research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of dimeth­yl(phen­yl)phosphine sulfide

crossmark logo

aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 June 2024; accepted 12 June 2024; online 18 June 2024)

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).

1. Chemical context

The structure of the title compound, C8H11PS, 11, is inter­esting for two reasons: firstly, the crystals are very temperature sensitive and secondly the chemical background of the substance itself. Although 11 has been known since 1962 (Monsanto Chemicals, 1962[Monsanto Chemicals (1962). American Patent No. US3053900A]) and even commercially available, no crystal structure has been obtained until now. This might be due to its low melting point, which made measurements very difficult and only feasible with X-Temp 2 (Stalke, 1998[Stalke, D. (1998). Chem. Soc. Rev. 27, 171.]), which makes crystal picking and mounting possible at very low temperatures. Phospho­rus-based mol­ecules are used in a large variety of different chemical applications as chiral ligands for enanti­oselective catalysis (Grabulosa, 2011[Grabulosa, A. (2011). P-Stereogenic Ligands in Enantioselective Catalysis. Cambridge: RSC Publishing, .]). Compound 11 is a prochiral building block for P-stereogenic biphosphine ligands, which are used for transition-metal-catalyzed asymmetric reactions (Tang & Zhang, 2003[Tang, W. & Zhang, X. (2003). Chem. Rev. 103, 3029-3070.]). This application makes an enanti­oselective synthesis indispensable, which is why different approaches have been reported. For the chemically similar phosphine–boranes, the desired enanti­omer can be synthesized either under kinetic control with sec-BuLi and (−)-sparteine via an asymmetric deprotonation (Muci et al., 1995[Muci, A. R., Campos, K. R. & Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075-9076.]) or a thermodynamically controlled reaction with n-BuLi and (−)-sparteine via dynamic resolution (Wolfe & Livinghouse, 1998[Wolfe, B. & Livinghouse, T. (1998). J. Am. Chem. Soc. 120, 5116-5117.]) (Fig. 1[link]). For phosphine sulfides like compound 11, the synthetic approach is quite similar. Using n-BuLi and (−)-sparteine in Et2O results in an enanti­ometric ratio (e.r.) of 88:12 via a kinetically controlled reaction (Gammon et al., 2010[Gammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922-13927.]) (Fig. 2[link]). By trapping the li­thia­ted inter­mediate, not only has a higher enanti­oselectivity of e.r. = 93:7 been achieved, but it has also been discovered that the enanti­omers can inter­convert at temperatures above 253 K. One of the most recent synthetic approaches for phosphine–boranes relies on the much cheaper (R,R)-TMCDA instead of (−)-sparteine and crystallization-induced dynamic resolution (CIDR). This synthesis achieves up to 80% yield and enanti­oselectivity of 98:2 (Kuzu et al., 2024[Kuzu, M. Y., Schmidt, A. & Strohmann, C. (2024). Angew. Chem. Int. Ed. e202319665.]).

[Scheme 1]
[Figure 1]
Figure 1
Kinetic and thermodynamic approaches to synthesize chiral phosphine boranes.
[Figure 2]
Figure 2
More recent synthetic approaches for chiral phosphine sulfides and boranes.

2. Structural commentary

Compound 11, which was crystallized from toluene at 193 K, forms colorless needles in the monoclinic space group P21/n. The P-tetra­hedral mol­ecule consists of two methyl groups and one phenyl group bound to the phosphine sulfide unit. The P1—S1 bond length of 1.9623 (5) Å matches the typical bond length for this species (Verschoor-Kirss et al., 2016[Verschoor-Kirss, M. J., Hendricks, O., Verschoor, C. M., Conry, R. & Kirss, R. U. (2016). Inorg. Chim. Acta, 450, 30-38.]; Blake et al., 1981[Blake, A. J., Howie, R. A. & McQuillan, G. P. (1981). Acta Cryst. B37, 1959-1962.]). The phospho­rus bond angles vary from 105.58 (6)° for C1—P1—C3 to 113.55 (5)° for C2—P1—S1. These angles are slightly distorted from the nominal angle of 109.5°, which is probably caused by the different steric effects of the substituents. The bond lengths and angles of the C3–C8 phenyl ring match with the typical lengths and angles for this familiar group (Lide, 2005[Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.]). Atom S1 is displaced from the plane of the C3–C8 ring by −0.549 (1) Å with corresponding deviations for atoms C1 and C2 of the methyl groups of 1.839 (2) and −0.781 (1) Å, respectively; the C4—C3—P1—S1 torsion angle is 23.85 (12)°.

3. Supra­molecular features

To better understand the inter­molecular inter­actions of 11, a Hirshfeld surface analysis was performed. In Fig. 3[link] the Hirshfeld surface analysis is mapped over dnorm in the range of −0.07 to 1.20 a.u. (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) using red dots to represent close contacts. Atom S1 has close contacts to atoms H1A (H⋯S = 2.87 Å) and H2C (2.95 Å) of the methyl groups of a neighboring mol­ecule displaced by translation in the a-axis direction. For further visualization of the percentage of the respective inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated and these are shown in Fig. 4[link]. The most significant contacts in the solid state are the H⋯H inter­actions, contributing 58.1% of the total surface (Fig. 5[link]). The S⋯H/H⋯S (13.4%) and C⋯H/H⋯C inter­actions (11.7%) are less impactful in comparison.

[Figure 3]
Figure 3
The mol­ecular structure of 11 showing 50% displacement ellipsoids.
[Figure 4]
Figure 4
Hirshfeld surface analysis of 11 showing close contacts in the crystal.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for compound 11, showing (a) all contributions and (b)–(d) contributions between specific inter­acting atom pairs.

4. Database survey

Similar mol­ecules to 11 can vary either in the attached heteroatom such as the previously discussed phosphine boranes (Muci et al., 1995[Muci, A. R., Campos, K. R. & Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075-9076.]; Kuzu et al., 2024[Kuzu, M. Y., Schmidt, A. & Strohmann, C. (2024). Angew. Chem. Int. Ed. e202319665.]) or they can vary in their organic substituents (Gammon et al., 2010[Gammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922-13927.]). A search in the Cambridge Structural Database (WebCSD, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for phosphine sulfides lead to many similar structures with different organic substituents. Some of those structures contain aromatic substituents such as three phenyl rings (CSD refcode BAQTOC; Arca et al., 1999[Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069-3073.]) or even larger substituents like an anthracene group (BARWEA; Schillmöller et al., 2021[Schillmöller, T., Herbst-Irmer, R. & Stalke, D. (2021). Adv. Opt. Mater. 9, 2001814.]). Structures with smaller substituents are also known, for example, butyro­nitrile (KADJEE; Blake et al., 1981[Blake, A. J., Howie, R. A. & McQuillan, G. P. (1981). Acta Cryst. B37, 1959-1962.]).

5. Synthesis and crystallization

In a round-bottom flask equipped with a condenser dimeth­yl(phen­yl)phosphane (1.00 g, 7.24 mmol, 1 eq.) and sulfur (2.23 g, 8.69 mmol, 1.2 eq.) were dissolved in 20 ml of toluene. While stirring, the mixture was heated under reflux to 373 K and then stirred overnight without heating. The resulting mixture was filtered through 3 cm of celite and washed with diethyl ether. The organic phase was dried with magnesium sulfate and the solvent was removed in vacuo, yielding a slightly yellow oil of dimeth­yl(phen­yl)phosphine sulfide (1.04 g, 85%). The oil was dissolved in hot toluene and recrystallized at 193 K, forming colorless needles.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 1
Experimental details

Crystal data
Chemical formula C8H11PS
Mr 170.20
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.2805 (2), 7.6549 (2), 19.3578 (8)
β (°) 99.372 (2)
V3) 918.23 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.17
Crystal size (mm) 0.14 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.465, 0.587
No. of measured, independent and observed [I > 2σ(I)] reflections 12606, 1886, 1745
Rint 0.029
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.06
No. of reflections 1886
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Dimethyl(phenyl)phosphanethione top
Crystal data top
C8H11PSF(000) = 360
Mr = 170.20Dx = 1.231 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.2805 (2) ÅCell parameters from 3458 reflections
b = 7.6549 (2) Åθ = 4.6–79.2°
c = 19.3578 (8) ŵ = 4.17 mm1
β = 99.372 (2)°T = 100 K
V = 918.23 (5) Å3Needle, colourless
Z = 40.14 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1745 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 74.7°, θmin = 4.6°
Tmin = 0.465, Tmax = 0.587h = 77
12606 measured reflectionsk = 97
1886 independent reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.031P)2 + 0.342P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1886 reflectionsΔρmax = 0.34 e Å3
93 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.42807 (5)0.75930 (4)0.57224 (2)0.02071 (10)
S10.73232 (5)0.79603 (5)0.56424 (2)0.02966 (11)
C30.3919 (2)0.57849 (16)0.62992 (6)0.0225 (3)
C80.1928 (2)0.49493 (18)0.62617 (7)0.0280 (3)
H80.07540.52850.59130.034*
C20.2586 (2)0.71634 (18)0.48984 (7)0.0267 (3)
H2A0.30140.60550.47080.040*
H2B0.27430.81100.45700.040*
H2C0.10780.70910.49680.040*
C10.3115 (2)0.94645 (17)0.60830 (7)0.0268 (3)
H1A0.16200.92050.61330.040*
H1B0.31421.04660.57690.040*
H1C0.39500.97410.65430.040*
C40.5618 (2)0.52745 (19)0.68113 (7)0.0320 (3)
H40.69900.58160.68360.038*
C70.1657 (2)0.36298 (19)0.67315 (8)0.0331 (3)
H70.03030.30560.67000.040*
C60.3345 (3)0.31482 (19)0.72440 (8)0.0357 (3)
H60.31520.22500.75670.043*
C50.5320 (3)0.3975 (2)0.72876 (8)0.0398 (4)
H50.64770.36540.76450.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01838 (17)0.02128 (17)0.02246 (17)0.00095 (11)0.00330 (12)0.00012 (12)
S10.01915 (17)0.03201 (19)0.0385 (2)0.00062 (12)0.00678 (13)0.00507 (14)
C30.0253 (6)0.0205 (6)0.0223 (6)0.0025 (5)0.0058 (5)0.0015 (5)
C80.0261 (7)0.0248 (6)0.0337 (7)0.0002 (5)0.0066 (5)0.0004 (5)
C20.0266 (7)0.0291 (7)0.0238 (6)0.0010 (5)0.0021 (5)0.0011 (5)
C10.0285 (7)0.0236 (6)0.0293 (6)0.0023 (5)0.0075 (5)0.0008 (5)
C40.0304 (7)0.0315 (7)0.0321 (7)0.0014 (6)0.0011 (6)0.0027 (6)
C70.0377 (8)0.0251 (7)0.0396 (8)0.0021 (6)0.0152 (6)0.0005 (6)
C60.0553 (10)0.0250 (7)0.0300 (7)0.0032 (6)0.0165 (7)0.0035 (6)
C50.0478 (9)0.0368 (8)0.0319 (7)0.0039 (7)0.0027 (7)0.0077 (6)
Geometric parameters (Å, º) top
P1—S11.9623 (5)C1—H1A0.9800
P1—C31.8158 (13)C1—H1B0.9800
P1—C21.7977 (13)C1—H1C0.9800
P1—C11.8004 (13)C4—H40.9500
C3—C81.3957 (19)C4—C51.390 (2)
C3—C41.3893 (18)C7—H70.9500
C8—H80.9500C7—C61.379 (2)
C8—C71.388 (2)C6—H60.9500
C2—H2A0.9800C6—C51.383 (2)
C2—H2B0.9800C5—H50.9500
C2—H2C0.9800
C3—P1—S1112.26 (4)P1—C1—H1A109.5
C2—P1—S1113.55 (5)P1—C1—H1B109.5
C2—P1—C3106.91 (6)P1—C1—H1C109.5
C2—P1—C1105.68 (6)H1A—C1—H1B109.5
C1—P1—S1112.28 (5)H1A—C1—H1C109.5
C1—P1—C3105.58 (6)H1B—C1—H1C109.5
C8—C3—P1121.21 (10)C3—C4—H4119.9
C4—C3—P1119.64 (10)C3—C4—C5120.24 (14)
C4—C3—C8119.08 (12)C5—C4—H4119.9
C3—C8—H8119.9C8—C7—H7119.9
C7—C8—C3120.25 (13)C6—C7—C8120.26 (14)
C7—C8—H8119.9C6—C7—H7119.9
P1—C2—H2A109.5C7—C6—H6120.1
P1—C2—H2B109.5C7—C6—C5119.89 (13)
P1—C2—H2C109.5C5—C6—H6120.1
H2A—C2—H2B109.5C4—C5—H5119.9
H2A—C2—H2C109.5C6—C5—C4120.26 (14)
H2B—C2—H2C109.5C6—C5—H5119.9
P1—C3—C8—C7176.66 (10)C8—C7—C6—C50.4 (2)
P1—C3—C4—C5175.48 (12)C2—P1—C3—C834.24 (12)
S1—P1—C3—C8159.38 (10)C2—P1—C3—C4148.99 (11)
S1—P1—C3—C423.85 (12)C1—P1—C3—C877.98 (12)
C3—C8—C7—C60.8 (2)C1—P1—C3—C498.79 (12)
C3—C4—C5—C61.7 (2)C4—C3—C8—C70.1 (2)
C8—C3—C4—C51.4 (2)C7—C6—C5—C40.8 (2)
 

Funding information

Funding for this research was provided by: Fonds der Chemischen Industrie (scholarship to Annika Schmidt); Avicenna Studienwerk (scholarship to Mehmet Yasin Kuzu); Studienstiftung des Deutschen Volkes (scholarship to Annika Schmidt).

References

First citationArca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069–3073.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Howie, R. A. & McQuillan, G. P. (1981). Acta Cryst. B37, 1959–1962.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922–13927.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGrabulosa, A. (2011). P-Stereogenic Ligands in Enantioselective Catalysis. Cambridge: RSC Publishing, .  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuzu, M. Y., Schmidt, A. & Strohmann, C. (2024). Angew. Chem. Int. Ed. e202319665.  Google Scholar
First citationLide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMonsanto Chemicals (1962). American Patent No. US3053900A  Google Scholar
First citationMuci, A. R., Campos, K. R. & Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075–9076.  CrossRef CAS Web of Science Google Scholar
First citationSchillmöller, T., Herbst–Irmer, R. & Stalke, D. (2021). Adv. Opt. Mater. 9, 2001814.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalke, D. (1998). Chem. Soc. Rev. 27, 171.  CrossRef Google Scholar
First citationTang, W. & Zhang, X. (2003). Chem. Rev. 103, 3029–3070.  CrossRef PubMed CAS Google Scholar
First citationVerschoor-Kirss, M. J., Hendricks, O., Verschoor, C. M., Conry, R. & Kirss, R. U. (2016). Inorg. Chim. Acta, 450, 30–38.  CAS Google Scholar
First citationWolfe, B. & Livinghouse, T. (1998). J. Am. Chem. Soc. 120, 5116–5117.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds