research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two chromium(II) acetate complexes with N-heterocyclic carbene (NHC) coligands

crossmark logo

aMartin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 23 April 2024; accepted 14 June 2024; online 28 June 2024)

Tetra­kis(μ-acetato-κ2O:O′)bis­{[1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene-κC2]chromium(II)} tetra­hydro­furan disolvate, [Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O or [Cr2(OAc)4(IDipp)2]·2C4H8O (1), and tetra­kis­(μ-acetato-κ2O:O′)bis­{[1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene-κC2]chromium(II)}, {Cr2(C2H3O2)4(C21H24N2)2] or [Cr2(OAc)4(IMes)2] (2), were synthesized from anhydrous chromium(II) acetate [Cr2(OAc)4] and the corresponding NHC (NHC = N-heterocyclic carbene) in toluene as solvent. Both complexes crystallize in the triclinic system, space group P[\overline{1}]. The mol­ecular structures consist of Cr2(OAc)4 paddle-wheels that carry two terminal NHC ligands. This leads to a square-pyramidal coordination of the chromium atoms.

1. Chemical context

Since its discovery in 1844 by Peligot (Peligot et al., 1844[Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609-615.]), chromium(II) acetate has frequently been used as the starting material for a large variety of chromium(II) compounds (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.]). Treatment of chromium(II) acetate with donor ligands L gives dinuclear complexes [Cr2(OAc)4L2] that adopt paddle-wheel structures with the ligands L at axial positions. This structure pattern was first observed for the dihydrate [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501-504.]; Cotton et al., 1971[Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.]) and later on for a large number of ligands comprising oxygen and, particularly, nitro­gen donor atoms (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.]).

Recently, we reported on chromium(II) silyl­amide complexes that were generated from chromium(II) acetate as starting material. In the course of these investigations, the application of NHC coligands proved very successful. Typically, a suspension of chromium(II) acetate in THF was first treated with the NHC ligand to give deeply violet-coloured solutions. Treatment of the in situ generated chromium(II) acetate NHC complex with Li2Me2Si(NPh)2 led to [Cr{Me2Si(NPh)2(NHC)2}] (Heiser & Merzweiler, 2022[Heiser, C. & Merzweiler, K. (2022). Z. Anorg. Allg. Chem. 648, e202200257.]). We were now inter­ested in the isolation and structural characterization of chromium(II) acetate NHC complexes.

Several X-ray crystal structures of chromium(II) NHC complexes are reported in the literature. The first references date back to the late 1990s when the crystal structures of [Mes2Cr(IPr)2] [IPr = 1,3-bis­(diisoprop­yl)imidazol-2-yl­idene; Danopoulos et al., 1997[Danopoulos, A. A., Hankin, D. M., Wilkinson, G., Cafferkey, S. M., Sweet, T. K. M. & Hursthouse, M. B. (1997). Polyhedron, 16, 3879-3892.]], [CpPhCr(IMes)] (Voges et al., 1999[Voges, M. H., Rømming, C. & Tilset, M. (1999). Organometallics, 18, 529-533.]) and [Cp2Cr(IMes)] (IMes = 1,3-bis­(2,4,6-tri­methyl­phen­yl)limidazol-2-yl­idene; Abernethy et al., 1999[Abernethy, C. D., Clyburne, J. A. C., Cowley, A. H. & Jones, R. A. (1999). J. Am. Chem. Soc. 121, 2329-2330.]) were published. Apart from organo chromium(II) compounds, some CrCl2 NHC complexes have been studied. Typical examples are [Cr2Cl4((IPrMe2))2(THF)2], [CrCl2(IPrMe2)2] (IPrMe2 = 1,3-diisopropyl-4,5-dimethyl-imidazol-2-yl­idene; Wang et al., 2010[Wang, J., An, D. & Zhu, H. (2010). Jiegou Huaxue, 29, 933-939.]) and [CrCl2(IDipp)2] [IDipp = 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene; Jones et al., 2012[Jones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr. 42, 494-497.]]. Moreover, chelating bis­(NHC) ligands and NHC ligands with additional donor functionality have been applied in chromium(II) chemistry, e.g. CSD refcodes DERNUK (Kreisel et al., 2006[Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2006). Organometallics, 25, 4670-4679.]), QIBKUI (Kreisel et al. 2007[Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2007). Chem. Commun. pp. 1510-1511.]), BEKGAB (Conde-Guadano et al., 2012a[Conde-Guadano, S., Danopoulos, A. A., Pattacini, R., Hanton, M. & Tooze, R. P. (2012a). Organometallics, 31, 1643-1652.]), QUGFAB (Simler et al., 2015[Simler, T., Danopoulos, A. A. & Braunstein, P. (2015). Chem. Commun. 51, 10699-10702.]), SAVNOW (Ashida et al., 2022[Ashida, Y., Egi, A., Arashiba, K., Tanaka, H., Mitsumoto, T., Kuriyama, S., Yoshizawa, K. & Nishibayashi, Y. (2022). Chem. Eur. J. 28, e202200557.]), SEDMEU (Pugh et al., 2006[Pugh, D., Wright, J. A., Freeman, S. & Danopoulos, A. A. (2006). Dalton Trans. pp. 775-782.]) and ZEKCEZ (Conde-Guadano et al., 2012b[Conde-Guadano, S., Hanton, M. R. P., Tooze, R. P. A. A., Danopoulos, A. A. & Braunstein, P. (2012b). Dalton Trans. 41, 12558-12567.]).

[Scheme 1]

2. Structural commentary

The title compounds (Figs. 1[link] and 2[link]) were obtained by reacting anyhdrous chromium(II) acetate with the corresponding NHC in toluene. After filtration, the solutions were cooled to obtain [Cr2(OAc)4(IDipp)2]·2THF (1) and [Cr2(OAc)4(IMes)2] (2) in the form of violet crystals. Single crystals suitable for X-ray diffraction were obtained by recrystallization from THF (compound 1) and toluene (compound 2).

[Figure 1]
Figure 1
Mol­ecular structure of 1 in the crystal. Displacement ellipsoids are at the 50% probability level. There is a disorder over two orientations concerning the THF mol­ecule and three of the iPr groups. In each case, only the major orientation is displayed. H atoms not involved in C—H⋯O hydrogen bonds are omitted for clarity. Inter­molecular C—H⋯O hydrogen bonds shown as dashed lines. [Symmetry code: (i) −x + 1; −y + 1; −z + 1.
[Figure 2]
Figure 2
Mol­ecular structure of 2 in the crystal. Displacement ellipsoids are at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) −x + 1; −y + 1; −z + 1.

[Cr2(OAc)4(IDipp)2]·2THF (1) and [Cr2(OAc)4(IMes)2] (2) crystallize in the triclinic system, space group P[\overline{1}] with Z = 1. The crystal structure of 1 consists of discrete [Cr2(OAc)4(IDipp)2] units and two mol­ecules of tetra­hydro­furan per formula unit. Compound 2 crystallizes without solvate mol­ecules. In both complexes, the Cr2(OAc)4 units exhibit classical paddle-wheel structures with crystallographically imposed [\overline{1}] symmetry. The coordination sphere of the chromium atoms consists of four acetate oxygen atoms at the base of a square pyramid and the NHC carbon atom at the apex.

The Cr—O distances in 1 range from 2.012 (2) to 2.025 (1) Å and in 2 from 2.024 (2) to 2.027 (2) Å (Tables 1[link] and 2[link]). Similar distances have been reported for 15 chromium(II) acetate derivatives that are currently deposited in the CSD database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The shortest Cr—O(acetate) distance [1.988 (5) Å] was observed in [Cr2(OAc)4] and the largest one [2.034 (1) Å] was found in [Cr2(OAc)4(trans-bie)2] [trans-bie = 2,2′-ethene-1,2-diylbis(1-methyl-1H-imidazole); Fritsch et al., 2014[Fritsch, N., Wick, C. R., Waidmann, T., Dral, P. O., Tucher, J., Heinemann, F. W., Shubina, T. E., Clark, T. & Burzlaff, N. (2014). Inorg. Chem. 53, 12305-12314.]].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Cr—Cri 2.5308 (6) Cr—O3 2.0202 (13)
Cr—O1 2.0178 (14) Cr—O4i 2.0248 (13)
Cr—O2i 2.0118 (14) Cr—C5 2.3812 (16)
       
O1—Cr—O3 89.35 (6) O2i—Cr—O4i 89.33 (6)
O1—Cr—O4i 90.32 (6) O2i—Cr—C5 94.10 (6)
O1—Cr—C5 94.62 (6) O3—Cr—O4i 171.54 (5)
O2i—Cr—O1 171.29 (5) O3—Cr—C5 95.67 (5)
O2i—Cr—O3 89.72 (6) O4i—Cr—C5 92.78 (5)
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cr—Cri 2.5284 (9) Cr—O3 2.0269 (18)
Cr—O1 2.0274 (18) Cr—O4i 2.0270 (18)
Cr—O2i 2.0238 (17) Cr—C5 2.365 (3)
       
O1—Cr—C5 93.88 (8) O3—Cr—O1 90.66 (8)
O2i—Cr—O1 171.65 (8) O3—Cr—C5 93.90 (8)
O2i—Cr—O3 88.82 (7) O4i—Cr—O1 88.28 (7)
O2i—Cr—O4i 91.03 (7) O4i—Cr—O3 171.63 (8)
O2i—Cr—C5 94.46 (8) O4i—Cr—C5 94.45 (8)
Symmetry code: (i) [-x+1, -y+1, -z+1].

The Cr—C(NHC) distances in 1 and 2 are 2.381 (2) and 2.365 (3) Å, respectively. These values are roughly comparable to the Cr—O and Cr—N distances in chromium(II) acetate complexes with axial O and N donor ligands. In the case of O donor ligands, the Cr—O distances vary from 2.257 to 2.306 Å. For N donor ligands, the range is 2.274–2.415 Å. In square-planar [CrR2(NHC)2] complexes (R = organyl, halogen) the Cr—C bonds are markedly shorter compared to those in compounds 1 and 2, e.g. [CrCl2(IDipp)2] [Cr—C: 2.148 (2)–2.162 (2) Å; Jones et al., 2012[Jones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr. 42, 494-497.]] and [CrCl2(IPrMe)2] [Cr—C: 2.159 (3)–2.163 (2) Å; Jones et al., 2012[Jones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr. 42, 494-497.]]. The shortest Cr—C distance (2.0930 Å) was observed for a NHC pincer ligand (CSD code QUGFAB; Simler et al., 2015[Simler, T., Danopoulos, A. A. & Braunstein, P. (2015). Chem. Commun. 51, 10699-10702.]) and the largest (2.180 Å) for [CrPh2(IPrMe)2] (Wang et al., 2011[Wang, J., Tan, G., An, D., Zhu, H. & Yang, Y. (2011). Z. Anorg. Allg. Chem. 637, 1597-1601.]).

The Cr—Cr distances in compounds 1 [2.5308 (6) Å] and 2 [2.5284 (9) Å] are significantly larger than in comparable [Cr2(OAc)4L2] complexes with N and O donor ligands. According to the CSD database, the Cr—Cr distances vary from 2.270 to 2.452 Å with a median of 2.348 Å. The larger Cr—Cr distances in 1 and 2 also become apparent in a slight pyramidalization of the CrO4 units. The distances of the chromium atoms from the mean plane through the four O atoms are 0.1516 (3) Å for compound 1 and 0.1476 (4) Å in the case of compound 2. Moreover, the C—Cr—O angles significantly exceed 90° [1: 92.78 (5)–95.67 (5)°, 2: 93.88 (8)–94.46 (8)°].

Overall, the geometric parameters of both compounds are very similar. However, it is worth mentioning that complexes 1 and 2 differ in the mutual orientation of the NHC ligands and the paddle-wheel core. In the case of compound 1, the imidazolidine ring adopts an eclipsed orientation with respect to the O1–Cr–O2 unit as indicated by the torsion angles N2—C5—Cr—O1 [1.2 (2)°] and N1—C5—Cr—O2i [−7.5 (2)°]. By contrast, a staggered conformation is found in compound 2 with torsion angles of 48.3 (3)° (N1—C5—Cr—O1) and 45.7 (3)° (N2—C5—Cr—O2i). It is obvious to assume that the steric repulsion between the iso-propyl groups of the NHC ligand and acetate methyl groups prevents a staggered orientation of the imidazoline ring in compound 1.

3. Supra­molecular features

Compound 1 displays a weak C—H⋯O hydrogen bridge [DA: 3.411 (6) Å; Table 3[link]] between the C6—H6 group of the imidazolidine ring and the tetra­hydro­furan oxygen atom O5. In the case of compound 2, there is a weak C—H⋯O hydrogen bridge [DA: 3.527 (4) Å; Table 4[link], Fig. 3[link]] between the acetate carbon atom C2 and the acetate oxygen atom O2ii of a neighbouring complex unit. Furthermore, there is a complementary hydrogen bridge between C2ii and O2. As a result, the chromium acetate complexes are catenated by R22(8) hydrogen-bond motifs along the direction of the crystallographic a axis. Moreover, the supra­molecular structure is supported by weak C—H⋯π hydrogen bonds (Fig. 4[link]), which are formed between neighbouring mesityl groups. The distance between the methyl carbon atom C15 and the centroid of the aromatic ring C17iii–C22iii is 3.340 (4) Å.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5 0.95 2.47 3.411 (6) 171

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2ii 0.98 2.61 3.527 (4) 155
C15—H15ACgiii 0.98 2.62 3.340 (3) 125
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [x-1, y+1, z].
[Figure 3]
Figure 3
Crystal structure of 2, inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of 2, inter­molecular C—H⋯π hydrogen bonds shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 21 crystal structures of chromium(II) acetate complexes, CSD refcodes: ACETCR (Cotton & Rice, 1978[Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.]), ACPCRA (Cotton & Felthouse, 1980[Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.]), ACPCRB (Cotton & Felthouse, 1980[Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.]), ACPCRB01 (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), CRAQAC (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501-504.]), CRAQAC03 (Benard et al., 1980[Benard, M., Coppens, P., DeLucia, M. L. & Stevens, E. D. (1980). Inorg. Chem. 19, 1924-1930.]), CRAQAC11 (Cotton et al., 1971[Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.]), CRAQAC12 (Benard et al., 1980[Benard, M., Coppens, P., DeLucia, M. L. & Stevens, E. D. (1980). Inorg. Chem. 19, 1924-1930.]), CRAQAC13 (Herich et al., 2018[Herich, P., Bučinský, L., Breza, M., Gall, M., Fronc, M., Petřiček, V. & Kožíšek, J. (2018). Acta Cryst. B74, 681-692.]), CUCSEA (Fritsch et al., 2014[Fritsch, N., Wick, C. R., Waidmann, T., Dral, P. O., Tucher, J., Heinemann, F. W., Shubina, T. E., Clark, T. & Burzlaff, N. (2014). Inorg. Chem. 53, 12305-12314.]), CUYSEU (Cotton & Wang, 1984[Cotton, F. A. & Wang, W. (1984). New J. Chem. 8, 331-340.]), CUYSIY (Cotton & Wang, 1984[Cotton, F. A. & Wang, W. (1984). New J. Chem. 8, 331-340.]), KETXOZ (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), KETXOZ01 (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), KETYAM (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), KETYAM01 (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), KETYEQ (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), KETYEQ01 (Huang et al., 2018[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371-5379.]), LIRTAH (Cotton et al., 2000[Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416-417.]), PIPACR (Cotton & Rice, 1978[Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.], XIYCER (Heiser & Merzweiler, 2023[Heiser, C. & Merzweiler, K. (2023). IUCrData, 8, x230801.]). Most of them contain N- and O-donor ligands. No NHC adducts of chromium(II) acetate have been reported so far.

5. Synthesis and crystallization

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Toluene and THF were dried over sodium/benzo­phenone and freshly distilled prior to use. Chromium(II) acetate (Brauer, 1981[Brauer, G. (1981). In Handbuch der Präparativen und Anorganischen Chemie. Stuttgart: Ferdinand Enke.]), 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazolidine-2-yl­idene (IDipp) and 1,3-bis­(1,3,5-tri­methyl­phen­yl)imidazolidine-2-yl­idene (IMes) (Medici et al., 2018[Medici, F., Gontard, G., Derat, E., Lemière, G. & Fensterbank, L. (2018). Organometallics, 37, 517-520.]) were prepared according to literature methods.

Synthesis of [Cr2(OAc)4(IDipp)2] (1)

To a suspension of chromium(II) acetate (470 mg, 1.39 mmol) in toluene (12 ml) was added a solution of IDipp (1180 mg, 2.78 mmol) in toluene (8 ml). The solution was stirred at 300 K overnight. The chromium(II) acetate dissolved and a change of colour from dark red to violet was observed. Insoluble material was filtered off and the solution was concentrated slightly in vacuo. Upon standing at 248 K for two days, the product crystallized in the form of violet crystals, which were filtered off and dried in vacuo. Single crystals of the product were obtained upon cooling down a THF solution of 1 to 248 K. Yield: 660 mg (40%).

C70H100Cr2N4O10 (1261.53 g mol−1). C 66.8 (calc. 66.6); H 7.9 (calc. 7.6); N 5.0 (calc. 5.0) %.

IR (ATR): ν = 3135 w, 3075 w, 3021 w, 2963 m, 2929 m, 2870 m, 1608 s, 1574 s, 1537 s, 1496 m, 1435 s, 1389 s, 1330 m, 1304 m, 1259 m, 1209 m, 1182 m, 1150 m, 1103 m, 1060 m, 1042 m, 1030 m, 951 m, 937 m, 908 m, 868 m, 808 s, 801 s, 754 s, 735 m, 674 s, 621 s, 594 m, 540 s, 519 m, 466 s, 441 s, 416 s cm−1.

Synthesis of [Cr2(OAc)4(IMes)2] (2)

To a suspension of chromium(II) acetate (580 mg, 1.71 mmol) in toluene (10 ml) was added a solution of IMes (1050 mg, 3.41 mmol) in toluene (10 ml). The solution was stirred at room temperature for 30 minutes, and after that it was heated to 313 K for one h, during which time the chromium(II) acetate dissolved and the solution turned violet. The solution was filtered while hot and washed with hot toluene (2 × 5 ml). After reducing the volume to half the amount, the solution was heated to dissolve the precipitated product. Upon standing at 267 K for two days, the product crystallized in a form of violet single crystals, which were filtered off and dried in vacuo. Yield: 650 mg (40%).

C50H60Cr2N4O8 (949.02 g mol−1). C 63.3 (calc. 63.3); H 6.0 (6.4); N 5.9 (5.9) %.

IR (ATR): ν = 3128 w, 3005 w, 2976 w, 2915 m, 2858 w, 1606 s, 1539 m, 1485 m, 1424 s, 1390 m, 1337 m, 1287 m, 1254 m, 1230 m, 1210 m, 1157 m, 1085 m, 1065 m, 1036 m, 1022 m, 961 m, 926 m, 870 w, 841 m, 742 w, 733 m, 720 m, 673 s, 641 m, 619 m, 591 m, 574 m, 509 m, 497 m, 467 m, 448 w, 381 vs, 331 m, 307 m, 276 s, 253 m, 227 s, 209 s cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2(CH and CH2) or 1.5(CH3) times Ueq(C).

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O {Cr2(C2H3O2)4(C21H24N2)2]
Mr 1261.53 949.02
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 170 170
a, b, c (Å) 10.6402 (7), 11.7730 (8), 15.1884 (9) 8.3679 (5), 11.6127 (8), 13.8355 (9)
α, β, γ (°) 82.353 (5), 86.526 (5), 69.248 (5) 68.949 (5), 83.891 (5), 71.508 (5)
V3) 1763.2 (2) 1189.90 (14)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.37 0.51
Crystal size (mm) 0.61 × 0.35 × 0.15 0.40 × 0.24 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2015[Stoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-RED32; Stoe & Cie, 2015[Stoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.812, 0.947 0.844, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 18724, 9444, 5824 8474, 4174, 2894
Rint 0.070 0.071
(sin θ/λ)max−1) 0.687 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 0.94 0.042, 0.112, 0.91
No. of reflections 9444 4174
No. of parameters 534 297
No. of restraints 545 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.57 0.50, −0.51
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

The THF mol­ecule in compound 1 is disordered over two positions with an occupation ratio of 0.795 (12)/0.205 (12)/. The isopropyl groups C17–C19, C26–C28 and C29–C31 are disordered over two positions with occupation ratios of 0.62 (4)/0.38 (4), 0.60 (4)/0.40 (4) and 0.81 (3)/0.19 (3), respectively.

Supporting information


Computing details top

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) top
Crystal data top
[Cr2(C2H3O2)4(C27H36N4)2]·2C4H8OZ = 1
Mr = 1261.53F(000) = 676
Triclinic, P1Dx = 1.188 Mg m3
a = 10.6402 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7730 (8) ÅCell parameters from 10431 reflections
c = 15.1884 (9) Åθ = 1.9–29.5°
α = 82.353 (5)°µ = 0.37 mm1
β = 86.526 (5)°T = 170 K
γ = 69.248 (5)°Plate, clear violet
V = 1763.2 (2) Å30.61 × 0.35 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
5824 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.070
rotation method, ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2015)
h = 1412
Tmin = 0.812, Tmax = 0.947k = 1616
18724 measured reflectionsl = 1920
9444 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
9444 reflectionsΔρmax = 0.47 e Å3
534 parametersΔρmin = 0.57 e Å3
545 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr0.51563 (3)0.44550 (3)0.57837 (2)0.03006 (9)
O10.39582 (14)0.60752 (13)0.61610 (8)0.0403 (3)
O20.36797 (14)0.70259 (12)0.47808 (8)0.0403 (3)
O30.67559 (14)0.49924 (13)0.58164 (8)0.0406 (3)
O40.64785 (14)0.59629 (13)0.44363 (8)0.0399 (3)
N10.60181 (15)0.21883 (14)0.75056 (9)0.0325 (3)
N20.48688 (15)0.38398 (15)0.80273 (9)0.0329 (3)
C10.70675 (19)0.56408 (18)0.51710 (12)0.0354 (4)
C20.8213 (2)0.6063 (2)0.52997 (15)0.0506 (5)
H2A0.7917110.6719870.5682870.076*
H2B0.8507890.6368910.4721980.076*
H2C0.8961760.5376740.5578240.076*
C30.34728 (19)0.70022 (18)0.56080 (12)0.0358 (4)
C40.2567 (3)0.8160 (2)0.59504 (15)0.0542 (6)
H4A0.2945150.8272360.6491050.081*
H4B0.1675150.8107670.6085640.081*
H4C0.2487980.8857190.5497940.081*
C50.54178 (17)0.34020 (17)0.72500 (10)0.0278 (4)
C60.5840 (2)0.1883 (2)0.84051 (13)0.0505 (6)
H60.6167730.1087750.8725230.061*
C70.5127 (2)0.2907 (2)0.87331 (13)0.0499 (6)
H70.4845930.2991200.9333980.060*
C80.67707 (19)0.12560 (17)0.69619 (12)0.0344 (4)
C90.8118 (2)0.1107 (2)0.67531 (13)0.0414 (5)
C170.8724 (12)0.2037 (11)0.6948 (7)0.053 (2)0.62 (4)
H170.7968450.2834530.6972510.063*0.62 (4)
C180.9722 (17)0.2254 (17)0.6252 (10)0.087 (4)0.62 (4)
H18A0.9980110.2932190.6386550.130*0.62 (4)
H18B0.9309930.2457230.5665410.130*0.62 (4)
H18C1.0522420.1511780.6254490.130*0.62 (4)
C190.9351 (19)0.1647 (16)0.7874 (8)0.086 (3)0.62 (4)
H19A1.0076770.0851330.7879920.130*0.62 (4)
H19B0.8661840.1584300.8316260.130*0.62 (4)
H19C0.9714310.2257500.8016020.130*0.62 (4)
C17A0.8780 (19)0.1943 (18)0.7040 (11)0.052 (4)0.38 (4)
H17A0.8075410.2665100.7268630.063*0.38 (4)
C18A0.9500 (19)0.2389 (19)0.6223 (11)0.049 (3)0.38 (4)
H18D1.0150240.1681020.5973990.074*0.38 (4)
H18E0.9969750.2898800.6405280.074*0.38 (4)
H18F0.8834950.2869900.5772570.074*0.38 (4)
C19A0.984 (3)0.130 (3)0.7761 (13)0.090 (5)0.38 (4)
H19D0.9424270.0977410.8280750.135*0.38 (4)
H19E1.0222010.1879420.7934220.135*0.38 (4)
H19F1.0563810.0616890.7525910.135*0.38 (4)
C100.8862 (2)0.0104 (2)0.63229 (16)0.0546 (6)
H100.9781360.0032500.6180220.065*
C110.8284 (3)0.0701 (2)0.60989 (16)0.0592 (6)
H110.8813980.1394280.5818690.071*
C120.6939 (3)0.0501 (2)0.62810 (16)0.0542 (6)
H120.6547470.1045740.6108340.065*
C130.6155 (2)0.04846 (19)0.67118 (13)0.0418 (5)
C140.4661 (2)0.0731 (2)0.68671 (17)0.0553 (6)
H140.4271920.1502320.7152570.066*
C150.3947 (3)0.0925 (3)0.59920 (19)0.0694 (8)
H15A0.4273150.0164580.5715090.104*
H15B0.4130400.1575960.5593850.104*
H15C0.2976120.1157950.6103270.104*
C160.4421 (3)0.0301 (3)0.74994 (18)0.0730 (8)
H16A0.4789710.1067920.7232500.110*
H16B0.3454020.0104250.7606690.110*
H16C0.4867280.0391990.8063860.110*
C200.41683 (19)0.50940 (18)0.81624 (11)0.0337 (4)
C210.4917 (2)0.5764 (2)0.83985 (12)0.0396 (4)
C290.6447 (4)0.5264 (7)0.8436 (5)0.0494 (14)0.81 (3)
H290.6761010.4412540.8269110.059*0.81 (3)
C300.6974 (6)0.5195 (11)0.9357 (3)0.0653 (17)0.81 (3)
H30A0.6574070.4717950.9787420.098*0.81 (3)
H30B0.6732630.6022890.9523310.098*0.81 (3)
H30C0.7953820.4798860.9355140.098*0.81 (3)
C310.7034 (9)0.6025 (12)0.7751 (6)0.077 (3)0.81 (3)
H31A0.8017580.5689400.7774570.115*0.81 (3)
H31B0.6713410.6874380.7883610.115*0.81 (3)
H31C0.6746490.5998940.7155050.115*0.81 (3)
C29A0.6444 (16)0.521 (3)0.8323 (18)0.050 (5)0.19 (3)
H29A0.6682220.4549190.7927960.060*0.19 (3)
C30A0.702 (2)0.465 (4)0.9241 (18)0.065 (6)0.19 (3)
H30D0.6815210.5291020.9630940.098*0.19 (3)
H30E0.7991640.4242760.9190440.098*0.19 (3)
H30F0.6608000.4045890.9490350.098*0.19 (3)
C31A0.702 (3)0.618 (4)0.791 (3)0.059 (6)0.19 (3)
H31D0.7987350.5891200.8020040.089*0.19 (3)
H31E0.6574190.6941410.8173890.089*0.19 (3)
H31F0.6869690.6332170.7267040.089*0.19 (3)
C220.4213 (2)0.6941 (2)0.86010 (14)0.0492 (5)
H220.4693300.7422510.8765600.059*
C230.2827 (3)0.7426 (2)0.85676 (15)0.0535 (6)
H230.2358270.8226640.8720550.064*
C240.2127 (2)0.6741 (2)0.83113 (15)0.0525 (6)
H240.1175360.7086610.8278740.063*
C250.2774 (2)0.5564 (2)0.81002 (13)0.0415 (5)
C260.2014 (13)0.4846 (12)0.7750 (10)0.047 (2)0.60 (4)
H260.2661830.4149060.7460520.056*0.60 (4)
C270.134 (2)0.4341 (18)0.8561 (11)0.075 (4)0.60 (4)
H27A0.0781910.5017640.8881650.112*0.60 (4)
H27B0.2040550.3762620.8956630.112*0.60 (4)
H27C0.0786020.3920770.8360740.112*0.60 (4)
C280.0943 (17)0.5648 (19)0.7081 (10)0.058 (3)0.60 (4)
H28A0.0462680.5158400.6880850.087*0.60 (4)
H28B0.1375700.5969610.6569500.087*0.60 (4)
H28C0.0305680.6330000.7364330.087*0.60 (4)
C26A0.1949 (17)0.4790 (18)0.7944 (15)0.052 (3)0.40 (4)
H26A0.2606680.3976230.7818530.063*0.40 (4)
C27A0.106 (2)0.453 (2)0.8714 (16)0.068 (4)0.40 (4)
H27D0.1618220.4099290.9228120.103*0.40 (4)
H27E0.0579040.4029100.8536620.103*0.40 (4)
H27F0.0407540.5309280.8871350.103*0.40 (4)
C28A0.110 (3)0.533 (3)0.7104 (15)0.059 (4)0.40 (4)
H28D0.0673870.4767430.6966070.088*0.40 (4)
H28E0.1685540.5461820.6604510.088*0.40 (4)
H28F0.0410910.6117380.7204490.088*0.40 (4)
O50.6804 (4)0.1070 (5)0.9384 (3)0.0790 (11)0.795 (12)
C320.6950 (7)0.0781 (10)1.0249 (6)0.0881 (18)0.795 (12)
H32A0.7082470.1499011.0701830.106*0.795 (12)
H32B0.6152840.0095121.0417290.106*0.795 (12)
C330.8176 (5)0.0426 (5)1.0150 (3)0.0768 (14)0.795 (12)
H33A0.8561580.0457791.0733600.092*0.795 (12)
H33B0.7981600.0400720.9821390.092*0.795 (12)
C340.9097 (5)0.1411 (6)0.9618 (4)0.0849 (18)0.795 (12)
H34A0.9775080.1133120.9271050.102*0.795 (12)
H34B0.9560730.2174641.0007100.102*0.795 (12)
C350.8117 (5)0.1581 (5)0.9022 (3)0.0747 (14)0.795 (12)
H35A0.8172270.1167390.8416480.090*0.795 (12)
H35B0.8331260.2462890.8981990.090*0.795 (12)
O5A0.6961 (19)0.152 (2)0.9615 (14)0.091 (4)0.205 (12)
C32A0.686 (2)0.067 (4)1.022 (3)0.088 (5)0.205 (12)
H32C0.6387420.0839281.0778170.106*0.205 (12)
H32D0.6385790.0183750.9954940.106*0.205 (12)
C33A0.832 (2)0.091 (2)1.0371 (13)0.092 (4)0.205 (12)
H33C0.8720910.1662991.0783300.110*0.205 (12)
H33D0.8444680.0211691.0603620.110*0.205 (12)
C34A0.889 (2)0.105 (2)0.9437 (15)0.087 (4)0.205 (12)
H34C0.8574790.0277880.9035040.104*0.205 (12)
H34D0.9883780.1399800.9427020.104*0.205 (12)
C35A0.827 (2)0.195 (2)0.9227 (17)0.086 (4)0.205 (12)
H35C0.8224880.1950920.8577960.103*0.205 (12)
H35D0.8787240.2794120.9496260.103*0.205 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.02749 (16)0.03361 (17)0.02747 (15)0.00935 (12)0.00114 (10)0.00153 (11)
O10.0433 (8)0.0381 (8)0.0316 (7)0.0049 (6)0.0010 (5)0.0038 (5)
O20.0421 (8)0.0373 (8)0.0327 (7)0.0040 (6)0.0002 (5)0.0019 (5)
O30.0367 (8)0.0499 (9)0.0379 (7)0.0203 (7)0.0063 (5)0.0026 (6)
O40.0379 (8)0.0501 (9)0.0350 (7)0.0217 (7)0.0040 (5)0.0029 (6)
N10.0304 (8)0.0357 (9)0.0281 (7)0.0085 (7)0.0002 (6)0.0004 (6)
N20.0320 (8)0.0387 (9)0.0260 (7)0.0101 (7)0.0016 (6)0.0026 (6)
C10.0285 (10)0.0376 (11)0.0395 (10)0.0107 (8)0.0001 (7)0.0052 (8)
C20.0390 (12)0.0618 (15)0.0565 (12)0.0261 (12)0.0054 (9)0.0007 (11)
C30.0308 (10)0.0381 (11)0.0380 (10)0.0111 (9)0.0014 (7)0.0069 (8)
C40.0583 (15)0.0422 (13)0.0497 (12)0.0016 (11)0.0042 (10)0.0104 (10)
C50.0236 (9)0.0323 (9)0.0270 (8)0.0088 (7)0.0006 (6)0.0050 (7)
C60.0554 (14)0.0460 (13)0.0348 (10)0.0033 (11)0.0009 (9)0.0069 (9)
C70.0609 (15)0.0517 (14)0.0251 (9)0.0086 (12)0.0021 (9)0.0045 (8)
C80.0320 (10)0.0308 (10)0.0349 (9)0.0057 (8)0.0016 (7)0.0006 (7)
C90.0344 (11)0.0406 (11)0.0422 (10)0.0067 (9)0.0029 (8)0.0015 (8)
C170.039 (4)0.055 (4)0.064 (4)0.014 (3)0.008 (3)0.011 (3)
C180.051 (6)0.101 (9)0.114 (7)0.038 (6)0.019 (5)0.009 (6)
C190.089 (8)0.105 (7)0.087 (5)0.061 (7)0.032 (5)0.002 (4)
C17A0.035 (6)0.065 (7)0.058 (6)0.024 (5)0.010 (4)0.005 (5)
C18A0.026 (4)0.054 (6)0.065 (6)0.017 (4)0.002 (3)0.010 (5)
C19A0.086 (10)0.138 (13)0.060 (6)0.063 (9)0.025 (6)0.017 (6)
C100.0359 (12)0.0528 (14)0.0653 (14)0.0040 (11)0.0051 (10)0.0086 (11)
C110.0550 (15)0.0468 (14)0.0626 (14)0.0005 (12)0.0055 (11)0.0154 (11)
C120.0535 (14)0.0424 (13)0.0657 (14)0.0129 (11)0.0036 (11)0.0126 (11)
C130.0384 (11)0.0363 (11)0.0471 (11)0.0100 (9)0.0015 (8)0.0001 (9)
C140.0412 (13)0.0545 (15)0.0772 (15)0.0217 (11)0.0028 (11)0.0194 (12)
C150.0515 (15)0.0661 (18)0.092 (2)0.0258 (14)0.0218 (14)0.0107 (15)
C160.0687 (19)0.097 (2)0.0678 (16)0.0495 (18)0.0039 (13)0.0028 (15)
C200.0357 (10)0.0404 (11)0.0230 (8)0.0111 (9)0.0029 (7)0.0047 (7)
C210.0404 (11)0.0484 (12)0.0333 (9)0.0190 (10)0.0068 (7)0.0098 (8)
C290.037 (2)0.066 (3)0.052 (3)0.022 (2)0.0076 (18)0.023 (2)
C300.049 (2)0.100 (5)0.049 (2)0.031 (3)0.0036 (15)0.003 (2)
C310.061 (3)0.144 (6)0.048 (3)0.063 (4)0.014 (2)0.017 (3)
C29A0.042 (9)0.077 (10)0.042 (7)0.025 (7)0.014 (6)0.023 (7)
C30A0.045 (8)0.091 (15)0.061 (9)0.026 (10)0.005 (6)0.003 (10)
C31A0.043 (10)0.088 (11)0.050 (12)0.026 (9)0.002 (8)0.014 (9)
C220.0551 (14)0.0531 (14)0.0475 (11)0.0267 (12)0.0113 (10)0.0175 (10)
C230.0563 (15)0.0455 (13)0.0552 (13)0.0111 (12)0.0115 (11)0.0186 (10)
C240.0381 (12)0.0549 (14)0.0566 (13)0.0048 (11)0.0026 (10)0.0135 (11)
C250.0340 (11)0.0506 (13)0.0371 (10)0.0092 (10)0.0002 (8)0.0112 (9)
C260.039 (3)0.061 (4)0.045 (4)0.019 (3)0.007 (3)0.012 (3)
C270.079 (8)0.094 (7)0.070 (6)0.057 (7)0.025 (5)0.009 (5)
C280.037 (4)0.082 (8)0.053 (4)0.018 (4)0.011 (3)0.003 (4)
C26A0.027 (4)0.065 (6)0.059 (7)0.002 (4)0.001 (4)0.026 (5)
C27A0.057 (6)0.081 (7)0.069 (7)0.032 (6)0.003 (5)0.003 (6)
C28A0.039 (7)0.082 (11)0.057 (6)0.020 (7)0.004 (4)0.018 (6)
O50.0649 (19)0.076 (3)0.094 (2)0.0215 (19)0.0176 (16)0.0061 (19)
C320.080 (3)0.101 (4)0.062 (3)0.011 (3)0.015 (2)0.002 (3)
C330.080 (3)0.076 (3)0.067 (3)0.012 (2)0.026 (2)0.013 (2)
C340.057 (3)0.087 (4)0.107 (4)0.018 (3)0.002 (2)0.021 (3)
C350.082 (3)0.063 (3)0.072 (3)0.013 (2)0.004 (2)0.017 (2)
O5A0.070 (6)0.095 (8)0.103 (8)0.025 (6)0.006 (5)0.006 (6)
C32A0.076 (7)0.092 (8)0.078 (8)0.008 (7)0.009 (7)0.002 (7)
C33A0.083 (7)0.087 (8)0.091 (7)0.006 (7)0.024 (6)0.021 (7)
C34A0.071 (7)0.073 (8)0.110 (7)0.017 (6)0.001 (7)0.011 (7)
C35A0.081 (7)0.073 (8)0.096 (8)0.017 (6)0.000 (6)0.017 (7)
Geometric parameters (Å, º) top
Cr—Cri2.5308 (6)C29—H291.0000
Cr—O12.0178 (14)C29—C301.520 (6)
Cr—O2i2.0118 (14)C29—C311.532 (6)
Cr—O32.0202 (13)C30—H30A0.9800
Cr—O4i2.0248 (13)C30—H30B0.9800
Cr—C52.3812 (16)C30—H30C0.9800
O1—C31.254 (2)C31—H31A0.9800
O2—C31.261 (2)C31—H31B0.9800
O3—C11.263 (2)C31—H31C0.9800
O4—C11.259 (2)C29A—H29A1.0000
N1—C51.355 (2)C29A—C30A1.525 (15)
N1—C61.385 (2)C29A—C31A1.526 (15)
N1—C81.437 (2)C30A—H30D0.9800
N2—C51.366 (2)C30A—H30E0.9800
N2—C71.393 (2)C30A—H30F0.9800
N2—C201.435 (2)C31A—H31D0.9800
C1—C21.502 (3)C31A—H31E0.9800
C2—H2A0.9800C31A—H31F0.9800
C2—H2B0.9800C22—H220.9500
C2—H2C0.9800C22—C231.382 (3)
C3—C41.502 (3)C23—H230.9500
C4—H4A0.9800C23—C241.379 (3)
C4—H4B0.9800C24—H240.9500
C4—H4C0.9800C24—C251.383 (3)
C6—H60.9500C25—C261.519 (8)
C6—C71.320 (3)C25—C26A1.519 (12)
C7—H70.9500C26—H261.0000
C8—C91.403 (3)C26—C271.542 (8)
C8—C131.394 (3)C26—C281.531 (9)
C9—C171.521 (8)C27—H27A0.9800
C9—C17A1.516 (12)C27—H27B0.9800
C9—C101.389 (3)C27—H27C0.9800
C17—H171.0000C28—H28A0.9800
C17—C181.514 (9)C28—H28B0.9800
C17—C191.535 (8)C28—H28C0.9800
C18—H18A0.9800C26A—H26A1.0000
C18—H18B0.9800C26A—C27A1.527 (11)
C18—H18C0.9800C26A—C28A1.536 (11)
C19—H19A0.9800C27A—H27D0.9800
C19—H19B0.9800C27A—H27E0.9800
C19—H19C0.9800C27A—H27F0.9800
C17A—H17A1.0000C28A—H28D0.9800
C17A—C18A1.549 (11)C28A—H28E0.9800
C17A—C19A1.543 (12)C28A—H28F0.9800
C18A—H18D0.9800O5—C321.430 (7)
C18A—H18E0.9800O5—C351.420 (5)
C18A—H18F0.9800C32—H32A0.9900
C19A—H19D0.9800C32—H32B0.9900
C19A—H19E0.9800C32—C331.499 (6)
C19A—H19F0.9800C33—H33A0.9900
C10—H100.9500C33—H33B0.9900
C10—C111.384 (4)C33—C341.518 (5)
C11—H110.9500C34—H34A0.9900
C11—C121.382 (4)C34—H34B0.9900
C12—H120.9500C34—C351.503 (5)
C12—C131.386 (3)C35—H35A0.9900
C13—C141.521 (3)C35—H35B0.9900
C14—H141.0000O5A—C32A1.421 (15)
C14—C151.522 (3)O5A—C35A1.423 (14)
C14—C161.531 (4)C32A—H32C0.9900
C15—H15A0.9800C32A—H32D0.9900
C15—H15B0.9800C32A—C33A1.504 (8)
C15—H15C0.9800C33A—H33C0.9900
C16—H16A0.9800C33A—H33D0.9900
C16—H16B0.9800C33A—C34A1.517 (8)
C16—H16C0.9800C34A—H34C0.9900
C20—C211.394 (3)C34A—H34D0.9900
C20—C251.392 (3)C34A—C35A1.505 (8)
C21—C291.524 (5)C35A—H35C0.9900
C21—C29A1.525 (17)C35A—H35D0.9900
C21—C221.387 (3)
O1—Cr—Cri85.85 (4)C21—C29—C31110.1 (5)
O1—Cr—O389.35 (6)C30—C29—C21113.0 (4)
O1—Cr—O4i90.32 (6)C30—C29—H29107.6
O1—Cr—C594.62 (6)C30—C29—C31110.7 (5)
O2i—Cr—Cri85.44 (4)C31—C29—H29107.6
O2i—Cr—O1171.29 (5)C29—C30—H30A109.5
O2i—Cr—O389.72 (6)C29—C30—H30B109.5
O2i—Cr—O4i89.33 (6)C29—C30—H30C109.5
O2i—Cr—C594.10 (6)H30A—C30—H30B109.5
O3—Cr—Cri85.65 (4)H30A—C30—H30C109.5
O3—Cr—O4i171.54 (5)H30B—C30—H30C109.5
O3—Cr—C595.67 (5)C29—C31—H31A109.5
O4i—Cr—Cri85.90 (4)C29—C31—H31B109.5
O4i—Cr—C592.78 (5)C29—C31—H31C109.5
C5—Cr—Cri178.60 (5)H31A—C31—H31B109.5
C3—O1—Cr121.81 (12)H31A—C31—H31C109.5
C3—O2—Cri122.43 (13)H31B—C31—H31C109.5
C1—O3—Cr122.10 (12)C21—C29A—H29A108.5
C1—O4—Cri121.67 (12)C21—C29A—C30A109.1 (16)
C5—N1—C6112.15 (16)C21—C29A—C31A110 (2)
C5—N1—C8127.76 (14)C30A—C29A—H29A108.5
C6—N1—C8120.09 (16)C30A—C29A—C31A112 (2)
C5—N2—C7111.56 (16)C31A—C29A—H29A108.5
C5—N2—C20127.10 (14)C29A—C30A—H30D109.5
C7—N2—C20121.26 (15)C29A—C30A—H30E109.5
O3—C1—C2117.20 (17)C29A—C30A—H30F109.5
O4—C1—O3124.59 (17)H30D—C30A—H30E109.5
O4—C1—C2118.21 (17)H30D—C30A—H30F109.5
C1—C2—H2A109.5H30E—C30A—H30F109.5
C1—C2—H2B109.5C29A—C31A—H31D109.5
C1—C2—H2C109.5C29A—C31A—H31E109.5
H2A—C2—H2B109.5C29A—C31A—H31F109.5
H2A—C2—H2C109.5H31D—C31A—H31E109.5
H2B—C2—H2C109.5H31D—C31A—H31F109.5
O1—C3—O2124.46 (18)H31E—C31A—H31F109.5
O1—C3—C4117.95 (17)C21—C22—H22119.4
O2—C3—C4117.58 (18)C23—C22—C21121.2 (2)
C3—C4—H4A109.5C23—C22—H22119.4
C3—C4—H4B109.5C22—C23—H23120.2
C3—C4—H4C109.5C24—C23—C22119.6 (2)
H4A—C4—H4B109.5C24—C23—H23120.2
H4A—C4—H4C109.5C23—C24—H24119.1
H4B—C4—H4C109.5C23—C24—C25121.8 (2)
N1—C5—Cr128.25 (12)C25—C24—H24119.1
N1—C5—N2102.64 (14)C20—C25—C26121.1 (6)
N2—C5—Cr128.71 (13)C20—C25—C26A122.9 (8)
N1—C6—H6126.5C24—C25—C20117.0 (2)
C7—C6—N1106.96 (18)C24—C25—C26121.7 (6)
C7—C6—H6126.5C24—C25—C26A119.5 (8)
N2—C7—H7126.7C25—C26—H26109.4
C6—C7—N2106.69 (17)C25—C26—C27106.7 (8)
C6—C7—H7126.7C25—C26—C28111.9 (9)
C9—C8—N1118.88 (18)C27—C26—H26109.4
C13—C8—N1118.39 (17)C28—C26—H26109.4
C13—C8—C9122.60 (19)C28—C26—C27110.0 (10)
C8—C9—C17121.5 (5)C26—C27—H27A109.5
C8—C9—C17A122.0 (8)C26—C27—H27B109.5
C10—C9—C8117.3 (2)C26—C27—H27C109.5
C10—C9—C17121.2 (5)H27A—C27—H27B109.5
C10—C9—C17A120.6 (8)H27A—C27—H27C109.5
C9—C17—H17107.3H27B—C27—H27C109.5
C9—C17—C19108.8 (8)C26—C28—H28A109.5
C18—C17—C9114.5 (9)C26—C28—H28B109.5
C18—C17—H17107.3C26—C28—H28C109.5
C18—C17—C19111.4 (9)H28A—C28—H28B109.5
C19—C17—H17107.3H28A—C28—H28C109.5
C17—C18—H18A109.5H28B—C28—H28C109.5
C17—C18—H18B109.5C25—C26A—H26A106.4
C17—C18—H18C109.5C25—C26A—C27A116.8 (14)
H18A—C18—H18B109.5C25—C26A—C28A110.5 (13)
H18A—C18—H18C109.5C27A—C26A—H26A106.4
H18B—C18—H18C109.5C27A—C26A—C28A109.7 (14)
C17—C19—H19A109.5C28A—C26A—H26A106.4
C17—C19—H19B109.5C26A—C27A—H27D109.5
C17—C19—H19C109.5C26A—C27A—H27E109.5
H19A—C19—H19B109.5C26A—C27A—H27F109.5
H19A—C19—H19C109.5H27D—C27A—H27E109.5
H19B—C19—H19C109.5H27D—C27A—H27F109.5
C9—C17A—H17A109.3H27E—C27A—H27F109.5
C9—C17A—C18A108.6 (12)C26A—C28A—H28D109.5
C9—C17A—C19A112.7 (13)C26A—C28A—H28E109.5
C18A—C17A—H17A109.3C26A—C28A—H28F109.5
C19A—C17A—H17A109.3H28D—C28A—H28E109.5
C19A—C17A—C18A107.5 (12)H28D—C28A—H28F109.5
C17A—C18A—H18D109.5H28E—C28A—H28F109.5
C17A—C18A—H18E109.5C35—O5—C32107.2 (4)
C17A—C18A—H18F109.5O5—C32—H32A111.1
H18D—C18A—H18E109.5O5—C32—H32B111.1
H18D—C18A—H18F109.5O5—C32—C33103.4 (5)
H18E—C18A—H18F109.5H32A—C32—H32B109.1
C17A—C19A—H19D109.5C33—C32—H32A111.1
C17A—C19A—H19E109.5C33—C32—H32B111.1
C17A—C19A—H19F109.5C32—C33—H33A111.6
H19D—C19A—H19E109.5C32—C33—H33B111.6
H19D—C19A—H19F109.5C32—C33—C34100.9 (5)
H19E—C19A—H19F109.5H33A—C33—H33B109.4
C9—C10—H10119.5C34—C33—H33A111.6
C11—C10—C9121.0 (2)C34—C33—H33B111.6
C11—C10—H10119.5C33—C34—H34A111.4
C10—C11—H11119.9C33—C34—H34B111.4
C12—C11—C10120.3 (2)H34A—C34—H34B109.3
C12—C11—H11119.9C35—C34—C33101.6 (4)
C11—C12—H12119.5C35—C34—H34A111.4
C11—C12—C13120.9 (2)C35—C34—H34B111.4
C13—C12—H12119.5O5—C35—C34108.3 (3)
C8—C13—C14121.80 (19)O5—C35—H35A110.0
C12—C13—C8117.8 (2)O5—C35—H35B110.0
C12—C13—C14120.4 (2)C34—C35—H35A110.0
C13—C14—H14107.9C34—C35—H35B110.0
C13—C14—C15110.9 (2)H35A—C35—H35B108.4
C13—C14—C16111.1 (2)C32A—O5A—C35A111.9 (14)
C15—C14—H14107.9O5A—C32A—H32C111.6
C15—C14—C16110.9 (2)O5A—C32A—H32D111.6
C16—C14—H14107.9O5A—C32A—C33A100.7 (14)
C14—C15—H15A109.5H32C—C32A—H32D109.4
C14—C15—H15B109.5C33A—C32A—H32C111.6
C14—C15—H15C109.5C33A—C32A—H32D111.6
H15A—C15—H15B109.5C32A—C33A—H33C111.5
H15A—C15—H15C109.5C32A—C33A—H33D111.5
H15B—C15—H15C109.5C32A—C33A—C34A101.1 (15)
C14—C16—H16A109.5H33C—C33A—H33D109.4
C14—C16—H16B109.5C34A—C33A—H33C111.5
C14—C16—H16C109.5C34A—C33A—H33D111.5
H16A—C16—H16B109.5C33A—C34A—H34C112.3
H16A—C16—H16C109.5C33A—C34A—H34D112.3
H16B—C16—H16C109.5H34C—C34A—H34D109.9
C21—C20—N2118.01 (17)C35A—C34A—C33A97.4 (13)
C25—C20—N2118.83 (18)C35A—C34A—H34C112.3
C25—C20—C21123.06 (19)C35A—C34A—H34D112.3
C20—C21—C29123.0 (4)O5A—C35A—C34A103.3 (13)
C20—C21—C29A118.0 (14)O5A—C35A—H35C111.1
C22—C21—C20117.27 (19)O5A—C35A—H35D111.1
C22—C21—C29119.7 (4)C34A—C35A—H35C111.1
C22—C21—C29A124.4 (14)C34A—C35A—H35D111.1
C21—C29—H29107.6H35C—C35A—H35D109.1
Cr—O1—C3—O20.4 (3)C10—C9—C17A—C19A65.1 (17)
Cr—O1—C3—C4178.64 (15)C10—C11—C12—C131.8 (4)
Cri—O2—C3—O10.1 (3)C11—C12—C13—C80.6 (3)
Cri—O2—C3—C4179.01 (14)C11—C12—C13—C14176.9 (2)
Cr—O3—C1—O43.9 (3)C12—C13—C14—C1558.8 (3)
Cr—O3—C1—C2175.42 (14)C12—C13—C14—C1665.2 (3)
Cri—O4—C1—O33.5 (3)C13—C8—C9—C17173.5 (5)
Cri—O4—C1—C2175.80 (14)C13—C8—C9—C17A179.2 (8)
N1—C6—C7—N20.1 (3)C13—C8—C9—C103.6 (3)
N1—C8—C9—C1710.8 (6)C20—N2—C5—Cr10.6 (3)
N1—C8—C9—C17A3.5 (8)C20—N2—C5—N1176.26 (16)
N1—C8—C9—C10172.11 (18)C20—N2—C7—C6176.71 (19)
N1—C8—C13—C12172.31 (18)C20—C21—C29—C30118.9 (6)
N1—C8—C13—C1410.2 (3)C20—C21—C29—C31116.7 (6)
N2—C20—C21—C295.7 (4)C20—C21—C29A—C30A100 (3)
N2—C20—C21—C29A11.7 (11)C20—C21—C29A—C31A137 (2)
N2—C20—C21—C22174.60 (16)C20—C21—C22—C230.1 (3)
N2—C20—C25—C24174.45 (17)C20—C25—C26—C27105.0 (10)
N2—C20—C25—C2610.0 (7)C20—C25—C26—C28134.6 (11)
N2—C20—C25—C26A3.4 (10)C20—C25—C26A—C27A111.0 (15)
C5—N1—C6—C70.4 (3)C20—C25—C26A—C28A122.7 (14)
C5—N1—C8—C980.8 (2)C21—C20—C25—C241.9 (3)
C5—N1—C8—C13103.4 (2)C21—C20—C25—C26173.7 (7)
C5—N2—C7—C60.1 (2)C21—C20—C25—C26A173.0 (10)
C5—N2—C20—C2190.0 (2)C21—C22—C23—C241.4 (3)
C5—N2—C20—C2593.4 (2)C29—C21—C22—C23179.6 (3)
C6—N1—C5—Cr172.69 (14)C29A—C21—C22—C23173.1 (12)
C6—N1—C5—N20.5 (2)C22—C21—C29—C3061.5 (7)
C6—N1—C8—C999.3 (2)C22—C21—C29—C3162.9 (8)
C6—N1—C8—C1376.6 (2)C22—C21—C29A—C30A87 (3)
C7—N2—C5—Cr172.74 (14)C22—C21—C29A—C31A37 (3)
C7—N2—C5—N10.4 (2)C22—C23—C24—C251.2 (3)
C7—N2—C20—C2186.3 (2)C23—C24—C25—C200.4 (3)
C7—N2—C20—C2590.2 (2)C23—C24—C25—C26175.2 (7)
C8—N1—C5—Cr7.3 (3)C23—C24—C25—C26A171.8 (10)
C8—N1—C5—N2179.56 (16)C24—C25—C26—C2779.6 (12)
C8—N1—C6—C7179.62 (19)C24—C25—C26—C2840.8 (15)
C8—C9—C17—C18143.1 (10)C24—C25—C26A—C27A59.9 (18)
C8—C9—C17—C1991.6 (11)C24—C25—C26A—C28A66.4 (19)
C8—C9—C17A—C18A130.6 (11)C25—C20—C21—C29177.9 (3)
C8—C9—C17A—C19A110.4 (15)C25—C20—C21—C29A171.9 (11)
C8—C9—C10—C111.0 (3)C25—C20—C21—C221.8 (3)
C8—C13—C14—C15118.7 (2)O5—C32—C33—C3443.2 (11)
C8—C13—C14—C16117.4 (2)C32—O5—C35—C349.6 (7)
C9—C8—C13—C123.4 (3)C32—C33—C34—C3536.1 (10)
C9—C8—C13—C14174.10 (19)C33—C34—C35—O517.4 (8)
C9—C10—C11—C121.6 (4)C35—O5—C32—C3333.3 (9)
C17—C9—C10—C11176.1 (6)O5A—C32A—C33A—C34A41 (4)
C17A—C9—C10—C11176.7 (8)C32A—O5A—C35A—C34A15 (3)
C10—C9—C17—C1833.9 (13)C32A—C33A—C34A—C35A50 (3)
C10—C9—C17—C1991.4 (12)C33A—C34A—C35A—O5A39 (2)
C10—C9—C17A—C18A54.0 (17)C35A—O5A—C32A—C33A16 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O50.952.473.411 (6)171
Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) top
Crystal data top
{Cr2(C2H3O2)4(C21H24N2)2]Z = 1
Mr = 949.02F(000) = 500
Triclinic, P1Dx = 1.324 Mg m3
a = 8.3679 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6127 (8) ÅCell parameters from 4925 reflections
c = 13.8355 (9) Åθ = 2.0–29.2°
α = 68.949 (5)°µ = 0.51 mm1
β = 83.891 (5)°T = 170 K
γ = 71.508 (5)°Plate, clear violet
V = 1189.90 (14) Å30.40 × 0.24 × 0.07 mm
Data collection top
Stoe IPDS 2T
diffractometer
4174 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2894 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.071
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.1°
rotation method, ω scansh = 89
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2015)
k = 1313
Tmin = 0.844, Tmax = 0.963l = 1616
8474 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
4174 reflectionsΔρmax = 0.50 e Å3
297 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.54824 (5)0.51154 (4)0.40816 (3)0.02630 (15)
O10.3003 (2)0.59224 (19)0.36961 (14)0.0351 (5)
N10.5905 (3)0.6422 (2)0.14863 (17)0.0343 (6)
C10.1879 (3)0.6037 (3)0.4367 (2)0.0316 (6)
O20.2154 (2)0.57212 (18)0.53188 (15)0.0340 (4)
N20.7496 (3)0.4481 (2)0.19833 (17)0.0330 (5)
C20.0074 (3)0.6573 (3)0.4002 (3)0.0445 (8)
H2A0.0618660.7003860.4463290.067*
H2B0.0332700.5866460.4008910.067*
H2C0.0001880.7198850.3295720.067*
O30.5662 (2)0.68514 (17)0.39901 (14)0.0338 (4)
C30.5333 (3)0.7243 (3)0.4751 (2)0.0309 (6)
O40.4828 (2)0.66423 (18)0.56159 (14)0.0335 (4)
C40.5595 (4)0.8516 (3)0.4611 (3)0.0454 (8)
H4A0.4829670.8919170.5066140.068*
H4B0.5362280.9088160.3888980.068*
H4C0.6763110.8371310.4787800.068*
C50.6360 (3)0.5358 (3)0.2356 (2)0.0285 (6)
C60.6703 (4)0.6201 (3)0.0613 (2)0.0478 (8)
H60.6560210.6799860.0076470.057*
C70.7702 (4)0.4995 (3)0.0922 (2)0.0474 (8)
H70.8423080.4563140.0498250.057*
C80.4637 (3)0.7630 (3)0.1422 (2)0.0314 (6)
C90.5118 (3)0.8645 (3)0.1481 (2)0.0327 (6)
C100.3881 (4)0.9817 (3)0.1331 (2)0.0371 (7)
H100.4184521.0524460.1362770.044*
C110.2212 (4)0.9993 (3)0.1135 (2)0.0370 (7)
C120.1785 (4)0.8955 (3)0.1109 (2)0.0382 (7)
H120.0640490.9060870.0992480.046*
C130.2971 (3)0.7752 (3)0.1248 (2)0.0354 (7)
C140.6915 (4)0.8479 (3)0.1710 (2)0.0441 (8)
H14A0.7075840.8200800.2460430.066*
H14B0.7158990.9304700.1372800.066*
H14C0.7679640.7825000.1446900.066*
C150.0910 (4)1.1303 (3)0.0923 (2)0.0505 (8)
H15A0.1101951.1712000.1389570.076*
H15B0.0219061.1196920.1037180.076*
H15C0.1002111.1848600.0202980.076*
C160.2480 (4)0.6630 (3)0.1227 (2)0.0479 (8)
H16A0.2728110.5935650.1902570.072*
H16B0.3119520.6314950.0689620.072*
H16C0.1271990.6905160.1076170.072*
C170.8384 (3)0.3160 (3)0.2571 (2)0.0317 (6)
C180.7640 (3)0.2203 (3)0.2707 (2)0.0348 (7)
C190.8564 (4)0.0938 (3)0.3208 (2)0.0391 (7)
H190.8065110.0272290.3315130.047*
C201.0202 (4)0.0600 (3)0.3562 (2)0.0387 (7)
C211.0873 (3)0.1596 (3)0.3422 (2)0.0374 (7)
H211.1981560.1384630.3670780.045*
C221.0007 (3)0.2876 (3)0.2938 (2)0.0334 (6)
C230.5886 (4)0.2541 (3)0.2299 (3)0.0494 (8)
H23A0.5114810.3207420.2547190.074*
H23B0.5509780.1766800.2544750.074*
H23C0.5894970.2868140.1539960.074*
C241.1213 (4)0.0789 (3)0.4055 (3)0.0538 (9)
H24A1.1861120.1110740.3522280.081*
H24B1.0452680.1304920.4392530.081*
H24C1.1987300.0858450.4571280.081*
C251.0787 (4)0.3930 (3)0.2774 (3)0.0509 (8)
H25A0.9954470.4658740.2918900.076*
H25B1.1158550.4220150.2054330.076*
H25C1.1758040.3599400.3240630.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0215 (2)0.0263 (2)0.0304 (3)0.00359 (17)0.00045 (17)0.01198 (19)
O10.0261 (10)0.0418 (12)0.0357 (11)0.0044 (9)0.0027 (8)0.0156 (9)
N10.0347 (13)0.0312 (14)0.0326 (13)0.0035 (10)0.0001 (10)0.0116 (11)
C10.0226 (14)0.0258 (15)0.0459 (18)0.0048 (11)0.0048 (13)0.0124 (13)
O20.0230 (9)0.0395 (12)0.0385 (12)0.0036 (8)0.0003 (8)0.0173 (9)
N20.0336 (13)0.0306 (13)0.0316 (13)0.0026 (10)0.0019 (10)0.0135 (11)
C20.0255 (14)0.049 (2)0.057 (2)0.0019 (13)0.0101 (14)0.0212 (16)
O30.0381 (11)0.0285 (11)0.0374 (11)0.0104 (9)0.0028 (9)0.0149 (9)
C30.0202 (13)0.0268 (15)0.0461 (18)0.0042 (11)0.0021 (12)0.0150 (14)
O40.0372 (11)0.0300 (11)0.0368 (11)0.0108 (9)0.0037 (9)0.0160 (9)
C40.0453 (18)0.0352 (18)0.062 (2)0.0136 (14)0.0060 (15)0.0245 (16)
C50.0257 (13)0.0298 (16)0.0298 (15)0.0061 (12)0.0016 (11)0.0115 (12)
C60.061 (2)0.047 (2)0.0252 (16)0.0061 (17)0.0065 (14)0.0101 (15)
C70.0556 (19)0.044 (2)0.0323 (17)0.0005 (16)0.0110 (14)0.0175 (15)
C80.0355 (15)0.0264 (15)0.0260 (14)0.0044 (12)0.0025 (12)0.0053 (12)
C90.0337 (15)0.0355 (17)0.0251 (14)0.0095 (13)0.0007 (12)0.0071 (12)
C100.0459 (17)0.0294 (16)0.0347 (16)0.0094 (13)0.0022 (13)0.0106 (13)
C110.0405 (17)0.0349 (17)0.0275 (15)0.0019 (13)0.0014 (13)0.0097 (13)
C120.0304 (15)0.0437 (19)0.0332 (16)0.0049 (13)0.0049 (12)0.0089 (14)
C130.0371 (15)0.0378 (17)0.0269 (15)0.0094 (13)0.0049 (12)0.0065 (13)
C140.0355 (16)0.051 (2)0.0490 (19)0.0162 (15)0.0007 (14)0.0178 (16)
C150.0502 (19)0.043 (2)0.0460 (19)0.0061 (15)0.0021 (15)0.0173 (16)
C160.0486 (18)0.045 (2)0.053 (2)0.0170 (16)0.0117 (16)0.0142 (16)
C170.0313 (14)0.0310 (16)0.0325 (15)0.0045 (12)0.0061 (12)0.0163 (13)
C180.0317 (15)0.0391 (18)0.0376 (16)0.0087 (13)0.0040 (12)0.0207 (14)
C190.0404 (16)0.0386 (18)0.0460 (18)0.0155 (14)0.0052 (14)0.0216 (15)
C200.0408 (16)0.0324 (17)0.0394 (17)0.0059 (13)0.0003 (13)0.0125 (14)
C210.0284 (15)0.0413 (18)0.0440 (17)0.0042 (13)0.0017 (13)0.0214 (14)
C220.0305 (14)0.0348 (17)0.0395 (16)0.0083 (13)0.0048 (12)0.0208 (13)
C230.0357 (16)0.061 (2)0.060 (2)0.0147 (16)0.0014 (15)0.0297 (18)
C240.055 (2)0.0368 (19)0.061 (2)0.0012 (16)0.0054 (17)0.0173 (17)
C250.0439 (18)0.049 (2)0.071 (2)0.0189 (16)0.0035 (16)0.0300 (18)
Geometric parameters (Å, º) top
Cr—Cri2.5284 (9)C11—C151.511 (4)
Cr—O12.0274 (18)C12—H120.9500
Cr—O2i2.0238 (17)C12—C131.393 (4)
Cr—O32.0269 (18)C13—C161.495 (4)
Cr—O4i2.0270 (18)C14—H14A0.9800
Cr—C52.365 (3)C14—H14B0.9800
O1—C11.260 (3)C14—H14C0.9800
N1—C51.360 (3)C15—H15A0.9800
N1—C61.384 (4)C15—H15B0.9800
N1—C81.445 (3)C15—H15C0.9800
C1—O21.260 (3)C16—H16A0.9800
C1—C21.504 (3)C16—H16B0.9800
N2—C51.366 (3)C16—H16C0.9800
N2—C71.388 (4)C17—C181.385 (4)
N2—C171.441 (3)C17—C221.398 (4)
C2—H2A0.9800C18—C191.378 (4)
C2—H2B0.9800C18—C231.510 (4)
C2—H2C0.9800C19—H190.9500
O3—C31.263 (3)C19—C201.392 (4)
C3—O41.255 (3)C20—C211.384 (4)
C3—C41.504 (4)C20—C241.500 (4)
C4—H4A0.9800C21—H210.9500
C4—H4B0.9800C21—C221.374 (4)
C4—H4C0.9800C22—C251.500 (4)
C6—H60.9500C23—H23A0.9800
C6—C71.321 (4)C23—H23B0.9800
C7—H70.9500C23—H23C0.9800
C8—C91.391 (4)C24—H24A0.9800
C8—C131.394 (4)C24—H24B0.9800
C9—C101.384 (4)C24—H24C0.9800
C9—C141.508 (4)C25—H25A0.9800
C10—H100.9500C25—H25B0.9800
C10—C111.387 (4)C25—H25C0.9800
C11—C121.375 (4)
O1—Cr—Cri85.57 (6)C12—C11—C10118.3 (3)
O1—Cr—C593.88 (8)C12—C11—C15120.9 (3)
O2i—Cr—Cri86.09 (6)C11—C12—H12118.8
O2i—Cr—O1171.65 (8)C11—C12—C13122.4 (3)
O2i—Cr—O388.82 (7)C13—C12—H12118.8
O2i—Cr—O4i91.03 (7)C8—C13—C16121.2 (3)
O2i—Cr—C594.46 (8)C12—C13—C8117.2 (3)
O3—Cr—Cri85.62 (6)C12—C13—C16121.6 (3)
O3—Cr—O190.66 (8)C9—C14—H14A109.5
O3—Cr—C593.90 (8)C9—C14—H14B109.5
O4i—Cr—Cri86.03 (6)C9—C14—H14C109.5
O4i—Cr—O188.28 (7)H14A—C14—H14B109.5
O4i—Cr—O3171.63 (8)H14A—C14—H14C109.5
O4i—Cr—C594.45 (8)H14B—C14—H14C109.5
C5—Cr—Cri179.26 (7)C11—C15—H15A109.5
C1—O1—Cr121.90 (16)C11—C15—H15B109.5
C5—N1—C6112.2 (2)C11—C15—H15C109.5
C5—N1—C8125.9 (2)H15A—C15—H15B109.5
C6—N1—C8121.7 (2)H15A—C15—H15C109.5
O1—C1—C2117.3 (2)H15B—C15—H15C109.5
O2—C1—O1124.9 (2)C13—C16—H16A109.5
O2—C1—C2117.8 (2)C13—C16—H16B109.5
C1—O2—Cri121.50 (16)C13—C16—H16C109.5
C5—N2—C7111.9 (2)H16A—C16—H16B109.5
C5—N2—C17126.7 (2)H16A—C16—H16C109.5
C7—N2—C17121.4 (2)H16B—C16—H16C109.5
C1—C2—H2A109.5C18—C17—N2119.0 (2)
C1—C2—H2B109.5C18—C17—C22122.1 (3)
C1—C2—H2C109.5C22—C17—N2118.8 (2)
H2A—C2—H2B109.5C17—C18—C23120.8 (3)
H2A—C2—H2C109.5C19—C18—C17117.9 (2)
H2B—C2—H2C109.5C19—C18—C23121.3 (3)
C3—O3—Cr121.83 (18)C18—C19—H19118.8
O3—C3—C4117.2 (3)C18—C19—C20122.3 (3)
O4—C3—O3124.9 (2)C20—C19—H19118.8
O4—C3—C4117.8 (2)C19—C20—C24121.3 (3)
C3—O4—Cri121.56 (16)C21—C20—C19117.4 (3)
C3—C4—H4A109.5C21—C20—C24121.4 (3)
C3—C4—H4B109.5C20—C21—H21118.5
C3—C4—H4C109.5C22—C21—C20123.0 (2)
H4A—C4—H4B109.5C22—C21—H21118.5
H4A—C4—H4C109.5C17—C22—C25121.0 (3)
H4B—C4—H4C109.5C21—C22—C17117.4 (3)
N1—C5—Cr128.80 (18)C21—C22—C25121.6 (3)
N1—C5—N2102.3 (2)C18—C23—H23A109.5
N2—C5—Cr128.90 (19)C18—C23—H23B109.5
N1—C6—H6126.6C18—C23—H23C109.5
C7—C6—N1106.8 (3)H23A—C23—H23B109.5
C7—C6—H6126.6H23A—C23—H23C109.5
N2—C7—H7126.6H23B—C23—H23C109.5
C6—C7—N2106.8 (3)C20—C24—H24A109.5
C6—C7—H7126.6C20—C24—H24B109.5
C9—C8—N1119.5 (2)C20—C24—H24C109.5
C9—C8—C13122.3 (3)H24A—C24—H24B109.5
C13—C8—N1118.0 (2)H24A—C24—H24C109.5
C8—C9—C14121.6 (3)H24B—C24—H24C109.5
C10—C9—C8117.6 (2)C22—C25—H25A109.5
C10—C9—C14120.9 (3)C22—C25—H25B109.5
C9—C10—H10118.9C22—C25—H25C109.5
C9—C10—C11122.2 (3)H25A—C25—H25B109.5
C11—C10—H10118.9H25A—C25—H25C109.5
C10—C11—C15120.8 (3)H25B—C25—H25C109.5
Cr—O1—C1—O22.9 (4)C8—N1—C5—Cr6.1 (4)
Cr—O1—C1—C2176.25 (18)C8—N1—C5—N2176.0 (2)
Cr—O3—C3—O42.0 (3)C8—N1—C6—C7176.2 (3)
Cr—O3—C3—C4176.97 (17)C8—C9—C10—C110.5 (4)
O1—C1—O2—Cri3.0 (4)C9—C8—C13—C121.4 (4)
N1—C6—C7—N20.6 (4)C9—C8—C13—C16177.7 (3)
N1—C8—C9—C10174.8 (2)C9—C10—C11—C121.1 (4)
N1—C8—C9—C145.8 (4)C9—C10—C11—C15177.0 (3)
N1—C8—C13—C12175.2 (2)C10—C11—C12—C131.5 (4)
N1—C8—C13—C165.7 (4)C11—C12—C13—C80.3 (4)
N2—C17—C18—C19175.5 (2)C11—C12—C13—C16179.4 (3)
N2—C17—C18—C233.4 (4)C13—C8—C9—C101.8 (4)
N2—C17—C22—C21174.8 (2)C13—C8—C9—C14177.7 (3)
N2—C17—C22—C253.1 (4)C14—C9—C10—C11179.0 (3)
C2—C1—O2—Cri176.10 (18)C15—C11—C12—C13176.5 (3)
O3—C3—O4—Cri1.5 (3)C17—N2—C5—Cr2.8 (4)
C4—C3—O4—Cri177.53 (17)C17—N2—C5—N1179.3 (2)
C5—N1—C6—C71.2 (4)C17—N2—C7—C6178.7 (3)
C5—N1—C8—C996.3 (3)C17—C18—C19—C200.9 (4)
C5—N1—C8—C1387.0 (3)C18—C17—C22—C211.6 (4)
C5—N2—C7—C60.1 (4)C18—C17—C22—C25179.5 (3)
C5—N2—C17—C1887.9 (3)C18—C19—C20—C212.0 (4)
C5—N2—C17—C2295.5 (3)C18—C19—C20—C24176.7 (3)
C6—N1—C5—Cr179.1 (2)C19—C20—C21—C221.2 (4)
C6—N1—C5—N21.2 (3)C20—C21—C22—C170.5 (4)
C6—N1—C8—C989.3 (3)C20—C21—C22—C25178.4 (3)
C6—N1—C8—C1387.3 (3)C22—C17—C18—C191.0 (4)
C7—N2—C5—Cr178.7 (2)C22—C17—C18—C23179.9 (3)
C7—N2—C5—N10.8 (3)C23—C18—C19—C20178.0 (3)
C7—N2—C17—C1890.5 (3)C24—C20—C21—C22177.4 (3)
C7—N2—C17—C2286.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2ii0.982.613.527 (4)155
C15—H15A···Cgiii0.982.623.340 (3)125
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.

References

First citationAbernethy, C. D., Clyburne, J. A. C., Cowley, A. H. & Jones, R. A. (1999). J. Am. Chem. Soc. 121, 2329–2330.  CSD CrossRef CAS Google Scholar
First citationAshida, Y., Egi, A., Arashiba, K., Tanaka, H., Mitsumoto, T., Kuriyama, S., Yoshizawa, K. & Nishibayashi, Y. (2022). Chem. Eur. J. 28, e202200557.  CSD CrossRef PubMed Google Scholar
First citationBenard, M., Coppens, P., DeLucia, M. L. & Stevens, E. D. (1980). Inorg. Chem. 19, 1924–1930.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrauer, G. (1981). In Handbuch der Präparativen und Anorganischen Chemie. Stuttgart: Ferdinand Enke.  Google Scholar
First citationConde-Guadano, S., Danopoulos, A. A., Pattacini, R., Hanton, M. & Tooze, R. P. (2012a). Organometallics, 31, 1643–1652.  CAS Google Scholar
First citationConde-Guadano, S., Hanton, M. R. P., Tooze, R. P. A. A., Danopoulos, A. A. & Braunstein, P. (2012b). Dalton Trans. 41, 12558–12567.  CAS PubMed Google Scholar
First citationCotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328–331.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.  Google Scholar
First citationCotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004–2009.  CSD CrossRef ICSD CAS Web of Science Google Scholar
First citationCotton, F. A. & Wang, W. (1984). New J. Chem. 8, 331–340.  CAS Google Scholar
First citationDanopoulos, A. A., Hankin, D. M., Wilkinson, G., Cafferkey, S. M., Sweet, T. K. M. & Hursthouse, M. B. (1997). Polyhedron, 16, 3879–3892.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsch, N., Wick, C. R., Waidmann, T., Dral, P. O., Tucher, J., Heinemann, F. W., Shubina, T. E., Clark, T. & Burzlaff, N. (2014). Inorg. Chem. 53, 12305–12314.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeiser, C. & Merzweiler, K. (2022). Z. Anorg. Allg. Chem. 648, e202200257.  CSD CrossRef Google Scholar
First citationHeiser, C. & Merzweiler, K. (2023). IUCrData, 8, x230801.  Google Scholar
First citationHerich, P., Bučinský, L., Breza, M., Gall, M., Fronc, M., Petřiček, V. & Kožíšek, J. (2018). Acta Cryst. B74, 681–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem. 57, 5371–5379.  CSD CrossRef CAS PubMed Google Scholar
First citationJones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr. 42, 494–497.  CSD CrossRef CAS Google Scholar
First citationKreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2006). Organometallics, 25, 4670–4679.  Web of Science CSD CrossRef CAS Google Scholar
First citationKreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2007). Chem. Commun. pp. 1510–1511.  CSD CrossRef Google Scholar
First citationMedici, F., Gontard, G., Derat, E., Lemière, G. & Fensterbank, L. (2018). Organometallics, 37, 517–520.  CSD CrossRef CAS Google Scholar
First citationNiekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501–504.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPeligot, M. E. (1844). C. R. Acad. Sci. pp. 609–615.  Google Scholar
First citationPugh, D., Wright, J. A., Freeman, S. & Danopoulos, A. A. (2006). Dalton Trans. pp. 775–782.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimler, T., Danopoulos, A. A. & Braunstein, P. (2015). Chem. Commun. 51, 10699–10702.  CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVoges, M. H., Rømming, C. & Tilset, M. (1999). Organometallics, 18, 529–533.  CSD CrossRef CAS Google Scholar
First citationWang, J., An, D. & Zhu, H. (2010). Jiegou Huaxue, 29, 933–939.  CAS Google Scholar
First citationWang, J., Tan, G., An, D., Zhu, H. & Yang, Y. (2011). Z. Anorg. Allg. Chem. 637, 1597–1601.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds