research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (6,9-di­acetyl-5,10,15,20-tetra­phenyl­secochlorinato)nickel(II)

crossmark logo

aDepartment of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
*Correspondence e-mail: c.bruckner@uconn.edu, zeller4@purdue.edu

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 9 May 2024; accepted 20 May 2024; online 24 May 2024)

Title compound 1Ni, [Ni(C46H32N4O2)], a secochlorin nickel complex, was prepared by diol cleavage of a precursor trans-di­hydroxy­dimethyl­chlorin. Two crystallographically independent mol­ecules in the structure are related by pseudo-A lattice centering, with mol­ecules differing mainly by a rotation of one of the acetyls and an adjacent phenyl groups. The two mol­ecules have virtually identical conformations characterized by noticeable in-plane deformation in the A1g mode and a prominent out-of-plane deformation in the B1u (ruffling) mode. Directional inter­actions between mol­ecules are scarce, limited to just a few C—H⋯O contacts, and inter­molecular inter­actions are mostly dispersive in nature.

1. Chemical context

Chlorins are 7,8-di­hydro­porphyrins, i.e., porphyrins reduced at one of the pyrrolic β,β′-double bonds (Borbas, 2016[Borbas, K. E. (2016). Handbook of Porphyrin Science, pp. 1-149. Singapore: World Scientific Publishing Company.]; Taniguchi & Lindsey, 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]; Lindsey, 2015[Lindsey, J. S. (2015). Chem. Rev. 115, 6534-6620.]). The chloro­phylls, nature's light harvesting pigments, are magnesium complexes of chlorins (Taniguchi & Lindsey, 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]). In large part because of the role of this member of the ‘pigments of life’ (Battersby, 2000[Battersby, A. R. (2000). Nat. Prod. Rep. 17, 507-526.]) in photosynthesis, chlorins are a broadly investigated compound class.

Secochlorins are compounds in which a pyrrolic β,β′-double bond was cleaved (Brückner et al., 2014[Brückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-276. River Edge, NY: World Scientific.]; Thuita & Brückner, 2022[Thuita, D. W. & Brückner, C. (2022). Chem. Rev. 122, 7990-8052.]). These compounds have no known precedent among the natural porphyrinic pigments or their degradation products (Kräutler, 2014[Kräutler, B. (2014). Chem. Soc. Rev. 43, 6227-6238.]; Wojaczyński, 2014[Wojaczyński, J. (2014). Top. Heterocycl. Chem. 33, 143-202.]). The handful of examples of secochlorins prepared to date were made by oxidative modifications of functionalized porphyrin or chlorin β,β′-bonds (Brückner et al., 2014[Brückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-276. River Edge, NY: World Scientific.]; Thuita & Brückner, 2022[Thuita, D. W. & Brückner, C. (2022). Chem. Rev. 122, 7990-8052.]). The first secochlorin was discovered fortuitously (Chang et al., 1992[Chang, C. K., Wu, W., Chern, S.-S. & Peng, S.-M. (1992). Angew. Chem. Int. Ed. Engl. 31, 70-72.]). Since then, a number of rational oxidative β,β′-bond cleavage reaction sequences have been developed to prepare (metallo)secochlorins of the octa­alkyl- (Adams et al., 1997[Adams, K. R., Bonnett, R., Burke, P. J., Salgado, A. & Asunción Vallés, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1769-1772.]; Sessler et al., 2001[Sessler, J. L., Shevchuk, S. V., Callaway, W. & Lynch, V. (2001). Chem. Commun. pp. 968-969.]; Ryppa et al., 2009[Ryppa, C., Niedzwiedzki, D., Morozowich, N. L., Srikanth, R., Zeller, M., Frank, H. A. & Brückner, C. (2009). Chem. Eur. J. 15, 5749-5762.]) and the meso-tetra­aryl­porphyrin series (Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.], 1999[Brückner, C., Sternberg, E. D., MacAlpine, J. K., Rettig, S. J. & Dolphin, D. (1999). J. Am. Chem. Soc. 121, 2609-2610.], 2005[Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943-2953.]; McCarthy et al., 2004[McCarthy, J. R., Hyland, M. A. & Brückner, C. (2004). Org. Biomol. Chem. 2, 1484-1491.]; Akhigbe et al., 2009[Akhigbe, J., Ryppa, C., Zeller, M. & Brückner, C. (2009). J. Org. Chem. 74, 4927-4933.]; Sharma et al., 2016[Sharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350-12356.]; Lo et al., 2012[Lo, M., Lefebvre, J.-F., Marcotte, N., Tonnelé, C., Beljonne, D., Lazzaroni, R., Clément, S. & Richeter, S. (2012). Chem. Commun. 48, 3460-3462.]). Following a β,β′-bond-opening, subsequent intra­molecular reactions of the secochlorins with the adjacent meso-aryl- or β-alkyl groups are not infrequent (Adams et al., 1997[Adams, K. R., Bonnett, R., Burke, P. J., Salgado, A. & Asunción Vallés, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1769-1772.]; McCarthy et al., 2004[McCarthy, J. R., Hyland, M. A. & Brückner, C. (2004). Org. Biomol. Chem. 2, 1484-1491.]; Ryppa et al., 2009[Ryppa, C., Niedzwiedzki, D., Morozowich, N. L., Srikanth, R., Zeller, M., Frank, H. A. & Brückner, C. (2009). Chem. Eur. J. 15, 5749-5762.]; Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]; Zhu et al., 2022[Zhu, M., Zhang, H., Ran, G., Yao, Y., Yang, Z.-S., Ning, Y., Yu, Y., Zhang, R., Peng, X.-X., Wu, J., Jiang, Z., Zhang, W., Wang, B.-W., Gao, S. & Zhang, J.-L. (2022). Angew. Chem. Int. Ed. 61, e202204330.]).

The title compound 1Ni, a secochlorin nickel complex, was prepared by diol cleavage of trans-di­hydroxy­chlorin 2Ni, itself made in a multi-step process from cis-diol chlorin 3Ni (Fig. 1[link]). It has been used in the preparation of a number of porphyrinoids containing non-pyrrolic heterocycles (Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]; Sharma et al., 2016[Sharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350-12356.]).

[Scheme 1]
[Figure 1]
Figure 1
Synthetic pathway to secochlorin nickel(II) complexes 1Ni and 5Ni by oxidative diol cleavage of a precursor diol.

Chlorin diol 3Ni could also be cleaved, generating bis­aldehyde 5Ni (Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.], 1999[Brückner, C., Sternberg, E. D., MacAlpine, J. K., Rettig, S. J. & Dolphin, D. (1999). J. Am. Chem. Soc. 121, 2609-2610.], 2005[Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943-2953.]). A comparison of the crystal structures of the di­hydroxy­chlorins 2Ni/3Ni and the corresponding secochlorins 1Ni/5Ni provides further insight into the conformational changes induced by breaking the structural integrity of the porphyrin framework (Brückner et al., 2005[Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943-2953.]) and the influence of β-alkyl­ation.

2. Structural commentary

1Ni crystallized in a centrosymmetric triclinic setting in space group P[\overline{1}], with two crystallographically independent mol­ecules (Z′ = 2) (Fig. 2[link]). The structure of 1Ni confirms its rare secochlorin bis­ketone connectivity that was previously derived spectroscopically and by means of subsequent reactions (Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]; Sharma et al., 2016[Sharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350-12356.]). Bond lengths and angles are in the expected ranges. Noteworthy, however, are the C—N bonds around the cleavage site at N1, which show a clear asymmetry present in both mol­ecules. The lengths for N1—C3 are 1.3687 (15) and 1.3661 (15) Å in the two mol­ecules 1Ni-1 and 1Ni-2, while the two N1—C20 bonds are substanti­ally longer at 1.3879 (15) and 1.3997 (15) Å. For most of the other bonds of the secochlorin skeleton no such clear differentiation is observed.

[Figure 2]
Figure 2
Displacement ellipsoid view of the two mol­ecules of the structure of compound 1Ni with atom-labeling scheme (50% probability ellipsoids). Left: mol­ecule 1Ni-1. Right: Mol­ecule 1Ni-2.

The two crystallographically independent mol­ecules of the secochlorinato nickel complex 1Ni are related by pseudo-A lattice centering (Fig. 3[link]). Exact translational symmetry is broken by different torsion angles for one of the acetyl groups (O1, C1, C2). In mol­ecule 1, the N—C—C—O torsion angle between the non-pyrrolic N atom N1 and keto-oxygen O1 is 39.90 (19)°; in mol­ecule 2 the same torsion angle is −37.75 (17)°. The same torsion angles for the methyl C atom C1 instead of O1 are 143.45 (13)° (mol­ecule 1) and −130.33 (13)° (mol­ecule 2). The acetyl groups of the two mol­ecules are thus rotated with respect to each other, by ca 78 and 86° for keto O and methyl C atoms, respectively. The different values for C and O atoms are caused by a slight non-planarity of the acetyl group of mol­ecule 1, with C1 being offset from the plane of the C3, C2 and O1 by 0.230 (5) Å. This rotation results in a significantly different O1⋯O2 distance in the two mol­ecules: 2.7997 (17) Å in mol­ecule 1, and 3.2286 (16) Å in mol­ecule 2. It also places the methyl groups in the two mol­ecules on opposite sides of their neighboring phenyl rings of C23 to C28, which in turn induces different orientations of this ring between the two mol­ecules [C3—C4—C23—C24 = −130.42 (14) and 115.13 (15)° for mol­ecules 1 and 2, respectively]. The different orientation of the phenyl ring prevents an intra­molecular C—H⋯O hydrogen bond between C28 and O2 that is present in mol­ecule 1 to be formed in mol­ecule 2. A second C—H⋯O hydrogen bond (between C42 and O1) is present for both mol­ecules (see Table 1[link] for numerical details). The phenyl group on the opposite end of the mol­ecule (C35–C40) is also slightly modulated, but much less so than the acetyl group and C23–C28 (torsion angles only differ by ca 29°). The remaining atoms of the two mol­ecules are related by close to perfect translational symmetry, and the conformations of their secochlorin cores are thus qualitatively and qu­anti­tatively very similar to each other.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28_1—H28_1⋯O2_1 0.95 2.60 3.4517 (17) 149
C42_1—H42_1⋯O1_1 0.95 2.55 3.3855 (17) 147
C42_2—H42_2⋯O1_2 0.95 2.66 3.5120 (17) 149
C6_1—H6_1⋯O2_1i 0.95 2.49 3.3714 (16) 155
C6_2—H6_2⋯O2_2ii 0.95 2.57 3.3569 (17) 140
C17_2—H17_2⋯O1_2iii 0.95 2.40 3.2977 (16) 158
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
View down [01[\overline{1}]] (slightly offset) showing the pseudo-A lattice centering relating the two mol­ecules with each other (front: mol­ecule 1Ni-1; back: mol­ecule 1Ni-2). For clarity only selected labels for mol­ecule 1 are shown.

Importantly, the structure determination of 1Ni also allows for a detailed analysis of the conformation of the macrocycle. For both mol­ecules 1Ni-1 and 1Ni-2 the conformations of the chromophores deviate greatly from planarity. On account of the small central nickel(II) ion inducing strain into the macrocycle, nickel(II) porphyrin and chlorin complexes tend to be non-planar, adopting commonly a ruffled conformation (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.]). This is because the ruffled deformation mode effectively shortens the Ni—N bond lengths, without distorting the near-ideal planar coordination geometry of the four nitro­gen donors around the metal. This is also the case here, and the N—Ni bond lengths vary only within a small margin, with values between 1.8845 (10) and 1.9128 (10) Å, and the coordination of the nickel atoms is close to perfectly square planar. To compare 1Ni to other related compounds and obtain a qualitative and qu­anti­tative analysis of its conformation, we performed a normal-coordinate structural decomposition (NSD) analysis of the macrocycle conformation of the two mol­ecules of 1Ni-1 and 1Ni-2, of the starting diol nickel complex 2Ni and of its aldehyde analogue 5Ni (Fig. 4[link]) (Jentzen et al., 1997[Jentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]; Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.]).

[Figure 4]
Figure 4
Bar diagrams of the in-plane (a) and out-of-plane (b) macrocycles NSD deformation analyses of the compounds 1Ni-1, 1Ni-2, 2Ni, and 5Ni; analyses by the porphyrin NSD online tool (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.]), based on the method of Shelnutt (Jentzen et al., 1997[Jentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]). Stick representations of the X-ray single-crystal structures are shown below (c through e); for 1Ni, only 1Ni-1 is shown; all H atoms attached to sp3-hybridized carbon atoms, all meso-aryl groups, as well as all disorder and solvents removed for clarity. Next to the stick structures are the in-plane skeletal plots of the porphyrin core of the compounds indicated (black trace), compared to that of a benchmark planar porphyrin [meso-tetra­phenyl­porphyrinato]copper(II) (red trace), as well as their out-of-plane skeletal plots.

Both mol­ecules 1Ni-1 and 1Ni-2 show in-plane compressed conformations, with the most prominent in-plane deformation in the A1g mode. This is combined with drastically ruffled out-of-plane deformations with significant waving and propellering contributions. These deformation modes are typical for nickel porphyrins and chlorins (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.]) and their large extent was previously observed in secochlorins (Brückner et al., 2005[Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943-2953.]). The macrocycle conformation aligns the two ketone functionalities to be arranged anti­parallel to each other. Qualitatively and qu­anti­tatively, the conformation of bis­ketone 1Ni is very similar to that of bis­aldehyde 5Ni, showing that the additional alkyl substituents in 1Ni do not have any significant steric influence. While parent chlorin diol complex 2Ni is also ruffled, it is much less so, with much smaller waving and propellering deformations as well. Accordingly, the average N—Ni bond length in 2Ni is longer (1.908 Å) compared to the corresponding bond lengths found in 1Ni (1.901 Å) or 5Ni (1.893 Å). The changes observed upon ring-opening align with what was previously observed (Brückner et al., 2005[Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943-2953.]).

3. Supra­molecular features

In addition to the intra­molecular C—H⋯O bonds within each mol­ecule, there are also a small number of weak C—H⋯O hydrogen bond-like inter­actions present that connect mol­ecules of 1Ni with each other (Fig. 5[link]; see Table 1[link] for numerical values and symmetry operators). Some weak C—H⋯π inter­actions are also present (not shown), but these are too weak to be classified as directional and they are unlikely to have any strong structure-determining effects. Instead, inter­molecular inter­actions in the structure of 1Ni are dominated by non-directional dispersion inter­actions (van der Waals inter­actions). This is qu­anti­tatively confirmed by analysis of the Hirshfeld surfaces of the two mol­ecules (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]; Crystal Explorer, Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which are dominated by C⋯H and H⋯H and reciprocal contacts, making up 23.5 and 59.2% of the Hirshfeld surface of 1Ni-1, and 23.2 and 58.7% for 1Ni-2. The shortest contacts are some of the H⋯H contacts, and the few directional C–H⋯O inter­actions (for visualization, see Fig. 6[link] showing the de versus di fingerprint plots for H⋯H and H⋯O contacts for 1Ni-1). N⋯H and Ni⋯H contacts are also observed (5.0 and 2.0% for 1Ni-1, 4.9% and 2.0% for 1Ni-2), but distances are rather long and the inter­actions are non-directional. The deformation modes of the mol­ecules also prevent any effective π-stacking inter­actions to be established in the structure, which is confirmed by the low number for C⋯C contacts on the Hirshfeld surface (3.6 and 3.0% for the two mol­ecules).

[Figure 5]
Figure 5
Packing view showing intra- and inter­molecular C—H⋯O hydrogen bonds in 1Ni. Mol­ecules 1Ni-1 are to the left and right at (x, 0, z) and (x, 1, z), mol­ecules 1Ni-2 at the center at (x, ½, z). Note that all C—H⋯O hydrogen bonds are formed between mol­ecules 1, and between mol­ecules 2, thus forming C—H⋯O bonded layers, while all inter­actions between mol­ecules 1 and 2 are purely van der Waals in nature.
[Figure 6]
Figure 6
Selected fingerprint plots highlighting the dominance of inter­actions involving H atoms in the structure of 1Ni. Shown are de versus di plots (Crystal Explorer; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) of H⋯H inter­actions (left) and O⋯H/H⋯O inter­actions (right) for mol­ecule 1Ni-1 (plots for mol­ecule 1Ni-2 are equivalent).

4. Database survey

The structures most closely related to title compound 1Ni are its aldehyde analogue 5Ni [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) code GUBWAB; Brückner et al., 1999[Brückner, C., Sternberg, E. D., MacAlpine, J. K., Rettig, S. J. & Dolphin, D. (1999). J. Am. Chem. Soc. 121, 2609-2610.]], as well as two related bis-ketone derivatives in which the C atoms of the cleaved pyrrole have been annelated to the adjacent phenyl rings to form an indaphyrin (meso-di­phenyl­indaporphyrinato)platinum(II) (CSD entry SUNXAB; Lau et al., 2009[Lau, K. S. F., Zhao, S., Ryppa, C., Jockusch, S., Turro, N. J., Zeller, M., Gouterman, M., Khalil, G. E. & Brückner, C. (2009). Inorg. Chem. 48, 4067-4074.]) and its bis­hydroxy­lated indachlorin counterpart (CSD entry OJEHAO; Samankumara et al., 2015[Samankumara, L. P., Dorazio, S. J., Akhigbe, J., Li, R., Nimthong-Roldán, A., Zeller, M. & Brückner, C. (2015). Chem. Eur. J. 21, 11118-11128.]).

5. Synthesis and crystallization

The title compound 1Ni was prepared by classic lead(IV)-induced diol cleavage of trans-di­hydroxy­chlorin 2Ni. This diol was made in two steps from cis-diol 3Ni: oxidation to dione 4Ni (Daniell et al., 2003[Daniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003). Tetrahedron Lett. 44, 4045-4049.]), followed by double methyl-Grignard addition (Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]). Crystals of 1Ni were grown by slow evaporation of a solution of 1Ni in CHCl3/hexane to dryness. The spectroscopic data of 1Ni have been reported previously (Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two crystallographically independent mol­ecules are present in the asymmetric unit of the structure. A common atom-naming scheme combined with residue numbers 1 and 2 were used for the two mol­ecules, which are related by pseudo-A lattice centering. Exact translational symmetry is broken by different torsion angles of one of the acetyl groups (O1, C1, C2), of the adjacent phenyl group C23 to C28), and of the phenyl group trans across the mol­ecule (C35 to C40).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C46H32N4O2)]
Mr 731.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 14.1382 (5), 15.3202 (5), 18.3835 (7)
α, β, γ (°) 72.0900 (18), 69.6031 (19), 74.6737 (18)
V3) 3495.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.24 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker AXS D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.701, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 226909, 26754, 19735
Rint 0.056
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.01
No. of reflections 26754
No. of parameters 959
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.07, −0.42
Computer programs: APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

C—H bond distances were constrained to 0.95 Å for aromatic moieties, and to 0.98 Å for CH3 moieties. Methyl CH3 groups were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and 1.2 for C—H units, respectively.

Supporting information


Computing details top

(6,9-Diacetyl-5,10,15,20-tetraphenylsecochlorinato)nickel(II) top
Crystal data top
[Ni(C46H32N4O2)]Z = 4
Mr = 731.46F(000) = 1520
Triclinic, P1Dx = 1.390 Mg m3
a = 14.1382 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.3202 (5) ÅCell parameters from 9410 reflections
c = 18.3835 (7) Åθ = 2.2–33.1°
α = 72.0900 (18)°µ = 0.60 mm1
β = 69.6031 (19)°T = 150 K
γ = 74.6737 (18)°Block, black
V = 3495.8 (2) Å30.24 × 0.16 × 0.14 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
26754 independent reflections
Radiation source: fine focus sealed tube X-ray source19735 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.056
Detector resolution: 7.4074 pixels mm-1θmax = 33.2°, θmin = 1.9°
ω and phi scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2323
Tmin = 0.701, Tmax = 0.747l = 2828
226909 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.6735P]
where P = (Fo2 + 2Fc2)/3
26754 reflections(Δ/σ)max = 0.002
959 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1_10.25969 (2)0.35659 (2)0.92873 (2)0.01429 (4)
O1_10.50774 (9)0.18303 (8)1.05354 (7)0.0319 (2)
O2_10.58223 (8)0.33407 (9)0.93406 (7)0.0312 (2)
N1_10.38355 (8)0.31234 (7)0.95721 (6)0.01569 (18)
N2_10.24377 (8)0.46934 (7)0.95719 (6)0.01615 (18)
N3_10.13540 (8)0.40147 (8)0.89948 (6)0.01684 (19)
N4_10.27362 (8)0.24007 (7)0.90697 (6)0.01638 (18)
C1_10.38050 (13)0.22630 (10)1.16637 (9)0.0284 (3)
H1A_10.3094590.2589941.1732100.043*
H1B_10.4133050.2499171.1936650.043*
H1C_10.3813120.1593691.1892900.043*
C2_10.43835 (11)0.24268 (9)1.07820 (8)0.0209 (2)
C3_10.39427 (9)0.32810 (9)1.02306 (7)0.0165 (2)
C4_10.35152 (9)0.41150 (9)1.04696 (7)0.0165 (2)
C5_10.29060 (9)0.48299 (9)1.00558 (7)0.0164 (2)
C6_10.26648 (10)0.57957 (9)1.00854 (8)0.0196 (2)
H6_10.2894120.6066241.0380330.023*
C7_10.20478 (10)0.62434 (9)0.96112 (8)0.0201 (2)
H7_10.1779020.6891640.9498560.024*
C8_10.18749 (9)0.55514 (9)0.93090 (7)0.0174 (2)
C9_10.11406 (9)0.56829 (9)0.89235 (7)0.0173 (2)
C10_10.08651 (9)0.49248 (9)0.88161 (7)0.0177 (2)
C11_10.00208 (10)0.49644 (10)0.85849 (8)0.0223 (2)
H11_10.0463780.5511160.8402640.027*
C12_10.01033 (10)0.40691 (10)0.86772 (8)0.0228 (2)
H12_10.0634700.3871290.8597200.027*
C13_10.07627 (10)0.34801 (9)0.89178 (8)0.0189 (2)
C14_10.09973 (10)0.25128 (10)0.90294 (8)0.0202 (2)
C15_10.19504 (10)0.20055 (9)0.90892 (8)0.0192 (2)
C16_10.23266 (11)0.10522 (9)0.90465 (9)0.0233 (3)
H16_10.1935430.0619510.9073290.028*
C17_10.33495 (11)0.08832 (9)0.89605 (8)0.0221 (2)
H17_10.3811820.0315900.8901420.027*
C18_10.35961 (10)0.17279 (9)0.89760 (7)0.0172 (2)
C19_10.45760 (9)0.18739 (9)0.88887 (7)0.0166 (2)
C20_10.46814 (9)0.25855 (8)0.91549 (7)0.0160 (2)
C21_10.56934 (10)0.29057 (9)0.89428 (8)0.0196 (2)
C22_10.65030 (11)0.27887 (11)0.81656 (9)0.0269 (3)
H22A_10.6174940.2763900.7784200.040*
H22B_10.6989740.2209020.8265050.040*
H22C_10.6868320.3317380.7944410.040*
C23_10.38006 (10)0.42935 (9)1.11065 (7)0.0178 (2)
C24_10.30557 (11)0.45948 (10)1.17573 (8)0.0227 (2)
H24_10.2352190.4730751.1778510.027*
C25_10.33437 (13)0.46950 (11)1.23718 (9)0.0294 (3)
H25_10.2835170.4888851.2817420.035*
C26_10.43730 (14)0.45131 (11)1.23382 (9)0.0312 (3)
H26_10.4566450.4572351.2764260.037*
C27_10.51154 (13)0.42456 (11)1.16830 (9)0.0289 (3)
H27_10.5820160.4140311.1651240.035*
C28_10.48303 (11)0.41309 (10)1.10711 (8)0.0223 (2)
H28_10.5342210.3940051.0625520.027*
C29_10.05941 (10)0.66507 (9)0.86838 (7)0.0187 (2)
C30_10.11538 (11)0.73360 (10)0.81570 (8)0.0232 (3)
H30_10.1872490.7171300.7932800.028*
C31_10.06760 (12)0.82552 (10)0.79557 (9)0.0292 (3)
H31_10.1067850.8714570.7597640.035*
C32_10.03757 (13)0.85035 (11)0.82780 (10)0.0312 (3)
H32_10.0704470.9132490.8143790.037*
C33_10.09416 (12)0.78273 (11)0.87963 (9)0.0290 (3)
H33_10.1661390.7994220.9013610.035*
C34_10.04645 (10)0.69064 (10)0.90010 (8)0.0233 (3)
H34_10.0859620.6448950.9357910.028*
C35_10.01980 (11)0.20077 (10)0.90774 (9)0.0251 (3)
C36_10.04101 (13)0.16268 (12)0.98291 (11)0.0350 (3)
H36_10.0294580.1672441.0294130.042*
C37_10.11882 (16)0.11784 (15)0.99029 (15)0.0520 (5)
H37_10.1611470.0930251.0417750.062*
C38_10.13451 (18)0.10941 (17)0.92327 (18)0.0633 (7)
H38_10.1866910.0776270.9284610.076*
C39_10.0749 (2)0.1468 (2)0.84893 (18)0.0702 (8)
H39_10.0859610.1409040.8027060.084*
C40_10.00205 (17)0.19370 (17)0.84066 (13)0.0514 (5)
H40_10.0421380.2206640.7889350.062*
C41_10.54657 (10)0.11626 (9)0.85978 (7)0.0174 (2)
C42_10.60649 (11)0.06204 (9)0.90959 (8)0.0223 (2)
H42_10.5921150.0720940.9611500.027*
C43_10.68732 (11)0.00675 (10)0.88368 (9)0.0263 (3)
H43_10.7275880.0439380.9179160.032*
C44_10.70950 (11)0.02142 (10)0.80829 (9)0.0243 (3)
H44_10.7658230.0674520.7904390.029*
C45_10.64910 (10)0.03141 (10)0.75884 (8)0.0223 (2)
H45_10.6634620.0208080.7074800.027*
C46_10.56776 (10)0.09969 (9)0.78457 (8)0.0200 (2)
H46_10.5262940.1353310.7508310.024*
Ni1_20.28975 (2)0.83249 (2)0.43364 (2)0.01364 (4)
O1_20.50805 (9)0.64893 (7)0.56785 (6)0.0283 (2)
O2_20.62162 (8)0.80644 (8)0.42677 (7)0.0302 (2)
N1_20.41721 (8)0.78939 (7)0.45871 (6)0.01517 (18)
N2_20.27290 (8)0.94258 (7)0.46574 (6)0.01558 (18)
N3_20.16423 (8)0.87745 (7)0.40596 (6)0.01547 (18)
N4_20.30230 (8)0.71786 (7)0.40912 (6)0.01522 (18)
C1_20.58250 (12)0.75395 (11)0.59279 (10)0.0290 (3)
H1A_20.5581840.7394190.6513040.044*
H1B_20.5854760.8205510.5721480.044*
H1C_20.6510450.7175310.5754060.044*
C2_20.50988 (10)0.72984 (9)0.56124 (8)0.0198 (2)
C3_20.43504 (9)0.80502 (8)0.52168 (7)0.0161 (2)
C4_20.38177 (9)0.88045 (8)0.55537 (7)0.0162 (2)
C5_20.31356 (9)0.95134 (8)0.52000 (7)0.0169 (2)
C6_20.27751 (10)1.04387 (9)0.53410 (8)0.0215 (2)
H6_20.2921411.0667220.5708350.026*
C7_20.21887 (10)1.09181 (9)0.48497 (8)0.0216 (2)
H7_20.1879651.1557330.4784910.026*
C8_20.21207 (9)1.02782 (8)0.44431 (7)0.0169 (2)
C9_20.14189 (9)1.04319 (8)0.40260 (7)0.0168 (2)
C10_20.11645 (9)0.96877 (8)0.38785 (7)0.0165 (2)
C11_20.02957 (10)0.97407 (9)0.36228 (8)0.0215 (2)
H11_20.0134791.0292830.3432450.026*
C12_20.02063 (10)0.88518 (10)0.37046 (9)0.0230 (3)
H12_20.0318280.8663110.3607660.028*
C13_20.10522 (9)0.82533 (9)0.39647 (8)0.0180 (2)
C14_20.12783 (10)0.72855 (9)0.40686 (7)0.0179 (2)
C15_20.22293 (10)0.67784 (8)0.41273 (7)0.0168 (2)
C16_20.26007 (10)0.58159 (9)0.41017 (8)0.0188 (2)
H16_20.2204380.5376050.4151280.023*
C17_20.36288 (10)0.56561 (8)0.39928 (7)0.0181 (2)
H17_20.4092130.5089730.3932530.022*
C18_20.38782 (9)0.65083 (8)0.39867 (7)0.0157 (2)
C19_20.48674 (9)0.66652 (8)0.38682 (7)0.0162 (2)
C20_20.49964 (9)0.73750 (8)0.41204 (7)0.0158 (2)
C21_20.60192 (10)0.76690 (9)0.38690 (8)0.0190 (2)
C22_20.67802 (11)0.75820 (11)0.30658 (9)0.0270 (3)
H22A_20.7343470.7063900.3144160.040*
H22B_20.7053350.8161940.2798800.040*
H22C_20.6436400.7463890.2734550.040*
C23_20.39074 (10)0.88720 (9)0.63182 (8)0.0201 (2)
C24_20.43383 (13)0.95701 (11)0.63622 (10)0.0304 (3)
H24_20.4611391.0011930.5890700.037*
C25_20.43662 (16)0.96161 (13)0.70989 (13)0.0447 (5)
H25_20.4657901.0092070.7127570.054*
C26_20.39721 (17)0.89733 (14)0.77919 (12)0.0465 (5)
H26_20.3988560.9013330.8292780.056*
C27_20.35584 (16)0.82798 (14)0.77513 (10)0.0419 (4)
H27_20.3296460.7834140.8223780.050*
C28_20.35222 (12)0.82288 (12)0.70191 (9)0.0289 (3)
H28_20.3230900.7748920.6996720.035*
C29_20.08651 (10)1.14013 (9)0.38022 (7)0.0179 (2)
C30_20.14249 (11)1.21040 (10)0.33178 (9)0.0248 (3)
H30_20.2151631.1958380.3135270.030*
C31_20.09302 (13)1.30144 (10)0.30996 (10)0.0315 (3)
H31_20.1319331.3486050.2767250.038*
C32_20.01331 (13)1.32372 (10)0.33665 (10)0.0311 (3)
H32_20.0471861.3857920.3211710.037*
C33_20.06940 (11)1.25501 (10)0.38582 (9)0.0259 (3)
H33_20.1419501.2701770.4048830.031*
C34_20.02000 (10)1.16353 (9)0.40760 (8)0.0205 (2)
H34_20.0592001.1167500.4413460.025*
C35_20.04848 (10)0.67982 (9)0.40823 (9)0.0227 (2)
C36_20.03873 (12)0.67244 (12)0.47409 (11)0.0331 (3)
H36_20.0470120.6986050.5170190.040*
C37_20.11354 (14)0.62693 (14)0.47709 (14)0.0470 (5)
H37_20.1726230.6218420.5221620.056*
C38_20.10216 (17)0.58903 (15)0.41462 (15)0.0515 (5)
H38_20.1536740.5584730.4165810.062*
C39_20.01596 (19)0.59565 (16)0.34947 (14)0.0533 (6)
H39_20.0081310.5692130.3068100.064*
C40_20.05973 (15)0.64087 (14)0.34582 (11)0.0388 (4)
H40_20.1189400.6451310.3008180.047*
C41_20.57430 (9)0.59449 (8)0.35779 (7)0.0165 (2)
C42_20.63499 (10)0.54212 (9)0.40731 (8)0.0210 (2)
H42_20.6239450.5564850.4566860.025*
C43_20.71183 (11)0.46877 (10)0.38480 (9)0.0248 (3)
H43_20.7524750.4328180.4190870.030*
C44_20.72899 (11)0.44820 (10)0.31237 (9)0.0243 (3)
H44_20.7815990.3983620.2969550.029*
C45_20.66938 (10)0.50038 (10)0.26241 (8)0.0220 (2)
H45_20.6817870.4866100.2125560.026*
C46_20.59137 (10)0.57292 (9)0.28510 (8)0.0201 (2)
H46_20.5497980.6077020.2512350.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni1_10.01363 (7)0.01572 (7)0.01559 (7)0.00219 (5)0.00567 (5)0.00531 (5)
O1_10.0388 (6)0.0289 (5)0.0262 (5)0.0111 (5)0.0166 (5)0.0106 (4)
O2_10.0250 (5)0.0426 (6)0.0359 (6)0.0121 (5)0.0064 (4)0.0206 (5)
N1_10.0157 (4)0.0169 (5)0.0168 (4)0.0017 (4)0.0061 (4)0.0067 (4)
N2_10.0156 (4)0.0177 (5)0.0165 (4)0.0019 (4)0.0058 (4)0.0055 (4)
N3_10.0154 (4)0.0189 (5)0.0178 (5)0.0026 (4)0.0064 (4)0.0051 (4)
N4_10.0165 (4)0.0180 (5)0.0172 (4)0.0045 (4)0.0065 (4)0.0047 (4)
C1_10.0365 (8)0.0232 (6)0.0215 (6)0.0060 (6)0.0057 (6)0.0022 (5)
C2_10.0246 (6)0.0209 (6)0.0211 (6)0.0032 (5)0.0109 (5)0.0062 (5)
C3_10.0165 (5)0.0189 (5)0.0170 (5)0.0025 (4)0.0070 (4)0.0063 (4)
C4_10.0161 (5)0.0187 (5)0.0170 (5)0.0030 (4)0.0056 (4)0.0066 (4)
C5_10.0152 (5)0.0182 (5)0.0174 (5)0.0028 (4)0.0047 (4)0.0069 (4)
C6_10.0194 (6)0.0192 (5)0.0230 (6)0.0040 (4)0.0057 (5)0.0089 (5)
C7_10.0201 (6)0.0175 (5)0.0233 (6)0.0017 (4)0.0064 (5)0.0067 (5)
C8_10.0166 (5)0.0178 (5)0.0180 (5)0.0016 (4)0.0052 (4)0.0055 (4)
C9_10.0152 (5)0.0193 (5)0.0161 (5)0.0011 (4)0.0043 (4)0.0043 (4)
C10_10.0151 (5)0.0214 (6)0.0170 (5)0.0019 (4)0.0058 (4)0.0049 (4)
C11_10.0174 (5)0.0270 (6)0.0244 (6)0.0007 (5)0.0106 (5)0.0065 (5)
C12_10.0174 (6)0.0284 (7)0.0263 (6)0.0039 (5)0.0094 (5)0.0083 (5)
C13_10.0161 (5)0.0234 (6)0.0191 (5)0.0055 (4)0.0058 (4)0.0054 (5)
C14_10.0194 (6)0.0238 (6)0.0209 (6)0.0084 (5)0.0065 (5)0.0054 (5)
C15_10.0198 (6)0.0205 (6)0.0198 (5)0.0058 (5)0.0072 (4)0.0047 (4)
C16_10.0274 (7)0.0187 (6)0.0283 (6)0.0081 (5)0.0111 (5)0.0051 (5)
C17_10.0255 (6)0.0175 (6)0.0268 (6)0.0040 (5)0.0100 (5)0.0071 (5)
C18_10.0194 (5)0.0166 (5)0.0177 (5)0.0025 (4)0.0076 (4)0.0051 (4)
C19_10.0178 (5)0.0170 (5)0.0166 (5)0.0009 (4)0.0070 (4)0.0058 (4)
C20_10.0158 (5)0.0176 (5)0.0161 (5)0.0010 (4)0.0061 (4)0.0059 (4)
C21_10.0166 (5)0.0194 (6)0.0241 (6)0.0018 (4)0.0075 (5)0.0064 (5)
C22_10.0227 (6)0.0265 (7)0.0291 (7)0.0075 (5)0.0000 (5)0.0096 (5)
C23_10.0223 (6)0.0178 (5)0.0167 (5)0.0037 (4)0.0074 (4)0.0066 (4)
C24_10.0266 (6)0.0232 (6)0.0198 (6)0.0042 (5)0.0051 (5)0.0089 (5)
C25_10.0403 (8)0.0306 (7)0.0204 (6)0.0066 (6)0.0069 (6)0.0124 (5)
C26_10.0472 (9)0.0314 (7)0.0254 (7)0.0092 (7)0.0189 (6)0.0098 (6)
C27_10.0329 (7)0.0338 (8)0.0298 (7)0.0079 (6)0.0166 (6)0.0108 (6)
C28_10.0230 (6)0.0264 (6)0.0222 (6)0.0061 (5)0.0085 (5)0.0088 (5)
C29_10.0177 (5)0.0197 (5)0.0176 (5)0.0008 (4)0.0065 (4)0.0047 (4)
C30_10.0211 (6)0.0218 (6)0.0237 (6)0.0021 (5)0.0067 (5)0.0024 (5)
C31_10.0314 (7)0.0227 (6)0.0295 (7)0.0041 (6)0.0119 (6)0.0024 (5)
C32_10.0325 (8)0.0223 (7)0.0348 (8)0.0043 (6)0.0155 (6)0.0024 (6)
C33_10.0226 (6)0.0293 (7)0.0299 (7)0.0058 (5)0.0086 (5)0.0074 (6)
C34_10.0198 (6)0.0252 (6)0.0208 (6)0.0008 (5)0.0057 (5)0.0043 (5)
C35_10.0214 (6)0.0253 (6)0.0341 (7)0.0075 (5)0.0114 (5)0.0078 (5)
C36_10.0337 (8)0.0299 (8)0.0424 (9)0.0146 (6)0.0076 (7)0.0063 (7)
C37_10.0419 (10)0.0411 (10)0.0732 (15)0.0254 (9)0.0101 (10)0.0063 (10)
C38_10.0483 (12)0.0566 (13)0.103 (2)0.0304 (11)0.0321 (13)0.0149 (13)
C39_10.0726 (17)0.092 (2)0.0810 (18)0.0400 (15)0.0403 (15)0.0267 (15)
C40_10.0539 (12)0.0751 (15)0.0450 (11)0.0336 (11)0.0198 (9)0.0167 (10)
C41_10.0179 (5)0.0162 (5)0.0190 (5)0.0013 (4)0.0066 (4)0.0055 (4)
C42_10.0258 (6)0.0217 (6)0.0228 (6)0.0020 (5)0.0131 (5)0.0085 (5)
C43_10.0265 (7)0.0230 (6)0.0333 (7)0.0052 (5)0.0168 (6)0.0108 (5)
C44_10.0203 (6)0.0223 (6)0.0307 (7)0.0014 (5)0.0073 (5)0.0116 (5)
C45_10.0220 (6)0.0227 (6)0.0210 (6)0.0013 (5)0.0040 (5)0.0084 (5)
C46_10.0214 (6)0.0199 (6)0.0189 (5)0.0004 (5)0.0072 (5)0.0058 (4)
Ni1_20.01412 (7)0.01168 (7)0.01588 (7)0.00009 (5)0.00590 (5)0.00456 (5)
O1_20.0418 (6)0.0154 (4)0.0287 (5)0.0027 (4)0.0177 (5)0.0046 (4)
O2_20.0261 (5)0.0371 (6)0.0332 (6)0.0126 (4)0.0036 (4)0.0162 (5)
N1_20.0159 (4)0.0135 (4)0.0170 (4)0.0003 (3)0.0063 (4)0.0051 (3)
N2_20.0166 (4)0.0133 (4)0.0173 (4)0.0000 (3)0.0062 (4)0.0050 (4)
N3_20.0151 (4)0.0143 (4)0.0173 (4)0.0007 (3)0.0056 (4)0.0045 (4)
N4_20.0157 (4)0.0131 (4)0.0171 (4)0.0002 (3)0.0057 (4)0.0049 (3)
C1_20.0254 (7)0.0317 (7)0.0349 (8)0.0023 (6)0.0180 (6)0.0104 (6)
C2_20.0214 (6)0.0185 (5)0.0187 (5)0.0013 (4)0.0083 (5)0.0046 (4)
C3_20.0176 (5)0.0138 (5)0.0174 (5)0.0017 (4)0.0063 (4)0.0038 (4)
C4_20.0180 (5)0.0151 (5)0.0177 (5)0.0024 (4)0.0072 (4)0.0052 (4)
C5_20.0176 (5)0.0148 (5)0.0197 (5)0.0009 (4)0.0069 (4)0.0061 (4)
C6_20.0228 (6)0.0177 (6)0.0290 (6)0.0015 (5)0.0112 (5)0.0123 (5)
C7_20.0223 (6)0.0152 (5)0.0291 (6)0.0011 (4)0.0100 (5)0.0089 (5)
C8_20.0164 (5)0.0134 (5)0.0194 (5)0.0006 (4)0.0053 (4)0.0046 (4)
C9_20.0164 (5)0.0149 (5)0.0163 (5)0.0002 (4)0.0041 (4)0.0032 (4)
C10_20.0160 (5)0.0157 (5)0.0164 (5)0.0000 (4)0.0055 (4)0.0033 (4)
C11_20.0198 (6)0.0208 (6)0.0248 (6)0.0022 (5)0.0116 (5)0.0060 (5)
C12_20.0191 (6)0.0245 (6)0.0290 (7)0.0000 (5)0.0124 (5)0.0085 (5)
C13_20.0166 (5)0.0185 (5)0.0200 (5)0.0020 (4)0.0066 (4)0.0059 (4)
C14_20.0175 (5)0.0185 (5)0.0191 (5)0.0030 (4)0.0060 (4)0.0057 (4)
C15_20.0190 (5)0.0154 (5)0.0171 (5)0.0037 (4)0.0054 (4)0.0048 (4)
C16_20.0233 (6)0.0151 (5)0.0193 (5)0.0040 (4)0.0068 (5)0.0046 (4)
C17_20.0239 (6)0.0140 (5)0.0174 (5)0.0015 (4)0.0072 (4)0.0055 (4)
C18_20.0188 (5)0.0136 (5)0.0159 (5)0.0001 (4)0.0067 (4)0.0053 (4)
C19_20.0175 (5)0.0153 (5)0.0154 (5)0.0013 (4)0.0063 (4)0.0052 (4)
C20_20.0156 (5)0.0148 (5)0.0170 (5)0.0006 (4)0.0065 (4)0.0046 (4)
C21_20.0181 (5)0.0162 (5)0.0215 (6)0.0010 (4)0.0060 (4)0.0041 (4)
C22_20.0233 (6)0.0320 (7)0.0228 (6)0.0079 (6)0.0012 (5)0.0064 (5)
C23_20.0214 (6)0.0198 (6)0.0231 (6)0.0018 (4)0.0112 (5)0.0099 (5)
C24_20.0387 (8)0.0216 (6)0.0416 (8)0.0015 (6)0.0247 (7)0.0105 (6)
C25_20.0596 (12)0.0327 (9)0.0645 (12)0.0075 (8)0.0443 (11)0.0262 (9)
C26_20.0631 (13)0.0490 (11)0.0394 (9)0.0152 (9)0.0348 (9)0.0254 (8)
C27_20.0516 (11)0.0508 (11)0.0225 (7)0.0007 (9)0.0145 (7)0.0114 (7)
C28_20.0321 (7)0.0357 (8)0.0205 (6)0.0070 (6)0.0076 (5)0.0078 (6)
C29_20.0191 (5)0.0152 (5)0.0162 (5)0.0012 (4)0.0051 (4)0.0030 (4)
C30_20.0208 (6)0.0200 (6)0.0263 (6)0.0017 (5)0.0039 (5)0.0003 (5)
C31_20.0318 (8)0.0179 (6)0.0344 (8)0.0028 (5)0.0073 (6)0.0041 (5)
C32_20.0331 (8)0.0181 (6)0.0351 (8)0.0052 (5)0.0138 (6)0.0007 (6)
C33_20.0222 (6)0.0210 (6)0.0293 (7)0.0059 (5)0.0081 (5)0.0061 (5)
C34_20.0188 (6)0.0189 (6)0.0190 (5)0.0007 (4)0.0042 (4)0.0027 (4)
C35_20.0208 (6)0.0199 (6)0.0310 (7)0.0051 (5)0.0114 (5)0.0053 (5)
C36_20.0245 (7)0.0303 (8)0.0442 (9)0.0082 (6)0.0039 (6)0.0126 (7)
C37_20.0272 (8)0.0414 (10)0.0714 (14)0.0150 (7)0.0060 (8)0.0138 (9)
C38_20.0454 (11)0.0474 (11)0.0769 (15)0.0252 (9)0.0286 (11)0.0092 (10)
C39_20.0707 (15)0.0594 (13)0.0539 (12)0.0339 (12)0.0297 (11)0.0144 (10)
C40_20.0469 (10)0.0483 (10)0.0332 (8)0.0235 (8)0.0128 (7)0.0122 (7)
C41_20.0169 (5)0.0164 (5)0.0165 (5)0.0011 (4)0.0062 (4)0.0063 (4)
C42_20.0234 (6)0.0205 (6)0.0201 (6)0.0032 (5)0.0098 (5)0.0084 (5)
C43_20.0239 (6)0.0244 (6)0.0268 (6)0.0074 (5)0.0136 (5)0.0098 (5)
C44_20.0204 (6)0.0242 (6)0.0289 (7)0.0049 (5)0.0077 (5)0.0139 (5)
C45_20.0203 (6)0.0269 (6)0.0198 (6)0.0001 (5)0.0043 (5)0.0122 (5)
C46_20.0197 (6)0.0225 (6)0.0183 (5)0.0019 (5)0.0069 (4)0.0085 (5)
Geometric parameters (Å, º) top
Ni1_1—N2_11.8911 (11)Ni1_2—N2_21.8845 (10)
Ni1_1—N4_11.8930 (11)Ni1_2—N4_21.8934 (10)
Ni1_1—N1_11.8957 (10)Ni1_2—N3_21.9106 (10)
Ni1_1—N3_11.9084 (11)Ni1_2—N1_21.9128 (10)
O1_1—C2_11.2141 (17)O1_2—C2_21.2141 (16)
O2_1—C21_11.2122 (16)O2_2—C21_21.2192 (16)
N1_1—C3_11.3687 (15)N1_2—C3_21.3661 (15)
N1_1—C20_11.3879 (15)N1_2—C20_21.3997 (15)
N2_1—C5_11.3680 (15)N2_2—C5_21.3661 (16)
N2_1—C8_11.3853 (16)N2_2—C8_21.3880 (15)
N3_1—C10_11.3772 (16)N3_2—C10_21.3766 (15)
N3_1—C13_11.3804 (16)N3_2—C13_21.3796 (16)
N4_1—C18_11.3678 (16)N4_2—C18_21.3626 (15)
N4_1—C15_11.3844 (16)N4_2—C15_21.3879 (16)
C1_1—C2_11.514 (2)C1_2—C2_21.508 (2)
C1_1—H1A_10.9800C1_2—H1A_20.9800
C1_1—H1B_10.9800C1_2—H1B_20.9800
C1_1—H1C_10.9800C1_2—H1C_20.9800
C2_1—C3_11.5239 (18)C2_2—C3_21.5336 (17)
C3_1—C4_11.3938 (17)C3_2—C4_21.3934 (17)
C4_1—C5_11.4022 (17)C4_2—C5_21.4075 (17)
C4_1—C23_11.4808 (16)C4_2—C23_21.4908 (17)
C5_1—C6_11.4417 (17)C5_2—C6_21.4452 (17)
C6_1—C7_11.3556 (19)C6_2—C7_21.3544 (19)
C6_1—H6_10.9500C6_2—H6_20.9500
C7_1—C8_11.4442 (18)C7_2—C8_21.4420 (18)
C7_1—H7_10.9500C7_2—H7_20.9500
C8_1—C9_11.3912 (17)C8_2—C9_21.3870 (17)
C9_1—C10_11.4048 (18)C9_2—C10_21.4063 (17)
C9_1—C29_11.4898 (18)C9_2—C29_21.4906 (17)
C10_1—C11_11.4381 (17)C10_2—C11_21.4362 (18)
C11_1—C12_11.361 (2)C11_2—C12_21.3583 (19)
C11_1—H11_10.9500C11_2—H11_20.9500
C12_1—C13_11.4342 (19)C12_2—C13_21.4315 (18)
C12_1—H12_10.9500C12_2—H12_20.9500
C13_1—C14_11.3960 (19)C13_2—C14_21.3981 (18)
C14_1—C15_11.3889 (19)C14_2—C15_21.3858 (18)
C14_1—C35_11.4948 (18)C14_2—C35_21.4927 (18)
C15_1—C16_11.4328 (19)C15_2—C16_21.4383 (17)
C16_1—C17_11.361 (2)C16_2—C17_21.3609 (18)
C16_1—H16_10.9500C16_2—H16_20.9500
C17_1—C18_11.4371 (17)C17_2—C18_21.4355 (17)
C17_1—H17_10.9500C17_2—H17_20.9500
C18_1—C19_11.4078 (17)C18_2—C19_21.4121 (17)
C19_1—C20_11.3839 (17)C19_2—C20_21.3801 (17)
C19_1—C41_11.4902 (17)C19_2—C41_21.4881 (16)
C20_1—C21_11.5179 (17)C20_2—C21_21.5027 (18)
C21_1—C22_11.5142 (19)C21_2—C22_21.5145 (19)
C22_1—H22A_10.9800C22_2—H22A_20.9800
C22_1—H22B_10.9800C22_2—H22B_20.9800
C22_1—H22C_10.9800C22_2—H22C_20.9800
C23_1—C28_11.3922 (18)C23_2—C28_21.393 (2)
C23_1—C24_11.3992 (18)C23_2—C24_21.3977 (19)
C24_1—C25_11.3878 (19)C24_2—C25_21.392 (2)
C24_1—H24_10.9500C24_2—H24_20.9500
C25_1—C26_11.390 (2)C25_2—C26_21.388 (3)
C25_1—H25_10.9500C25_2—H25_20.9500
C26_1—C27_11.384 (2)C26_2—C27_21.373 (3)
C26_1—H26_10.9500C26_2—H26_20.9500
C27_1—C28_11.3906 (19)C27_2—C28_21.391 (2)
C27_1—H27_10.9500C27_2—H27_20.9500
C28_1—H28_10.9500C28_2—H28_20.9500
C29_1—C30_11.3950 (19)C29_2—C34_21.3952 (18)
C29_1—C34_11.3985 (18)C29_2—C30_21.3957 (18)
C30_1—C31_11.388 (2)C30_2—C31_21.390 (2)
C30_1—H30_10.9500C30_2—H30_20.9500
C31_1—C32_11.390 (2)C31_2—C32_21.391 (2)
C31_1—H31_10.9500C31_2—H31_20.9500
C32_1—C33_11.386 (2)C32_2—C33_21.382 (2)
C32_1—H32_10.9500C32_2—H32_20.9500
C33_1—C34_11.391 (2)C33_2—C34_21.3944 (18)
C33_1—H33_10.9500C33_2—H33_20.9500
C34_1—H34_10.9500C34_2—H34_20.9500
C35_1—C40_11.381 (2)C35_2—C40_21.393 (2)
C35_1—C36_11.389 (2)C35_2—C36_21.396 (2)
C36_1—C37_11.392 (2)C36_2—C37_21.390 (2)
C36_1—H36_10.9500C36_2—H36_20.9500
C37_1—C38_11.374 (4)C37_2—C38_21.383 (3)
C37_1—H37_10.9500C37_2—H37_20.9500
C38_1—C39_11.370 (4)C38_2—C39_21.380 (3)
C38_1—H38_10.9500C38_2—H38_20.9500
C39_1—C40_11.397 (3)C39_2—C40_21.394 (2)
C39_1—H39_10.9500C39_2—H39_20.9500
C40_1—H40_10.9500C40_2—H40_20.9500
C41_1—C42_11.3953 (18)C41_2—C42_21.3928 (17)
C41_1—C46_11.3975 (17)C41_2—C46_21.3993 (17)
C42_1—C43_11.3915 (19)C42_2—C43_21.3934 (18)
C42_1—H42_10.9500C42_2—H42_20.9500
C43_1—C44_11.386 (2)C43_2—C44_21.3869 (19)
C43_1—H43_10.9500C43_2—H43_20.9500
C44_1—C45_11.391 (2)C44_2—C45_21.387 (2)
C44_1—H44_10.9500C44_2—H44_20.9500
C45_1—C46_11.3891 (18)C45_2—C46_21.3935 (18)
C45_1—H45_10.9500C45_2—H45_20.9500
C46_1—H46_10.9500C46_2—H46_20.9500
N2_1—Ni1_1—N4_1176.50 (5)N2_2—Ni1_2—N4_2175.90 (5)
N2_1—Ni1_1—N1_190.06 (4)N2_2—Ni1_2—N3_290.19 (4)
N4_1—Ni1_1—N1_188.86 (4)N4_2—Ni1_2—N3_290.20 (4)
N2_1—Ni1_1—N3_189.92 (5)N2_2—Ni1_2—N1_289.59 (4)
N4_1—Ni1_1—N3_191.19 (5)N4_2—Ni1_2—N1_290.12 (4)
N1_1—Ni1_1—N3_1179.68 (5)N3_2—Ni1_2—N1_2178.50 (5)
C3_1—N1_1—C20_1114.99 (10)C3_2—N1_2—C20_2115.41 (10)
C3_1—N1_1—Ni1_1121.95 (8)C3_2—N1_2—Ni1_2124.13 (8)
C20_1—N1_1—Ni1_1123.00 (8)C20_2—N1_2—Ni1_2120.46 (8)
C5_1—N2_1—C8_1106.09 (10)C5_2—N2_2—C8_2106.48 (10)
C5_1—N2_1—Ni1_1126.12 (9)C5_2—N2_2—Ni1_2125.72 (8)
C8_1—N2_1—Ni1_1127.72 (8)C8_2—N2_2—Ni1_2127.65 (8)
C10_1—N3_1—C13_1106.00 (10)C10_2—N3_2—C13_2105.79 (10)
C10_1—N3_1—Ni1_1127.71 (9)C10_2—N3_2—Ni1_2127.17 (8)
C13_1—N3_1—Ni1_1126.29 (9)C13_2—N3_2—Ni1_2126.99 (8)
C18_1—N4_1—C15_1106.00 (10)C18_2—N4_2—C15_2105.74 (10)
C18_1—N4_1—Ni1_1127.08 (8)C18_2—N4_2—Ni1_2126.63 (8)
C15_1—N4_1—Ni1_1126.32 (9)C15_2—N4_2—Ni1_2126.67 (8)
C2_1—C1_1—H1A_1109.5C2_2—C1_2—H1A_2109.5
C2_1—C1_1—H1B_1109.5C2_2—C1_2—H1B_2109.5
H1A_1—C1_1—H1B_1109.5H1A_2—C1_2—H1B_2109.5
C2_1—C1_1—H1C_1109.5C2_2—C1_2—H1C_2109.5
H1A_1—C1_1—H1C_1109.5H1A_2—C1_2—H1C_2109.5
H1B_1—C1_1—H1C_1109.5H1B_2—C1_2—H1C_2109.5
O1_1—C2_1—C1_1119.75 (13)O1_2—C2_2—C1_2120.23 (12)
O1_1—C2_1—C3_1122.85 (12)O1_2—C2_2—C3_2117.78 (12)
C1_1—C2_1—C3_1116.68 (12)C1_2—C2_2—C3_2121.98 (12)
N1_1—C3_1—C4_1122.96 (11)N1_2—C3_2—C4_2123.14 (11)
N1_1—C3_1—C2_1115.49 (11)N1_2—C3_2—C2_2117.19 (10)
C4_1—C3_1—C2_1120.56 (11)C4_2—C3_2—C2_2119.38 (11)
C3_1—C4_1—C5_1120.68 (11)C3_2—C4_2—C5_2120.86 (11)
C3_1—C4_1—C23_1119.78 (11)C3_2—C4_2—C23_2121.66 (11)
C5_1—C4_1—C23_1119.17 (11)C5_2—C4_2—C23_2117.42 (11)
N2_1—C5_1—C4_1123.75 (11)N2_2—C5_2—C4_2124.37 (11)
N2_1—C5_1—C6_1110.40 (11)N2_2—C5_2—C6_2109.94 (11)
C4_1—C5_1—C6_1125.84 (11)C4_2—C5_2—C6_2125.68 (11)
C7_1—C6_1—C5_1106.76 (11)C7_2—C6_2—C5_2106.94 (11)
C7_1—C6_1—H6_1126.6C7_2—C6_2—H6_2126.5
C5_1—C6_1—H6_1126.6C5_2—C6_2—H6_2126.5
C6_1—C7_1—C8_1107.26 (11)C6_2—C7_2—C8_2107.30 (11)
C6_1—C7_1—H7_1126.4C6_2—C7_2—H7_2126.4
C8_1—C7_1—H7_1126.4C8_2—C7_2—H7_2126.4
N2_1—C8_1—C9_1124.27 (11)C9_2—C8_2—N2_2124.72 (11)
N2_1—C8_1—C7_1109.40 (11)C9_2—C8_2—C7_2125.10 (11)
C9_1—C8_1—C7_1125.61 (12)N2_2—C8_2—C7_2109.18 (11)
C8_1—C9_1—C10_1121.36 (12)C8_2—C9_2—C10_2121.26 (11)
C8_1—C9_1—C29_1117.74 (11)C8_2—C9_2—C29_2118.14 (11)
C10_1—C9_1—C29_1120.73 (11)C10_2—C9_2—C29_2120.36 (11)
N3_1—C10_1—C9_1124.35 (11)N3_2—C10_2—C9_2124.11 (11)
N3_1—C10_1—C11_1109.92 (11)N3_2—C10_2—C11_2109.93 (11)
C9_1—C10_1—C11_1125.44 (12)C9_2—C10_2—C11_2125.47 (11)
C12_1—C11_1—C10_1106.90 (12)C12_2—C11_2—C10_2107.00 (11)
C12_1—C11_1—H11_1126.6C12_2—C11_2—H11_2126.5
C10_1—C11_1—H11_1126.6C10_2—C11_2—H11_2126.5
C11_1—C12_1—C13_1107.12 (12)C11_2—C12_2—C13_2107.00 (12)
C11_1—C12_1—H12_1126.4C11_2—C12_2—H12_2126.5
C13_1—C12_1—H12_1126.4C13_2—C12_2—H12_2126.5
N3_1—C13_1—C14_1124.80 (12)N3_2—C13_2—C14_2124.81 (11)
N3_1—C13_1—C12_1109.91 (11)N3_2—C13_2—C12_2110.12 (11)
C14_1—C13_1—C12_1125.25 (12)C14_2—C13_2—C12_2125.00 (12)
C15_1—C14_1—C13_1122.27 (12)C15_2—C14_2—C13_2121.64 (11)
C15_1—C14_1—C35_1118.93 (12)C15_2—C14_2—C35_2119.60 (11)
C13_1—C14_1—C35_1118.80 (12)C13_2—C14_2—C35_2118.71 (11)
N4_1—C15_1—C14_1123.63 (12)C14_2—C15_2—N4_2123.45 (11)
N4_1—C15_1—C16_1109.74 (11)C14_2—C15_2—C16_2126.11 (11)
C14_1—C15_1—C16_1125.89 (12)N4_2—C15_2—C16_2109.72 (11)
C17_1—C16_1—C15_1107.11 (11)C17_2—C16_2—C15_2106.83 (11)
C17_1—C16_1—H16_1126.4C17_2—C16_2—H16_2126.6
C15_1—C16_1—H16_1126.4C15_2—C16_2—H16_2126.6
C16_1—C17_1—C18_1106.80 (12)C16_2—C17_2—C18_2106.79 (11)
C16_1—C17_1—H17_1126.6C16_2—C17_2—H17_2126.6
C18_1—C17_1—H17_1126.6C18_2—C17_2—H17_2126.6
N4_1—C18_1—C19_1123.53 (11)N4_2—C18_2—C19_2123.16 (11)
N4_1—C18_1—C17_1110.26 (11)N4_2—C18_2—C17_2110.73 (11)
C19_1—C18_1—C17_1126.19 (12)C19_2—C18_2—C17_2126.08 (11)
C20_1—C19_1—C18_1120.46 (11)C20_2—C19_2—C18_2120.95 (11)
C20_1—C19_1—C41_1122.21 (11)C20_2—C19_2—C41_2122.01 (11)
C18_1—C19_1—C41_1116.89 (11)C18_2—C19_2—C41_2116.37 (11)
C19_1—C20_1—N1_1121.39 (11)C19_2—C20_2—N1_2121.86 (11)
C19_1—C20_1—C21_1123.37 (11)C19_2—C20_2—C21_2121.72 (11)
N1_1—C20_1—C21_1114.92 (10)N1_2—C20_2—C21_2116.33 (10)
O2_1—C21_1—C22_1119.18 (12)O2_2—C21_2—C20_2120.92 (12)
O2_1—C21_1—C20_1121.03 (12)O2_2—C21_2—C22_2118.27 (12)
C22_1—C21_1—C20_1119.32 (11)C20_2—C21_2—C22_2120.43 (11)
C21_1—C22_1—H22A_1109.5C21_2—C22_2—H22A_2109.5
C21_1—C22_1—H22B_1109.5C21_2—C22_2—H22B_2109.5
H22A_1—C22_1—H22B_1109.5H22A_2—C22_2—H22B_2109.5
C21_1—C22_1—H22C_1109.5C21_2—C22_2—H22C_2109.5
H22A_1—C22_1—H22C_1109.5H22A_2—C22_2—H22C_2109.5
H22B_1—C22_1—H22C_1109.5H22B_2—C22_2—H22C_2109.5
C28_1—C23_1—C24_1119.16 (12)C28_2—C23_2—C24_2118.74 (13)
C28_1—C23_1—C4_1119.38 (11)C28_2—C23_2—C4_2118.70 (12)
C24_1—C23_1—C4_1121.43 (12)C24_2—C23_2—C4_2122.54 (13)
C25_1—C24_1—C23_1120.05 (14)C25_2—C24_2—C23_2119.80 (16)
C25_1—C24_1—H24_1120.0C25_2—C24_2—H24_2120.1
C23_1—C24_1—H24_1120.0C23_2—C24_2—H24_2120.1
C24_1—C25_1—C26_1120.31 (14)C26_2—C25_2—C24_2120.66 (17)
C24_1—C25_1—H25_1119.8C26_2—C25_2—H25_2119.7
C26_1—C25_1—H25_1119.8C24_2—C25_2—H25_2119.7
C27_1—C26_1—C25_1119.88 (13)C27_2—C26_2—C25_2119.79 (16)
C27_1—C26_1—H26_1120.1C27_2—C26_2—H26_2120.1
C25_1—C26_1—H26_1120.1C25_2—C26_2—H26_2120.1
C26_1—C27_1—C28_1120.04 (14)C26_2—C27_2—C28_2120.08 (18)
C26_1—C27_1—H27_1120.0C26_2—C27_2—H27_2120.0
C28_1—C27_1—H27_1120.0C28_2—C27_2—H27_2120.0
C27_1—C28_1—C23_1120.51 (13)C27_2—C28_2—C23_2120.91 (16)
C27_1—C28_1—H28_1119.7C27_2—C28_2—H28_2119.5
C23_1—C28_1—H28_1119.7C23_2—C28_2—H28_2119.5
C30_1—C29_1—C34_1118.59 (12)C34_2—C29_2—C30_2118.63 (12)
C30_1—C29_1—C9_1119.49 (11)C34_2—C29_2—C9_2122.00 (11)
C34_1—C29_1—C9_1121.85 (12)C30_2—C29_2—C9_2119.35 (11)
C31_1—C30_1—C29_1120.97 (13)C31_2—C30_2—C29_2120.67 (13)
C31_1—C30_1—H30_1119.5C31_2—C30_2—H30_2119.7
C29_1—C30_1—H30_1119.5C29_2—C30_2—H30_2119.7
C30_1—C31_1—C32_1120.01 (14)C30_2—C31_2—C32_2120.20 (14)
C30_1—C31_1—H31_1120.0C30_2—C31_2—H31_2119.9
C32_1—C31_1—H31_1120.0C32_2—C31_2—H31_2119.9
C33_1—C32_1—C31_1119.56 (14)C33_2—C32_2—C31_2119.61 (13)
C33_1—C32_1—H32_1120.2C33_2—C32_2—H32_2120.2
C31_1—C32_1—H32_1120.2C31_2—C32_2—H32_2120.2
C32_1—C33_1—C34_1120.55 (14)C32_2—C33_2—C34_2120.32 (13)
C32_1—C33_1—H33_1119.7C32_2—C33_2—H33_2119.8
C34_1—C33_1—H33_1119.7C34_2—C33_2—H33_2119.8
C33_1—C34_1—C29_1120.32 (13)C33_2—C34_2—C29_2120.55 (13)
C33_1—C34_1—H34_1119.8C33_2—C34_2—H34_2119.7
C29_1—C34_1—H34_1119.8C29_2—C34_2—H34_2119.7
C40_1—C35_1—C36_1119.26 (15)C40_2—C35_2—C36_2119.25 (14)
C40_1—C35_1—C14_1122.55 (15)C40_2—C35_2—C14_2121.69 (13)
C36_1—C35_1—C14_1118.15 (13)C36_2—C35_2—C14_2119.06 (13)
C35_1—C36_1—C37_1120.20 (18)C37_2—C36_2—C35_2120.23 (17)
C35_1—C36_1—H36_1119.9C37_2—C36_2—H36_2119.9
C37_1—C36_1—H36_1119.9C35_2—C36_2—H36_2119.9
C38_1—C37_1—C36_1120.1 (2)C38_2—C37_2—C36_2120.17 (19)
C38_1—C37_1—H37_1119.9C38_2—C37_2—H37_2119.9
C36_1—C37_1—H37_1119.9C36_2—C37_2—H37_2119.9
C39_1—C38_1—C37_1119.99 (18)C39_2—C38_2—C37_2119.96 (17)
C39_1—C38_1—H38_1120.0C39_2—C38_2—H38_2120.0
C37_1—C38_1—H38_1120.0C37_2—C38_2—H38_2120.0
C38_1—C39_1—C40_1120.4 (2)C38_2—C39_2—C40_2120.44 (19)
C38_1—C39_1—H39_1119.8C38_2—C39_2—H39_2119.8
C40_1—C39_1—H39_1119.8C40_2—C39_2—H39_2119.8
C35_1—C40_1—C39_1119.9 (2)C35_2—C40_2—C39_2119.95 (18)
C35_1—C40_1—H40_1120.0C35_2—C40_2—H40_2120.0
C39_1—C40_1—H40_1120.0C39_2—C40_2—H40_2120.0
C42_1—C41_1—C46_1119.32 (12)C42_2—C41_2—C46_2119.39 (11)
C42_1—C41_1—C19_1119.83 (11)C42_2—C41_2—C19_2119.00 (11)
C46_1—C41_1—C19_1120.77 (11)C46_2—C41_2—C19_2121.38 (11)
C43_1—C42_1—C41_1119.96 (12)C41_2—C42_2—C43_2120.33 (12)
C43_1—C42_1—H42_1120.0C41_2—C42_2—H42_2119.8
C41_1—C42_1—H42_1120.0C43_2—C42_2—H42_2119.8
C44_1—C43_1—C42_1120.47 (13)C44_2—C43_2—C42_2120.04 (12)
C44_1—C43_1—H43_1119.8C44_2—C43_2—H43_2120.0
C42_1—C43_1—H43_1119.8C42_2—C43_2—H43_2120.0
C43_1—C44_1—C45_1119.84 (13)C43_2—C44_2—C45_2120.04 (12)
C43_1—C44_1—H44_1120.1C43_2—C44_2—H44_2120.0
C45_1—C44_1—H44_1120.1C45_2—C44_2—H44_2120.0
C46_1—C45_1—C44_1119.99 (12)C44_2—C45_2—C46_2120.23 (12)
C46_1—C45_1—H45_1120.0C44_2—C45_2—H45_2119.9
C44_1—C45_1—H45_1120.0C46_2—C45_2—H45_2119.9
C45_1—C46_1—C41_1120.39 (12)C45_2—C46_2—C41_2119.97 (12)
C45_1—C46_1—H46_1119.8C45_2—C46_2—H46_2120.0
C41_1—C46_1—H46_1119.8C41_2—C46_2—H46_2120.0
N2_1—Ni1_1—N1_1—C3_139.81 (10)C42_1—C41_1—C46_1—C45_11.5 (2)
N4_1—Ni1_1—N1_1—C3_1136.86 (10)C19_1—C41_1—C46_1—C45_1178.15 (12)
N2_1—Ni1_1—N1_1—C20_1143.06 (10)N3_2—Ni1_2—N2_2—C5_2154.78 (11)
N4_1—Ni1_1—N1_1—C20_140.28 (10)N1_2—Ni1_2—N2_2—C5_226.71 (11)
N1_1—Ni1_1—N2_1—C5_119.48 (10)N3_2—Ni1_2—N2_2—C8_220.15 (11)
N3_1—Ni1_1—N2_1—C5_1160.83 (10)N1_2—Ni1_2—N2_2—C8_2158.36 (11)
N1_1—Ni1_1—N2_1—C8_1157.04 (11)N3_2—Ni1_2—N4_2—C18_2165.64 (10)
N3_1—Ni1_1—N2_1—C8_122.64 (11)N1_2—Ni1_2—N4_2—C18_212.89 (11)
N1_1—Ni1_1—N4_1—C18_114.98 (11)N3_2—Ni1_2—N4_2—C15_227.18 (10)
N3_1—Ni1_1—N4_1—C18_1164.71 (11)N1_2—Ni1_2—N4_2—C15_2154.29 (10)
N1_1—Ni1_1—N4_1—C15_1154.90 (11)C20_2—N1_2—C3_2—C4_2154.90 (12)
N3_1—Ni1_1—N4_1—C15_125.42 (11)Ni1_2—N1_2—C3_2—C4_225.72 (17)
C20_1—N1_1—C3_1—C4_1144.70 (12)C20_2—N1_2—C3_2—C2_231.32 (15)
Ni1_1—N1_1—C3_1—C4_137.95 (16)Ni1_2—N1_2—C3_2—C2_2148.07 (9)
C20_1—N1_1—C3_1—C2_146.59 (15)O1_2—C2_2—C3_2—N1_237.75 (17)
Ni1_1—N1_1—C3_1—C2_1130.76 (10)C1_2—C2_2—C3_2—N1_2143.45 (13)
O1_1—C2_1—C3_1—N1_139.90 (19)O1_2—C2_2—C3_2—C4_2136.28 (13)
C1_1—C2_1—C3_1—N1_1130.33 (13)C1_2—C2_2—C3_2—C4_242.52 (18)
O1_1—C2_1—C3_1—C4_1151.09 (14)N1_2—C3_2—C4_2—C5_27.22 (19)
C1_1—C2_1—C3_1—C4_138.67 (17)C2_2—C3_2—C4_2—C5_2179.12 (11)
N1_1—C3_1—C4_1—C5_12.82 (19)N1_2—C3_2—C4_2—C23_2169.86 (12)
C2_1—C3_1—C4_1—C5_1165.34 (12)C2_2—C3_2—C4_2—C23_23.80 (18)
N1_1—C3_1—C4_1—C23_1170.12 (11)C8_2—N2_2—C5_2—C4_2178.62 (12)
C2_1—C3_1—C4_1—C23_121.71 (18)Ni1_2—N2_2—C5_2—C4_25.57 (18)
C8_1—N2_1—C5_1—C4_1177.17 (12)C8_2—N2_2—C5_2—C6_20.42 (14)
Ni1_1—N2_1—C5_1—C4_15.69 (18)Ni1_2—N2_2—C5_2—C6_2175.40 (9)
C8_1—N2_1—C5_1—C6_11.73 (14)C3_2—C4_2—C5_2—N2_218.0 (2)
Ni1_1—N2_1—C5_1—C6_1175.41 (8)C23_2—C4_2—C5_2—N2_2159.19 (12)
C3_1—C4_1—C5_1—N2_120.07 (19)C3_2—C4_2—C5_2—C6_2160.86 (13)
C23_1—C4_1—C5_1—N2_1166.94 (11)C23_2—C4_2—C5_2—C6_221.93 (19)
C3_1—C4_1—C5_1—C6_1161.20 (12)N2_2—C5_2—C6_2—C7_22.88 (16)
C23_1—C4_1—C5_1—C6_111.78 (19)C4_2—C5_2—C6_2—C7_2176.14 (13)
N2_1—C5_1—C6_1—C7_10.22 (15)C5_2—C6_2—C7_2—C8_24.00 (15)
C4_1—C5_1—C6_1—C7_1179.09 (12)C5_2—N2_2—C8_2—C9_2166.97 (12)
C5_1—C6_1—C7_1—C8_12.00 (15)Ni1_2—N2_2—C8_2—C9_28.74 (18)
C5_1—N2_1—C8_1—C9_1167.75 (12)C5_2—N2_2—C8_2—C7_22.07 (14)
Ni1_1—N2_1—C8_1—C9_115.17 (18)Ni1_2—N2_2—C8_2—C7_2177.78 (9)
C5_1—N2_1—C8_1—C7_12.96 (14)C6_2—C7_2—C8_2—C9_2165.08 (13)
Ni1_1—N2_1—C8_1—C7_1174.12 (9)C6_2—C7_2—C8_2—N2_23.91 (15)
C6_1—C7_1—C8_1—N2_13.17 (15)N2_2—C8_2—C9_2—C10_28.94 (19)
C6_1—C7_1—C8_1—C9_1167.39 (13)C7_2—C8_2—C9_2—C10_2158.39 (13)
N2_1—C8_1—C9_1—C10_14.21 (19)N2_2—C8_2—C9_2—C29_2176.68 (11)
C7_1—C8_1—C9_1—C10_1164.99 (12)C7_2—C8_2—C9_2—C29_215.99 (19)
N2_1—C8_1—C9_1—C29_1179.48 (11)C13_2—N3_2—C10_2—C9_2169.02 (12)
C7_1—C8_1—C9_1—C29_110.28 (19)Ni1_2—N3_2—C10_2—C9_213.63 (17)
C13_1—N3_1—C10_1—C9_1171.29 (12)C13_2—N3_2—C10_2—C11_23.32 (14)
Ni1_1—N3_1—C10_1—C9_18.88 (18)Ni1_2—N3_2—C10_2—C11_2174.03 (9)
C13_1—N3_1—C10_1—C11_12.88 (14)C8_2—C9_2—C10_2—N3_26.32 (19)
Ni1_1—N3_1—C10_1—C11_1176.95 (9)C29_2—C9_2—C10_2—N3_2179.42 (11)
C8_1—C9_1—C10_1—N3_17.29 (19)C8_2—C9_2—C10_2—C11_2164.83 (12)
C29_1—C9_1—C10_1—N3_1177.58 (11)C29_2—C9_2—C10_2—C11_29.42 (19)
C8_1—C9_1—C10_1—C11_1165.98 (12)N3_2—C10_2—C11_2—C12_24.29 (15)
C29_1—C9_1—C10_1—C11_19.14 (19)C9_2—C10_2—C11_2—C12_2167.93 (12)
N3_1—C10_1—C11_1—C12_14.04 (15)C10_2—C11_2—C12_2—C13_23.36 (15)
C9_1—C10_1—C11_1—C12_1170.06 (13)C10_2—N3_2—C13_2—C14_2178.23 (12)
C10_1—C11_1—C12_1—C13_13.42 (15)Ni1_2—N3_2—C13_2—C14_20.87 (18)
C10_1—N3_1—C13_1—C14_1178.53 (12)C10_2—N3_2—C13_2—C12_21.21 (14)
Ni1_1—N3_1—C13_1—C14_11.30 (19)Ni1_2—N3_2—C13_2—C12_2176.14 (9)
C10_1—N3_1—C13_1—C12_10.73 (14)C11_2—C12_2—C13_2—N3_21.43 (16)
Ni1_1—N3_1—C13_1—C12_1179.10 (9)C11_2—C12_2—C13_2—C14_2175.58 (13)
C11_1—C12_1—C13_1—N3_11.77 (16)N3_2—C13_2—C14_2—C15_212.8 (2)
C11_1—C12_1—C13_1—C14_1176.01 (13)C12_2—C13_2—C14_2—C15_2163.74 (13)
N3_1—C13_1—C14_1—C15_112.0 (2)N3_2—C13_2—C14_2—C35_2169.71 (12)
C12_1—C13_1—C14_1—C15_1165.47 (13)C12_2—C13_2—C14_2—C35_213.7 (2)
N3_1—C13_1—C14_1—C35_1168.68 (12)C13_2—C14_2—C15_2—N4_20.21 (19)
C12_1—C13_1—C14_1—C35_113.9 (2)C35_2—C14_2—C15_2—N4_2177.64 (12)
C18_1—N4_1—C15_1—C14_1167.68 (12)C13_2—C14_2—C15_2—C16_2169.01 (12)
Ni1_1—N4_1—C15_1—C14_120.71 (18)C35_2—C14_2—C15_2—C16_28.4 (2)
C18_1—N4_1—C15_1—C16_12.93 (14)C18_2—N4_2—C15_2—C14_2166.51 (12)
Ni1_1—N4_1—C15_1—C16_1168.68 (9)Ni1_2—N4_2—C15_2—C14_224.16 (17)
C13_1—C14_1—C15_1—N4_12.1 (2)C18_2—N4_2—C15_2—C16_24.26 (13)
C35_1—C14_1—C15_1—N4_1178.56 (12)Ni1_2—N4_2—C15_2—C16_2165.08 (8)
C13_1—C14_1—C15_1—C16_1166.96 (13)C14_2—C15_2—C16_2—C17_2166.20 (12)
C35_1—C14_1—C15_1—C16_112.4 (2)N4_2—C15_2—C16_2—C17_24.26 (14)
N4_1—C15_1—C16_1—C17_13.01 (16)C15_2—C16_2—C17_2—C18_22.45 (14)
C14_1—C15_1—C16_1—C17_1167.33 (13)C15_2—N4_2—C18_2—C19_2175.66 (11)
C15_1—C16_1—C17_1—C18_11.81 (16)Ni1_2—N4_2—C18_2—C19_214.99 (17)
C15_1—N4_1—C18_1—C19_1176.72 (12)C15_2—N4_2—C18_2—C17_22.73 (13)
Ni1_1—N4_1—C18_1—C19_111.76 (18)Ni1_2—N4_2—C18_2—C17_2166.61 (8)
C15_1—N4_1—C18_1—C17_11.80 (14)C16_2—C17_2—C18_2—N4_20.13 (14)
Ni1_1—N4_1—C18_1—C17_1169.73 (9)C16_2—C17_2—C18_2—C19_2178.21 (12)
C16_1—C17_1—C18_1—N4_10.04 (15)N4_2—C18_2—C19_2—C20_222.87 (18)
C16_1—C17_1—C18_1—C19_1178.51 (13)C17_2—C18_2—C19_2—C20_2158.98 (12)
N4_1—C18_1—C19_1—C20_121.94 (19)N4_2—C18_2—C19_2—C41_2166.25 (11)
C17_1—C18_1—C19_1—C20_1159.78 (13)C17_2—C18_2—C19_2—C41_211.90 (18)
N4_1—C18_1—C19_1—C41_1165.57 (11)C18_2—C19_2—C20_2—N1_27.98 (18)
C17_1—C18_1—C19_1—C41_112.70 (19)C41_2—C19_2—C20_2—N1_2162.37 (11)
C18_1—C19_1—C20_1—N1_15.43 (18)C18_2—C19_2—C20_2—C21_2168.41 (11)
C41_1—C19_1—C20_1—N1_1166.64 (11)C41_2—C19_2—C20_2—C21_221.23 (18)
C18_1—C19_1—C20_1—C21_1167.78 (12)C3_2—N1_2—C20_2—C19_2135.71 (12)
C41_1—C19_1—C20_1—C21_120.15 (19)Ni1_2—N1_2—C20_2—C19_243.69 (15)
C3_1—N1_1—C20_1—C19_1135.50 (12)C3_2—N1_2—C20_2—C21_247.71 (15)
Ni1_1—N1_1—C20_1—C19_141.81 (16)Ni1_2—N1_2—C20_2—C21_2132.89 (9)
C3_1—N1_1—C20_1—C21_150.75 (15)C19_2—C20_2—C21_2—O2_2156.63 (13)
Ni1_1—N1_1—C20_1—C21_1131.93 (10)N1_2—C20_2—C21_2—O2_226.78 (18)
C19_1—C20_1—C21_1—O2_1160.19 (13)C19_2—C20_2—C21_2—C22_230.58 (18)
N1_1—C20_1—C21_1—O2_126.20 (18)N1_2—C20_2—C21_2—C22_2146.01 (12)
C19_1—C20_1—C21_1—C22_127.72 (19)C3_2—C4_2—C23_2—C28_266.61 (18)
N1_1—C20_1—C21_1—C22_1145.89 (12)C5_2—C4_2—C23_2—C28_2110.57 (15)
C3_1—C4_1—C23_1—C28_147.55 (18)C3_2—C4_2—C23_2—C24_2115.13 (15)
C5_1—C4_1—C23_1—C28_1125.51 (14)C5_2—C4_2—C23_2—C24_267.69 (17)
C3_1—C4_1—C23_1—C24_1130.42 (14)C28_2—C23_2—C24_2—C25_20.6 (2)
C5_1—C4_1—C23_1—C24_156.53 (17)C4_2—C23_2—C24_2—C25_2177.65 (14)
C28_1—C23_1—C24_1—C25_12.4 (2)C23_2—C24_2—C25_2—C26_20.2 (3)
C4_1—C23_1—C24_1—C25_1175.60 (13)C24_2—C25_2—C26_2—C27_20.6 (3)
C23_1—C24_1—C25_1—C26_11.1 (2)C25_2—C26_2—C27_2—C28_20.8 (3)
C24_1—C25_1—C26_1—C27_11.1 (2)C26_2—C27_2—C28_2—C23_20.4 (3)
C25_1—C26_1—C27_1—C28_12.0 (2)C24_2—C23_2—C28_2—C27_20.4 (2)
C26_1—C27_1—C28_1—C23_10.7 (2)C4_2—C23_2—C28_2—C27_2177.98 (15)
C24_1—C23_1—C28_1—C27_11.4 (2)C8_2—C9_2—C29_2—C34_2119.00 (14)
C4_1—C23_1—C28_1—C27_1176.57 (13)C10_2—C9_2—C29_2—C34_255.43 (17)
C8_1—C9_1—C29_1—C30_159.97 (17)C8_2—C9_2—C29_2—C30_259.66 (17)
C10_1—C9_1—C29_1—C30_1124.73 (14)C10_2—C9_2—C29_2—C30_2125.91 (14)
C8_1—C9_1—C29_1—C34_1116.99 (14)C34_2—C29_2—C30_2—C31_21.3 (2)
C10_1—C9_1—C29_1—C34_158.30 (18)C9_2—C29_2—C30_2—C31_2179.96 (14)
C34_1—C29_1—C30_1—C31_10.6 (2)C29_2—C30_2—C31_2—C32_20.3 (3)
C9_1—C29_1—C30_1—C31_1176.44 (13)C30_2—C31_2—C32_2—C33_20.8 (3)
C29_1—C30_1—C31_1—C32_10.2 (2)C31_2—C32_2—C33_2—C34_21.0 (2)
C30_1—C31_1—C32_1—C33_10.4 (2)C32_2—C33_2—C34_2—C29_20.1 (2)
C31_1—C32_1—C33_1—C34_10.6 (2)C30_2—C29_2—C34_2—C33_21.0 (2)
C32_1—C33_1—C34_1—C29_10.2 (2)C9_2—C29_2—C34_2—C33_2179.70 (12)
C30_1—C29_1—C34_1—C33_10.4 (2)C15_2—C14_2—C35_2—C40_268.11 (19)
C9_1—C29_1—C34_1—C33_1176.56 (13)C13_2—C14_2—C35_2—C40_2109.40 (17)
C15_1—C14_1—C35_1—C40_197.1 (2)C15_2—C14_2—C35_2—C36_2111.32 (16)
C13_1—C14_1—C35_1—C40_182.3 (2)C13_2—C14_2—C35_2—C36_271.18 (18)
C15_1—C14_1—C35_1—C36_185.30 (18)C40_2—C35_2—C36_2—C37_20.2 (3)
C13_1—C14_1—C35_1—C36_195.35 (17)C14_2—C35_2—C36_2—C37_2179.63 (16)
C40_1—C35_1—C36_1—C37_10.1 (3)C35_2—C36_2—C37_2—C38_20.3 (3)
C14_1—C35_1—C36_1—C37_1177.75 (17)C36_2—C37_2—C38_2—C39_20.6 (3)
C35_1—C36_1—C37_1—C38_11.3 (3)C37_2—C38_2—C39_2—C40_20.4 (4)
C36_1—C37_1—C38_1—C39_11.3 (4)C36_2—C35_2—C40_2—C39_20.4 (3)
C37_1—C38_1—C39_1—C40_10.0 (4)C14_2—C35_2—C40_2—C39_2179.78 (18)
C36_1—C35_1—C40_1—C39_11.4 (3)C38_2—C39_2—C40_2—C35_20.1 (3)
C14_1—C35_1—C40_1—C39_1179.0 (2)C20_2—C19_2—C41_2—C42_256.12 (17)
C38_1—C39_1—C40_1—C35_11.4 (4)C18_2—C19_2—C41_2—C42_2114.65 (14)
C20_1—C19_1—C41_1—C42_157.29 (18)C20_2—C19_2—C41_2—C46_2129.46 (14)
C18_1—C19_1—C41_1—C42_1115.05 (14)C18_2—C19_2—C41_2—C46_259.77 (16)
C20_1—C19_1—C41_1—C46_1126.06 (14)C46_2—C41_2—C42_2—C43_20.2 (2)
C18_1—C19_1—C41_1—C46_161.60 (16)C19_2—C41_2—C42_2—C43_2174.36 (13)
C46_1—C41_1—C42_1—C43_10.9 (2)C41_2—C42_2—C43_2—C44_20.7 (2)
C19_1—C41_1—C42_1—C43_1177.64 (13)C42_2—C43_2—C44_2—C45_20.3 (2)
C41_1—C42_1—C43_1—C44_10.6 (2)C43_2—C44_2—C45_2—C46_20.7 (2)
C42_1—C43_1—C44_1—C45_11.6 (2)C44_2—C45_2—C46_2—C41_21.3 (2)
C43_1—C44_1—C45_1—C46_11.0 (2)C42_2—C41_2—C46_2—C45_20.8 (2)
C44_1—C45_1—C46_1—C41_10.5 (2)C19_2—C41_2—C46_2—C45_2175.22 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28_1—H28_1···O2_10.952.603.4517 (17)149
C42_1—H42_1···O1_10.952.553.3855 (17)147
C42_2—H42_2···O1_20.952.663.5120 (17)149
C6_1—H6_1···O2_1i0.952.493.3714 (16)155
C6_2—H6_2···O2_2ii0.952.573.3569 (17)140
C17_2—H17_2···O1_2iii0.952.403.2977 (16)158
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1625543 to MZ; grant No. CHE-1800361 to CB).

References

First citationAdams, K. R., Bonnett, R., Burke, P. J., Salgado, A. & Asunción Vallés, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1769–1772.  CrossRef Google Scholar
First citationAkhigbe, J., Ryppa, C., Zeller, M. & Brückner, C. (2009). J. Org. Chem. 74, 4927–4933.  CSD CrossRef PubMed CAS Google Scholar
First citationBanerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationBattersby, A. R. (2000). Nat. Prod. Rep. 17, 507–526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorbas, K. E. (2016). Handbook of Porphyrin Science, pp. 1–149. Singapore: World Scientific Publishing Company.  Google Scholar
First citationBrückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–276. River Edge, NY: World Scientific.  Google Scholar
First citationBrückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig, S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358, 2943–2953.  Google Scholar
First citationBrückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094–2098.  Google Scholar
First citationBrückner, C., Sternberg, E. D., MacAlpine, J. K., Rettig, S. J. & Dolphin, D. (1999). J. Am. Chem. Soc. 121, 2609–2610.  Google Scholar
First citationBruker (2020). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. K., Wu, W., Chern, S.-S. & Peng, S.-M. (1992). Angew. Chem. Int. Ed. Engl. 31, 70–72.  CSD CrossRef Google Scholar
First citationDaniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003). Tetrahedron Lett. 44, 4045–4049.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationKingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKräutler, B. (2014). Chem. Soc. Rev. 43, 6227–6238.  PubMed Google Scholar
First citationLau, K. S. F., Zhao, S., Ryppa, C., Jockusch, S., Turro, N. J., Zeller, M., Gouterman, M., Khalil, G. E. & Brückner, C. (2009). Inorg. Chem. 48, 4067–4074.  CSD CrossRef PubMed CAS Google Scholar
First citationLindsey, J. S. (2015). Chem. Rev. 115, 6534–6620.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLo, M., Lefebvre, J.-F., Marcotte, N., Tonnelé, C., Beljonne, D., Lazzaroni, R., Clément, S. & Richeter, S. (2012). Chem. Commun. 48, 3460–3462.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCarthy, J. R., Hyland, M. A. & Brückner, C. (2004). Org. Biomol. Chem. 2, 1484–1491.  CrossRef PubMed CAS Google Scholar
First citationRyppa, C., Niedzwiedzki, D., Morozowich, N. L., Srikanth, R., Zeller, M., Frank, H. A. & Brückner, C. (2009). Chem. Eur. J. 15, 5749–5762.  CSD CrossRef PubMed CAS Google Scholar
First citationSamankumara, L. P., Dorazio, S. J., Akhigbe, J., Li, R., Nimthong–Roldán, A., Zeller, M. & Brückner, C. (2015). Chem. Eur. J. 21, 11118–11128.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSessler, J. L., Shevchuk, S. V., Callaway, W. & Lynch, V. (2001). Chem. Commun. pp. 968–969.  CSD CrossRef Google Scholar
First citationSharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350–12356.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThuita, D. W. & Brückner, C. (2022). Chem. Rev. 122, 7990–8052.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojaczyński, J. (2014). Top. Heterocycl. Chem. 33, 143–202.  Google Scholar
First citationZhu, M., Zhang, H., Ran, G., Yao, Y., Yang, Z.-S., Ning, Y., Yu, Y., Zhang, R., Peng, X.-X., Wu, J., Jiang, Z., Zhang, W., Wang, B.-W., Gao, S. & Zhang, J.-L. (2022). Angew. Chem. Int. Ed. 61, e202204330.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds