.4205 (5)0.1925 (2)0.0351 (10)
H27A0.19980.33530.16550.042*
H27B0.15060.50380.15630.042*
C280.0905 (4)0.3645 (5)0.2267 (2)0.0356 (10)
H280.01940.35870.19160.043*
C290.1124 (4)0.2580 (5)0.2867 (3)0.0355 (10)
H29A0.18080.22040.30620.043*
H29B0.05880.22430.30720.043*
O300.1772 (6)0.9369 (8)0.3617 (4)0.043 (3)0.474 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02183 (8)0.01695 (8)0.02025 (8)0.00247 (5)0.00636 (6)0.00315 (5)
N20.0254 (17)0.0211 (16)0.0221 (16)0.0012 (13)0.0034 (13)0.0037 (13)
C30.027 (2)0.0211 (19)0.031 (2)0.0032 (16)0.0027 (17)0.0019 (16)
C40.024 (2)0.028 (2)0.044 (3)0.0073 (17)0.0023 (19)0.0074 (19)
C50.020 (2)0.031 (2)0.043 (2)0.0008 (17)0.0088 (18)0.0131 (19)
C60.0229 (19)0.0227 (19)0.030 (2)0.0037 (15)0.0080 (16)0.0129 (16)
C70.0220 (18)0.0165 (17)0.0231 (18)0.0017 (14)0.0058 (15)0.0065 (14)
C80.025 (2)0.027 (2)0.032 (2)0.0074 (16)0.0144 (17)0.0112 (17)
C90.033 (2)0.024 (2)0.026 (2)0.0113 (17)0.0139 (17)0.0086 (16)
C100.027 (2)0.0167 (18)0.0210 (19)0.0015 (15)0.0065 (15)0.0028 (14)
C110.0224 (18)0.0157 (17)0.0216 (18)0.0031 (14)0.0059 (15)0.0055 (14)
O120.0213 (13)0.0191 (13)0.0217 (13)0.0015 (10)0.0084 (10)0.0020 (10)
C130.0231 (19)0.0185 (18)0.0234 (19)0.0023 (14)0.0063 (15)0.0007 (14)
C140.029 (2)0.026 (2)0.026 (2)0.0003 (16)0.0114 (17)0.0068 (16)
C150.026 (2)0.028 (2)0.029 (2)0.0002 (16)0.0074 (17)0.0045 (17)
C160.024 (2)0.031 (2)0.026 (2)0.0091 (17)0.0104 (16)0.0040 (16)
C170.035 (2)0.040 (3)0.028 (2)0.0075 (19)0.0138 (19)0.0071 (18)
C180.034 (2)0.026 (2)0.028 (2)0.0000 (17)0.0120 (18)0.0068 (16)
O190.0257 (15)0.0421 (18)0.0327 (16)0.0013 (13)0.0093 (12)0.0056 (13)
C200.030 (2)0.030 (2)0.030 (2)0.0008 (17)0.0057 (17)0.0048 (17)
C210.028 (2)0.033 (2)0.035 (2)0.0085 (18)0.0109 (18)0.0052 (19)
O220.0391 (18)0.0350 (17)0.0384 (18)0.0060 (14)0.0092 (14)0.0021 (14)
O230.0390 (18)0.0357 (18)0.0486 (19)0.0007 (14)0.0220 (15)0.0002 (15)
C240.056 (3)0.043 (3)0.065 (4)0.009 (2)0.032 (3)0.004 (2)
O250.0225 (15)0.061 (2)0.0305 (16)0.0052 (14)0.0120 (12)0.0008 (15)
C260.027 (2)0.089 (4)0.035 (3)0.010 (3)0.017 (2)0.002 (3)
C270.040 (3)0.035 (2)0.031 (2)0.004 (2)0.0107 (19)0.0076 (19)
C280.040 (3)0.039 (3)0.031 (2)0.016 (2)0.0144 (19)0.0216 (19)
C290.036 (2)0.027 (2)0.046 (3)0.0042 (18)0.015 (2)0.0167 (19)
O300.043 (4)0.033 (4)0.051 (5)0.001 (3)0.008 (3)0.009 (3)
Geometric parameters (Å, º) top
Pt1—N22.114 (3)C15—O191.395 (5)
Pt1—O122.028 (2)C16—C171.399 (6)
Pt1—C131.993 (4)C16—O251.372 (5)
Pt1—C282.132 (4)C17—H170.9300
Pt1—C292.123 (4)C17—C181.402 (6)
N2—C31.326 (5)C18—C271.513 (6)
N2—C71.377 (5)O19—C201.411 (5)
C3—H30.9300C20—H20A0.9700
C3—C41.401 (6)C20—H20B0.9700
C4—H40.9300C20—C211.514 (6)
C4—C51.369 (6)C21—O221.217 (5)
C5—H50.9300C21—O231.341 (5)
C5—C61.416 (6)O23—C241.436 (6)
C6—C71.420 (5)C24—H24A0.9600
C6—C81.409 (6)C24—H24B0.9600
C7—C111.427 (5)C24—H24C0.9600
C8—H80.9300O25—C261.434 (5)
C8—C91.371 (6)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C9—C101.414 (5)C26—H26C0.9600
C10—H100.9300C27—H27A0.9700
C10—C111.381 (5)C27—H27B0.9700
C11—O121.339 (4)C27—C281.519 (6)
C13—C141.401 (5)C28—H280.9800
C13—C181.394 (5)C28—C291.391 (7)
C14—H140.9300C29—H29A0.9300
C14—C151.382 (5)C29—H29B0.9300
C15—C161.396 (5)
N2—Pt1—C28103.50 (15)O25—C16—C15116.0 (4)
N2—Pt1—C2996.79 (15)O25—C16—C17125.1 (4)
O12—Pt1—N281.35 (11)C16—C17—H17119.7
O12—Pt1—C28160.78 (15)C16—C17—C18120.6 (4)
O12—Pt1—C29160.82 (15)C18—C17—H17119.7
C13—Pt1—N2174.70 (14)C13—C18—C17120.1 (4)
C13—Pt1—O1293.43 (13)C13—C18—C27116.4 (4)
C13—Pt1—C2881.74 (16)C17—C18—C27123.4 (4)
C13—Pt1—C2987.83 (16)C15—O19—C20115.6 (3)
C29—Pt1—C2838.17 (18)O19—C20—H20A109.1
C3—N2—Pt1131.3 (3)O19—C20—H20B109.1
C3—N2—C7118.8 (3)O19—C20—C21112.4 (3)
C7—N2—Pt1109.8 (2)H20A—C20—H20B107.9
N2—C3—H3118.8C21—C20—H20A109.1
N2—C3—C4122.4 (4)C21—C20—H20B109.1
C4—C3—H3118.8O22—C21—C20125.1 (4)
C3—C4—H4120.0O22—C21—O23124.4 (4)
C5—C4—C3120.0 (4)O23—C21—C20110.5 (4)
C5—C4—H4120.0C21—O23—C24114.6 (4)
C4—C5—H5120.1O23—C24—H24A109.5
C4—C5—C6119.7 (4)O23—C24—H24B109.5
C6—C5—H5120.1O23—C24—H24C109.5
C5—C6—C7117.0 (4)H24A—C24—H24B109.5
C8—C6—C5124.5 (4)H24A—C24—H24C109.5
C8—C6—C7118.5 (4)H24B—C24—H24C109.5
N2—C7—C6122.1 (3)C16—O25—C26116.4 (3)
N2—C7—C11116.6 (3)O25—C26—H26A109.5
C6—C7—C11121.3 (4)O25—C26—H26B109.5
C6—C8—H8120.0O25—C26—H26C109.5
C9—C8—C6119.9 (4)H26A—C26—H26B109.5
C9—C8—H8120.0H26A—C26—H26C109.5
C8—C9—H9119.2H26B—C26—H26C109.5
C8—C9—C10121.5 (4)C18—C27—H27A109.7
C10—C9—H9119.2C18—C27—H27B109.7
C9—C10—H10119.7C18—C27—C28110.0 (4)
C11—C10—C9120.6 (4)H27A—C27—H27B108.2
C11—C10—H10119.7C28—C27—H27A109.7
C10—C11—C7118.0 (3)C28—C27—H27B109.7
O12—C11—C7119.3 (3)Pt1—C28—H28116.0
O12—C11—C10122.7 (3)C27—C28—Pt1109.1 (3)
C11—O12—Pt1112.7 (2)C27—C28—H28116.0
C14—C13—Pt1124.5 (3)C29—C28—Pt170.5 (2)
C18—C13—Pt1116.8 (3)C29—C28—C27120.6 (4)
C18—C13—C14118.7 (4)C29—C28—H28116.0
C13—C14—H14119.4Pt1—C29—H29A108.6
C15—C14—C13121.2 (4)Pt1—C29—H29B90.1
C15—C14—H14119.4C28—C29—Pt171.3 (2)
C14—C15—C16120.3 (4)C28—C29—H29A120.0
C14—C15—O19124.7 (3)C28—C29—H29B120.0
O19—C15—C16114.9 (3)H29A—C29—H29B120.0
C15—C16—C17119.0 (4)
Pt1—N2—C3—C4174.8 (3)C10—C11—O12—Pt1178.0 (3)
Pt1—N2—C7—C6176.0 (3)C13—C14—C15—C161.6 (6)
Pt1—N2—C7—C114.4 (4)C13—C14—C15—O19179.6 (4)
Pt1—C13—C14—C15179.8 (3)C13—C18—C27—C2821.0 (5)
Pt1—C13—C18—C17179.3 (3)C14—C13—C18—C171.0 (6)
Pt1—C13—C18—C274.3 (5)C14—C13—C18—C27177.4 (4)
N2—C3—C4—C50.5 (6)C14—C15—C16—C170.1 (6)
N2—C7—C11—C10178.1 (3)C14—C15—C16—O25179.2 (4)
N2—C7—C11—O121.6 (5)C14—C15—O19—C203.5 (6)
C3—N2—C7—C60.8 (5)C15—C16—C17—C181.0 (6)
C3—N2—C7—C11178.8 (3)C15—C16—O25—C26173.7 (4)
C3—C4—C5—C60.7 (6)C15—O19—C20—C2165.7 (5)
C4—C5—C6—C71.1 (6)C16—C15—O19—C20178.4 (4)
C4—C5—C6—C8178.8 (4)C16—C17—C18—C130.5 (6)
C5—C6—C7—N20.4 (5)C16—C17—C18—C27175.6 (4)
C5—C6—C7—C11179.9 (3)C17—C16—O25—C265.4 (6)
C5—C6—C8—C9178.8 (4)C17—C18—C27—C28162.8 (4)
C6—C7—C11—C101.5 (5)C18—C13—C14—C152.0 (6)
C6—C7—C11—O12178.8 (3)C18—C27—C28—Pt126.3 (5)
C6—C8—C9—C100.7 (6)C18—C27—C28—C2951.9 (5)
C7—N2—C3—C41.2 (6)O19—C15—C16—C17178.3 (4)
C7—C6—C8—C91.1 (5)O19—C15—C16—O252.6 (5)
C7—C11—O12—Pt12.3 (4)O19—C20—C21—O2222.6 (6)
C8—C6—C7—N2179.6 (3)O19—C20—C21—O23158.3 (3)
C8—C6—C7—C110.0 (5)C20—C21—O23—C24176.5 (4)
C8—C9—C10—C110.8 (6)O22—C21—O23—C242.6 (6)
C9—C10—C11—C71.9 (5)O25—C16—C17—C18178.1 (4)
C9—C10—C11—O12178.4 (3)C27—C28—C29—Pt1101.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C6–C11.
D—H···AD—HH···AD···AD—H···A
C27—H27A···Cg1i0.972.813.465 (4)125
Symmetry code: (i) x, y1/2, z+1/2.
[4-Methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II) (II) top
Crystal data top
[Pt(C15H19O4)(C10H6NO2)]F(000) = 1232
Mr = 630.55Dx = 1.910 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2857 (4) ÅCell parameters from 8290 reflections
b = 18.5001 (9) Åθ = 2.9–29.0°
c = 14.6282 (7) ŵ = 6.44 mm1
β = 102.014 (5)°T = 100 K
V = 2193.18 (19) Å3Block, orange
Z = 40.4 × 0.4 × 0.3 mm
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
5366 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4652 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 15.9631 pixels mm-1θmax = 29.1°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2524
Tmin = 0.669, Tmax = 1.000l = 1919
23965 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0204P)2 + 5.0718P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
5366 reflectionsΔρmax = 2.16 e Å3
300 parametersΔρmin = 1.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.05560 (2)0.61639 (2)0.09345 (2)0.01722 (6)
C20.3155 (5)0.6274 (2)0.0693 (3)0.0219 (9)
H2A0.37760.60820.01080.026*
H2B0.36640.61800.12210.026*
C30.2450 (5)0.6967 (2)0.0656 (3)0.0204 (9)
H30.26310.71940.00380.024*
C40.2226 (6)0.7476 (2)0.1480 (3)0.0233 (10)
H4A0.32860.76710.15380.028*
H4B0.15200.78750.13850.028*
C50.1454 (5)0.7072 (2)0.2364 (3)0.0183 (9)
C60.0619 (5)0.6442 (2)0.2243 (3)0.0164 (8)
C70.0167 (5)0.6048 (2)0.3027 (3)0.0195 (9)
H70.07170.56210.29470.023*
C80.0134 (5)0.6286 (2)0.3922 (3)0.0191 (9)
C90.0748 (5)0.6916 (2)0.4044 (3)0.0180 (9)
C100.1524 (5)0.7309 (2)0.3268 (3)0.0194 (9)
H100.20910.77300.33470.023*
O110.0792 (4)0.70854 (15)0.4954 (2)0.0207 (6)
C120.1635 (6)0.7729 (2)0.5106 (3)0.0248 (10)
H12A0.11520.81330.48500.037*
H12B0.15460.78000.57650.037*
H12C0.27770.76890.48050.037*
O130.0916 (4)0.59562 (16)0.4739 (2)0.0228 (7)
C140.1812 (6)0.5321 (2)0.4651 (3)0.0219 (9)
H14A0.24990.53920.41960.026*
H14B0.10610.49240.44420.026*
C150.2864 (5)0.5154 (2)0.5592 (3)0.0204 (9)
O160.3081 (4)0.55414 (18)0.6260 (2)0.0335 (8)
O170.3562 (4)0.45000 (16)0.5567 (2)0.0259 (7)
C180.4476 (6)0.4221 (2)0.6464 (3)0.0262 (10)
H18A0.37480.41610.68990.031*
H18B0.53570.45500.67360.031*
C190.5177 (6)0.3497 (2)0.6249 (3)0.0298 (11)
H19A0.60130.35710.58830.036*
H19B0.43070.32020.58860.036*
C200.5934 (6)0.3109 (3)0.7157 (3)0.0348 (12)
H20A0.64500.26700.70160.052*
H20B0.50840.29970.74910.052*
H20C0.67440.34150.75330.052*
N210.0072 (4)0.59004 (18)0.0416 (2)0.0165 (7)
C220.0717 (6)0.6046 (2)0.1330 (3)0.0210 (9)
C230.2406 (6)0.6240 (2)0.1543 (3)0.0229 (10)
H230.29810.62860.10630.027*
C240.3208 (7)0.6363 (2)0.2454 (3)0.0295 (11)
H240.43260.64770.25850.035*
C250.2346 (7)0.6316 (2)0.3190 (3)0.0301 (11)
H250.28880.64080.38020.036*
C260.0716 (7)0.6135 (2)0.2999 (3)0.0272 (11)
H260.01440.61170.34820.033*
C270.0111 (6)0.5975 (2)0.2081 (3)0.0225 (10)
C280.1770 (6)0.5718 (2)0.1873 (3)0.0262 (10)
H280.23590.56750.23460.031*
C290.2488 (6)0.5537 (2)0.0978 (3)0.0228 (10)
H290.35470.53440.08400.027*
C300.1604 (5)0.5647 (2)0.0265 (3)0.0201 (9)
C310.2456 (5)0.5489 (2)0.0731 (3)0.0194 (9)
O320.3826 (4)0.52108 (16)0.0902 (2)0.0251 (7)
O330.1638 (3)0.56700 (16)0.13703 (19)0.0205 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01864 (10)0.01974 (10)0.01431 (10)0.00199 (6)0.00582 (7)0.00078 (6)
C20.019 (2)0.024 (2)0.023 (2)0.0026 (18)0.0041 (19)0.0017 (18)
C30.019 (2)0.026 (2)0.016 (2)0.0077 (18)0.0024 (17)0.0028 (17)
C40.027 (2)0.015 (2)0.026 (2)0.0021 (18)0.002 (2)0.0026 (17)
C50.019 (2)0.0157 (19)0.019 (2)0.0028 (17)0.0017 (17)0.0021 (16)
C60.017 (2)0.0179 (19)0.016 (2)0.0012 (17)0.0053 (16)0.0001 (16)
C70.018 (2)0.019 (2)0.023 (2)0.0052 (17)0.0076 (18)0.0005 (17)
C80.020 (2)0.023 (2)0.016 (2)0.0004 (18)0.0055 (17)0.0013 (17)
C90.019 (2)0.0162 (19)0.020 (2)0.0033 (17)0.0058 (18)0.0026 (16)
C100.021 (2)0.0148 (19)0.022 (2)0.0019 (17)0.0044 (18)0.0035 (17)
O110.0299 (17)0.0166 (14)0.0164 (15)0.0046 (13)0.0064 (13)0.0026 (12)
C120.026 (2)0.023 (2)0.025 (2)0.0059 (19)0.005 (2)0.0056 (19)
O130.0315 (18)0.0233 (15)0.0135 (15)0.0115 (14)0.0043 (13)0.0014 (12)
C140.028 (2)0.021 (2)0.019 (2)0.0087 (19)0.0093 (19)0.0023 (17)
C150.023 (2)0.022 (2)0.019 (2)0.0069 (18)0.0114 (18)0.0034 (17)
O160.045 (2)0.0364 (19)0.0175 (17)0.0176 (17)0.0040 (15)0.0044 (14)
O170.0318 (18)0.0206 (16)0.0248 (17)0.0071 (14)0.0050 (14)0.0029 (13)
C180.029 (3)0.030 (2)0.021 (2)0.007 (2)0.0062 (19)0.0090 (19)
C190.040 (3)0.016 (2)0.034 (3)0.000 (2)0.009 (2)0.0036 (19)
C200.037 (3)0.027 (3)0.037 (3)0.002 (2)0.001 (2)0.007 (2)
N210.0200 (18)0.0166 (17)0.0143 (17)0.0002 (14)0.0067 (14)0.0017 (13)
C220.030 (3)0.0138 (19)0.020 (2)0.0051 (18)0.0066 (19)0.0021 (16)
C230.030 (3)0.021 (2)0.018 (2)0.0016 (19)0.007 (2)0.0034 (17)
C240.037 (3)0.029 (2)0.020 (2)0.003 (2)0.002 (2)0.0030 (19)
C250.050 (3)0.020 (2)0.017 (2)0.002 (2)0.001 (2)0.0040 (18)
C260.044 (3)0.019 (2)0.020 (2)0.009 (2)0.010 (2)0.0025 (17)
C270.036 (3)0.0148 (19)0.020 (2)0.0104 (19)0.013 (2)0.0057 (17)
C280.037 (3)0.023 (2)0.024 (2)0.005 (2)0.019 (2)0.0091 (19)
C290.023 (2)0.021 (2)0.027 (2)0.0051 (18)0.011 (2)0.0051 (18)
C300.024 (2)0.0136 (19)0.025 (2)0.0048 (17)0.0101 (19)0.0045 (17)
C310.021 (2)0.017 (2)0.021 (2)0.0026 (17)0.0062 (18)0.0045 (17)
O320.0193 (16)0.0266 (17)0.0302 (18)0.0015 (14)0.0067 (14)0.0010 (14)
O330.0195 (16)0.0270 (16)0.0147 (15)0.0020 (13)0.0034 (12)0.0008 (12)
Geometric parameters (Å, º) top
Pt1—C22.118 (4)C15—O171.345 (5)
Pt1—C32.138 (4)O17—C181.466 (5)
Pt1—C61.993 (4)C18—H18A0.9700
Pt1—N212.200 (3)C18—H18B0.9700
Pt1—O332.016 (3)C18—C191.519 (6)
C2—H2A0.9700C19—H19A0.9700
C2—H2B0.9700C19—H19B0.9700
C2—C31.413 (6)C19—C201.524 (6)
C3—H30.9800C20—H20A0.9600
C3—C41.511 (6)C20—H20B0.9600
C4—H4A0.9700C20—H20C0.9600
C4—H4B0.9700N21—C221.387 (5)
C4—C51.515 (6)N21—C301.328 (5)
C5—C61.385 (6)C22—C231.415 (6)
C5—C101.406 (6)C22—C271.417 (6)
C6—C71.400 (6)C23—H230.9300
C7—H70.9300C23—C241.378 (6)
C7—C81.387 (6)C24—H240.9300
C8—C91.407 (6)C24—C251.413 (7)
C8—O131.378 (5)C25—H250.9300
C9—C101.388 (6)C25—C261.362 (7)
C9—O111.375 (5)C26—H260.9300
C10—H100.9300C26—C271.405 (6)
O11—C121.422 (5)C27—C281.425 (7)
C12—H12A0.9600C28—H280.9300
C12—H12B0.9600C28—C291.363 (6)
C12—H12C0.9600C29—H290.9300
O13—C141.411 (5)C29—C301.407 (6)
C14—H14A0.9700C30—C311.510 (6)
C14—H14B0.9700C31—O321.224 (5)
C14—C151.500 (6)C31—O331.307 (5)
C15—O161.195 (5)
C2—Pt1—C338.79 (16)C15—C14—H14A110.2
C2—Pt1—N21107.11 (15)C15—C14—H14B110.2
C3—Pt1—N21106.53 (14)O16—C15—C14125.9 (4)
C6—Pt1—C284.62 (17)O16—C15—O17124.7 (4)
C6—Pt1—C380.72 (16)O17—C15—C14109.4 (4)
C6—Pt1—N21167.94 (15)C15—O17—C18115.9 (3)
C6—Pt1—O3390.88 (14)O17—C18—H18A110.6
O33—Pt1—C2156.21 (14)O17—C18—H18B110.6
O33—Pt1—C3162.41 (14)O17—C18—C19105.9 (4)
O33—Pt1—N2179.46 (12)H18A—C18—H18B108.7
Pt1—C2—H2A116.5C19—C18—H18A110.6
Pt1—C2—H2B116.5C19—C18—H18B110.6
H2A—C2—H2B113.5C18—C19—H19A109.7
C3—C2—Pt171.3 (2)C18—C19—H19B109.7
C3—C2—H2A116.5C18—C19—C20109.9 (4)
C3—C2—H2B116.5H19A—C19—H19B108.2
Pt1—C3—H3116.0C20—C19—H19A109.7
C2—C3—Pt169.9 (2)C20—C19—H19B109.7
C2—C3—H3116.0C19—C20—H20A109.5
C2—C3—C4121.2 (4)C19—C20—H20B109.5
C4—C3—Pt1108.5 (3)C19—C20—H20C109.5
C4—C3—H3116.0H20A—C20—H20B109.5
C3—C4—H4A109.8H20A—C20—H20C109.5
C3—C4—H4B109.8H20B—C20—H20C109.5
C3—C4—C5109.5 (3)C22—N21—Pt1132.1 (3)
H4A—C4—H4B108.2C30—N21—Pt1109.0 (3)
C5—C4—H4A109.8C30—N21—C22118.1 (4)
C5—C4—H4B109.8N21—C22—C23120.5 (4)
C6—C5—C4116.1 (4)N21—C22—C27121.4 (4)
C6—C5—C10120.1 (4)C23—C22—C27118.0 (4)
C10—C5—C4123.8 (4)C22—C23—H23119.7
C5—C6—Pt1117.0 (3)C24—C23—C22120.6 (4)
C5—C6—C7119.6 (4)C24—C23—H23119.7
C7—C6—Pt1123.5 (3)C23—C24—H24119.7
C6—C7—H7119.7C23—C24—C25120.5 (5)
C8—C7—C6120.7 (4)C25—C24—H24119.7
C8—C7—H7119.7C24—C25—H25120.2
C7—C8—C9119.8 (4)C26—C25—C24119.7 (4)
O13—C8—C7125.5 (4)C26—C25—H25120.2
O13—C8—C9114.8 (4)C25—C26—H26119.5
C10—C9—C8119.6 (4)C25—C26—C27120.9 (5)
O11—C9—C8115.6 (4)C27—C26—H26119.5
O11—C9—C10124.8 (4)C22—C27—C28117.8 (4)
C5—C10—H10119.9C26—C27—C22120.1 (5)
C9—C10—C5120.2 (4)C26—C27—C28122.1 (4)
C9—C10—H10119.9C27—C28—H28120.1
C9—O11—C12117.1 (3)C29—C28—C27119.7 (4)
O11—C12—H12A109.5C29—C28—H28120.1
O11—C12—H12B109.5C28—C29—H29120.5
O11—C12—H12C109.5C28—C29—C30119.1 (4)
H12A—C12—H12B109.5C30—C29—H29120.5
H12A—C12—H12C109.5N21—C30—C29123.7 (4)
H12B—C12—H12C109.5N21—C30—C31117.8 (4)
C8—O13—C14116.8 (3)C29—C30—C31118.5 (4)
O13—C14—H14A110.2O32—C31—C30120.3 (4)
O13—C14—H14B110.2O32—C31—O33124.0 (4)
O13—C14—C15107.7 (3)O33—C31—C30115.7 (4)
H14A—C14—H14B108.5C31—O33—Pt1117.2 (3)
Pt1—C2—C3—C4100.0 (4)O13—C14—C15—O17171.5 (3)
Pt1—C3—C4—C530.0 (4)C14—C15—O17—C18173.1 (4)
Pt1—C6—C7—C8177.3 (3)C15—O17—C18—C19178.4 (4)
Pt1—N21—C22—C2318.3 (6)O16—C15—O17—C188.0 (6)
Pt1—N21—C22—C27164.5 (3)O17—C18—C19—C20171.5 (4)
Pt1—N21—C30—C29169.3 (3)N21—C22—C23—C24177.9 (4)
Pt1—N21—C30—C318.9 (4)N21—C22—C27—C26179.2 (4)
C2—C3—C4—C547.2 (5)N21—C22—C27—C282.6 (6)
C3—C4—C5—C621.0 (5)N21—C30—C31—O32175.2 (4)
C3—C4—C5—C10160.3 (4)N21—C30—C31—O335.0 (5)
C4—C5—C6—Pt10.0 (5)C22—N21—C30—C291.9 (6)
C4—C5—C6—C7178.3 (4)C22—N21—C30—C31180.0 (3)
C4—C5—C10—C9178.3 (4)C22—C23—C24—C251.8 (7)
C5—C6—C7—C80.8 (6)C22—C27—C28—C291.4 (6)
C6—C5—C10—C90.4 (6)C23—C22—C27—C263.5 (6)
C6—C7—C8—C92.4 (6)C23—C22—C27—C28174.7 (4)
C6—C7—C8—O13177.4 (4)C23—C24—C25—C261.2 (7)
C7—C8—C9—C102.5 (6)C24—C25—C26—C271.7 (7)
C7—C8—C9—O11176.3 (4)C25—C26—C27—C224.1 (6)
C7—C8—O13—C140.4 (6)C25—C26—C27—C28174.0 (4)
C8—C9—C10—C51.2 (6)C26—C27—C28—C29176.7 (4)
C8—C9—O11—C12178.3 (4)C27—C22—C23—C240.6 (6)
C8—O13—C14—C15167.0 (4)C27—C28—C29—C303.6 (6)
C9—C8—O13—C14179.8 (4)C28—C29—C30—N212.0 (6)
C10—C5—C6—Pt1178.8 (3)C28—C29—C30—C31176.1 (4)
C10—C5—C6—C70.5 (6)C29—C30—C31—O326.5 (6)
C10—C9—O11—C122.9 (6)C29—C30—C31—O33173.3 (4)
O11—C9—C10—C5177.5 (4)C30—N21—C22—C23173.0 (4)
O13—C8—C9—C10177.3 (4)C30—N21—C22—C274.2 (6)
O13—C8—C9—O114.0 (5)C30—C31—O33—Pt12.6 (4)
O13—C14—C15—O169.7 (6)O32—C31—O33—Pt1177.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C5–C10 and C22–C27, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20C···O33i0.962.523.462 (6)168
C28—H28···O16ii0.932.263.159 (5)164
C29—H29···O32iii0.932.433.334 (6)166
C18—H18A···Cg1iv0.972.973.711 (5)134
C20—H20A···Cg2v0.962.783.605 (6)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1/2, y1/2, z+1/2.
Chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl]\ (quinoline)platinum(II) (III) top
Crystal data top
[Pt(C15H19O4)Cl(C9H7N)]F(000) = 1216
Mr = 623.00Dx = 1.833 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.576 (2) ÅCell parameters from 3865 reflections
b = 11.0945 (9) Åθ = 2.9–29.0°
c = 15.700 (2) ŵ = 6.36 mm1
β = 117.197 (18)°T = 114 K
V = 2258.1 (6) Å3Block, colourless
Z = 40.27 × 0.2 × 0.16 mm
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
4603 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3885 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω scansh = 918
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1213
Tmin = 0.579, Tmax = 1.000l = 1919
8975 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0148P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4603 reflectionsΔρmax = 0.85 e Å3
292 parametersΔρmin = 1.07 e Å3
288 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt1A0.48946 (7)0.89396 (12)0.13147 (5)0.02532 (15)0.928 (7)
Pt1B0.4763 (6)0.8600 (18)0.1469 (11)0.028 (2)0.072 (7)
Cl20.38195 (9)0.97795 (9)0.18873 (8)0.0360 (3)
N30.6140 (3)0.9769 (3)0.2531 (2)0.0344 (9)
C40.6343 (3)1.0901 (3)0.2431 (3)0.0329 (10)
H40.60281.12310.18030.039*
C50.6988 (3)1.1655 (4)0.3182 (3)0.0340 (10)
H50.71001.24710.30720.041*
C60.7452 (3)1.1163 (4)0.4087 (3)0.0355 (11)
H60.78871.16450.46200.043*
C70.7282 (3)0.9938 (3)0.4222 (3)0.0257 (9)
C80.7764 (3)0.9375 (4)0.5128 (3)0.0389 (11)
H80.82110.98330.56720.047*
C90.7601 (4)0.8201 (4)0.5239 (3)0.0437 (12)
H90.79440.78270.58500.052*
C100.6917 (3)0.7542 (4)0.4435 (3)0.0370 (11)
H100.67980.67180.45160.044*
C110.6417 (3)0.8035 (4)0.3544 (3)0.0327 (10)
H110.59500.75650.30180.039*
C120.6604 (3)0.9264 (4)0.3413 (3)0.0285 (9)
C130.5817 (3)0.8736 (4)0.0623 (3)0.0350 (11)
H13C0.54620.87970.00840.042*0.928 (7)
H13D0.64960.91450.09220.042*0.928 (7)
H13A0.54520.88200.00820.042*0.072 (7)
H13B0.64760.91840.09400.042*0.072 (7)
C140.5759 (3)0.7628 (4)0.1010 (3)0.0329 (10)
H14A0.64060.73500.15700.039*0.928 (7)
H140.64230.73370.15420.039*0.072 (7)
C150.5035 (3)0.6634 (4)0.0397 (3)0.0346 (10)
H15A0.52980.62880.00300.042*
H15B0.50050.59820.08140.042*
C160.3968 (3)0.7144 (3)0.0195 (3)0.0280 (9)
C170.3226 (3)0.6564 (4)0.1006 (3)0.0300 (10)
H170.34000.58510.12340.036*
C180.2236 (3)0.7023 (4)0.1478 (3)0.0332 (10)
C190.2006 (3)0.8102 (4)0.1163 (3)0.0313 (10)
C200.2743 (3)0.8681 (4)0.0358 (3)0.0293 (10)
H200.25690.94120.01520.035*
C210.3737 (3)0.8207 (4)0.0156 (3)0.0271 (9)
O220.1425 (2)0.6476 (3)0.2244 (2)0.0414 (8)
C230.1632 (4)0.5393 (4)0.2615 (3)0.0449 (13)
H23A0.09890.50850.31340.067*
H23B0.19210.47900.21040.067*
H23C0.21270.55600.28620.067*
O240.1004 (2)0.8561 (3)0.1605 (2)0.0408 (8)
C250.0681 (3)0.8996 (4)0.2554 (3)0.0401 (11)
H25A0.00780.89280.29200.048*
H25B0.09880.84860.28750.048*
C260.0989 (3)1.0276 (4)0.2567 (3)0.0400 (11)
O270.1496 (3)1.0896 (3)0.1889 (2)0.0551 (10)
O280.0592 (2)1.0647 (3)0.3482 (2)0.0442 (8)
C290.0798 (4)1.1888 (4)0.3643 (3)0.0493 (13)
H29A0.15511.20230.33760.059*
H29B0.05211.24520.33290.059*
C300.0280 (4)1.2087 (5)0.4703 (4)0.0563 (14)
H30A0.04631.18980.49640.068*
H30B0.05801.15330.50040.068*
C310.0407 (5)1.3383 (5)0.4953 (4)0.082 (2)
H31A0.01831.34460.56420.123*
H31B0.11331.36190.45990.123*
H31C0.00151.39170.47770.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt1A0.03098 (18)0.0218 (3)0.02215 (15)0.00439 (19)0.01123 (11)0.00014 (15)
Pt1B0.0265 (18)0.025 (4)0.034 (3)0.0041 (19)0.0147 (16)0.008 (3)
Cl20.0431 (7)0.0342 (6)0.0336 (6)0.0016 (5)0.0199 (5)0.0052 (5)
N30.043 (2)0.0285 (18)0.0320 (19)0.0023 (17)0.0173 (17)0.0005 (15)
C40.041 (3)0.022 (2)0.037 (2)0.001 (2)0.019 (2)0.0007 (18)
C50.046 (3)0.024 (2)0.041 (2)0.006 (2)0.027 (2)0.0057 (19)
C60.039 (3)0.033 (2)0.040 (2)0.008 (2)0.024 (2)0.0127 (19)
C70.028 (2)0.024 (2)0.028 (2)0.0006 (18)0.0148 (18)0.0030 (17)
C80.036 (3)0.042 (2)0.034 (2)0.002 (2)0.012 (2)0.001 (2)
C90.046 (3)0.044 (3)0.036 (3)0.006 (2)0.014 (2)0.005 (2)
C100.044 (3)0.035 (2)0.034 (2)0.000 (2)0.019 (2)0.0068 (19)
C110.039 (3)0.030 (2)0.031 (2)0.004 (2)0.017 (2)0.0006 (18)
C120.027 (2)0.035 (2)0.028 (2)0.0028 (18)0.0154 (18)0.0003 (17)
C130.032 (2)0.041 (2)0.029 (2)0.000 (2)0.011 (2)0.006 (2)
C140.029 (2)0.035 (2)0.030 (2)0.0054 (19)0.010 (2)0.0046 (19)
C150.043 (3)0.026 (2)0.033 (2)0.000 (2)0.015 (2)0.0003 (19)
C160.032 (2)0.023 (2)0.030 (2)0.0052 (18)0.0152 (18)0.0013 (17)
C170.039 (2)0.025 (2)0.032 (2)0.0077 (19)0.0208 (19)0.0044 (18)
C180.036 (2)0.037 (2)0.027 (2)0.0155 (19)0.0151 (19)0.0079 (19)
C190.028 (2)0.044 (2)0.026 (2)0.0048 (19)0.0158 (18)0.0027 (19)
C200.035 (2)0.031 (2)0.027 (2)0.0017 (19)0.0176 (18)0.0036 (18)
C210.031 (2)0.026 (2)0.027 (2)0.0050 (18)0.0158 (17)0.0036 (17)
O220.0353 (18)0.0500 (18)0.0359 (18)0.0150 (16)0.0139 (15)0.0166 (15)
C230.050 (3)0.048 (3)0.038 (3)0.022 (3)0.023 (3)0.017 (2)
O240.0267 (16)0.063 (2)0.0324 (17)0.0006 (15)0.0134 (14)0.0076 (16)
C250.029 (2)0.055 (3)0.029 (2)0.005 (2)0.007 (2)0.009 (2)
C260.026 (2)0.051 (3)0.033 (2)0.009 (2)0.005 (2)0.010 (2)
O270.053 (2)0.047 (2)0.0369 (19)0.0049 (18)0.0032 (18)0.0113 (16)
O280.0387 (19)0.0484 (19)0.0340 (18)0.0061 (16)0.0068 (15)0.0079 (15)
C290.043 (3)0.045 (3)0.048 (3)0.015 (2)0.011 (2)0.002 (2)
C300.055 (3)0.069 (3)0.046 (3)0.019 (3)0.024 (3)0.004 (3)
C310.118 (6)0.066 (4)0.057 (4)0.038 (4)0.036 (4)0.010 (3)
Geometric parameters (Å, º) top
Pt1A—Cl22.3281 (14)C14—C151.526 (5)
Pt1A—N32.149 (4)C15—H15A0.9900
Pt1A—C132.091 (4)C15—H15B0.9900
Pt1A—C142.117 (4)C15—C161.510 (5)
Pt1A—C212.003 (4)C16—C171.395 (5)
Pt1B—Cl22.205 (6)C16—C211.406 (5)
Pt1B—N32.330 (11)C17—H170.9500
Pt1B—C132.45 (2)C17—C181.383 (6)
Pt1B—C142.178 (9)C18—C191.394 (6)
Pt1B—C211.965 (9)C18—O221.382 (5)
N3—C41.316 (5)C19—C201.386 (5)
N3—C121.354 (5)C19—O241.395 (5)
C4—H40.9500C20—H200.9500
C4—C51.400 (6)C20—C211.400 (5)
C5—H50.9500O22—C231.427 (5)
C5—C61.377 (6)C23—H23A0.9800
C6—H60.9500C23—H23B0.9800
C6—C71.415 (5)C23—H23C0.9800
C7—C81.412 (5)O24—C251.425 (5)
C7—C121.414 (5)C25—H25A0.9900
C8—H80.9500C25—H25B0.9900
C8—C91.350 (6)C25—C261.492 (6)
C9—H90.9500C26—O271.197 (5)
C9—C101.404 (6)C26—O281.344 (5)
C10—H100.9500O28—C291.456 (5)
C10—C111.362 (5)C29—H29A0.9900
C11—H110.9500C29—H29B0.9900
C11—C121.424 (5)C29—C301.496 (6)
C13—H13C0.9900C30—H30A0.9900
C13—H13D0.9900C30—H30B0.9900
C13—H13A0.9900C30—C311.524 (7)
C13—H13B0.9900C31—H31A0.9800
C13—C141.392 (5)C31—H31B0.9800
C14—H14A1.0000C31—H31C0.9800
C14—H141.0000
N3—Pt1A—Cl285.99 (10)C13—C14—H14114.9
C13—Pt1A—Cl2161.77 (14)C13—C14—C15121.7 (4)
C13—Pt1A—N391.42 (16)C15—C14—Pt1A109.2 (3)
C13—Pt1A—C1438.62 (14)C15—C14—Pt1B101.2 (5)
C14—Pt1A—Cl2159.56 (15)C15—C14—H14A115.7
C14—Pt1A—N398.43 (15)C15—C14—H14114.9
C21—Pt1A—Cl294.43 (13)C14—C15—H15A109.7
C21—Pt1A—N3178.23 (17)C14—C15—H15B109.7
C21—Pt1A—C1387.65 (17)H15A—C15—H15B108.2
C21—Pt1A—C1481.77 (16)C16—C15—C14109.7 (3)
Cl2—Pt1B—N384.7 (3)C16—C15—H15A109.7
Cl2—Pt1B—C13139.1 (12)C16—C15—H15B109.7
N3—Pt1B—C1378.8 (6)C17—C16—C15122.7 (4)
C14—Pt1B—Cl2173.3 (14)C17—C16—C21121.3 (4)
C14—Pt1B—N391.5 (4)C21—C16—C15115.9 (4)
C14—Pt1B—C1334.4 (3)C16—C17—H17119.8
C21—Pt1B—Cl299.5 (3)C18—C17—C16120.3 (4)
C21—Pt1B—N3150.2 (15)C18—C17—H17119.8
C21—Pt1B—C1379.0 (6)C17—C18—C19119.1 (4)
C21—Pt1B—C1481.1 (4)O22—C18—C17125.0 (4)
C4—N3—Pt1A116.6 (3)O22—C18—C19115.9 (4)
C4—N3—Pt1B127.8 (7)C18—C19—O24120.2 (4)
C4—N3—C12118.8 (4)C20—C19—C18120.7 (4)
C12—N3—Pt1A123.8 (3)C20—C19—O24118.9 (4)
C12—N3—Pt1B111.5 (7)C19—C20—H20119.4
N3—C4—H4117.6C19—C20—C21121.2 (4)
N3—C4—C5124.8 (4)C21—C20—H20119.4
C5—C4—H4117.6C16—C21—Pt1A116.3 (3)
C4—C5—H5121.4C16—C21—Pt1B113.2 (4)
C6—C5—C4117.2 (4)C20—C21—Pt1A126.3 (3)
C6—C5—H5121.4C20—C21—Pt1B127.8 (4)
C5—C6—H6120.1C20—C21—C16117.3 (4)
C5—C6—C7119.8 (4)C18—O22—C23117.9 (4)
C7—C6—H6120.1O22—C23—H23A109.5
C8—C7—C6122.3 (4)O22—C23—H23B109.5
C8—C7—C12119.5 (4)O22—C23—H23C109.5
C12—C7—C6118.2 (4)H23A—C23—H23B109.5
C7—C8—H8119.3H23A—C23—H23C109.5
C9—C8—C7121.4 (4)H23B—C23—H23C109.5
C9—C8—H8119.3C19—O24—C25114.5 (3)
C8—C9—H9120.6O24—C25—H25A109.2
C8—C9—C10118.7 (4)O24—C25—H25B109.2
C10—C9—H9120.6O24—C25—C26112.2 (4)
C9—C10—H10118.6H25A—C25—H25B107.9
C11—C10—C9122.8 (4)C26—C25—H25A109.2
C11—C10—H10118.6C26—C25—H25B109.2
C10—C11—H11120.5O27—C26—C25127.0 (5)
C10—C11—C12119.0 (4)O27—C26—O28124.3 (5)
C12—C11—H11120.5O28—C26—C25108.7 (4)
N3—C12—C7121.1 (4)C26—O28—C29116.9 (4)
N3—C12—C11120.3 (4)O28—C29—H29A110.3
C7—C12—C11118.6 (4)O28—C29—H29B110.3
Pt1A—C13—H13C116.4O28—C29—C30107.1 (4)
Pt1A—C13—H13D116.4H29A—C29—H29B108.6
Pt1B—C13—H13A117.6C30—C29—H29A110.3
Pt1B—C13—H13B117.6C30—C29—H29B110.3
H13C—C13—H13D113.4C29—C30—H30A109.3
H13A—C13—H13B114.7C29—C30—H30B109.3
C14—C13—Pt1A71.7 (3)C29—C30—C31111.5 (4)
C14—C13—Pt1B62.0 (5)H30A—C30—H30B108.0
C14—C13—H13C116.4C31—C30—H30A109.3
C14—C13—H13D116.4C31—C30—H30B109.3
C14—C13—H13A117.6C30—C31—H31A109.5
C14—C13—H13B117.6C30—C31—H31B109.5
Pt1A—C14—H14A115.7C30—C31—H31C109.5
Pt1B—C14—H14114.9H31A—C31—H31B109.5
C13—C14—Pt1A69.7 (2)H31A—C31—H31C109.5
C13—C14—Pt1B83.7 (8)H31B—C31—H31C109.5
C13—C14—H14A115.7
Pt1A—N3—C4—C5167.9 (3)C15—C16—C17—C18174.9 (4)
Pt1A—N3—C12—C7168.1 (3)C15—C16—C21—Pt1A5.0 (5)
Pt1A—N3—C12—C1111.9 (5)C15—C16—C21—Pt1B11.5 (9)
Pt1A—C13—C14—C15100.5 (4)C15—C16—C21—C20177.8 (3)
Pt1A—C14—C15—C1628.6 (4)C16—C17—C18—C193.2 (6)
Pt1B—N3—C4—C5160.7 (5)C16—C17—C18—O22175.2 (4)
Pt1B—N3—C12—C7164.3 (4)C17—C16—C21—Pt1A179.2 (3)
Pt1B—N3—C12—C1115.7 (5)C17—C16—C21—Pt1B164.3 (9)
Pt1B—C13—C14—C1599.3 (4)C17—C16—C21—C202.0 (6)
Pt1B—C14—C15—C1640.6 (8)C17—C18—C19—C203.2 (6)
N3—C4—C5—C61.0 (7)C17—C18—C19—O24177.7 (4)
C4—N3—C12—C71.1 (6)C17—C18—O22—C233.9 (6)
C4—N3—C12—C11178.9 (4)C18—C19—C20—C210.5 (6)
C4—C5—C6—C71.1 (6)C18—C19—O24—C2569.9 (5)
C5—C6—C7—C8178.0 (4)C19—C18—O22—C23177.7 (4)
C5—C6—C7—C122.0 (6)C19—C20—C21—Pt1A178.9 (3)
C6—C7—C8—C9179.1 (4)C19—C20—C21—Pt1B162.0 (11)
C6—C7—C12—N30.9 (6)C19—C20—C21—C162.0 (6)
C6—C7—C12—C11179.1 (4)C19—O24—C25—C2686.2 (4)
C7—C8—C9—C101.7 (7)C20—C19—O24—C25115.6 (4)
C8—C7—C12—N3179.1 (4)C21—C16—C17—C180.6 (6)
C8—C7—C12—C110.9 (6)O22—C18—C19—C20175.4 (4)
C8—C9—C10—C110.7 (7)O22—C18—C19—O240.9 (6)
C9—C10—C11—C121.1 (7)O24—C19—C20—C21175.1 (3)
C10—C11—C12—N3178.1 (4)O24—C25—C26—O274.0 (7)
C10—C11—C12—C71.8 (6)O24—C25—C26—O28175.4 (3)
C12—N3—C4—C52.1 (7)C25—C26—O28—C29179.3 (4)
C12—C7—C8—C90.9 (6)C26—O28—C29—C30179.8 (4)
C13—C14—C15—C1648.9 (5)O27—C26—O28—C290.1 (7)
C14—C15—C16—C17161.5 (4)O28—C29—C30—C31177.4 (4)
C14—C15—C16—C2122.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C16–C21.
D—H···AD—HH···AD···AD—H···A
C9—H9···O27i0.952.593.445 (5)150
C23—H23C···Cl2ii0.982.703.618 (6)157
C29—H29B···O24iii0.992.503.381 (7)148
C6—H6···Cg1iv0.952.733.269 (5)117
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors sincerely thank Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationBui, T. Y. H., Nguyen Thi Thanh, C. & Van Meervelt, L. (2016). IUCrData, 1, x152428.  Google Scholar
First citationChi, N. T. T., Mai, T. T. C., Nhan, N. T. T. & Da, T. T. (2013). V. J. Chem. (Vietnam.), pp. 51(3AB), 500–504.  Google Scholar
First citationChi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, 39, 3505–3513.  CSD CrossRef CAS Google Scholar
First citationChi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732–1743.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDa, T. T., Chien, L. X., Chi, N. T. T., Thi Hong Hai, L. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.  CrossRef CAS Google Scholar
First citationDa, T. T., Thi Hong Hai, L., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536.  CSD CrossRef CAS Google Scholar
First citationDa, T. T., Kim, Y., Cam Mai, T. T., Cao Cuong, N. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNguyen Thi Thanh, C., Truong Thi Cam, M., Pham Van, T., Nguyen, L., Nguyen Ha, M. & Van Meervelt, L. (2017). Acta Cryst. C73, 1030–1037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637–1651.  CSD CrossRef Google Scholar
First citationVan Thong, P., Van Meervelt, L. & Chi, N. T. T. (2022). Polyhedron, 228, 116180.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds