research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of the five- and sixfold coordinated complexes diiso­seleno­cyanato­tris­­(2-methyl­pyridine N-oxide)cobalt(II) and diiso­seleno­cyanato­tetra­kis­(2-methyl­pyridine N-oxide)cobalt(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 May 2024; accepted 29 May 2024; online 7 June 2024)

The reaction of CoBr2, KNCSe and 2-methyl­pyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe iso­seleno­cyanate anions and three 2-methyl­pyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four iso­seleno­canate anions and eight 2-methyl­pyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methyl­pyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded iso­seleno­cyanate anions and four 2-methyl­pyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octa­hedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase.

1. Chemical context

Numerous crystal structures of transition-metal thio­cyanate coordination compounds have been reported in the literature, which are of inter­est not only because of their versatile structural behavior but also for their magnetic properties. In contrast, much less is known about the corresponding seleno­cyanate coordination compounds. This might originate from the fact that such compounds are frequently less stable and very often more difficult to prepare, especially if the focus is on the synthesis of compounds with bridging anionic ligands, which are of inter­est because of their promising magnetic properties. In this context, compounds based on cobalt are of special inter­est because they can show versatile magnetic behaviors including ferromagnetic ordering or single-chain magnet behavior (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.] and 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). In this regard we have shown that, for example, exchange of seleno by thio­cyanate anions leads to an increase of the energy barrier and the intra­chain inter­actions (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]).

Concerning the structural behavior of cobalt thio- and seleno­cyanates, in most cases an octhaedral coordination geometry is observed, independent of the question whether discrete complexes or coordination polymers are considered. In rarer cases, especially with strong donor ligands, a tetra­hedral coordination is found, with many examples for thio­cyanates (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Neumann et al., 2018[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4972-4981.]), whereas for seleno­cyanate compounds with additional coligands, no example has been reported. There are only two compounds with the composition CoHg(NCSe)4 (Cambridge Structural Database refcode MURQOH; Li et al., 2006[Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006). Acta Cryst. E62, i47-i49.]) and [Co(NCSe)4]2−[(NH4)2]+ (QQQBEY; Kergoat et al., 1970[Kergoat, R., Guerchais, J. E. & Genet, F. (1970). Bull. Soc. Fr. Miner. Crist. 93, 166-169.]) that contain no additional coligands and in which the metal cations are either linked into chains or in which discrete complexes are formed. Finally, with Co(NCS)2, compounds with a fivefold coordination are rarer than with a fourfold coordination, and with seleno­cyanate only three examples are found. This includes two discrete complexes with tridentate ligands [DUCVEF (Hopa et al., 2020[Hopa, C., Kara, H. & Aybey, A. (2020). J. Mol. Struct. 1202, 127322-12732.]) and VONXUT (Solanki & Kumar, 2014[Solanki, A. & Kumar, S. B. (2014). Polyhedron, 81, 323-328.])] and one tetra­nuclear complex (QIRYOI; Das et al., 2018[Das, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377-19389.]). In this context we have reported the first Co(NCS)2 compound, which consists of chains, in which an alternating five- and sixfold CoII coordination is observed (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]).

However, in most of our recent investigations we used pyridine derivatives as coligands, but recently we reported some compounds where we used pyridine N-oxide derivatives as coligands (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.], 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.],b[Näther, C. & Jess, I. (2024b). Acta Cryst. E80, 67-71.]). In the course of these investigations we obtained two different discrete complexes by the reaction of Co(NCS)2 and 4-methyl­pyridine N-oxide (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]). In one of these complexes a trigonal–bipyramidal coordination and in the second complex an octa­hedral coordination is observed, which is surprising because Co(NCS)2 compounds with a fivefold coordination and pyridine N-oxide coligands were unknown at this time. In further work we used 2-methyl­pyridine N-oxide as a coligand, which lead to the formation of Co(NCS)2(2-methyl­pyridine N-oxide)3 in which the CoII cations shows a trigonal–pyramidal coordination as was the case with 4-methyl­pyridine N-oxide as coligand (Näther & Jess, 2024c[Näther, C. & Jess, I. (2024c). Acta Cryst. E80, 463-467.]). Many experiments were performed but the corresponding octhaedral complex was not obtained. Based on these findings, we decided to try to prepare the corresponding compounds with Co(NCSe)2 and in this context it is noted that no seleno­cyanate coordination compounds with pyridine N-oxide derivatives and transition-metal cations are reported in the literature (see Database survey). Therefore, CoBr2, KNCSe and 2-methyl­pyridine N-oxide were reacted, which lead to the formation of two different crystals that were investigated by single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The asymmetric unit of compound 1, Co(NCSe)2(C6H7NO)3, consists of one crystallographically independent CoII cation, two independent iso­seleno­cyanate anions and three independent 2-methyl­pyridine N-oxide coligands that are located in general positions (Fig. 1[link]). The metal cations are fivefold coordinated to two terminally N-bonded iso­seleno­cyanate anions and three 2-methyl­pyridine N-oxide coligands, forming discrete complexes. The coordination around the metal centers can be described as a slightly distorted trigonal bipyramid with the anionic ligands in the axial and the co­ligands in the equatorial positions (Fig. 1[link] and Table 1[link]). The Co—N bond lengths of the two independent iso­seleno­cyanate anions are significantly different (Table 1[link]). As expected, the thio­cyanate C—N—Co bond angles are close to linearity, whereas the N—O—Co angles are close to 120°, because only one of the two lone pairs of the oxygen atom is involved in metal coordination (Table 1[link]). Finally, it is noted that compound 1 is isotypic to the corresponding thio­cyanate complex Co(NCS)2(C6H7NO)3, recently reported in the literature (Näther & Jess, 2024c[Näther, C. & Jess, I. (2024c). Acta Cryst. E80, 463-467.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Co1—N1 2.090 (3) Co1—O21 2.011 (2)
Co1—N2 2.047 (3) Co1—O31 2.032 (2)
Co1—O11 1.989 (2)    
       
N2—Co1—N1 176.24 (11) O31—Co1—N1 84.07 (10)
O11—Co1—N1 91.77 (10) O31—Co1—N2 92.72 (10)
O11—Co1—N2 88.63 (10) C1—N1—Co1 156.2 (3)
O11—Co1—O21 115.08 (11) C2—N2—Co1 177.2 (2)
O11—Co1—O31 127.68 (10) N11—O11—Co1 118.91 (18)
O21—Co1—N1 91.29 (10) N21—O21—Co1 120.92 (18)
O21—Co1—N2 91.92 (10) N31—O31—Co1 118.01 (18)
O21—Co1—O31 117.13 (10)    
[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

In compound 2, Co(NCS)2(C6H7NO)4, two crystallographically independent complexes are present, in which each cobalt cation and each of the two crystallographically independent iso­seleno­cyanate anions and each of the four independent 2-methyl­pyridine N-oxide coligands are in general positions (Fig. 2[link]). In both of the complexes the metal cations are sixfold coordinated to two terminally N-bonded iso­cyanate anions and four 2-methyl­pyridine N-oxide ligands within slightly distorted octa­hedra (Fig. 2[link] and Table 2[link]). Bond lengths and angles are comparable in both independent complexes. The Co—N distances of the iso­seleno­cyanate anions and especially of the 2-methyl­pyridine N-oxide co­ligands in compound 2 are significantly longer than in compound 1, which can be traced back to the higher coordination number of the metal ion. As in compound 1, the C—N—Co angles are more or less linear, whereas the N—O—Co angles tend to be 120° (Table 2[link]).

Table 2
Selected geometric parameters (Å, °) for 2[link]

Co1—N1 2.105 (3) Co2—N3 2.096 (3)
Co1—N2 2.096 (3) Co2—N4 2.115 (3)
Co1—O11 2.104 (2) Co2—O51 2.092 (2)
Co1—O21 2.081 (2) Co2—O61 2.109 (2)
Co1—O31 2.103 (2) Co2—O71 2.102 (2)
Co1—O41 2.086 (2) Co2—O81 2.098 (2)
       
N2—Co1—N1 92.43 (11) N3—Co2—N4 92.80 (10)
N2—Co1—O11 85.49 (11) N3—Co2—O61 85.67 (9)
N2—Co1—O31 95.84 (10) N3—Co2—O71 173.62 (9)
O11—Co1—N1 94.63 (10) N3—Co2—O81 95.39 (9)
O21—Co1—N1 86.10 (10) O51—Co2—N3 94.08 (10)
O21—Co1—N2 176.62 (11) O51—Co2—N4 88.66 (10)
O21—Co1—O11 91.58 (10) O51—Co2—O61 90.02 (9)
O21—Co1—O31 85.57 (8) O51—Co2—O71 84.49 (9)
O21—Co1—O41 92.05 (10) O51—Co2—O81 170.51 (9)
O31—Co1—N1 171.62 (10) O61—Co2—N4 177.90 (9)
O31—Co1—O11 84.73 (8) O71—Co2—N4 93.37 (9)
O41—Co1—N1 96.79 (10) O71—Co2—O61 88.12 (8)
O41—Co1—N2 91.15 (12) O81—Co2—N4 91.46 (10)
O41—Co1—O11 168.23 (9) O81—Co2—O61 90.12 (8)
O41—Co1—O31 84.39 (8) O81—Co2—O71 86.03 (8)
C1—N1—Co1 166.2 (3) C3—N3—Co2 167.6 (2)
C2—N2—Co1 151.9 (3) C4—N4—Co2 163.8 (3)
N11—O11—Co1 128.93 (17) N51—O51—Co2 123.32 (18)
N21—O21—Co1 121.76 (17) N61—O61—Co2 123.03 (16)
N31—O31—Co1 120.96 (15) N71—O71—Co2 120.08 (16)
N41—O41—Co1 124.68 (19) N81—O81—Co2 124.24 (16)
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of compound 1 the complexes are linked by a relatively short C—H⋯Se contact of 3.00 Å into chains, which are connected into double chains by a slightly longer C—H⋯Se contact of 3.09 Å (Fig. 3[link] and Table 3[link]). Within these chains, weak C—H⋯O contacts are observed (Fig. 3[link] and Table 3[link]). These double chains propagate along the crystallographic c-axis direction and no directional inter­molecular inter­actions are observed between them (Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Se1i 0.95 3.00 3.920 (3) 163
C15—H15⋯O31i 0.95 2.49 3.305 (4) 144
C32—H32⋯Se2ii 0.95 3.09 3.945 (4) 151
C26—H26B⋯O31 0.98 2.62 3.511 (4) 151
Symmetry codes: (i) [x, y, z-1]; (ii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal structure of compound 1 with view of a double chain that propagates along the crystallographic a-axis direction: C—H⋯Se and C—H⋯O contacts are shown with dashed lines.
[Figure 4]
Figure 4
The crystal structure of compound 1 viewed along the crystallographic c-axis direction: C—H⋯Se and C—H⋯O contacts are shown with dashed lines.

In compound 2 the two crystallographically independent complexes are linked by one relatively short C—H⋯Se contact of 2.87 Å with an C—H⋯Se angle close to linearity into dimeric units (Fig. 5[link] and Table 4[link]). There are numerous additional C—H⋯Se and C—H⋯O contacts with angles far from linearity that connect the dimeric units into a three-dimensional network (Table 4[link]). Within this network, the complexes the dimeric units are arranged into columns that stack along the crystallographic a-axis direction (Fig. 6[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O21 0.95 2.36 3.158 (4) 141
C26—H26C⋯O11 0.98 2.49 3.367 (5) 149
C35—H35⋯Se1i 0.95 2.96 3.748 (3) 141
C36—H36C⋯O11 0.98 2.55 3.281 (4) 131
C42—H42⋯Se3ii 0.95 2.87 3.811 (4) 171
C52—H52⋯Se2iii 0.95 3.05 3.926 (3) 153
C55—H55⋯O61 0.95 2.45 3.245 (4) 141
C56—H56B⋯Se2iii 0.98 3.02 3.933 (3) 156
C65—H65⋯O81 0.95 2.40 3.140 (4) 135
C66—H66A⋯Se2iv 0.98 3.14 3.807 (5) 126
C75—H75⋯Se3i 0.95 2.95 3.726 (3) 140
C75—H75⋯O81 0.95 2.62 3.075 (3) 110
C76—H76C⋯O51 0.98 2.61 3.354 (4) 133
C86—H86B⋯Se1ii 0.98 3.14 4.109 (4) 169
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z]; (iv) [x-1, y, z].
[Figure 5]
Figure 5
View of the dimeric unit in compound 2 with C—H⋯Se contacts shown with dashed lines.
[Figure 6]
Figure 6
Crystal structure of compound 2 viewed along the crystallographic a-axis direction. For clarity only the two C—H⋯Se and C—H⋯O contacts between the dimeric units are shown with dashed lines.

4. Database survey

A search in the CSD (version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveal that no transition-metal seleno­cyanate coordination compounds with pyridine N-oxide derivatives are reported. There is only one compound with 4,4′-bi­pyridine N,N′-dioxide with the composition Co(NCS)2(4,4′-bi­pyridine N,N′-diox­ide)(H2O)2·H2O, in which the cobalt cations are octa­hedrally coordinated to two seleno­cyanate anions, two water mol­ecules and two O atoms of the 4,4′-bi­pyridine N,N′-dioxide coligands and are linked into chains by the bridging 4,4′-bi­pyridine N,N′-dioxide ligands (ROLJEI; Jana et al., 2007[Jana, A. D., Manna, S. C., Rosair, G. M., Drew, M. G. B., Mostafa, G. & Ray Chaudhuri, N. (2007). Cryst. Growth Des. 7, 1365-1372.]).

It is also noted that with Co(NCS)2 and pyridine N-oxide derivatives no structures with a fivefold coordination are reported in the CSD. There is only one recent example, which is Co(NCS)2(2-methyl­pyridine N-oxide)3, already mentioned in the Chemical context section (Näther & Jess, 2024c[Näther, C. & Jess, I. (2024c). Acta Cryst. E80, 463-467.]).

5. Synthesis and crystallization

CoBr2 (99%), KNCSe (98.5%) and 2-methyl­pyridine N-oxide (96%) were purchased from Sigma Aldrich. 0.25 mmol (54.7 mg) of CoBr2, 0.5 mmol of KNCSe (72.0 mg) and 4 mmol (436.4 mg) of 2-methyl­pyridine N-oxide in 1 ml of ethanol were reacted for 3 d at room temperature, which led to the formation of crystals of compound 1 (pink needles) and 2 (pink blocks) in the same batch. Reacting the components in the stoichiometric ratios given by the formulae were also tried but pure crystalline phases were never obtained: powder X-ray diffraction shows that they are always contaminated with additional unknown crystalline phases and with KBr, which is also a product of this reaction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate and not to tip) and were refined with Uιso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(NCSe)2(C6H7NO)3] [Co(NCSe)2(C6H7NO)4]
Mr 596.27 705.39
Crystal system, space group Monoclinic, Cc Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.07686 (6), 26.47661 (16), 7.25623 (4) 9.3825 (1), 39.9164 (3), 15.9920 (1)
β (°) 104.2765 (5) 104.217 (1)
V3) 2248.56 (2) 5805.82 (9)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 9.96 7.86
Crystal size (mm) 0.18 × 0.06 × 0.04 0.16 × 0.14 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlisPr; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.468, 1.000 0.489, 0.596
No. of measured, independent and observed [I > 2σ(I)] reflections 49619, 4828, 4788 41815, 11937, 11197
Rint 0.035 0.020
(sin θ/λ)max−1) 0.640 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.062, 0.83 0.038, 0.109, 1.05
No. of reflections 4828 11937
No. of parameters 283 711
No. of restraints 2 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.40 1.76, −0.67
Absolute structure Flack x determined using 2302 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.0305 (14)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Diisoselenocyanatotris(2-methylpyridine N-oxide)cobalt(II) (1) top
Crystal data top
[Co(NCSe)2(C6H7NO)3]F(000) = 1180
Mr = 596.27Dx = 1.761 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 12.07686 (6) ÅCell parameters from 35276 reflections
b = 26.47661 (16) Åθ = 3.3–79.5°
c = 7.25623 (4) ŵ = 9.96 mm1
β = 104.2765 (5)°T = 100 K
V = 2248.56 (2) Å3Needle, pink
Z = 40.18 × 0.06 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4828 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4788 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 3.3°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPr; Rigaku OD, 2023)
k = 2933
Tmin = 0.468, Tmax = 1.000l = 99
49619 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.5399P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 0.83Δρmax = 0.25 e Å3
4828 reflectionsΔρmin = 0.40 e Å3
283 parametersAbsolute structure: Flack x determined using 2302 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.0305 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.63215 (4)0.86731 (2)0.79899 (6)0.01397 (11)
N10.4748 (2)0.83139 (10)0.7711 (4)0.0180 (5)
C10.3847 (3)0.82543 (12)0.7960 (4)0.0173 (6)
Se10.24577 (3)0.81838 (2)0.84143 (4)0.02001 (9)
N20.7899 (2)0.90028 (10)0.8433 (4)0.0184 (5)
C20.8794 (3)0.91870 (12)0.8762 (4)0.0172 (6)
Se21.01804 (3)0.94751 (2)0.92765 (4)0.02230 (10)
O110.6860 (2)0.81331 (8)0.6514 (4)0.0209 (5)
N110.6102 (2)0.77961 (10)0.5563 (4)0.0169 (5)
C110.5986 (3)0.73433 (12)0.6337 (4)0.0173 (6)
C120.5201 (3)0.70021 (12)0.5273 (4)0.0185 (6)
H120.5120020.6677090.5778820.022*
C130.4543 (3)0.71294 (13)0.3504 (5)0.0210 (6)
H130.3997590.6898030.2803550.025*
C140.4686 (3)0.76001 (13)0.2754 (5)0.0218 (6)
H140.4238370.7695630.1535400.026*
C150.5483 (3)0.79260 (12)0.3801 (5)0.0204 (6)
H150.5601870.8245480.3285560.024*
O210.55635 (18)0.92647 (9)0.6444 (3)0.0199 (4)
N210.4429 (2)0.92698 (10)0.5685 (4)0.0178 (5)
C210.3714 (3)0.94192 (11)0.6761 (5)0.0194 (6)
C220.2550 (3)0.94443 (12)0.5905 (5)0.0220 (6)
H220.2034710.9550600.6628400.026*
C230.2133 (3)0.93161 (15)0.4009 (5)0.0247 (7)
H230.1338280.9339230.3427230.030*
C240.2889 (3)0.91531 (13)0.2967 (5)0.0236 (7)
H240.2617500.9056600.1673470.028*
C250.4040 (3)0.91336 (12)0.3842 (5)0.0219 (6)
H250.4565100.9023550.3142610.026*
O310.6368 (2)0.86742 (9)1.0809 (3)0.0189 (4)
N310.7399 (2)0.87014 (10)1.2061 (4)0.0183 (5)
C310.7818 (3)0.91535 (13)1.2802 (4)0.0204 (6)
C320.8872 (3)0.91558 (14)1.4123 (5)0.0237 (7)
H320.9185370.9466961.4663000.028*
C330.9469 (3)0.87135 (15)1.4660 (5)0.0250 (7)
H331.0188350.8719341.5562600.030*
C340.9007 (3)0.82600 (14)1.3865 (5)0.0237 (7)
H340.9407080.7952311.4219950.028*
C350.7968 (3)0.82592 (13)1.2565 (5)0.0207 (6)
H350.7645120.7950271.2016660.025*
C360.7123 (3)0.96119 (14)1.2166 (5)0.0272 (7)
H36A0.6416420.9594821.2598000.041*
H36B0.6935310.9631541.0774880.041*
H36C0.7558270.9912251.2705470.041*
C160.6698 (3)0.72386 (14)0.8287 (5)0.0254 (7)
H16A0.6483410.7471130.9191370.038*
H16B0.7506500.7286050.8313260.038*
H16C0.6572400.6889880.8640160.038*
C260.4234 (3)0.95514 (13)0.8779 (5)0.0240 (7)
H26A0.4819900.9811210.8837180.036*
H26B0.4584760.9249820.9464740.036*
H26C0.3641600.9680280.9365420.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0123 (2)0.0146 (2)0.0155 (2)0.00053 (16)0.00419 (17)0.00040 (16)
N10.0142 (12)0.0190 (12)0.0223 (12)0.0031 (10)0.0076 (10)0.0020 (10)
C10.0202 (16)0.0154 (13)0.0156 (13)0.0006 (11)0.0033 (11)0.0004 (10)
Se10.01337 (15)0.02559 (18)0.02267 (16)0.00155 (12)0.00749 (11)0.00275 (12)
N20.0150 (11)0.0198 (13)0.0207 (12)0.0042 (9)0.0052 (9)0.0003 (10)
C20.0212 (16)0.0171 (14)0.0141 (13)0.0035 (11)0.0058 (11)0.0010 (10)
Se20.01459 (16)0.02685 (19)0.02437 (17)0.00539 (12)0.00272 (12)0.00185 (12)
O110.0140 (11)0.0206 (11)0.0298 (12)0.0048 (8)0.0087 (9)0.0088 (9)
N110.0111 (11)0.0182 (13)0.0229 (12)0.0018 (9)0.0073 (9)0.0058 (10)
C110.0135 (13)0.0216 (15)0.0184 (13)0.0005 (11)0.0069 (11)0.0000 (11)
C120.0170 (14)0.0193 (15)0.0221 (14)0.0012 (11)0.0102 (11)0.0036 (12)
C130.0143 (14)0.0268 (16)0.0228 (15)0.0042 (12)0.0064 (11)0.0062 (12)
C140.0169 (14)0.0283 (17)0.0210 (14)0.0041 (12)0.0061 (11)0.0007 (12)
C150.0202 (14)0.0180 (14)0.0256 (15)0.0042 (12)0.0107 (12)0.0025 (12)
O210.0115 (10)0.0198 (11)0.0272 (11)0.0002 (8)0.0026 (8)0.0065 (9)
N210.0153 (12)0.0161 (12)0.0215 (12)0.0014 (9)0.0035 (10)0.0044 (10)
C210.0219 (16)0.0151 (14)0.0211 (15)0.0015 (11)0.0050 (13)0.0021 (11)
C220.0188 (16)0.0219 (16)0.0264 (16)0.0005 (11)0.0075 (13)0.0056 (11)
C230.0162 (14)0.0279 (17)0.0272 (16)0.0020 (13)0.0001 (12)0.0065 (13)
C240.0243 (16)0.0250 (17)0.0198 (14)0.0025 (13)0.0021 (12)0.0012 (12)
C250.0244 (15)0.0221 (15)0.0204 (14)0.0045 (13)0.0076 (12)0.0034 (12)
O310.0143 (10)0.0262 (12)0.0154 (10)0.0044 (8)0.0018 (8)0.0000 (8)
N310.0160 (12)0.0242 (14)0.0153 (11)0.0008 (10)0.0048 (10)0.0015 (9)
C310.0212 (15)0.0237 (16)0.0174 (14)0.0062 (12)0.0067 (12)0.0021 (11)
C320.0224 (16)0.0298 (17)0.0195 (14)0.0063 (12)0.0061 (12)0.0021 (12)
C330.0192 (15)0.038 (2)0.0167 (14)0.0049 (13)0.0031 (12)0.0019 (13)
C340.0199 (15)0.0302 (17)0.0225 (15)0.0053 (13)0.0082 (12)0.0067 (13)
C350.0235 (16)0.0216 (15)0.0187 (14)0.0017 (12)0.0082 (12)0.0004 (11)
C360.0259 (17)0.0233 (17)0.0313 (17)0.0018 (14)0.0050 (14)0.0060 (14)
C160.0202 (15)0.0311 (18)0.0235 (16)0.0011 (12)0.0029 (12)0.0015 (13)
C260.0269 (18)0.0223 (15)0.0217 (15)0.0038 (13)0.0041 (13)0.0004 (12)
Geometric parameters (Å, º) top
Co1—N12.090 (3)C22—C231.385 (5)
Co1—N22.047 (3)C23—H230.9500
Co1—O111.989 (2)C23—C241.390 (5)
Co1—O212.011 (2)C24—H240.9500
Co1—O312.032 (2)C24—C251.379 (5)
N1—C11.157 (4)C25—H250.9500
C1—Se11.797 (3)O31—N311.350 (4)
N2—C21.156 (4)N31—C311.358 (4)
C2—Se21.794 (3)N31—C351.361 (4)
O11—N111.341 (3)C31—C321.392 (5)
N11—C111.346 (4)C31—C361.483 (5)
N11—C151.357 (4)C32—H320.9500
C11—C121.397 (4)C32—C331.380 (5)
C11—C161.490 (4)C33—H330.9500
C12—H120.9500C33—C341.388 (5)
C12—C131.374 (5)C34—H340.9500
C13—H130.9500C34—C351.371 (5)
C13—C141.387 (5)C35—H350.9500
C14—H140.9500C36—H36A0.9800
C14—C151.374 (5)C36—H36B0.9800
C15—H150.9500C36—H36C0.9800
O21—N211.345 (3)C16—H16A0.9800
N21—C211.358 (4)C16—H16B0.9800
N21—C251.353 (4)C16—H16C0.9800
C21—C221.392 (5)C26—H26A0.9800
C21—C261.485 (4)C26—H26B0.9800
C22—H220.9500C26—H26C0.9800
N2—Co1—N1176.24 (11)C24—C23—H23120.4
O11—Co1—N191.77 (10)C23—C24—H24120.5
O11—Co1—N288.63 (10)C25—C24—C23119.0 (3)
O11—Co1—O21115.08 (11)C25—C24—H24120.5
O11—Co1—O31127.68 (10)N21—C25—C24120.6 (3)
O21—Co1—N191.29 (10)N21—C25—H25119.7
O21—Co1—N291.92 (10)C24—C25—H25119.7
O21—Co1—O31117.13 (10)N31—O31—Co1118.01 (18)
O31—Co1—N184.07 (10)O31—N31—C31120.3 (3)
O31—Co1—N292.72 (10)O31—N31—C35117.1 (3)
C1—N1—Co1156.2 (3)C31—N31—C35122.5 (3)
N1—C1—Se1177.6 (3)N31—C31—C32117.7 (3)
C2—N2—Co1177.2 (2)N31—C31—C36118.1 (3)
N2—C2—Se2179.8 (3)C32—C31—C36124.2 (3)
N11—O11—Co1118.91 (18)C31—C32—H32119.5
O11—N11—C11120.4 (3)C33—C32—C31121.1 (3)
O11—N11—C15117.6 (3)C33—C32—H32119.5
C11—N11—C15121.9 (3)C32—C33—H33120.4
N11—C11—C12118.2 (3)C32—C33—C34119.2 (3)
N11—C11—C16117.8 (3)C34—C33—H33120.4
C12—C11—C16124.0 (3)C33—C34—H34120.2
C11—C12—H12119.5C35—C34—C33119.6 (3)
C13—C12—C11121.0 (3)C35—C34—H34120.2
C13—C12—H12119.5N31—C35—C34119.9 (3)
C12—C13—H13120.4N31—C35—H35120.0
C12—C13—C14119.2 (3)C34—C35—H35120.0
C14—C13—H13120.4C31—C36—H36A109.5
C13—C14—H14120.5C31—C36—H36B109.5
C15—C14—C13119.0 (3)C31—C36—H36C109.5
C15—C14—H14120.5H36A—C36—H36B109.5
N11—C15—C14120.7 (3)H36A—C36—H36C109.5
N11—C15—H15119.7H36B—C36—H36C109.5
C14—C15—H15119.7C11—C16—H16A109.5
N21—O21—Co1120.92 (18)C11—C16—H16B109.5
O21—N21—C21119.7 (3)C11—C16—H16C109.5
O21—N21—C25118.2 (3)H16A—C16—H16B109.5
C21—N21—C25122.1 (3)H16A—C16—H16C109.5
N21—C21—C22118.2 (3)H16B—C16—H16C109.5
N21—C21—C26117.5 (3)C21—C26—H26A109.5
C22—C21—C26124.3 (3)C21—C26—H26B109.5
C21—C22—H22119.6C21—C26—H26C109.5
C23—C22—C21120.8 (3)H26A—C26—H26B109.5
C23—C22—H22119.6H26A—C26—H26C109.5
C22—C23—H23120.4H26B—C26—H26C109.5
C22—C23—C24119.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Se1i0.953.003.920 (3)163
C15—H15···O31i0.952.493.305 (4)144
C32—H32···Se2ii0.953.093.945 (4)151
C26—H26B···O310.982.623.511 (4)151
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z+1/2.
Diisoselenocyanatotetrakis(2-methylpyridine N-oxide)cobalt(II) (2) top
Crystal data top
[Co(NCSe)2(C6H7NO)4]F(000) = 2824
Mr = 705.39Dx = 1.614 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.3825 (1) ÅCell parameters from 27892 reflections
b = 39.9164 (3) Åθ = 3.1–79.1°
c = 15.9920 (1) ŵ = 7.86 mm1
β = 104.217 (1)°T = 100 K
V = 5805.82 (9) Å3Block, pink
Z = 80.16 × 0.14 × 0.12 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
11937 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source11197 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 2.2°
ω scansh = 711
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 4950
Tmin = 0.489, Tmax = 0.596l = 2020
41815 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0611P)2 + 6.3002P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
11937 reflectionsΔρmax = 1.76 e Å3
711 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.85687 (5)0.30073 (2)0.25349 (3)0.03255 (11)
N10.7045 (3)0.30528 (7)0.32998 (18)0.0439 (6)
C10.6211 (3)0.30086 (8)0.37078 (19)0.0398 (6)
Se10.48879 (4)0.29344 (2)0.43375 (2)0.04996 (10)
N20.8337 (3)0.35121 (7)0.21658 (19)0.0467 (6)
C20.7640 (3)0.37377 (7)0.18443 (19)0.0375 (6)
Se20.65659 (3)0.40942 (2)0.13745 (2)0.04001 (9)
O110.6964 (2)0.29141 (6)0.13849 (13)0.0414 (5)
N110.5621 (2)0.27903 (6)0.12825 (15)0.0346 (5)
C110.4567 (3)0.28858 (8)0.05670 (19)0.0398 (6)
C120.3196 (3)0.27392 (8)0.0426 (2)0.0431 (7)
H120.2464400.2794110.0080910.052*
C130.2868 (3)0.25143 (8)0.1007 (2)0.0465 (7)
H130.1915100.2418590.0913080.056*
C140.3960 (3)0.24317 (8)0.1730 (2)0.0447 (7)
H140.3754130.2278850.2139850.054*
C150.5335 (3)0.25683 (7)0.1859 (2)0.0390 (6)
H150.6085270.2507360.2350950.047*
C160.4994 (4)0.31461 (11)0.0004 (2)0.0534 (9)
H16A0.5351100.3345900.0348150.080*
H16B0.4137540.3205240.0460590.080*
H16C0.5773940.3058110.0244810.080*
O210.8669 (2)0.25020 (6)0.28634 (16)0.0469 (5)
N210.9700 (3)0.23026 (6)0.27081 (16)0.0373 (5)
C210.9424 (5)0.20957 (10)0.2003 (2)0.0566 (9)
C221.0556 (6)0.18664 (9)0.1935 (3)0.0640 (12)
H221.0380700.1713410.1465270.077*
C231.1853 (5)0.18606 (10)0.2511 (3)0.0663 (11)
H231.2591300.1705160.2456220.080*
C241.2092 (5)0.20788 (11)0.3168 (3)0.0611 (10)
H241.3021340.2080320.3573490.073*
C251.1028 (4)0.22996 (9)0.3268 (2)0.0445 (7)
H251.1230870.2452240.3738440.053*
C260.8030 (5)0.21089 (12)0.1372 (3)0.0676 (11)
H26A0.7247310.2034550.1637510.101*
H26B0.8061540.1961860.0886470.101*
H26C0.7834460.2339420.1164570.101*
O311.0078 (2)0.28863 (5)0.18030 (12)0.0339 (4)
N311.1007 (2)0.31146 (6)0.16405 (14)0.0305 (4)
C311.0651 (3)0.32881 (7)0.08905 (17)0.0332 (5)
C321.1666 (3)0.35134 (7)0.07174 (19)0.0370 (6)
H321.1426660.3638920.0196940.044*
C331.3017 (3)0.35587 (7)0.12868 (19)0.0373 (6)
H331.3707260.3713180.1162470.045*
C341.3349 (3)0.33734 (7)0.20473 (19)0.0360 (6)
H341.4273670.3399680.2448940.043*
C351.2331 (3)0.31525 (7)0.22133 (18)0.0337 (5)
H351.2553390.3025410.2731400.040*
C360.9211 (3)0.32107 (9)0.02853 (19)0.0432 (7)
H36A0.9162010.2971050.0148240.065*
H36B0.9110020.3340610.0246140.065*
H36C0.8413530.3269560.0555210.065*
O411.0443 (3)0.31159 (7)0.35059 (15)0.0514 (6)
N411.0439 (3)0.32764 (7)0.42399 (16)0.0446 (6)
C411.1138 (4)0.35725 (9)0.4411 (2)0.0446 (7)
C421.1179 (4)0.37286 (9)0.5191 (2)0.0526 (8)
H421.1694210.3934270.5324170.063*
C431.0484 (5)0.35906 (10)0.5778 (2)0.0624 (10)
H431.0505750.3700450.6307940.075*
C440.9753 (5)0.32870 (10)0.5574 (2)0.0605 (10)
H440.9259180.3187490.5963640.073*
C450.9748 (4)0.31314 (10)0.4806 (2)0.0512 (8)
H450.9262390.2922430.4668660.061*
C461.1844 (4)0.37162 (10)0.3753 (2)0.0529 (8)
H46A1.2683790.3576900.3711520.079*
H46B1.2182750.3944230.3921390.079*
H46C1.1128340.3722030.3191370.079*
Co20.05490 (5)0.55048 (2)0.26790 (3)0.03372 (11)
N30.1122 (3)0.55122 (7)0.33403 (17)0.0399 (5)
C30.1889 (3)0.54722 (7)0.37930 (19)0.0366 (6)
Se30.30340 (4)0.54154 (2)0.45399 (2)0.04069 (9)
N40.0266 (3)0.60176 (7)0.23483 (17)0.0417 (6)
C40.0233 (3)0.62762 (8)0.21203 (18)0.0364 (6)
Se40.10390 (4)0.66802 (2)0.17864 (2)0.04073 (9)
O510.0877 (2)0.53873 (6)0.14900 (14)0.0443 (5)
N510.2280 (3)0.53048 (6)0.13995 (16)0.0372 (5)
C510.3329 (3)0.54714 (7)0.08062 (19)0.0374 (6)
C520.4772 (3)0.53760 (8)0.06833 (19)0.0385 (6)
H520.5507880.5486740.0258800.046*
C530.5174 (3)0.51215 (8)0.1167 (2)0.0413 (6)
H530.6174560.5058290.1084960.050*
C540.4072 (4)0.49608 (8)0.1776 (2)0.0425 (7)
H540.4316030.4786200.2119470.051*
C550.2633 (4)0.50544 (8)0.1879 (2)0.0424 (7)
H550.1880530.4942620.2291070.051*
C560.2814 (4)0.57487 (9)0.0324 (2)0.0527 (8)
H56A0.2246180.5910420.0735050.079*
H56B0.3666200.5861150.0047550.079*
H56C0.2193140.5656360.0030850.079*
O610.0747 (2)0.49913 (5)0.29973 (13)0.0359 (4)
N610.1925 (3)0.48096 (6)0.29677 (15)0.0338 (5)
C610.1780 (4)0.45543 (9)0.2397 (2)0.0499 (8)
C620.2985 (4)0.43517 (9)0.2418 (3)0.0577 (9)
H620.2894130.4171900.2019290.069*
C630.4301 (4)0.44036 (8)0.2998 (2)0.0482 (8)
H630.5107590.4257070.3021080.058*
C640.4434 (4)0.46748 (9)0.3553 (2)0.0456 (7)
H640.5343610.4720430.3952940.055*
C650.3234 (3)0.48773 (8)0.35187 (19)0.0401 (6)
H650.3326370.5067060.3886780.048*
C660.0321 (5)0.45120 (16)0.1783 (4)0.098 (2)
H66A0.0415940.4459150.2103970.147*
H66B0.0369810.4328910.1382900.147*
H66C0.0047500.4720020.1458050.147*
O710.2211 (2)0.54389 (5)0.20202 (13)0.0365 (4)
N710.3090 (3)0.56936 (6)0.19452 (15)0.0340 (5)
C710.2769 (3)0.58840 (7)0.12162 (18)0.0362 (6)
C720.3756 (3)0.61346 (8)0.1133 (2)0.0403 (6)
H720.3551160.6270860.0631020.048*
C730.5027 (3)0.61885 (8)0.1768 (2)0.0409 (6)
H730.5694910.6360000.1705360.049*
C740.5312 (3)0.59888 (8)0.2498 (2)0.0402 (6)
H740.6182900.6021270.2941800.048*
C750.4328 (3)0.57434 (7)0.25761 (18)0.0364 (6)
H750.4518510.5606970.3078130.044*
C760.1424 (3)0.57984 (9)0.0544 (2)0.0442 (7)
H76A0.1499500.5568190.0346230.066*
H76B0.1319940.5952630.0055400.066*
H76C0.0562330.5817940.0784530.066*
O810.2256 (2)0.56159 (5)0.37630 (13)0.0377 (4)
N810.2060 (3)0.56779 (6)0.45506 (15)0.0344 (5)
C810.2607 (4)0.59684 (8)0.4944 (2)0.0445 (7)
C820.2398 (4)0.60311 (9)0.5759 (2)0.0532 (8)
H820.2754000.6234450.6042650.064*
C830.1686 (4)0.58051 (9)0.6165 (2)0.0493 (8)
H830.1541450.5852700.6720160.059*
C840.1182 (3)0.55068 (8)0.57515 (19)0.0414 (7)
H840.0700810.5345720.6023210.050*
C850.1390 (3)0.54478 (7)0.49424 (19)0.0361 (6)
H850.1059630.5243190.4656350.043*
C860.3388 (5)0.61941 (10)0.4461 (3)0.0604 (10)
H86A0.4254290.6078930.4361530.091*
H86B0.3697440.6397970.4798000.091*
H86C0.2725880.6253650.3905450.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0293 (2)0.0352 (2)0.0326 (2)0.00107 (18)0.00656 (18)0.00012 (18)
N10.0374 (14)0.0524 (15)0.0443 (14)0.0012 (11)0.0144 (11)0.0022 (12)
C10.0345 (15)0.0467 (16)0.0352 (14)0.0014 (12)0.0029 (12)0.0006 (12)
Se10.03537 (18)0.0772 (3)0.03717 (17)0.00101 (16)0.00861 (13)0.00799 (16)
N20.0508 (16)0.0349 (13)0.0565 (16)0.0015 (12)0.0173 (13)0.0009 (12)
C20.0350 (15)0.0401 (15)0.0394 (14)0.0072 (12)0.0130 (12)0.0054 (12)
Se20.03332 (16)0.04557 (17)0.03953 (16)0.00037 (12)0.00586 (12)0.00369 (13)
O110.0252 (10)0.0594 (13)0.0384 (10)0.0092 (9)0.0053 (8)0.0014 (9)
N110.0258 (11)0.0396 (12)0.0383 (12)0.0030 (9)0.0080 (9)0.0060 (10)
C110.0323 (15)0.0492 (16)0.0377 (14)0.0002 (12)0.0081 (11)0.0080 (13)
C120.0297 (15)0.0510 (17)0.0459 (16)0.0020 (12)0.0039 (12)0.0121 (14)
C130.0300 (15)0.0416 (16)0.067 (2)0.0044 (12)0.0099 (14)0.0127 (15)
C140.0352 (16)0.0343 (14)0.065 (2)0.0014 (12)0.0143 (14)0.0021 (14)
C150.0295 (14)0.0368 (14)0.0508 (17)0.0009 (11)0.0098 (12)0.0024 (12)
C160.0357 (16)0.084 (3)0.0388 (16)0.0021 (16)0.0054 (13)0.0087 (16)
O210.0314 (11)0.0444 (12)0.0667 (15)0.0046 (9)0.0153 (10)0.0183 (11)
N210.0359 (13)0.0325 (11)0.0430 (13)0.0004 (9)0.0087 (10)0.0075 (10)
C210.064 (2)0.056 (2)0.0451 (18)0.0266 (18)0.0046 (16)0.0075 (15)
C220.094 (3)0.0383 (17)0.076 (3)0.0175 (19)0.053 (3)0.0129 (17)
C230.079 (3)0.049 (2)0.082 (3)0.013 (2)0.042 (2)0.018 (2)
C240.058 (2)0.075 (3)0.055 (2)0.0298 (19)0.0229 (18)0.0284 (19)
C250.0399 (17)0.0553 (18)0.0366 (15)0.0067 (14)0.0061 (12)0.0069 (13)
C260.050 (2)0.074 (3)0.078 (3)0.0026 (19)0.014 (2)0.016 (2)
O310.0311 (10)0.0344 (9)0.0371 (10)0.0043 (8)0.0099 (8)0.0001 (8)
N310.0272 (11)0.0329 (11)0.0316 (11)0.0007 (9)0.0078 (9)0.0018 (9)
C310.0292 (13)0.0383 (14)0.0315 (13)0.0015 (11)0.0066 (10)0.0002 (11)
C320.0371 (15)0.0378 (14)0.0376 (14)0.0008 (11)0.0120 (11)0.0037 (11)
C330.0342 (14)0.0367 (14)0.0434 (15)0.0029 (11)0.0143 (12)0.0024 (12)
C340.0285 (14)0.0414 (14)0.0372 (14)0.0016 (11)0.0062 (11)0.0062 (11)
C350.0289 (13)0.0385 (14)0.0321 (13)0.0028 (11)0.0042 (10)0.0004 (11)
C360.0333 (15)0.0616 (19)0.0323 (14)0.0040 (13)0.0036 (11)0.0033 (13)
O410.0393 (12)0.0758 (16)0.0382 (11)0.0101 (11)0.0080 (9)0.0183 (11)
N410.0452 (15)0.0552 (16)0.0322 (12)0.0049 (12)0.0074 (11)0.0044 (11)
C410.0459 (17)0.0533 (18)0.0338 (14)0.0029 (14)0.0082 (12)0.0004 (13)
C420.066 (2)0.0513 (19)0.0411 (17)0.0090 (17)0.0142 (16)0.0054 (14)
C430.093 (3)0.062 (2)0.0349 (16)0.011 (2)0.0193 (18)0.0065 (15)
C440.082 (3)0.062 (2)0.0416 (18)0.009 (2)0.0224 (18)0.0056 (16)
C450.056 (2)0.058 (2)0.0395 (16)0.0083 (16)0.0112 (14)0.0010 (15)
C460.052 (2)0.068 (2)0.0418 (17)0.0070 (17)0.0171 (15)0.0013 (16)
Co20.0298 (2)0.0371 (2)0.0348 (2)0.00232 (18)0.00881 (18)0.00530 (18)
N30.0324 (13)0.0460 (14)0.0431 (13)0.0058 (10)0.0126 (11)0.0073 (11)
C30.0332 (14)0.0352 (14)0.0396 (14)0.0032 (11)0.0057 (12)0.0050 (11)
Se30.03533 (17)0.04521 (18)0.04398 (17)0.00154 (13)0.01443 (13)0.00795 (13)
N40.0429 (14)0.0413 (13)0.0428 (13)0.0078 (11)0.0143 (11)0.0071 (11)
C40.0339 (14)0.0448 (15)0.0315 (13)0.0039 (12)0.0101 (11)0.0007 (11)
Se40.04327 (18)0.03789 (16)0.03780 (16)0.00041 (13)0.00378 (13)0.00388 (12)
O510.0297 (10)0.0599 (13)0.0411 (11)0.0058 (9)0.0044 (8)0.0130 (10)
N510.0299 (12)0.0425 (13)0.0391 (12)0.0036 (10)0.0080 (9)0.0048 (10)
C510.0354 (15)0.0400 (14)0.0363 (14)0.0005 (12)0.0079 (11)0.0040 (12)
C520.0336 (15)0.0420 (15)0.0391 (15)0.0017 (12)0.0075 (12)0.0036 (12)
C530.0349 (15)0.0416 (15)0.0512 (17)0.0037 (12)0.0176 (13)0.0086 (13)
C540.0442 (17)0.0371 (14)0.0504 (17)0.0033 (12)0.0196 (14)0.0013 (13)
C550.0426 (17)0.0418 (15)0.0440 (16)0.0023 (13)0.0131 (13)0.0090 (13)
C560.0430 (18)0.060 (2)0.0491 (18)0.0083 (15)0.0005 (14)0.0199 (16)
O610.0310 (10)0.0356 (10)0.0424 (10)0.0030 (8)0.0114 (8)0.0052 (8)
N610.0332 (12)0.0338 (11)0.0372 (12)0.0012 (9)0.0138 (9)0.0042 (9)
C610.0402 (18)0.0509 (18)0.062 (2)0.0072 (14)0.0186 (15)0.0162 (16)
C620.050 (2)0.0446 (18)0.085 (3)0.0064 (15)0.0305 (19)0.0185 (18)
C630.0441 (18)0.0400 (16)0.069 (2)0.0063 (13)0.0302 (16)0.0114 (15)
C640.0376 (16)0.0554 (18)0.0449 (16)0.0079 (14)0.0124 (13)0.0098 (14)
C650.0368 (15)0.0440 (15)0.0380 (14)0.0053 (12)0.0067 (12)0.0010 (12)
C660.043 (2)0.128 (5)0.116 (4)0.008 (3)0.007 (2)0.080 (4)
O710.0330 (10)0.0382 (10)0.0408 (10)0.0011 (8)0.0138 (8)0.0027 (8)
N710.0307 (12)0.0377 (12)0.0358 (11)0.0014 (9)0.0123 (9)0.0024 (9)
C710.0333 (14)0.0413 (15)0.0357 (14)0.0042 (11)0.0118 (11)0.0021 (11)
C720.0393 (16)0.0438 (15)0.0394 (14)0.0040 (12)0.0127 (12)0.0062 (12)
C730.0392 (16)0.0392 (15)0.0462 (16)0.0008 (12)0.0142 (13)0.0022 (13)
C740.0322 (15)0.0482 (16)0.0396 (15)0.0016 (12)0.0075 (12)0.0014 (13)
C750.0332 (14)0.0406 (15)0.0351 (13)0.0044 (11)0.0080 (11)0.0040 (11)
C760.0359 (16)0.0599 (19)0.0373 (15)0.0003 (14)0.0099 (12)0.0044 (14)
O810.0350 (10)0.0459 (11)0.0331 (10)0.0007 (8)0.0103 (8)0.0007 (8)
N810.0330 (12)0.0372 (12)0.0322 (11)0.0029 (9)0.0066 (9)0.0020 (9)
C810.0486 (18)0.0406 (15)0.0414 (16)0.0075 (13)0.0054 (13)0.0007 (13)
C820.066 (2)0.0497 (18)0.0386 (16)0.0079 (16)0.0022 (15)0.0091 (14)
C830.054 (2)0.061 (2)0.0305 (14)0.0028 (16)0.0052 (13)0.0016 (14)
C840.0346 (15)0.0523 (17)0.0355 (14)0.0044 (13)0.0049 (12)0.0092 (13)
C850.0314 (14)0.0367 (14)0.0382 (14)0.0017 (11)0.0046 (11)0.0043 (11)
C860.073 (3)0.0489 (19)0.060 (2)0.0216 (18)0.0177 (19)0.0026 (17)
Geometric parameters (Å, º) top
Co1—N12.105 (3)Co2—N32.096 (3)
Co1—N22.096 (3)Co2—N42.115 (3)
Co1—O112.104 (2)Co2—O512.092 (2)
Co1—O212.081 (2)Co2—O612.109 (2)
Co1—O312.103 (2)Co2—O712.102 (2)
Co1—O412.086 (2)Co2—O812.098 (2)
N1—C11.149 (4)N3—C31.150 (4)
C1—Se11.805 (3)C3—Se31.806 (3)
N2—C21.157 (4)N4—C41.155 (4)
C2—Se21.798 (3)C4—Se41.805 (3)
O11—N111.325 (3)O51—N511.330 (3)
N11—C111.370 (4)N51—C511.361 (4)
N11—C151.352 (4)N51—C551.350 (4)
C11—C121.380 (4)C51—C521.374 (4)
C11—C161.493 (5)C51—C561.495 (4)
C12—H120.9500C52—H520.9500
C12—C131.380 (5)C52—C531.384 (4)
C13—H130.9500C53—H530.9500
C13—C141.383 (5)C53—C541.391 (5)
C14—H140.9500C54—H540.9500
C14—C151.369 (4)C54—C551.371 (5)
C15—H150.9500C55—H550.9500
C16—H16A0.9800C56—H56A0.9800
C16—H16B0.9800C56—H56B0.9800
C16—H16C0.9800C56—H56C0.9800
O21—N211.322 (3)O61—N611.332 (3)
N21—C211.370 (5)N61—C611.353 (4)
N21—C251.344 (4)N61—C651.351 (4)
C21—C221.426 (6)C61—C621.383 (5)
C21—C261.444 (6)C61—C661.485 (6)
C22—H220.9500C62—H620.9500
C22—C231.334 (7)C62—C631.366 (6)
C23—H230.9500C63—H630.9500
C23—C241.341 (6)C63—C641.385 (5)
C24—H240.9500C64—H640.9500
C24—C251.371 (5)C64—C651.376 (4)
C25—H250.9500C65—H650.9500
C26—H26A0.9800C66—H66A0.9800
C26—H26B0.9800C66—H66B0.9800
C26—H26C0.9800C66—H66C0.9800
O31—N311.330 (3)O71—N711.333 (3)
N31—C311.354 (4)N71—C711.362 (4)
N31—C351.359 (3)N71—C751.353 (4)
C31—C321.386 (4)C71—C721.391 (4)
C31—C361.488 (4)C71—C761.483 (4)
C32—H320.9500C72—H720.9500
C32—C331.379 (4)C72—C731.380 (4)
C33—H330.9500C73—H730.9500
C33—C341.392 (4)C73—C741.384 (4)
C34—H340.9500C74—H740.9500
C34—C351.373 (4)C74—C751.373 (4)
C35—H350.9500C75—H750.9500
C36—H36A0.9800C76—H76A0.9800
C36—H36B0.9800C76—H76B0.9800
C36—H36C0.9800C76—H76C0.9800
O41—N411.338 (3)O81—N811.340 (3)
N41—C411.347 (4)N81—C811.358 (4)
N41—C451.364 (4)N81—C851.351 (4)
C41—C421.386 (4)C81—C821.387 (5)
C41—C461.490 (5)C81—C861.491 (5)
C42—H420.9500C82—H820.9500
C42—C431.382 (5)C82—C831.377 (5)
C43—H430.9500C83—H830.9500
C43—C441.392 (6)C83—C841.387 (5)
C44—H440.9500C84—H840.9500
C44—C451.376 (5)C84—C851.375 (4)
C45—H450.9500C85—H850.9500
C46—H46A0.9800C86—H86A0.9800
C46—H46B0.9800C86—H86B0.9800
C46—H46C0.9800C86—H86C0.9800
N2—Co1—N192.43 (11)N3—Co2—N492.80 (10)
N2—Co1—O1185.49 (11)N3—Co2—O6185.67 (9)
N2—Co1—O3195.84 (10)N3—Co2—O71173.62 (9)
O11—Co1—N194.63 (10)N3—Co2—O8195.39 (9)
O21—Co1—N186.10 (10)O51—Co2—N394.08 (10)
O21—Co1—N2176.62 (11)O51—Co2—N488.66 (10)
O21—Co1—O1191.58 (10)O51—Co2—O6190.02 (9)
O21—Co1—O3185.57 (8)O51—Co2—O7184.49 (9)
O21—Co1—O4192.05 (10)O51—Co2—O81170.51 (9)
O31—Co1—N1171.62 (10)O61—Co2—N4177.90 (9)
O31—Co1—O1184.73 (8)O71—Co2—N493.37 (9)
O41—Co1—N196.79 (10)O71—Co2—O6188.12 (8)
O41—Co1—N291.15 (12)O81—Co2—N491.46 (10)
O41—Co1—O11168.23 (9)O81—Co2—O6190.12 (8)
O41—Co1—O3184.39 (8)O81—Co2—O7186.03 (8)
C1—N1—Co1166.2 (3)C3—N3—Co2167.6 (2)
N1—C1—Se1179.1 (3)N3—C3—Se3177.7 (3)
C2—N2—Co1151.9 (3)C4—N4—Co2163.8 (3)
N2—C2—Se2178.3 (3)N4—C4—Se4178.5 (3)
N11—O11—Co1128.93 (17)N51—O51—Co2123.32 (18)
O11—N11—C11118.0 (2)O51—N51—C51118.8 (2)
O11—N11—C15120.1 (2)O51—N51—C55119.7 (2)
C15—N11—C11121.9 (3)C55—N51—C51121.5 (3)
N11—C11—C12118.1 (3)N51—C51—C52118.9 (3)
N11—C11—C16116.8 (3)N51—C51—C56116.8 (3)
C12—C11—C16125.0 (3)C52—C51—C56124.3 (3)
C11—C12—H12119.4C51—C52—H52119.4
C13—C12—C11121.2 (3)C51—C52—C53121.2 (3)
C13—C12—H12119.4C53—C52—H52119.4
C12—C13—H13120.8C52—C53—H53120.9
C12—C13—C14118.4 (3)C52—C53—C54118.2 (3)
C14—C13—H13120.8C54—C53—H53120.9
C13—C14—H14119.7C53—C54—H54120.0
C15—C14—C13120.6 (3)C55—C54—C53120.0 (3)
C15—C14—H14119.7C55—C54—H54120.0
N11—C15—C14119.7 (3)N51—C55—C54120.3 (3)
N11—C15—H15120.1N51—C55—H55119.9
C14—C15—H15120.1C54—C55—H55119.9
C11—C16—H16A109.5C51—C56—H56A109.5
C11—C16—H16B109.5C51—C56—H56B109.5
C11—C16—H16C109.5C51—C56—H56C109.5
H16A—C16—H16B109.5H56A—C56—H56B109.5
H16A—C16—H16C109.5H56A—C56—H56C109.5
H16B—C16—H16C109.5H56B—C56—H56C109.5
N21—O21—Co1121.76 (17)N61—O61—Co2123.03 (16)
O21—N21—C21121.3 (3)O61—N61—C61119.2 (3)
O21—N21—C25118.7 (3)O61—N61—C65119.8 (2)
C25—N21—C21120.0 (3)C65—N61—C61121.0 (3)
N21—C21—C22117.2 (3)N61—C61—C62118.5 (3)
N21—C21—C26120.6 (4)N61—C61—C66117.1 (3)
C22—C21—C26122.3 (4)C62—C61—C66124.4 (3)
C21—C22—H22119.1C61—C62—H62119.2
C23—C22—C21121.9 (4)C63—C62—C61121.7 (3)
C23—C22—H22119.1C63—C62—H62119.2
C22—C23—H23120.7C62—C63—H63120.7
C22—C23—C24118.6 (4)C62—C63—C64118.5 (3)
C24—C23—H23120.7C64—C63—H63120.7
C23—C24—H24119.2C63—C64—H64120.4
C23—C24—C25121.5 (4)C65—C64—C63119.3 (3)
C25—C24—H24119.2C65—C64—H64120.4
N21—C25—C24120.7 (3)N61—C65—C64120.8 (3)
N21—C25—H25119.6N61—C65—H65119.6
C24—C25—H25119.6C64—C65—H65119.6
C21—C26—H26A109.5C61—C66—H66A109.5
C21—C26—H26B109.5C61—C66—H66B109.5
C21—C26—H26C109.5C61—C66—H66C109.5
H26A—C26—H26B109.5H66A—C66—H66B109.5
H26A—C26—H26C109.5H66A—C66—H66C109.5
H26B—C26—H26C109.5H66B—C66—H66C109.5
N31—O31—Co1120.96 (15)N71—O71—Co2120.08 (16)
O31—N31—C31119.5 (2)O71—N71—C71119.4 (2)
O31—N31—C35118.6 (2)O71—N71—C75118.8 (2)
C31—N31—C35121.7 (2)C75—N71—C71121.7 (3)
N31—C31—C32118.5 (3)N71—C71—C72118.0 (3)
N31—C31—C36117.2 (3)N71—C71—C76117.5 (3)
C32—C31—C36124.3 (3)C72—C71—C76124.4 (3)
C31—C32—H32119.4C71—C72—H72119.4
C33—C32—C31121.2 (3)C73—C72—C71121.2 (3)
C33—C32—H32119.4C73—C72—H72119.4
C32—C33—H33120.7C72—C73—H73120.5
C32—C33—C34118.7 (3)C72—C73—C74118.9 (3)
C34—C33—H33120.7C74—C73—H73120.5
C33—C34—H34120.2C73—C74—H74120.3
C35—C34—C33119.6 (3)C75—C74—C73119.5 (3)
C35—C34—H34120.2C75—C74—H74120.3
N31—C35—C34120.4 (3)N71—C75—C74120.7 (3)
N31—C35—H35119.8N71—C75—H75119.6
C34—C35—H35119.8C74—C75—H75119.6
C31—C36—H36A109.5C71—C76—H76A109.5
C31—C36—H36B109.5C71—C76—H76B109.5
C31—C36—H36C109.5C71—C76—H76C109.5
H36A—C36—H36B109.5H76A—C76—H76B109.5
H36A—C36—H36C109.5H76A—C76—H76C109.5
H36B—C36—H36C109.5H76B—C76—H76C109.5
N41—O41—Co1124.68 (19)N81—O81—Co2124.24 (16)
O41—N41—C41119.5 (3)O81—N81—C81118.0 (2)
O41—N41—C45118.9 (3)O81—N81—C85119.8 (2)
C41—N41—C45121.6 (3)C85—N81—C81122.1 (3)
N41—C41—C42118.8 (3)N81—C81—C82117.7 (3)
N41—C41—C46118.2 (3)N81—C81—C86117.0 (3)
C42—C41—C46123.0 (3)C82—C81—C86125.4 (3)
C41—C42—H42119.4C81—C82—H82119.3
C43—C42—C41121.2 (3)C83—C82—C81121.5 (3)
C43—C42—H42119.4C83—C82—H82119.3
C42—C43—H43120.8C82—C83—H83120.5
C42—C43—C44118.4 (3)C82—C83—C84119.1 (3)
C44—C43—H43120.8C84—C83—H83120.5
C43—C44—H44120.1C83—C84—H84120.5
C45—C44—C43119.7 (3)C85—C84—C83119.0 (3)
C45—C44—H44120.1C85—C84—H84120.5
N41—C45—C44120.2 (3)N81—C85—C84120.6 (3)
N41—C45—H45119.9N81—C85—H85119.7
C44—C45—H45119.9C84—C85—H85119.7
C41—C46—H46A109.5C81—C86—H86A109.5
C41—C46—H46B109.5C81—C86—H86B109.5
C41—C46—H46C109.5C81—C86—H86C109.5
H46A—C46—H46B109.5H86A—C86—H86B109.5
H46A—C46—H46C109.5H86A—C86—H86C109.5
H46B—C46—H46C109.5H86B—C86—H86C109.5
Co1—O11—N11—C11151.0 (2)Co2—O51—N51—C51128.0 (2)
Co1—O11—N11—C1531.1 (4)Co2—O51—N51—C5553.5 (4)
Co1—O21—N21—C2199.2 (3)Co2—O61—N61—C61115.5 (3)
Co1—O21—N21—C2582.3 (3)Co2—O61—N61—C6566.0 (3)
Co1—O31—N31—C3195.3 (2)Co2—O71—N71—C7195.9 (3)
Co1—O31—N31—C3588.6 (3)Co2—O71—N71—C7588.0 (3)
Co1—O41—N41—C41117.7 (3)Co2—O81—N81—C81125.5 (2)
Co1—O41—N41—C4563.6 (4)Co2—O81—N81—C8557.2 (3)
O11—N11—C11—C12175.4 (3)O51—N51—C51—C52177.0 (3)
O11—N11—C11—C165.4 (4)O51—N51—C51—C562.7 (4)
O11—N11—C15—C14177.4 (3)O51—N51—C55—C54178.2 (3)
N11—C11—C12—C133.0 (5)N51—C51—C52—C531.8 (5)
C11—N11—C15—C140.3 (4)C51—N51—C55—C540.2 (5)
C11—C12—C13—C141.6 (5)C51—C52—C53—C540.8 (5)
C12—C13—C14—C150.5 (5)C52—C53—C54—C550.4 (5)
C13—C14—C15—N111.1 (5)C53—C54—C55—N510.7 (5)
C15—N11—C11—C122.4 (4)C55—N51—C51—C521.5 (5)
C15—N11—C11—C16176.8 (3)C55—N51—C51—C56178.8 (3)
C16—C11—C12—C13176.1 (3)C56—C51—C52—C53178.5 (3)
O21—N21—C21—C22174.0 (3)O61—N61—C61—C62175.1 (3)
O21—N21—C21—C264.8 (5)O61—N61—C61—C665.1 (5)
O21—N21—C25—C24175.0 (3)O61—N61—C65—C64174.1 (3)
N21—C21—C22—C232.6 (5)N61—C61—C62—C630.1 (6)
C21—N21—C25—C243.5 (5)C61—N61—C65—C644.3 (5)
C21—C22—C23—C240.4 (6)C61—C62—C63—C642.5 (6)
C22—C23—C24—C251.5 (6)C62—C63—C64—C651.7 (5)
C23—C24—C25—N210.4 (6)C63—C64—C65—N611.7 (5)
C25—N21—C21—C224.5 (4)C65—N61—C61—C623.4 (5)
C25—N21—C21—C26176.7 (3)C65—N61—C61—C66176.5 (4)
C26—C21—C22—C23178.6 (4)C66—C61—C62—C63179.9 (5)
O31—N31—C31—C32177.0 (2)O71—N71—C71—C72176.0 (2)
O31—N31—C31—C360.1 (4)O71—N71—C71—C761.0 (4)
O31—N31—C35—C34176.7 (2)O71—N71—C75—C74175.7 (3)
N31—C31—C32—C330.8 (4)N71—C71—C72—C730.2 (4)
C31—N31—C35—C340.7 (4)C71—N71—C75—C740.3 (4)
C31—C32—C33—C340.2 (4)C71—C72—C73—C740.1 (5)
C32—C33—C34—C350.2 (4)C72—C73—C74—C750.2 (5)
C33—C34—C35—N310.1 (4)C73—C74—C75—N710.4 (5)
C35—N31—C31—C321.1 (4)C75—N71—C71—C720.0 (4)
C35—N31—C31—C36176.1 (3)C75—N71—C71—C76176.9 (3)
C36—C31—C32—C33176.2 (3)C76—C71—C72—C73176.5 (3)
O41—N41—C41—C42177.2 (3)O81—N81—C81—C82179.9 (3)
O41—N41—C41—C462.4 (5)O81—N81—C81—C860.2 (4)
O41—N41—C45—C44178.6 (3)O81—N81—C85—C84179.9 (3)
N41—C41—C42—C431.8 (6)N81—C81—C82—C831.2 (5)
C41—N41—C45—C440.0 (6)C81—N81—C85—C842.7 (4)
C41—C42—C43—C440.8 (7)C81—C82—C83—C840.7 (6)
C42—C43—C44—C450.5 (7)C82—C83—C84—C850.9 (5)
C43—C44—C45—N411.0 (6)C83—C84—C85—N810.7 (4)
C45—N41—C41—C421.4 (5)C85—N81—C81—C822.9 (5)
C45—N41—C41—C46179.0 (3)C85—N81—C81—C86177.0 (3)
C46—C41—C42—C43178.6 (4)C86—C81—C82—C83178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O210.952.363.158 (4)141
C26—H26C···O110.982.493.367 (5)149
C35—H35···Se1i0.952.963.748 (3)141
C36—H36C···O110.982.553.281 (4)131
C42—H42···Se3ii0.952.873.811 (4)171
C52—H52···Se2iii0.953.053.926 (3)153
C55—H55···O610.952.453.245 (4)141
C56—H56B···Se2iii0.983.023.933 (3)156
C65—H65···O810.952.403.140 (4)135
C66—H66A···Se2iv0.983.143.807 (5)126
C75—H75···Se3i0.952.953.726 (3)140
C75—H75···O810.952.623.075 (3)110
C76—H76C···O510.982.613.354 (4)133
C86—H86B···Se1ii0.983.144.109 (4)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDas, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377–19389.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHopa, C., Kara, H. & Aybey, A. (2020). J. Mol. Struct. 1202, 127322–12732.  Web of Science CSD CrossRef CAS Google Scholar
First citationJana, A. D., Manna, S. C., Rosair, G. M., Drew, M. G. B., Mostafa, G. & Ray Chaudhuri, N. (2007). Cryst. Growth Des. 7, 1365–1372.  Web of Science CSD CrossRef CAS Google Scholar
First citationKergoat, R., Guerchais, J. E. & Genet, F. (1970). Bull. Soc. Fr. Miner. Crist. 93, 166–169.  CAS Google Scholar
First citationLi, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006). Acta Cryst. E62, i47–i49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2023). Acta Cryst. E79, 867–871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024a). Acta Cryst. E80, 174–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024b). Acta Cryst. E80, 67–71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024c). Acta Cryst. E80, 463–467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4972–4981.  Web of Science CSD CrossRef Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolanki, A. & Kumar, S. B. (2014). Polyhedron, 81, 323–328.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds