research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 5,17-di­bromo-26,28-dihy­dr­oxy-25,27-dipropynyloxycalix[4]arene, 5,17-di­bromo-26,28-diprop­oxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis­­(2-azido­eth­­oxy)-5,17-di­bromo-26,28-di­hy­droxy­calix[4]arene

crossmark logo

aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation, and bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: vatsouro@petrol.chem.msu.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 April 2024; accepted 24 April 2024; online 3 May 2024)

The calixarenes, 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone mol­ecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intra­molecular O—H⋯O hydrogen bonds, while in calixarene 2 intra­molecular Br⋯Br inter­actions consolidate the 1,3-alternate mol­ecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of ππ, C—H⋯π and C—H⋯O inter­actions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent mol­ecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent mol­ecules per unit cell. Rigid mol­ecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals inter­actions, and the resulting columns are held together by weak C—H⋯π contacts.

1. Chemical context

Calixarene macrocycles offer the possibility to combine several functional groups of a different nature and to preorganize them spatially. The polyfunctional nature of calixarenes allows their use in the development of new materials, drugs, substances for medical applications and in other areas of organic chemistry, biochemistry or materials science where supra­molecular organizations are of importance. The versa­tility of calixarenes as mol­ecular platforms is due to the availability of the polyphenolic macrocycles themselves, and to well-developed approaches for the exhaustive and partial modification of phenolic hydroxyl groups and/or aromatic para-positions (Asfari et al., 2001[Asfari, Z., Bohmer, V., Harrowfield, J. & Vicens, J. (2001). Calixarenes 2001, p. 692. Dordrecht: Kluwer Academic Publishers.]; Vicens et al., 2007[Vicens, J., Harrowfield, J. & Baklouti, L. (2007). Calixarenes in the Nanoworld, p. 395. Cham: Springer.]; Bohmer, 2003[Bohmer, V. (2003). Calixarenes in The Chemistry of Phenols edited by Z. Rappoport, pp. 1369-1454. New York: John Wiley & Sons.]; Neri et al., 2016[Neri, P., Sessler, J. & Wang, M.-X. (2016). Calixarenes and Beyond, p. 1062. Cham: Springer.]). The modification of calixarene macrocycles by azide or alkyne functional groups makes them suitable for copper(I)-catalyzed azide-alkyne cyclo­addition (CuAAC) (Song et al., 2014[Song, M., Sun, Z., Han, C., Tian, D., Li, H. & Kim, J. (2014). Chem. Asian J. 9, 2344-2357.]). Under the usual CuAAC conditions, bis­calixarene (Gorbunov et al., 2021[Gorbunov, A., Ozerov, N., Malakhova, M., Eshtukov, A., Cheshkov, D., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2021). Org. Chem. Front. 8, 3853-3866.]) or tris­calixarene (Malakhova et al., 2022a[Malakhova, M., Gorbunov, A., Ozerov, N., Korniltsev, I., Ermolov, K., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2022a). Org. Chem. Front. 9, 3084-3092.]) mol­ecular semitubes were synthesized, and the processes of intra­molecular oscillations of Ag+ inside them were studied (Malakhova et al., 2022b[Malakhova, M., Gorbunov, A., Lentin, I., Kovalev, V. & Vatsouro, I. (2022b). Org. Biomol. Chem. 20, 8092-8103.]). It is expected that grafting of additional substituents into the para-positions of phenolic fragments of the azide/alkyne-containing calix[4]arenes, on the one hand, should improve shielding of the inter­nal cavity of the calixarene semitube and, on the other hand, may provide possibilities for further modifications of the multicalixarene assemblies. In this context, we synthesized the para-di­bromo-substituted calix[4]arenes 13 bearing 2-azido­ethyl and propargyl functionalities. The compositions and structures of the synthesized compounds were analyzed by 1H, 13C NMR (Scheme S1, Figs. S1–S6 in the supporting information), and single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The calix[4]arenes 1 and 3 occupy general positions, while the macrocycle 2 possesses mol­ecular C2 symmetry with the twofold rotation axis passing through the center of the calixarene cavity (Figs. 1[link]–3[link][link]). The cone conformation of 1 is stabilized by moderate intra­molecular O—H⋯O hydrogen bonds (Table 1[link], Fig. 1[link]). The para-bromo-substituted rings (the second Br atom (Br') is generated by the symmetry operation 1 − x, y, [{1\over 2}] − z) are located further apart [d(C1–C5/C25centroid–C13–C17/C27centroid) = 7.4083 (11) Å, inter­planar angle 71.29 (6)°] than the unsubstituted ones [d(C7–C11/C26centroid–C19–C23/C28centroid) = 6.1827 (11) Å, inter­planar angle 34.54 (6)°]. Compound 3 also has a cone conformation supported by intra­molecular O—H⋯O hydrogen bonds (Table 2[link], Fig. 3[link]) with the analogous mutual arrangement of the substituted [d(C1–C5/C25centroid–C13–C17/C27centroid) = 7.4401 (16) Å, inter­planar angle 70.96 (9)°] and unsubstituted rings [d(C7–C11/C26centroid–C19–C23/C28centroid) = 6.0604 (15) Å, inter­planar angle 31.57 (9)°]. Compound 2 possesses a 1,3-alternate conformation with an intra­molecular halogen⋯halogen inter­action [d(Br⋯Br') = 3.9765 (4) Å]. The closer contacts of the bromine atoms leads to a significant increase in the angle between the planes of the corresponding rings [C1–C6, 22.48 (6)°] and, as a result, an almost equal increase of the inter­planar angle between the pair of unsubstituted rings [C8–C13, 21.63 (6)°].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.84 1.81 2.6270 (18) 165
O3—H3⋯O2 0.84 2.02 2.8207 (18) 160

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.84 1.87 2.691 (3) 164
O1—H1⋯O2 0.84 1.95 2.764 (3) 162
[Figure 1]
Figure 1
Mol­ecular structure of 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (1), with displacement ellipsoids drawn at the 50% probability level. The minor part of the disordered bromine atom is omitted for clarity. O—H⋯O hydrogen bonds are shown by dotted lines.
[Figure 2]
Figure 2
Mol­ecular structure of 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (3), with displacement ellipsoids drawn at the 50% probability level. O—H⋯O hydrogen bonds are shown by dotted lines.

1H NMR spectra of compounds 1 and 3 are quite similar and simple due to the highly symmetrical structure of the calixarenes. Indeed, in each spectrum, a singlet corresponding to phenolic hydroxyl groups and two multiplets and a singlet from the aromatic calixarene H atoms are located in the low-field part of the spectrum, while the doublet and triplet from the propargyl groups (for calixarene 1) and two multiplets from the azido­ethyl fragments (for calixarene 3) as well as two doublets from the calixarene methyl­ene bridges appear in the middle part of the spectrum. In the 13C NMR spectra of both compounds 1 and 3, the characteristic signal from the methyl­ene bridges at ∼31 ppm reflects a cone shape of the macrocycle. In the case of calixarene 2, the doublets from the methyl­ene bridges in the 1H NMR spectrum appear to be located closer to each other and have an increased spin-spin coupling constant value. In the 13C NMR spectrum of 2 the signal of the methyl­ene groups appears downfield shifted with respect to the above cone calixarenes (∼37 ppm), which confirms a 1,3-alternate shape of the macrocycle.

3. Supra­molecular features

In the crystal structure of 1 (Fig. 4[link]), there are ππ-bonded centrosymmetric dimers [d(C21⋯C19-C23/C28centroid) = 3.361 (2) Å, centroid-to-centroid shift of 1.862 (3) Å], which are additionally stabilized by C—H⋯π inter­actions between the H20 atom and the centroid of the C1–C5/C25 ring [3.1375 (8) Å, 147.00 (12)°], between the H21 atom and the centroid of the C7–C11/C26 ring [3.0179 (8) Å, 127.00 (12)°] and between the H22 atom and the centroid of the C13–C17/C27 ring [2.7990 (8) Å, 157.54 (12)°]. These dimers are linked into chains extending parallel to [0[\overline{1}]1] via C—H⋯O contacts involving the H34 and the O1 atoms [d(H⋯O) = 2.3436 (13) Å, C—H⋯O angle = 164.45 (13)°]. The resulting chains are assembled by further C—H⋯π inter­actions between the H31 atom and the mid-point of the triple C33–C34 bond [2.7043 (6) Å, 146.08 (13)°], forming thick layers parallel to (110). These layers are related to each other by inversion centers and are joint by ππ inter­actions [d(C27⋯C13-C17/C27centroid) = 3.623 (2) Å, centroid-to-centroid shift of 2.276 (3) Å].

[Figure 4]
Figure 4
Fragment of the crystal packing of 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (1). The minor part of the disordered bromine atom is omitted for clarity.

In the crystal structure of 2 (Fig. 5[link]), mol­ecules form a columnar head-to-tail packing parallel to [010] via van der Waals inter­actions, with the columns held together by weak C—H⋯π contacts between the H16B atom and the centroid of the C1–C6 ring [2.862 (19) Å, 125.4 (10)°] and between the H17B atom and the centroid of the C8–C13 ring [2.97 (2) Å, 120.1 (12)°].

[Figure 5]
Figure 5
Fragment of the crystal packing of 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2).

In the crystal structure of 3 (Fig. 6[link]), C—H⋯π contacts between the H31A atom and the centroid of the C1–C5/C25 ring [2.6130 (11) Å, 122.1 (2)°] and between the H29B atom and the centroid of the C13–C17/C27 ring [2.8400 (11) Å, 129.56 (18)°] organize mol­ecules into large channels passing parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent mol­ecules. According to the applied SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), the solvent-accessible void volume is as large as 585 Å3 per unit cell and contains fragments with an electron count of 171 e. This correspond to about 4.5 CH2Cl2 mol­ecules in the unit cell, or 0.25 CH2Cl2 mol­ecules per formula unit. The nitro­gen atoms of the azide groups have comparatively large displacement parameters because these groups are directed into the channels and do not participate in any strong inter­molecular inter­actions. Adjacent channels are assembled into the tri-periodic structure by ππ [d(C21⋯C19-C23/C28centroid) = 3.446 (4) Å, centroid-to-centroid shift of 2.533 (4) Å] and C—H⋯π inter­actions between the H20 atom and the centroid of the C1–C5/C25 ring [3.0326 (11) Å, 154.5 (2)°] and between the H22 atom and the centroid of the C13–C17/C27 ring [3.6003 (11) Å, 152.69 (18)°].

[Figure 6]
Figure 6
Fragment of the crystal packing of 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (3).

4. Database survey

The crystal structures of more than 750 calix[4]arenes have been published so far, as revealed by a search of the Cambridge Structural Database (CSD, version 5.45, updated to November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The database analysis shows that calix[4]arenes, which are distally disubstituted at the lower rim, prefer a pinched cone conformation in solution and in the solid state, which agrees well with the result of the present study. In addition, there are three thia­calix[4]arenes having OH groups in distal positions of the lower rim: JIPQIJ01 (Dvořáková et al., 2007[Dvořáková, H., Lang, J., Vlach, J., Sýkora, J., Čajan, M., Himl, M., Pojarová, M., Stibor, I. & Lhoták, P. (2007). J. Org. Chem. 72, 7157-7166.]); KURKAL, KURKEP (Wang et al., 2015[Wang, W., Yang, W., Guo, R. & Gong, S. (2015). CrystEngComm, 17, 7663-7675.]), which are isostructural with compound 3. Several crystal structures of di­bromo-substituted calix[4]arene 1,3-alternates have also been reported, in which the Br⋯Br distance varies from 3.967 (5) Å (BAGYAJ; Krebs et al., 1998[Krebs, F. C., Larsen, M., Jørgensen, M., Jensen, P. R., Bielecki, M. & Schaumburg, K. (1998). J. Org. Chem. 63, 9872-9879.]) to 4.112 (8) Å (KARNAT; Sykora et al., 2005[Sýkora, J., Budka, J., Lhoták, P., Stibor, I. & Císařová, I. (2005). Org. Biomol. Chem. 3, 2572-2578.]).

5. Synthesis and crystallization

The title compounds were prepared as follows:

5,17-Di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (1) (cone)

To a stirred solution of 26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (0.50 mg, 1.0 mmol) (Xu et al., 1996[Xu, W., Vittal, J. & Puddephatt, R. (1996). Can. J. Chem. 74, 766-774.]) in di­chloro­methane N-bromo­succinimide (0.39 g, 2.2 mmol) was added and the resultant mixture stirred at 298 K for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, di­chloro­methane) followed by crystallization from a di­chloro­methane/methanol solvent mixture. Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CH2Cl2/MeOH mixture (1:1 v/v). Yield 0.55 g (77%). M.p. 515–516 K. ESI-MS: m/z: 676.0516 [M + NH4]+ for C34H30Br2NO4 (676.0516). 1H NMR (CDCl3, 400 MHz): δ = 7.19 (s, 4H; ArH), 7.15 (s, 2H; OH), 6.88–6.83 (m, 4H; ArH), 6.80–6.75 (m, 2H; ArH), 4.76 (d, 4H, 4JHH = 2.4 Hz; OCH2), 4.34 (d, 4H, 2JHH = 13.4 Hz; ArCH2Ar), 3.35 (d, 4H, 2JHH =13.4 Hz; ArCH2Ar), 2.58 (t, 2H, 4JHH = 2.4 Hz; CH) ppm; 13C NMR (100 MHz, CDCl3): δ = 152.12, 151.26, 132.62 (CAr), 130.83 (CHAr), 130.03 (CAr), 129.29, 125.91 (CHAr), 110.76 (CAr), 77.92 (CCH), 76.95 (CCH), 63.50 (OCH2), 31.51 (ArCH2Ar) ppm.

5,17-Di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2) (1,3-alternate)

A mixture of calix[4]arene 1 (0.45g, 0.7 mmol) and anhydrous Cs2CO3 (0.90 g, 1.8 mmol) in dry DMF (15 ml) was stirred at room temperature for 2 h. 1-Iodo­propane (0.40 ml, 4.1 mmol) was added and the mixture stirred for 48 h at 298 K. The solvent was removed under reduced pressure with heating below 333 K, and the residue was parted between di­chloro­methane and 2M HCl. The organic layer was separated, washed with water, dried with MgSO4 and concentrated to dryness. The residue was purified by flash chromatography (silica, gradient from hexane to hexa­ne/di­chloro­methane (1:1)). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CH2Cl2/MeOH mixture (1:1 v/v). Yield 0.16 g (31%). M.p. 478–479 K. ESI-MS: m/z: 760.1462 [M + NH4]+ for C40H42Br2NO4 (760.1455). 1H NMR (CDCl3, 400 MHz): δ = 7.28 (s, 4H; ArH), 6.97 (d, 4H, 3JHH = 7.6 Hz; ArH), 6.72 (t, 2H, 3JHH = 7.6Hz; ArH), 4.22 (d, 4H, 4JHH = 2.4 Hz; OCH2CCH), 3.66 (d, 4H, 2JHH = 14.5 Hz; ArCH2Ar), 3.57 (d, 4H, 2JHH = 14.5 Hz; ArCH2Ar), 3.49–3.43 (m, 4H; OCH2CH2), 2.55 (t, 2H, 4JHH = 2.4 Hz; CCH), 1.67–1.57 (m, 4H; CH2CH3), 0.88 (t, 6H, 3JHH = 7.5 Hz; CH3) ppm; 13C NMR (100 MHz, CDCl3): δ = 155.40, 155.07, 135.09, 133.59 (CAr), 132.88, 130.15, 122.58 (CHAr), 114.72 (CAr), 79.48 (CCH), 75.14 (CCH), 73.68 (OCH2CH2), 58.77 (OCH2CCH), 36.25 (ArCH2Ar), 23.53 (CH2CH3), 10.34 (CH3) ppm.

25,27-Bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (3) (cone)

To a stirred solution of 25,27-bis­(2-azido­eth­oxy)-26,28-di­hydroxy­calix[4]arene (0.56 mg, 1.0 mmol) (Gorbunov et al., 2021[Gorbunov, A., Ozerov, N., Malakhova, M., Eshtukov, A., Cheshkov, D., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2021). Org. Chem. Front. 8, 3853-3866.]) in di­chloro­methane N-bromo­succinimide (0.39 g, 2.2 mmol) was added and the resultant mixture stirred at 298 K for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, di­chloro­methane) followed by crystallization from di­chloro­methane/methanol solvent mixture. Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CH2Cl2/MeOH mixture (1:1 v/v). Yield 0.63g (88%). M.p. 538–539 K. ESI-MS: m/z: 738.0861 [M + NH4]+ for C32H32Br2N7O4 (738.0857). 1H NMR (CDCl3, 400 MHz): δ = 7.57 (s, 2H; OH), 7.19 (s, 4H; ArH), 6.91–6.86 (m, 4H; ArH), 6.81–6.76 (m, 2H; ArH), 4.29 (d, 4H, 2JHH = 13.2 Hz; ArCH2Ar), 4.07–4.02 (m, 4H; CH2CH2), 3.88–3.83 (m, 4H; CH2CH2), 3.34 (d, 4H, 2JHH = 13.2 Hz; ArCH2Ar) ppm; 13C NMR (100 MHz, CDCl3): δ = 152.40, 151.43, 132.23 (CAr), 130.84 (CHAr), 129.79 (CAr), 129.40, 125.77 (CHAr), 110.53 (CAr), 74.41 (OCH2), 51.07 (CH2N3), 30.90 (ArCH2Ar) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound hydrogen atoms in the structures of 1 and 3 were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)]. Hydrogen atoms of hy­droxy groups were located from difference electron-density maps and were refined with Uiso(H) = 1.5Ueq(O). In the structure of 2, hydrogen atoms were located from difference electron-density maps and were refined freely. In the structure of 1, one bromine atom was found to be disordered over two positions with a refined occupancy ratio of 0.928 (5):0.072 (5). In the structure of 3, highly disordered solvent CH2Cl2 mol­ecules are present. Their contributions to the intensity data was removed by the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the OLEX2 package (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). The SIMU instruction was used to restrain the Uij components of the disordered bromine atoms in the structure of 1 and nitro­gen atoms in the structure of 3. The most disagreeable reflections with an error/s.u. of more than 10 (100 in the data for 1; [\overline{2}]40, [\overline{3}]60 and 030 in the data for 3) were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 3
Experimental details

  1 2 3
Crystal data
Chemical formula C34H26Br2O4 C40H38Br2O4 C32H28Br2N6O4
Mr 658.37 742.52 720.42
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbcn Trigonal, R[\overline{3}]
Temperature (K) 100 100 100
a, b, c (Å) 10.1542 (3), 11.9156 (3), 11.9964 (4) 18.1223 (7), 9.9840 (4), 18.2863 (7) 36.3261 (7), 36.3261 (7), 12.1054 (4)
α, β, γ (°) 75.221 (1), 88.341 (1), 81.751 (1) 90, 90, 90 90, 90, 120
V3) 1388.90 (7) 3308.6 (2) 13834.0 (7)
Z 2 4 18
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.96 2.49 2.69
Crystal size (mm) 0.32 × 0.16 × 0.12 0.35 × 0.25 × 0.22 0.37 × 0.13 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.501, 0.746 0.545, 0.746 0.516, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31619, 8481, 6661 55960, 5529, 4481 45251, 7804, 6043
Rint 0.043 0.060 0.047
(sin θ/λ)max−1) 0.715 0.736 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.04 0.030, 0.069, 1.04 0.040, 0.097, 1.03
No. of reflections 8481 5529 7804
No. of parameters 373 283 399
No. of restraints 7 0 24
H-atom treatment H-atom parameters constrained Only H-atom coordinates refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.80 0.42, −0.51 1.30, −1.12
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

5,17-Dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (1) top
Crystal data top
C34H26Br2O4Z = 2
Mr = 658.37F(000) = 664
Triclinic, P1Dx = 1.574 Mg m3
a = 10.1542 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9156 (3) ÅCell parameters from 9976 reflections
c = 11.9964 (4) Åθ = 2.5–30.5°
α = 75.221 (1)°µ = 2.96 mm1
β = 88.341 (1)°T = 100 K
γ = 81.751 (1)°Block, yellow
V = 1388.90 (7) Å30.32 × 0.16 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
8481 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource6661 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.043
Detector resolution: 10.4 pixels mm-1θmax = 30.6°, θmin = 1.8°
ω–scanh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.501, Tmax = 0.746l = 1617
31619 measured reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.736P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8481 reflectionsΔρmax = 0.49 e Å3
373 parametersΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13667 (2)0.10801 (2)0.34716 (2)0.02325 (6)
Br30.4344 (16)0.8992 (4)0.7623 (12)0.0478 (18)0.072 (5)
O10.37255 (13)0.20076 (13)0.76345 (11)0.0175 (3)
H10.4551330.2016410.7592810.026*
O40.62310 (13)0.22902 (12)0.77582 (11)0.0147 (3)
O20.21281 (13)0.28716 (12)0.93959 (11)0.0149 (3)
O30.45446 (13)0.37816 (12)0.88209 (12)0.0175 (3)
H30.3814340.3607490.9109830.026*
C10.40950 (19)0.16828 (16)0.57182 (16)0.0142 (4)
C250.32705 (19)0.18609 (16)0.66343 (16)0.0140 (4)
C20.3504 (2)0.14541 (16)0.47770 (16)0.0164 (4)
H20.4040080.1315520.4150210.020*
C230.60857 (18)0.28084 (16)0.57005 (16)0.0142 (4)
C260.14200 (18)0.37135 (17)0.85034 (16)0.0144 (4)
C50.18917 (19)0.18555 (17)0.65907 (16)0.0158 (4)
C280.63632 (18)0.31164 (16)0.67091 (16)0.0136 (4)
C40.1333 (2)0.16353 (17)0.56418 (17)0.0177 (4)
H40.0401040.1627160.5604040.021*
C200.68421 (18)0.49935 (17)0.56564 (16)0.0155 (4)
H200.7073340.5744200.5631430.019*
C70.08651 (18)0.33525 (18)0.76248 (16)0.0159 (4)
C270.45330 (19)0.49577 (16)0.85977 (16)0.0144 (4)
C30.2149 (2)0.14269 (17)0.47470 (16)0.0173 (4)
C330.70622 (19)0.05765 (18)0.91211 (17)0.0183 (4)
C300.0378 (2)0.18942 (18)1.04971 (17)0.0183 (4)
C190.66961 (18)0.42045 (17)0.67255 (16)0.0137 (4)
C160.5776 (2)0.65712 (18)0.79072 (16)0.0182 (4)
H160.6563870.6870640.7597240.022*
C130.34441 (19)0.57215 (17)0.88396 (16)0.0153 (4)
C110.13953 (18)0.48938 (17)0.84800 (16)0.0151 (4)
C320.74233 (19)0.14878 (18)0.81472 (17)0.0174 (4)
H32A0.8100360.1902590.8385970.021*
H32B0.7796490.1139380.7519850.021*
C220.62569 (19)0.36187 (17)0.46568 (16)0.0163 (4)
H220.6100290.3433500.3951750.020*
C60.10297 (19)0.20789 (18)0.75864 (17)0.0182 (4)
H6A0.0142340.1851450.7512640.022*
H6B0.1436760.1582220.8319710.022*
C120.21709 (19)0.52806 (18)0.93450 (17)0.0163 (4)
H12A0.1605640.5911820.9606870.020*
H12B0.2393230.4611861.0025930.020*
C80.02054 (19)0.42259 (19)0.67312 (17)0.0196 (4)
H80.0190010.4009170.6123240.023*
C240.56005 (19)0.16485 (17)0.57366 (17)0.0161 (4)
H24A0.5960100.1065540.6443760.019*
H24B0.5976570.1369450.5068710.019*
C290.1451 (2)0.26107 (18)1.04853 (16)0.0185 (4)
H29A0.1068000.3355891.0665400.022*
H29B0.2106510.2188881.1097930.022*
C340.6739 (2)0.01519 (19)0.99099 (19)0.0218 (4)
H340.6478870.0736361.0542900.026*
C210.66540 (19)0.46942 (17)0.46356 (17)0.0168 (4)
H210.6796520.5225120.3918550.020*
C140.3541 (2)0.69105 (18)0.86054 (17)0.0186 (4)
H140.2809580.7442250.8757550.022*
C150.4698 (2)0.73211 (17)0.81518 (17)0.0202 (4)
C170.57032 (19)0.53733 (17)0.81171 (16)0.0143 (4)
C180.68642 (18)0.45380 (18)0.78479 (16)0.0159 (4)
H18A0.6978580.3816540.8486590.019*
H18B0.7684960.4905550.7806920.019*
C90.0116 (2)0.5402 (2)0.67141 (18)0.0219 (4)
H90.0360510.5980570.6111560.026*
C310.0464 (2)0.13008 (19)1.05713 (18)0.0224 (4)
H310.1145710.0820041.0631360.027*
C100.07224 (19)0.57330 (18)0.75746 (17)0.0188 (4)
H100.0678910.6541290.7547650.023*
Br20.48141 (12)0.89367 (4)0.79296 (8)0.03315 (19)0.928 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02602 (12)0.02894 (12)0.01807 (10)0.00387 (9)0.00172 (8)0.01170 (8)
Br30.069 (4)0.023 (2)0.058 (3)0.023 (2)0.021 (3)0.015 (2)
O10.0128 (6)0.0278 (8)0.0150 (6)0.0074 (6)0.0039 (5)0.0092 (6)
O40.0113 (6)0.0160 (7)0.0140 (6)0.0000 (5)0.0021 (5)0.0003 (5)
O20.0143 (6)0.0176 (7)0.0125 (6)0.0027 (5)0.0027 (5)0.0032 (5)
O30.0125 (6)0.0134 (6)0.0264 (7)0.0036 (5)0.0043 (5)0.0044 (6)
C10.0163 (9)0.0103 (8)0.0159 (8)0.0030 (7)0.0038 (7)0.0028 (7)
C250.0166 (9)0.0129 (8)0.0135 (8)0.0043 (7)0.0020 (7)0.0044 (7)
C20.0223 (10)0.0132 (9)0.0138 (8)0.0022 (7)0.0042 (7)0.0041 (7)
C230.0100 (8)0.0152 (9)0.0176 (9)0.0016 (7)0.0032 (7)0.0049 (7)
C260.0095 (8)0.0197 (9)0.0139 (8)0.0013 (7)0.0025 (7)0.0044 (7)
C50.0157 (9)0.0169 (9)0.0164 (9)0.0050 (7)0.0034 (7)0.0061 (7)
C280.0105 (8)0.0150 (9)0.0139 (8)0.0013 (7)0.0028 (6)0.0015 (7)
C40.0167 (9)0.0193 (10)0.0186 (9)0.0044 (8)0.0008 (7)0.0065 (8)
C200.0111 (8)0.0163 (9)0.0189 (9)0.0036 (7)0.0017 (7)0.0032 (7)
C70.0099 (8)0.0238 (10)0.0161 (9)0.0045 (7)0.0052 (7)0.0083 (8)
C270.0160 (9)0.0144 (9)0.0130 (8)0.0040 (7)0.0017 (7)0.0026 (7)
C30.0238 (10)0.0158 (9)0.0144 (9)0.0040 (8)0.0009 (7)0.0066 (7)
C330.0144 (9)0.0186 (10)0.0210 (9)0.0015 (7)0.0021 (7)0.0052 (8)
C300.0202 (10)0.0202 (10)0.0144 (9)0.0010 (8)0.0035 (7)0.0057 (8)
C190.0085 (8)0.0178 (9)0.0146 (8)0.0031 (7)0.0014 (6)0.0033 (7)
C160.0197 (10)0.0218 (10)0.0159 (9)0.0110 (8)0.0019 (7)0.0056 (8)
C130.0170 (9)0.0166 (9)0.0137 (8)0.0038 (7)0.0003 (7)0.0057 (7)
C110.0099 (8)0.0201 (9)0.0160 (9)0.0017 (7)0.0035 (7)0.0065 (7)
C320.0122 (9)0.0196 (10)0.0177 (9)0.0010 (7)0.0012 (7)0.0017 (8)
C220.0152 (9)0.0190 (9)0.0151 (9)0.0033 (7)0.0022 (7)0.0050 (7)
C60.0139 (9)0.0255 (10)0.0196 (9)0.0082 (8)0.0046 (7)0.0113 (8)
C120.0146 (9)0.0183 (9)0.0177 (9)0.0018 (7)0.0024 (7)0.0081 (8)
C80.0096 (9)0.0335 (12)0.0170 (9)0.0007 (8)0.0011 (7)0.0104 (8)
C240.0156 (9)0.0150 (9)0.0188 (9)0.0023 (7)0.0048 (7)0.0065 (7)
C290.0200 (10)0.0231 (10)0.0145 (9)0.0068 (8)0.0044 (7)0.0070 (8)
C340.0190 (10)0.0203 (10)0.0237 (10)0.0008 (8)0.0005 (8)0.0025 (8)
C210.0137 (9)0.0185 (9)0.0163 (9)0.0032 (7)0.0028 (7)0.0006 (7)
C140.0225 (10)0.0169 (9)0.0183 (9)0.0027 (8)0.0036 (8)0.0080 (8)
C150.0315 (11)0.0154 (9)0.0168 (9)0.0090 (8)0.0040 (8)0.0068 (8)
C170.0145 (9)0.0178 (9)0.0118 (8)0.0042 (7)0.0000 (7)0.0046 (7)
C180.0112 (9)0.0222 (10)0.0154 (9)0.0040 (7)0.0004 (7)0.0058 (8)
C90.0131 (9)0.0290 (11)0.0195 (10)0.0040 (8)0.0006 (7)0.0025 (9)
C310.0180 (10)0.0266 (11)0.0243 (10)0.0057 (8)0.0042 (8)0.0087 (9)
C100.0155 (9)0.0194 (10)0.0203 (9)0.0015 (8)0.0048 (7)0.0053 (8)
Br20.0503 (4)0.01800 (14)0.0381 (3)0.01664 (17)0.0244 (2)0.01573 (14)
Geometric parameters (Å, º) top
Br1—C31.9052 (19)C30—C311.173 (3)
Br3—C151.913 (5)C19—C181.519 (3)
O1—H10.8400C16—H160.9500
O1—C251.359 (2)C16—C151.385 (3)
O4—C281.403 (2)C16—C171.397 (3)
O4—C321.439 (2)C13—C121.517 (3)
O2—C261.400 (2)C13—C141.390 (3)
O2—C291.442 (2)C11—C121.518 (3)
O3—H30.8400C11—C101.393 (3)
O3—C271.356 (2)C32—H32A0.9900
C1—C251.403 (3)C32—H32B0.9900
C1—C21.397 (3)C22—H220.9500
C1—C241.524 (3)C22—C211.392 (3)
C25—C51.403 (3)C6—H6A0.9900
C2—H20.9500C6—H6B0.9900
C2—C31.383 (3)C12—H12A0.9900
C23—C281.398 (3)C12—H12B0.9900
C23—C221.396 (3)C8—H80.9500
C23—C241.523 (3)C8—C91.386 (3)
C26—C71.396 (3)C24—H24A0.9900
C26—C111.396 (3)C24—H24B0.9900
C5—C41.385 (3)C29—H29A0.9900
C5—C61.516 (3)C29—H29B0.9900
C28—C191.391 (3)C34—H340.9500
C4—H40.9500C21—H210.9500
C4—C31.388 (3)C14—H140.9500
C20—H200.9500C14—C151.381 (3)
C20—C191.402 (3)C15—Br21.895 (2)
C20—C211.385 (3)C17—C181.513 (3)
C7—C61.515 (3)C18—H18A0.9900
C7—C81.398 (3)C18—H18B0.9900
C27—C131.401 (3)C9—H90.9500
C27—C171.405 (3)C9—C101.384 (3)
C33—C321.456 (3)C31—H310.9500
C33—C341.184 (3)C10—H100.9500
C30—C291.475 (3)
C25—O1—H1109.5H32A—C32—H32B108.5
C28—O4—C32114.33 (14)C23—C22—H22119.6
C26—O2—C29115.53 (14)C21—C22—C23120.87 (18)
C27—O3—H3109.5C21—C22—H22119.6
C25—C1—C24123.34 (17)C5—C6—H6A109.2
C2—C1—C25117.70 (17)C5—C6—H6B109.2
C2—C1—C24118.84 (17)C7—C6—C5112.17 (16)
O1—C25—C1123.84 (17)C7—C6—H6A109.2
O1—C25—C5114.80 (16)C7—C6—H6B109.2
C1—C25—C5121.32 (17)H6A—C6—H6B107.9
C1—C2—H2119.6C13—C12—C11112.16 (15)
C3—C2—C1120.79 (18)C13—C12—H12A109.2
C3—C2—H2119.6C13—C12—H12B109.2
C28—C23—C24121.58 (17)C11—C12—H12A109.2
C22—C23—C28117.03 (17)C11—C12—H12B109.2
C22—C23—C24121.38 (17)H12A—C12—H12B107.9
C7—C26—O2119.17 (17)C7—C8—H8119.3
C7—C26—C11122.50 (17)C9—C8—C7121.32 (19)
C11—C26—O2118.10 (16)C9—C8—H8119.3
C25—C5—C6119.75 (17)C1—C24—H24A108.4
C4—C5—C25119.64 (17)C1—C24—H24B108.4
C4—C5—C6120.61 (17)C23—C24—C1115.60 (16)
C23—C28—O4117.21 (17)C23—C24—H24A108.4
C19—C28—O4119.01 (16)C23—C24—H24B108.4
C19—C28—C23123.71 (17)H24A—C24—H24B107.4
C5—C4—H4120.4O2—C29—C30113.22 (16)
C5—C4—C3119.26 (18)O2—C29—H29A108.9
C3—C4—H4120.4O2—C29—H29B108.9
C19—C20—H20119.5C30—C29—H29A108.9
C21—C20—H20119.5C30—C29—H29B108.9
C21—C20—C19120.95 (18)H29A—C29—H29B107.7
C26—C7—C6122.24 (17)C33—C34—H34180.0
C26—C7—C8117.23 (19)C20—C21—C22120.23 (18)
C8—C7—C6120.43 (18)C20—C21—H21119.9
O3—C27—C13123.07 (17)C22—C21—H21119.9
O3—C27—C17115.61 (17)C13—C14—H14119.9
C13—C27—C17121.31 (18)C15—C14—C13120.17 (19)
C2—C3—Br1120.20 (15)C15—C14—H14119.9
C2—C3—C4121.25 (18)C16—C15—Br3128.5 (3)
C4—C3—Br1118.55 (15)C16—C15—Br2120.16 (15)
C34—C33—C32178.5 (2)C14—C15—Br3108.5 (4)
C31—C30—C29176.3 (2)C14—C15—C16121.34 (18)
C28—C19—C20117.00 (17)C14—C15—Br2118.44 (16)
C28—C19—C18121.74 (16)C27—C17—C18120.63 (17)
C20—C19—C18121.25 (17)C16—C17—C27118.52 (18)
C15—C16—H16120.1C16—C17—C18120.85 (17)
C15—C16—C17119.89 (18)C19—C18—H18A108.9
C17—C16—H16120.1C19—C18—H18B108.9
C27—C13—C12121.59 (17)C17—C18—C19113.51 (16)
C14—C13—C27118.76 (18)C17—C18—H18A108.9
C14—C13—C12119.65 (17)C17—C18—H18B108.9
C26—C11—C12122.03 (17)H18A—C18—H18B107.7
C10—C11—C26118.15 (18)C8—C9—H9120.0
C10—C11—C12119.61 (18)C10—C9—C8119.99 (19)
O4—C32—C33107.29 (15)C10—C9—H9120.0
O4—C32—H32A110.3C30—C31—H31180.0
O4—C32—H32B110.3C11—C10—H10119.7
C33—C32—H32A110.3C9—C10—C11120.69 (19)
C33—C32—H32B110.3C9—C10—H10119.7
O1—C25—C5—C4175.79 (17)C27—C13—C12—C1170.9 (2)
O1—C25—C5—C63.6 (3)C27—C13—C14—C150.6 (3)
O4—C28—C19—C20178.82 (16)C27—C17—C18—C1980.0 (2)
O4—C28—C19—C182.5 (3)C19—C20—C21—C222.9 (3)
O2—C26—C7—C61.5 (3)C16—C17—C18—C19100.8 (2)
O2—C26—C7—C8177.89 (16)C13—C27—C17—C161.5 (3)
O2—C26—C11—C123.5 (3)C13—C27—C17—C18179.27 (17)
O2—C26—C11—C10178.24 (16)C13—C14—C15—Br3167.1 (6)
O3—C27—C13—C121.7 (3)C13—C14—C15—C160.8 (3)
O3—C27—C13—C14178.42 (17)C13—C14—C15—Br2176.50 (15)
O3—C27—C17—C16177.58 (16)C11—C26—C7—C6172.93 (17)
O3—C27—C17—C181.6 (3)C11—C26—C7—C83.5 (3)
C1—C25—C5—C42.0 (3)C32—O4—C28—C2389.9 (2)
C1—C25—C5—C6178.60 (18)C32—O4—C28—C1993.1 (2)
C1—C2—C3—Br1178.64 (14)C22—C23—C28—O4178.14 (16)
C1—C2—C3—C40.6 (3)C22—C23—C28—C195.0 (3)
C25—C1—C2—C31.2 (3)C22—C23—C24—C186.3 (2)
C25—C1—C24—C2368.5 (2)C6—C5—C4—C3179.61 (18)
C25—C5—C4—C30.2 (3)C6—C7—C8—C9175.93 (18)
C25—C5—C6—C772.9 (2)C12—C13—C14—C15179.61 (18)
C2—C1—C25—O1175.13 (17)C12—C11—C10—C9173.74 (18)
C2—C1—C25—C52.4 (3)C8—C7—C6—C564.4 (2)
C2—C1—C24—C23115.69 (19)C8—C9—C10—C111.7 (3)
C23—C28—C19—C204.4 (3)C24—C1—C25—O10.8 (3)
C23—C28—C19—C18174.25 (17)C24—C1—C25—C5178.33 (18)
C23—C22—C21—C202.2 (3)C24—C1—C2—C3177.25 (17)
C26—O2—C29—C3074.3 (2)C24—C23—C28—O42.7 (3)
C26—C7—C6—C5111.9 (2)C24—C23—C28—C19174.19 (17)
C26—C7—C8—C90.5 (3)C24—C23—C22—C21177.62 (17)
C26—C11—C12—C13101.7 (2)C29—O2—C26—C7105.57 (19)
C26—C11—C10—C91.1 (3)C29—O2—C26—C1179.8 (2)
C5—C4—C3—Br1178.16 (15)C21—C20—C19—C280.3 (3)
C5—C4—C3—C21.1 (3)C21—C20—C19—C18178.34 (17)
C28—O4—C32—C33170.24 (16)C14—C13—C12—C11108.9 (2)
C28—C23—C22—C211.6 (3)C15—C16—C17—C271.3 (3)
C28—C23—C24—C192.9 (2)C15—C16—C17—C18179.50 (18)
C28—C19—C18—C17104.1 (2)C17—C27—C13—C12179.24 (17)
C4—C5—C6—C7107.7 (2)C17—C27—C13—C140.6 (3)
C20—C19—C18—C1774.5 (2)C17—C16—C15—Br3163.2 (8)
C7—C26—C11—C12170.94 (17)C17—C16—C15—C140.2 (3)
C7—C26—C11—C103.8 (3)C17—C16—C15—Br2177.39 (15)
C7—C8—C9—C102.0 (3)C10—C11—C12—C1372.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.841.812.6270 (18)165
O3—H3···O20.842.022.8207 (18)160
5,17-Dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2) top
Crystal data top
C40H38Br2O4Dx = 1.491 Mg m3
Mr = 742.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9929 reflections
a = 18.1223 (7) Åθ = 2.3–31.5°
b = 9.9840 (4) ŵ = 2.49 mm1
c = 18.2863 (7) ÅT = 100 K
V = 3308.6 (2) Å3Block, colourless
Z = 40.35 × 0.25 × 0.22 mm
F(000) = 1520
Data collection top
Bruker D8 Venture
diffractometer
5529 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource4481 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.060
Detector resolution: 10.4 pixels mm-1θmax = 31.5°, θmin = 2.2°
ω–scanh = 2626
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.545, Tmax = 0.746l = 2626
55960 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Only H-atom coordinates refined
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.7553P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5529 reflectionsΔρmax = 0.42 e Å3
283 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58375 (2)0.73040 (2)0.32024 (2)0.01950 (5)
O10.63861 (5)0.13925 (9)0.35764 (5)0.01210 (18)
O20.40187 (5)0.38259 (9)0.37445 (5)0.01229 (19)
C10.57053 (7)0.33574 (14)0.39089 (7)0.0121 (2)
C20.55903 (7)0.47314 (14)0.38265 (8)0.0132 (2)
H20.5264 (10)0.5205 (18)0.4150 (10)0.022 (5)*
C30.59636 (7)0.54202 (14)0.32816 (8)0.0139 (3)
C40.64115 (7)0.47686 (13)0.27830 (7)0.0130 (2)
H40.6605 (9)0.5244 (16)0.2376 (9)0.014 (4)*
C50.65355 (7)0.33956 (13)0.28585 (7)0.0113 (2)
C60.62149 (7)0.27266 (13)0.34495 (7)0.0113 (2)
C70.52365 (8)0.25329 (14)0.44288 (8)0.0131 (2)
H7A0.5539 (10)0.1879 (17)0.4687 (9)0.011 (4)*
H7B0.4995 (10)0.3097 (18)0.4804 (9)0.017 (4)*
C80.46578 (7)0.17719 (14)0.39939 (7)0.0118 (2)
C90.47238 (8)0.03988 (14)0.38663 (8)0.0148 (3)
H90.5125 (10)0.0059 (17)0.4081 (9)0.018 (4)*
C100.42317 (8)0.02671 (15)0.34115 (8)0.0157 (3)
H100.4300 (10)0.116 (2)0.3325 (10)0.019 (5)*
C110.36687 (8)0.04353 (14)0.30659 (8)0.0141 (3)
H110.3354 (10)0.0006 (18)0.2722 (10)0.020 (4)*
C120.35870 (7)0.18099 (14)0.31759 (7)0.0122 (2)
C130.40748 (7)0.24448 (13)0.36548 (7)0.0112 (2)
C140.69566 (7)0.26270 (14)0.22740 (8)0.0126 (2)
H14A0.7316 (10)0.2045 (18)0.2481 (10)0.019 (5)*
C150.70695 (8)0.12828 (14)0.39858 (8)0.0139 (3)
H15A0.7029 (9)0.1811 (17)0.4442 (9)0.012 (4)*
H15B0.7467 (10)0.1659 (17)0.3699 (9)0.014 (4)*
C160.72114 (8)0.01789 (14)0.41520 (8)0.0136 (3)
H16A0.7153 (9)0.0676 (17)0.3706 (10)0.015 (4)*
H16B0.7734 (11)0.0273 (18)0.4308 (10)0.022 (5)*
C170.67134 (9)0.07477 (16)0.47447 (8)0.0182 (3)
H17A0.6817 (11)0.169 (2)0.4837 (10)0.027 (5)*
H17B0.6797 (12)0.027 (2)0.5232 (12)0.037 (6)*
H17C0.6186 (11)0.0630 (19)0.4634 (10)0.027 (5)*
C180.35282 (8)0.42342 (14)0.43170 (8)0.0148 (3)
H18A0.3726 (10)0.4016 (17)0.4800 (10)0.016 (4)*
H18B0.3044 (10)0.3780 (17)0.4257 (9)0.016 (4)*
C190.34403 (8)0.56881 (15)0.42539 (8)0.0167 (3)
C200.33838 (9)0.68613 (16)0.41828 (9)0.0227 (3)
H14B0.7229 (11)0.324 (2)0.1945 (11)0.034*
H200.3365 (13)0.776 (2)0.4114 (12)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02093 (8)0.00958 (7)0.02800 (9)0.00170 (5)0.00372 (6)0.00016 (5)
O10.0104 (4)0.0103 (4)0.0157 (5)0.0006 (3)0.0024 (4)0.0012 (4)
O20.0125 (4)0.0102 (4)0.0142 (4)0.0004 (3)0.0032 (4)0.0016 (3)
C10.0094 (6)0.0146 (6)0.0124 (6)0.0005 (5)0.0023 (4)0.0006 (5)
C20.0112 (5)0.0140 (6)0.0146 (6)0.0003 (5)0.0015 (5)0.0035 (5)
C30.0133 (6)0.0098 (6)0.0185 (7)0.0008 (4)0.0052 (5)0.0012 (5)
C40.0128 (6)0.0124 (6)0.0136 (6)0.0020 (5)0.0024 (5)0.0014 (5)
C50.0092 (5)0.0127 (6)0.0121 (6)0.0005 (4)0.0021 (4)0.0008 (5)
C60.0099 (5)0.0104 (6)0.0136 (6)0.0005 (5)0.0027 (5)0.0002 (5)
C70.0119 (6)0.0148 (6)0.0125 (6)0.0001 (5)0.0004 (5)0.0011 (5)
C80.0107 (5)0.0140 (6)0.0107 (6)0.0004 (5)0.0025 (5)0.0007 (5)
C90.0131 (6)0.0146 (6)0.0167 (6)0.0023 (5)0.0017 (5)0.0030 (5)
C100.0166 (6)0.0115 (6)0.0188 (7)0.0002 (5)0.0041 (5)0.0006 (5)
C110.0136 (6)0.0135 (6)0.0152 (6)0.0015 (5)0.0007 (5)0.0004 (5)
C120.0113 (6)0.0129 (6)0.0125 (6)0.0006 (5)0.0020 (5)0.0015 (5)
C130.0115 (6)0.0111 (6)0.0111 (6)0.0005 (4)0.0033 (4)0.0007 (4)
C140.0098 (6)0.0143 (6)0.0138 (6)0.0007 (5)0.0002 (5)0.0004 (5)
C150.0115 (6)0.0144 (6)0.0157 (6)0.0003 (5)0.0028 (5)0.0018 (5)
C160.0124 (6)0.0137 (6)0.0148 (6)0.0028 (5)0.0017 (5)0.0030 (5)
C170.0169 (7)0.0198 (7)0.0181 (7)0.0017 (6)0.0015 (5)0.0065 (6)
C180.0165 (6)0.0138 (6)0.0141 (6)0.0004 (5)0.0044 (5)0.0019 (5)
C190.0151 (6)0.0194 (7)0.0156 (6)0.0006 (5)0.0029 (5)0.0023 (5)
C200.0268 (8)0.0173 (7)0.0240 (8)0.0014 (6)0.0063 (6)0.0012 (6)
Geometric parameters (Å, º) top
Br1—C31.9002 (14)C10—H100.91 (2)
O1—C61.3872 (16)C10—C111.390 (2)
O1—C151.4513 (16)C11—H110.950 (18)
O2—C131.3923 (15)C11—C121.3949 (19)
O2—C181.4325 (16)C12—C131.3966 (19)
C1—C21.3957 (19)C12—C14i1.5209 (19)
C1—C61.3982 (18)C14—H14A0.952 (18)
C1—C71.5176 (19)C14—H14B0.99 (2)
C2—H20.961 (18)C15—H15A0.990 (17)
C2—C31.387 (2)C15—H15B0.967 (17)
C3—C41.3833 (19)C15—C161.5126 (19)
C4—H40.950 (17)C16—H16A0.962 (18)
C4—C51.3959 (18)C16—H16B0.992 (19)
C5—C61.3971 (19)C16—C171.520 (2)
C5—C141.5211 (19)C17—H17A0.97 (2)
C7—H7A0.974 (17)C17—H17B1.02 (2)
C7—H7B0.990 (18)C17—H17C0.98 (2)
C7—C81.5197 (19)C18—H18A0.978 (17)
C8—C91.3957 (19)C18—H18B0.993 (18)
C8—C131.3971 (18)C18—C191.465 (2)
C9—H90.944 (18)C19—C201.183 (2)
C9—C101.389 (2)C20—H200.90 (2)
C6—O1—C15110.46 (10)C11—C12—C13118.02 (12)
C13—O2—C18114.41 (10)C11—C12—C14i121.23 (12)
C2—C1—C6118.46 (12)C13—C12—C14i120.38 (12)
C2—C1—C7121.14 (12)O2—C13—C8118.64 (12)
C6—C1—C7120.12 (12)O2—C13—C12118.50 (12)
C1—C2—H2120.6 (11)C12—C13—C8122.59 (12)
C3—C2—C1119.48 (13)C5—C14—H14A111.9 (11)
C3—C2—H2119.9 (11)C5—C14—H14B111.3 (13)
C2—C3—Br1119.14 (10)C12i—C14—C5109.01 (11)
C4—C3—Br1119.07 (11)C12i—C14—H14A109.3 (11)
C4—C3—C2121.77 (13)C12i—C14—H14B109.0 (12)
C3—C4—H4119.9 (10)H14A—C14—H14B106.2 (16)
C3—C4—C5119.42 (13)O1—C15—H15A109.4 (10)
C5—C4—H4120.6 (10)O1—C15—H15B109.1 (10)
C4—C5—C6118.62 (12)O1—C15—C16108.76 (11)
C4—C5—C14120.45 (12)H15A—C15—H15B107.8 (14)
C6—C5—C14120.73 (12)C16—C15—H15A110.9 (10)
O1—C6—C1118.67 (12)C16—C15—H15B110.9 (10)
O1—C6—C5119.70 (12)C15—C16—H16A108.0 (10)
C5—C6—C1121.60 (12)C15—C16—H16B108.1 (10)
C1—C7—H7A110.6 (10)C15—C16—C17113.74 (12)
C1—C7—H7B111.9 (10)H16A—C16—H16B107.4 (14)
C1—C7—C8109.25 (11)C17—C16—H16A110.3 (10)
H7A—C7—H7B107.1 (14)C17—C16—H16B109.0 (10)
C8—C7—H7A107.9 (10)C16—C17—H17A111.7 (11)
C8—C7—H7B110.0 (10)C16—C17—H17B111.1 (12)
C9—C8—C7121.29 (12)C16—C17—H17C112.6 (11)
C9—C8—C13117.57 (12)H17A—C17—H17B105.8 (16)
C13—C8—C7120.91 (12)H17A—C17—H17C109.8 (16)
C8—C9—H9118.1 (11)H17B—C17—H17C105.5 (16)
C10—C9—C8121.02 (13)O2—C18—H18A111.7 (10)
C10—C9—H9120.8 (11)O2—C18—H18B109.8 (10)
C9—C10—H10118.9 (12)O2—C18—C19106.97 (11)
C9—C10—C11120.13 (13)H18A—C18—H18B108.7 (14)
C11—C10—H10120.8 (12)C19—C18—H18A109.4 (10)
C10—C11—H11120.9 (11)C19—C18—H18B110.3 (10)
C10—C11—C12120.58 (13)C20—C19—C18177.81 (16)
C12—C11—H11118.4 (11)C19—C20—H20176.8 (15)
Br1—C3—C4—C5176.93 (10)C7—C8—C9—C10173.85 (13)
O1—C15—C16—C1773.91 (15)C7—C8—C13—O22.26 (18)
C1—C2—C3—Br1177.17 (10)C7—C8—C13—C12171.66 (12)
C1—C2—C3—C44.4 (2)C8—C9—C10—C111.0 (2)
C1—C7—C8—C9105.00 (14)C9—C8—C13—O2176.87 (12)
C1—C7—C8—C1369.41 (16)C9—C8—C13—C122.95 (19)
C2—C1—C6—O1173.62 (12)C9—C10—C11—C120.6 (2)
C2—C1—C6—C58.25 (19)C10—C11—C12—C131.5 (2)
C2—C1—C7—C8101.52 (14)C10—C11—C12—C14i171.60 (13)
C2—C3—C4—C54.7 (2)C11—C12—C13—O2177.27 (11)
C3—C4—C5—C61.51 (19)C11—C12—C13—C83.34 (19)
C3—C4—C5—C14173.39 (12)C13—O2—C18—C19170.66 (11)
C4—C5—C6—O1173.87 (11)C13—C8—C9—C100.7 (2)
C4—C5—C6—C18.02 (19)C14—C5—C6—O111.25 (19)
C4—C5—C14—C12i104.49 (14)C14—C5—C6—C1166.87 (12)
C6—O1—C15—C16176.59 (11)C14i—C12—C13—O24.09 (18)
C6—C1—C2—C31.98 (19)C14i—C12—C13—C8169.84 (12)
C6—C1—C7—C872.24 (15)C15—O1—C6—C198.40 (14)
C6—C5—C14—C12i70.31 (16)C15—O1—C6—C583.44 (15)
C7—C1—C2—C3171.87 (12)C18—O2—C13—C896.01 (14)
C7—C1—C6—O112.46 (18)C18—O2—C13—C1289.82 (14)
C7—C1—C6—C5165.67 (12)
Symmetry code: (i) x+1, y, z+1/2.
25,27-Bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (3) top
Crystal data top
C32H28Br2N6O4Dx = 1.557 Mg m3
Mr = 720.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9927 reflections
a = 36.3261 (7) Åθ = 2.2–28.3°
c = 12.1054 (4) ŵ = 2.69 mm1
V = 13834.0 (7) Å3T = 100 K
Z = 18Block, colourless
F(000) = 65520.37 × 0.13 × 0.1 mm
Data collection top
Bruker D8 Venture
diffractometer
7804 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource6043 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.047
Detector resolution: 10.4 pixels mm-1θmax = 28.5°, θmin = 1.8°
ω–scanh = 4748
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 4848
Tmin = 0.516, Tmax = 0.746l = 1616
45251 measured reflections
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0383P)2 + 55.0341P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
7804 reflectionsΔρmax = 1.30 e Å3
399 parametersΔρmin = 1.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.77808 (2)0.64422 (2)0.11845 (2)0.02592 (8)
Br10.94747 (2)0.64087 (2)1.04746 (3)0.03614 (9)
O40.73344 (6)0.53322 (6)0.69360 (15)0.0235 (4)
O30.76702 (7)0.53195 (7)0.49646 (16)0.0304 (5)
H30.7540790.5342550.5511580.046*
O10.81215 (6)0.53626 (7)0.71561 (16)0.0296 (4)
H10.8212510.5262240.6672580.044*
O20.82909 (7)0.50491 (6)0.52611 (17)0.0317 (5)
C160.75008 (8)0.60698 (9)0.3311 (2)0.0237 (5)
H160.7353570.6224500.3323020.028*
C150.77434 (8)0.60962 (9)0.2407 (2)0.0233 (5)
C30.90557 (9)0.61047 (9)0.9377 (2)0.0260 (6)
C20.86500 (9)0.60483 (9)0.9485 (2)0.0241 (5)
H20.8586090.6176071.0083290.029*
C240.78870 (8)0.57243 (9)0.8817 (2)0.0231 (5)
H24A0.7845450.5805340.9568220.028*
H24B0.7685690.5416580.8722650.028*
C100.89056 (9)0.60072 (9)0.3603 (2)0.0274 (6)
H100.8892580.6121510.2907570.033*
C200.76455 (9)0.64427 (10)0.6366 (2)0.0296 (6)
H200.7602260.6606100.5823310.036*
C170.74717 (8)0.58147 (9)0.4209 (2)0.0241 (5)
C110.85771 (9)0.56095 (9)0.3911 (2)0.0255 (6)
C140.79580 (8)0.58721 (9)0.2352 (2)0.0238 (5)
H140.8122030.5895040.1717890.029*
C190.74568 (9)0.60024 (9)0.6231 (2)0.0257 (6)
C250.84464 (9)0.56262 (9)0.7832 (2)0.0248 (6)
C280.75217 (8)0.57733 (9)0.7062 (2)0.0226 (5)
C130.79333 (8)0.56136 (9)0.3226 (2)0.0241 (5)
C80.92731 (9)0.60764 (10)0.5302 (2)0.0308 (6)
H80.9507900.6240290.5775010.037*
C10.83381 (9)0.58053 (9)0.8717 (2)0.0231 (5)
C50.88617 (9)0.56989 (9)0.7704 (2)0.0277 (6)
C230.77852 (8)0.59706 (9)0.7970 (2)0.0227 (5)
C220.79695 (9)0.64103 (9)0.8067 (2)0.0274 (6)
H220.8148780.6553090.8677840.033*
C210.78926 (10)0.66417 (10)0.7275 (2)0.0304 (6)
H210.8012030.6939850.7363160.037*
C70.89577 (9)0.56776 (10)0.5635 (2)0.0277 (6)
C40.91627 (9)0.59369 (10)0.8493 (2)0.0296 (6)
H40.9444070.5985100.8426440.036*
C260.86166 (9)0.54477 (9)0.4921 (2)0.0261 (6)
C270.76893 (9)0.55853 (9)0.4151 (2)0.0248 (6)
C180.72006 (9)0.57839 (10)0.5199 (2)0.0287 (6)
H18A0.7005190.5480160.5368360.034*
H18B0.7024960.5912490.5002190.034*
C310.69060 (9)0.50925 (10)0.7339 (2)0.0309 (6)
H31A0.6740110.5226480.7096110.037*
H31B0.6905780.5086230.8157100.037*
C90.92504 (9)0.62399 (10)0.4281 (3)0.0316 (6)
H90.9471830.6511280.4053070.038*
N40.66469 (11)0.46548 (11)0.5687 (3)0.0530 (8)
C60.89773 (11)0.55028 (11)0.6759 (2)0.0337 (7)
H6A0.8781110.5191680.6762590.040*
H6B0.9268630.5553580.6879750.040*
C120.81799 (9)0.53781 (10)0.3211 (2)0.0293 (6)
H12A0.7998720.5086570.3500410.035*
H12B0.8259500.5356150.2442150.035*
C320.67100 (10)0.46485 (11)0.6891 (3)0.0393 (7)
H32A0.6898250.4530400.7044960.047*
H32B0.6433330.4465050.7256660.047*
C290.83526 (12)0.47048 (10)0.4902 (3)0.0410 (8)
H29A0.8607140.4725740.5261600.049*
H29B0.8394560.4717680.4091520.049*
N50.68006 (13)0.44967 (14)0.5103 (3)0.0736 (11)
C300.79672 (14)0.42988 (11)0.5213 (4)0.0551 (10)
H30A0.7977170.4057180.4866380.066*
H30B0.7709740.4298530.4943780.066*
N60.69206 (17)0.43548 (18)0.4454 (4)0.1068 (16)
N10.79469 (12)0.42496 (12)0.6448 (3)0.0627 (10)
N20.76567 (14)0.42481 (14)0.6888 (3)0.0696 (10)
N30.74014 (17)0.42453 (19)0.7425 (4)0.0991 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02212 (13)0.02979 (15)0.02155 (13)0.00975 (11)0.00145 (10)0.00350 (11)
Br10.02894 (16)0.03163 (16)0.04687 (19)0.01439 (13)0.00821 (13)0.00860 (13)
O40.0183 (9)0.0272 (10)0.0253 (9)0.0116 (8)0.0057 (7)0.0035 (8)
O30.0372 (12)0.0398 (12)0.0249 (10)0.0273 (10)0.0095 (9)0.0086 (9)
O10.0292 (10)0.0423 (12)0.0267 (10)0.0249 (10)0.0010 (8)0.0068 (9)
O20.0373 (11)0.0288 (11)0.0378 (12)0.0233 (10)0.0125 (9)0.0051 (9)
C160.0219 (13)0.0267 (14)0.0244 (13)0.0135 (11)0.0011 (10)0.0006 (11)
C150.0197 (12)0.0256 (13)0.0197 (12)0.0077 (11)0.0018 (10)0.0023 (10)
C30.0247 (14)0.0212 (13)0.0298 (14)0.0098 (11)0.0020 (11)0.0003 (11)
C20.0282 (14)0.0241 (13)0.0225 (13)0.0150 (12)0.0035 (11)0.0017 (10)
C240.0244 (13)0.0294 (14)0.0189 (12)0.0160 (12)0.0042 (10)0.0027 (10)
C100.0304 (15)0.0353 (15)0.0268 (14)0.0241 (13)0.0082 (11)0.0067 (12)
C200.0309 (15)0.0396 (16)0.0299 (15)0.0263 (14)0.0116 (12)0.0124 (13)
C170.0216 (13)0.0302 (14)0.0225 (13)0.0144 (11)0.0015 (10)0.0029 (11)
C110.0276 (14)0.0314 (14)0.0276 (14)0.0223 (12)0.0028 (11)0.0030 (11)
C140.0196 (12)0.0277 (14)0.0208 (12)0.0093 (11)0.0007 (10)0.0030 (11)
C190.0247 (13)0.0369 (15)0.0236 (13)0.0215 (12)0.0088 (11)0.0069 (11)
C250.0297 (14)0.0289 (14)0.0213 (13)0.0189 (12)0.0016 (11)0.0031 (11)
C280.0214 (12)0.0284 (14)0.0236 (13)0.0167 (11)0.0084 (10)0.0041 (11)
C130.0224 (13)0.0267 (14)0.0240 (13)0.0128 (11)0.0013 (10)0.0031 (11)
C80.0274 (15)0.0386 (17)0.0346 (16)0.0227 (14)0.0008 (12)0.0072 (13)
C10.0246 (13)0.0256 (13)0.0238 (13)0.0161 (11)0.0054 (11)0.0046 (11)
C50.0356 (16)0.0351 (15)0.0246 (13)0.0268 (13)0.0064 (12)0.0052 (12)
C230.0223 (13)0.0302 (14)0.0214 (12)0.0174 (11)0.0077 (10)0.0045 (11)
C220.0284 (14)0.0332 (15)0.0257 (14)0.0192 (13)0.0083 (11)0.0015 (11)
C210.0341 (16)0.0288 (15)0.0352 (16)0.0208 (13)0.0124 (13)0.0047 (12)
C70.0306 (15)0.0393 (16)0.0278 (14)0.0283 (14)0.0034 (11)0.0011 (12)
C40.0257 (14)0.0385 (16)0.0307 (15)0.0205 (13)0.0059 (12)0.0066 (13)
C260.0299 (14)0.0278 (14)0.0292 (14)0.0209 (12)0.0084 (11)0.0024 (11)
C270.0229 (13)0.0281 (14)0.0244 (13)0.0134 (11)0.0006 (10)0.0033 (11)
C180.0239 (14)0.0434 (17)0.0262 (14)0.0224 (13)0.0051 (11)0.0097 (12)
C310.0204 (13)0.0369 (16)0.0323 (15)0.0118 (12)0.0079 (11)0.0106 (13)
C90.0260 (14)0.0332 (16)0.0408 (17)0.0188 (13)0.0081 (13)0.0022 (13)
N40.0470 (18)0.0516 (19)0.0449 (18)0.0130 (15)0.0156 (15)0.0026 (15)
C60.0432 (18)0.0516 (19)0.0262 (15)0.0386 (16)0.0029 (13)0.0018 (13)
C120.0338 (15)0.0337 (15)0.0267 (14)0.0215 (13)0.0005 (12)0.0049 (12)
C320.0264 (15)0.0382 (18)0.0444 (19)0.0094 (14)0.0015 (14)0.0092 (15)
C290.055 (2)0.0330 (17)0.0484 (19)0.0324 (17)0.0147 (16)0.0051 (14)
N50.066 (2)0.071 (2)0.059 (2)0.0148 (19)0.0020 (19)0.0098 (19)
C300.067 (3)0.0323 (18)0.072 (3)0.0296 (19)0.008 (2)0.0039 (18)
N60.103 (3)0.106 (3)0.080 (3)0.029 (3)0.016 (3)0.020 (3)
N10.066 (2)0.063 (2)0.074 (2)0.0436 (19)0.0163 (19)0.0304 (19)
N20.075 (2)0.096 (3)0.063 (2)0.063 (2)0.0062 (19)0.004 (2)
N30.098 (3)0.151 (4)0.074 (3)0.082 (3)0.008 (2)0.011 (3)
Geometric parameters (Å, º) top
Br2—C151.902 (3)C28—C231.397 (4)
Br1—C31.903 (3)C13—C271.400 (4)
O4—C281.401 (3)C13—C121.517 (4)
O4—C311.436 (3)C8—H80.9500
O3—H30.8400C8—C71.383 (4)
O3—C271.356 (3)C8—C91.391 (4)
O1—H10.8400C5—C41.382 (4)
O1—C251.360 (3)C5—C61.514 (4)
O2—C261.397 (3)C23—C221.394 (4)
O2—C291.444 (3)C22—H220.9500
C16—H160.9500C22—C211.392 (4)
C16—C151.377 (4)C21—H210.9500
C16—C171.399 (4)C7—C261.394 (4)
C15—C141.382 (4)C7—C61.519 (4)
C3—C21.389 (4)C4—H40.9500
C3—C41.380 (4)C18—H18A0.9900
C2—H20.9500C18—H18B0.9900
C2—C11.388 (4)C31—H31A0.9900
C24—H24A0.9900C31—H31B0.9900
C24—H24B0.9900C31—C321.501 (5)
C24—C11.518 (4)C9—H90.9500
C24—C231.523 (4)N4—C321.477 (4)
C10—H100.9500N4—N51.209 (5)
C10—C111.388 (4)C6—H6A0.9900
C10—C91.378 (4)C6—H6B0.9900
C20—H200.9500C12—H12A0.9900
C20—C191.400 (4)C12—H12B0.9900
C20—C211.374 (4)C32—H32A0.9900
C17—C271.408 (4)C32—H32B0.9900
C17—C181.519 (4)C29—H29A0.9900
C11—C261.394 (4)C29—H29B0.9900
C11—C121.515 (4)C29—C301.488 (5)
C14—H140.9500N5—N61.139 (6)
C14—C131.387 (4)C30—H30A0.9900
C19—C281.399 (4)C30—H30B0.9900
C19—C181.522 (4)C30—N11.502 (5)
C25—C11.408 (4)N1—N21.179 (5)
C25—C51.404 (4)N2—N31.128 (6)
C28—O4—C31114.6 (2)C20—C21—C22120.6 (3)
C27—O3—H3109.5C20—C21—H21119.7
C25—O1—H1109.5C22—C21—H21119.7
C26—O2—C29113.0 (2)C8—C7—C26118.0 (3)
C15—C16—H16120.1C8—C7—C6120.8 (3)
C15—C16—C17119.8 (2)C26—C7—C6121.2 (3)
C17—C16—H16120.1C3—C4—C5120.2 (3)
C16—C15—Br2119.7 (2)C3—C4—H4119.9
C16—C15—C14121.8 (2)C5—C4—H4119.9
C14—C15—Br2118.5 (2)C11—C26—O2118.9 (3)
C2—C3—Br1120.1 (2)C7—C26—O2118.5 (3)
C4—C3—Br1118.5 (2)C7—C26—C11122.6 (3)
C4—C3—C2121.3 (3)O3—C27—C17122.8 (2)
C3—C2—H2120.0O3—C27—C13116.0 (2)
C1—C2—C3120.0 (3)C13—C27—C17121.2 (2)
C1—C2—H2120.0C17—C18—C19113.8 (2)
H24A—C24—H24B107.8C17—C18—H18A108.8
C1—C24—H24A109.0C17—C18—H18B108.8
C1—C24—H24B109.0C19—C18—H18A108.8
C1—C24—C23112.8 (2)C19—C18—H18B108.8
C23—C24—H24A109.0H18A—C18—H18B107.7
C23—C24—H24B109.0O4—C31—H31A110.0
C11—C10—H10119.2O4—C31—H31B110.0
C9—C10—H10119.2O4—C31—C32108.4 (2)
C9—C10—C11121.5 (3)H31A—C31—H31B108.4
C19—C20—H20119.6C32—C31—H31A110.0
C21—C20—H20119.6C32—C31—H31B110.0
C21—C20—C19120.8 (3)C10—C9—C8119.8 (3)
C16—C17—C27118.3 (2)C10—C9—H9120.1
C16—C17—C18119.6 (2)C8—C9—H9120.1
C27—C17—C18122.1 (2)N5—N4—C32117.2 (4)
C10—C11—C26117.3 (3)C5—C6—C7113.5 (2)
C10—C11—C12120.8 (3)C5—C6—H6A108.9
C26—C11—C12121.8 (3)C5—C6—H6B108.9
C15—C14—H14120.1C7—C6—H6A108.9
C15—C14—C13119.9 (2)C7—C6—H6B108.9
C13—C14—H14120.1H6A—C6—H6B107.7
C20—C19—C18120.9 (2)C11—C12—C13110.4 (2)
C28—C19—C20117.6 (3)C11—C12—H12A109.6
C28—C19—C18121.4 (3)C11—C12—H12B109.6
O1—C25—C1116.0 (2)C13—C12—H12A109.6
O1—C25—C5122.6 (2)C13—C12—H12B109.6
C5—C25—C1121.3 (3)H12A—C12—H12B108.1
C19—C28—O4118.2 (2)C31—C32—H32A109.8
C23—C28—O4119.3 (2)C31—C32—H32B109.8
C23—C28—C19122.4 (3)N4—C32—C31109.5 (3)
C14—C13—C27118.9 (2)N4—C32—H32A109.8
C14—C13—C12121.1 (2)N4—C32—H32B109.8
C27—C13—C12119.9 (2)H32A—C32—H32B108.2
C7—C8—H8119.6O2—C29—H29A110.1
C7—C8—C9120.7 (3)O2—C29—H29B110.1
C9—C8—H8119.6O2—C29—C30107.8 (3)
C2—C1—C24121.9 (2)H29A—C29—H29B108.5
C2—C1—C25118.4 (2)C30—C29—H29A110.1
C25—C1—C24119.7 (2)C30—C29—H29B110.1
C25—C5—C6121.3 (3)N6—N5—N4172.0 (6)
C4—C5—C25118.8 (3)C29—C30—H30A109.7
C4—C5—C6119.8 (3)C29—C30—H30B109.7
C28—C23—C24122.3 (2)C29—C30—N1109.6 (3)
C22—C23—C24119.8 (3)H30A—C30—H30B108.2
C22—C23—C28117.9 (2)N1—C30—H30A109.7
C23—C22—H22119.8N1—C30—H30B109.7
C21—C22—C23120.5 (3)N2—N1—C30116.2 (4)
C21—C22—H22119.8N3—N2—N1171.8 (5)
Br2—C15—C14—C13179.3 (2)C8—C7—C26—O2178.4 (2)
Br1—C3—C2—C1176.2 (2)C8—C7—C26—C112.0 (4)
Br1—C3—C4—C5177.3 (2)C8—C7—C6—C575.5 (4)
O4—C28—C23—C241.7 (4)C1—C24—C23—C28106.9 (3)
O4—C28—C23—C22179.5 (2)C1—C24—C23—C2270.9 (3)
O4—C31—C32—N469.0 (3)C1—C25—C5—C42.7 (4)
O1—C25—C1—C2174.8 (2)C1—C25—C5—C6179.4 (3)
O1—C25—C1—C244.4 (4)C5—C25—C1—C21.7 (4)
O1—C25—C5—C4173.5 (3)C5—C25—C1—C24179.1 (2)
O1—C25—C5—C63.1 (4)C23—C24—C1—C2107.3 (3)
O2—C29—C30—N169.2 (4)C23—C24—C1—C2573.5 (3)
C16—C15—C14—C130.3 (4)C23—C22—C21—C202.2 (4)
C16—C17—C27—O3177.9 (3)C21—C20—C19—C281.3 (4)
C16—C17—C27—C130.7 (4)C21—C20—C19—C18177.0 (2)
C16—C17—C18—C19109.8 (3)C7—C8—C9—C101.5 (4)
C15—C16—C17—C271.0 (4)C4—C3—C2—C12.5 (4)
C15—C16—C17—C18179.5 (3)C4—C5—C6—C7115.9 (3)
C15—C14—C13—C270.0 (4)C26—O2—C29—C30174.4 (3)
C15—C14—C13—C12177.4 (2)C26—C11—C12—C13108.9 (3)
C3—C2—C1—C24178.3 (2)C26—C7—C6—C5102.6 (3)
C3—C2—C1—C250.9 (4)C27—C17—C18—C1971.7 (4)
C2—C3—C4—C51.5 (4)C27—C13—C12—C1176.6 (3)
C24—C23—C22—C21177.5 (2)C18—C17—C27—O30.6 (4)
C10—C11—C26—O2179.7 (2)C18—C17—C27—C13179.2 (3)
C10—C11—C26—C73.3 (4)C18—C19—C28—O41.6 (4)
C10—C11—C12—C1366.7 (3)C18—C19—C28—C23174.4 (2)
C20—C19—C28—O4180.0 (2)C31—O4—C28—C1986.8 (3)
C20—C19—C28—C234.0 (4)C31—O4—C28—C2397.1 (3)
C20—C19—C18—C1780.6 (3)C9—C10—C11—C262.2 (4)
C17—C16—C15—Br2179.8 (2)C9—C10—C11—C12173.6 (2)
C17—C16—C15—C140.8 (4)C9—C8—C7—C260.5 (4)
C11—C10—C9—C80.1 (4)C9—C8—C7—C6178.6 (2)
C14—C13—C27—O3178.5 (2)C6—C5—C4—C3177.8 (3)
C14—C13—C27—C170.2 (4)C6—C7—C26—O20.2 (4)
C14—C13—C12—C11100.8 (3)C6—C7—C26—C11176.2 (2)
C19—C20—C21—C221.7 (4)C12—C11—C26—O23.9 (4)
C19—C28—C23—C24174.3 (2)C12—C11—C26—C7172.5 (2)
C19—C28—C23—C223.5 (4)C12—C13—C27—O34.0 (4)
C25—C5—C4—C31.1 (4)C12—C13—C27—C17177.2 (3)
C25—C5—C6—C767.5 (4)C29—O2—C26—C1190.4 (3)
C28—O4—C31—C32165.3 (2)C29—O2—C26—C793.0 (3)
C28—C19—C18—C1797.7 (3)C29—C30—N1—N2115.8 (4)
C28—C23—C22—C210.4 (4)N5—N4—C32—C31125.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.841.872.691 (3)164
O1—H1···O20.841.952.764 (3)162
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 22-73-00052, https://rscf.ru/en/project/22-73-00052/).

References

First citationAsfari, Z., Bohmer, V., Harrowfield, J. & Vicens, J. (2001). Calixarenes 2001, p. 692. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBohmer, V. (2003). Calixarenes in The Chemistry of Phenols edited by Z. Rappoport, pp. 1369–1454. New York: John Wiley & Sons.  Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDvořáková, H., Lang, J., Vlach, J., Sýkora, J., Čajan, M., Himl, M., Pojarová, M., Stibor, I. & Lhoták, P. (2007). J. Org. Chem. 72, 7157–7166.  Web of Science PubMed Google Scholar
First citationGorbunov, A., Ozerov, N., Malakhova, M., Eshtukov, A., Cheshkov, D., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2021). Org. Chem. Front. 8, 3853–3866.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrebs, F. C., Larsen, M., Jørgensen, M., Jensen, P. R., Bielecki, M. & Schaumburg, K. (1998). J. Org. Chem. 63, 9872–9879.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalakhova, M., Gorbunov, A., Lentin, I., Kovalev, V. & Vatsouro, I. (2022b). Org. Biomol. Chem. 20, 8092–8103.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMalakhova, M., Gorbunov, A., Ozerov, N., Korniltsev, I., Ermolov, K., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2022a). Org. Chem. Front. 9, 3084–3092.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeri, P., Sessler, J. & Wang, M.-X. (2016). Calixarenes and Beyond, p. 1062. Cham: Springer.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, M., Sun, Z., Han, C., Tian, D., Li, H. & Kim, J. (2014). Chem. Asian J. 9, 2344–2357.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSýkora, J., Budka, J., Lhoták, P., Stibor, I. & Císařová, I. (2005). Org. Biomol. Chem. 3, 2572–2578.  Web of Science PubMed Google Scholar
First citationVicens, J., Harrowfield, J. & Baklouti, L. (2007). Calixarenes in the Nanoworld, p. 395. Cham: Springer.  Google Scholar
First citationWang, W., Yang, W., Guo, R. & Gong, S. (2015). CrystEngComm, 17, 7663–7675.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, W., Vittal, J. & Puddephatt, R. (1996). Can. J. Chem. 74, 766–774.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds