research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene

crossmark logo

aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 June 2024; accepted 13 June 2024; online 21 June 2024)

The crystal structure of the title 2:1 mol­ecular complex between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.

1. Chemical context

Earlier research investigated the deprotonation of allylic silicon compounds with organolithium reagents (Strohmann et al., 2006[Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102-8103.]). In this work, 2-(allyl­thio)­pyridine was synthesized to compare the chemical behavior to similar systems. The chosen synthetic route was adapted from the literature (Baudin et al., 1993[Baudin, J. B., Hareau, G., Julia, S. A. & Ruel, O. (1993). Bull. Soc. Chim. Fr. 130, 78-856.]) and could lead to two similar products (Fig. 1[link]) that would be hard to distinguish based on 1H- and 13C-NMR alone. Since the 2-(allyl­thio)­pyridine did not crystallize and was quite impure, 1,2,4,5,-tetra­fluoro-3,6-di­iodo­benzene was added, which led to a two-component co-crystal referred to as complex 5. Halogen bonds between an aromatic iodine compound and a nitro­gen compound can vary in their bond strength, length and angle (Otte et al., 2023[Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531-21539.]). Since only the desired compound formed a halogen bond, the product could be separated from the impurities by simply isolating the co-crystals. Afterwards the 2-(allyl­thio)­pyridine was reobtained by column chromatography.

[Figure 1]
Figure 1
Synthesis of 2-(allyl­thio)­pyridine 3 or 1-allyl­pyridine-2(1H)-thione 4.

2. Structural commentary

Complex 5 crystallized from heptane at 193.15 K as colorless plates in the monoclinic space group P21/c. The asymmetric unit consists of one mol­ecule of 3 and half a mol­ecule of 1,2,4,5,-tetra­fluoro-3,6-di­iodo­benzene. The second half is generated by inversion symmetry (Fig. 2[link]; symmetry operationx, −y, 1 − z). The formula unit of the title compound consists of two mol­ecules 2-(allyl­thio)­pyridine and one mol­ecule 1,2,4,5,-tetra­fluoro-3,6-di­iodo­benzene, which lies on an inversion center.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of the title compound 5, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

The complex consists of multiple functional groups: an allyl group, a thio­ether, a pyridine and a perfluorinated di­iodo­benzene. The C1—C2 bond length [1.492 (2) Å] is longer than the C2—C3 bond length [1.316 (3) Å], which is explained by the double bond between C2 and C3. These lengths coincide with the C—C single bond length of 1.54 Å in ethane and the C=C double bond length of 1.33 Å in ethene (Lide, 2005[Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.]). The C4—S1—C1 bond angle [102.91 (7)°] is a little bit larger than the C—S—C angle in di­methyl­sulfide [99.2 (1)°; Mitzel & Losehand, 2004[Mitzel, N. W. & Losehand, U. (2004). Z. Naturforsch. B, 59, 635.]]. The difference in bond angles might be explained by the larger pyridine substituent, of which C4 is a part. The bond lengths in the pyridine ring [C4—C5: 1.3976 (18) Å, C5—C6: 1.391 (2) Å, C6—C7: 1.387 (2) Å, C7—C8: 1.384 (2) Å, C8—N1: 1.3454 (18) Å and N1—C4: 1.3422 (17) Å] are not significantly longer compared to the bond lengths in pyridine (Lide, 2005[Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.]). The bond angles of the pyridine moiety vary around 118°, which is typical for pyridine. The largest deviations from planarity of the pyridine (r.m.s. deviation 0.010 Å) are observed for C7 [–0.0124 (12) Å] and C4 [–0.0140 (9) Å]. The angle between the normal of the pyridine plane (N1,C4–C8) and the double bond between C2 and C3 is 115.35 (13)°.

The bond lengths and angles of 1,2,4,5,-tetra­fluoro-3,6-di­iodo­benzene are consistent with those present in the Cambridge Structural Database. The benzene ring makes a dihedral angle of 12.88 (5)° with the pyridine ring.

3. Supra­molecular features

Fig. 3[link] shows the packing of the complex. The most important supra­molecular feature is the close contact between N1 and I1 with a coordination distance of 2.8628 (12) Å, which is shorter than the sum of the van der Waals radii of 3.73 Å (Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]). The strength of a halogen bond is determined by the bond length and the bond angle. Strong halogen bonds are expected to have a bond length in the region of 2.781 (2) Å (Otte et al., 2023[Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531-21539.]), which is shorter than the distance observed for 5. The N1—I1—C9 bond angle is 173.90 (4)°, which is slightly less than a theoretical ideal angle of 180°. In conclusion, the here presented structure shows a medium-strength halogen bond between N1 and I1. Further evidence for this is the small difference in 1H-NMR chemical shifts between compounds 3 and 5 (Fig. 4[link]). Theoretically, the sulfur present here could also form a halogen bond with the iodine, but this behavior is not observed.

[Figure 3]
Figure 3
A view of the packing of 5.
[Figure 4]
Figure 4
1H-NMR spectra (400 MHz) of compounds 3 and 5 in CDCl3.

To better understand the van der Waals inter­actions, a Hirshfeld surface analysis was performed. In Fig. 5[link], the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) is mapped over dnorm (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and red dots are used to represent close contacts.

[Figure 5]
Figure 5
Three-dimensional Hirshfeld surface of 5 mapped over dnorm.

For further exploration of the inter­molecular inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated as shown in Fig. 6[link]. The H⋯H inter­action with a contribution of 32.1% has the biggest impact on the packing in the solid state. The C⋯H/H⋯C bonds with 20.0%, F⋯H with 16.8%, S⋯H/H⋯S with 14.1%, N⋯H/H⋯N with 3.3%, N⋯I/I⋯N with 3.2% C⋯I/I⋯C with 2.2% or N⋯C/C⋯N with 1.5% are less impactful in comparison.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots for 5 showing (a) all inter­actions, and (b)–(h) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, last update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene yielded 802 hits. In 261 structures, the iodo atom inter­acts with a pyridine nitro­gen atom with N⋯I distances ranging from 2.662 to 3.511 Å and averaging 2.911 Å. The mean C—I⋯N angle is 171.9°.

A search for the keywords halogen bond, thio­ether and pyridine leads to a structure of 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene–4-(pyridin-4-ylsulfan­yl)pyridine (1/1) (Arman et al., 2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.]). The variety of publications containing halogen bonds is quite large and includes the previously discussed strong halogen bond with quinuclidine (Otte et al., 2023[Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531-21539.]) or halogen bonds with carbonyl hypoiodites as bond donors (Yu et al., 2021[Yu, S., Ward, J. S., Truong, K. N. & Rissanen, K. (2021). Angew. Chem. Int. Ed. 60, 20739-20743.]). The structural motif of thio­ethers is also well known, especially in the context of ligand chemistry with silicon-based thio­ethers for palladium (Schneider et al., 2023[Schneider, P. E., Wattenberg, J., Wappelhorst, J. F., Knorr, M. & Strohmann, C. (2023). Z. Anorg. Allge Chem. 649, e202300185.]; Bastero et al., 2002[Bastero, A., Claver, C. & Ruiz, A. (2002). Catal. Lett. 82, 85-88.]) or silver (Nomiya et al., 1996[Nomiya, K., Onoue, K. I., Kondoh, Y., Kasuga, N. C., Nagano, H., Oda, M. & Sakuma, S. (1996). Polyhedron, 15, 2303.]; Gaudillat et al., 2023[Gaudillat, Q., Krupp, A., Zwingelstein, T., Humblot, V., Strohmann, C., Jourdain, I., Knorr, M. & Viau, L. (2023). Dalton Trans. 52, 5859-5864.]). Sulfonium-based ionic liquids (Zhao et al., 2007[Zhao, D., Fei, Z., Ang, W. H. & Dyson, P. J. (2007). Int. J. Mol. Sci. 8, 304-315.]) and other systems like (Z)-3-allyl-5-(4-nitro­benzyl­idene)-2-sulfanyl­idene-1,3-thia­zolidin-4-one (Moreno et al., 2024[Moreno, B., Jourdain, I., Knorr, M., Boudriga, S., Strohmann, C. & Schrimpf, T. (2024). Molbank, M1783.]) are good examples of compounds with allyl groups.

5. Synthesis and crystallization

Complex 5 was synthesized by adding 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene (293.96 g mol−1, 0.33 mmol, 0.5 eq., 97.19 mg) to a solution of 2-(allyl­thio)­pyridine (151.23 g mol−1, 0.66 mmol, 1.0 eq., 100,00 mg) and pentane at room temperature. The solution was stirred for one h and crystallized at 193.15 K.

1H NMR (400 MHz, benzene-d6, ppm): 8.24 (dt, J = 4.9, 1.4, 2H, C5H4N), 6.80 (ddt, J = 27.0, 6.3, 1.6, 4H, C5H4N), 6.41–6.34 (m, 2H, C5H4N), 5.95 (ddd, J = 16.9, 10.1, 1.5, 2H, CH—CH2), 5.15 (dq, J = 16.9, 1.5, 2H, CH—CH2), 4.93 (dt, J = 10.0, 1.3, 2H, CH—CH2), 3.85 (dq, J = 6.9, 1.3, 4H, S—CH2).

13C NMR (101 MHz, benzene-d6, ppm): 159.10 (C5H4N), 149.60 (C5H4N), 135.66 (C6F4I2), 134.68 (C6F4I2), 122.28 (C5H4N), 119.23 (CH-CH2), 117.15(C5H4N), 65.93 (C5H4N), 32.88 (CH-CH2), 15.60 (C6F4I2), 1.42 (S-CH2).

19F NMR (377 MHz, benzene-d6, ppm): −118.86 (C6F4I2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms.

Table 1
Experimental details

Crystal data
Chemical formula 2C8H9NS·C6F4I2
Mr 704.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.184 (2), 5.2951 (6), 20.544 (3)
β (°) 96.137 (6)
V3) 1209.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.82
Crystal size (mm) 0.25 × 0.23 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.468, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 91740, 5719, 5342
Rint 0.036
(sin θ/λ)max−1) 0.827
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.12
No. of reflections 5719
No. of parameters 181
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.91, −0.73
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene top
Crystal data top
2C8H9NS·C6F4I2F(000) = 676
Mr = 704.30Dx = 1.934 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.184 (2) ÅCell parameters from 9219 reflections
b = 5.2951 (6) Åθ = 4.0–28.0°
c = 20.544 (3) ŵ = 2.82 mm1
β = 96.137 (6)°T = 100 K
V = 1209.7 (3) Å3Plate, colourless
Z = 20.25 × 0.23 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5719 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5342 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.036
Detector resolution: 7.9 pixels mm-1θmax = 36.0°, θmin = 1.8°
ω and φ scansh = 1718
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.468, Tmax = 0.567l = 3333
91740 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.9301P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
5719 reflectionsΔρmax = 0.91 e Å3
181 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.13965 (2)0.45457 (2)0.60714 (2)0.01556 (2)
S10.40259 (3)0.94040 (6)0.63185 (2)0.02017 (6)
F10.07102 (9)0.05135 (19)0.62168 (4)0.02486 (17)
F20.17962 (9)0.28759 (19)0.45993 (5)0.02646 (18)
N10.22969 (11)0.8241 (2)0.70166 (6)0.01990 (19)
C100.03525 (12)0.0315 (2)0.56133 (6)0.01663 (19)
C50.34960 (12)1.1694 (3)0.74802 (7)0.0211 (2)
C70.17783 (15)1.0299 (3)0.79911 (7)0.0245 (3)
C110.09192 (11)0.1455 (2)0.48116 (6)0.01691 (19)
C90.05773 (11)0.1819 (2)0.54352 (6)0.01517 (18)
C60.27543 (14)1.1910 (3)0.79795 (7)0.0248 (3)
C40.32194 (11)0.9853 (2)0.70003 (6)0.01659 (19)
C80.15980 (14)0.8479 (3)0.75070 (7)0.0236 (2)
C10.49191 (14)1.2265 (3)0.63106 (8)0.0259 (3)
C20.53357 (17)1.2510 (4)0.56476 (9)0.0324 (3)
C30.64683 (17)1.2469 (5)0.55287 (9)0.0376 (4)
H3A0.666 (3)1.271 (6)0.5084 (14)0.057 (8)*
H80.091 (2)0.735 (5)0.7506 (12)0.037 (6)*
H50.418 (2)1.273 (5)0.7475 (11)0.035 (6)*
H70.126 (2)1.040 (5)0.8317 (14)0.042 (7)*
H1A0.441 (2)1.372 (6)0.6366 (13)0.042 (7)*
H20.463 (2)1.259 (6)0.5245 (13)0.050 (8)*
H60.291 (2)1.313 (5)0.8299 (11)0.033 (6)*
H1B0.564 (2)1.215 (5)0.6661 (11)0.032 (6)*
H3B0.714 (2)1.232 (5)0.5891 (12)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01687 (4)0.01338 (3)0.01582 (3)0.00101 (2)0.00106 (2)0.00098 (2)
S10.02284 (14)0.01741 (13)0.02085 (13)0.00025 (11)0.00504 (11)0.00131 (11)
F10.0313 (4)0.0287 (5)0.0160 (3)0.0073 (4)0.0087 (3)0.0051 (3)
F20.0292 (4)0.0281 (4)0.0235 (4)0.0131 (4)0.0095 (3)0.0036 (3)
N10.0244 (5)0.0172 (5)0.0182 (4)0.0040 (4)0.0027 (4)0.0015 (4)
C100.0192 (5)0.0171 (5)0.0139 (4)0.0002 (4)0.0031 (4)0.0016 (4)
C50.0220 (5)0.0191 (5)0.0217 (5)0.0024 (4)0.0004 (4)0.0039 (4)
C70.0285 (6)0.0265 (6)0.0192 (5)0.0014 (5)0.0056 (5)0.0027 (5)
C110.0185 (5)0.0162 (5)0.0163 (5)0.0021 (4)0.0028 (4)0.0003 (4)
C90.0166 (4)0.0137 (4)0.0148 (4)0.0009 (4)0.0001 (3)0.0005 (4)
C60.0298 (6)0.0234 (6)0.0210 (6)0.0018 (5)0.0019 (5)0.0066 (5)
C40.0180 (5)0.0148 (5)0.0165 (5)0.0008 (4)0.0001 (4)0.0002 (4)
C80.0269 (6)0.0240 (6)0.0202 (5)0.0068 (5)0.0047 (4)0.0017 (5)
C10.0276 (6)0.0232 (6)0.0281 (7)0.0057 (5)0.0082 (5)0.0014 (5)
C20.0346 (8)0.0356 (9)0.0274 (7)0.0067 (7)0.0047 (6)0.0066 (6)
C30.0336 (8)0.0541 (12)0.0263 (7)0.0108 (8)0.0090 (6)0.0044 (8)
Geometric parameters (Å, º) top
I1—N12.8628 (12)C7—C61.387 (2)
I1—C92.0921 (12)C7—C81.384 (2)
S1—C41.7613 (14)C7—H70.94 (3)
S1—C11.8158 (16)C11—C91.3891 (17)
F1—C101.3471 (15)C6—H60.92 (2)
F2—C111.3452 (15)C8—H80.97 (3)
N1—C41.3422 (17)C1—C21.492 (2)
N1—C81.3454 (18)C1—H1A0.97 (3)
C10—C11i1.3867 (18)C1—H1B1.03 (2)
C10—C91.3895 (18)C2—C31.316 (3)
C5—C61.391 (2)C2—H21.09 (3)
C5—C41.3976 (18)C3—H3A0.97 (3)
C5—H50.94 (3)C3—H3B1.01 (2)
C9—I1—N1173.90 (4)C7—C6—C5119.64 (13)
C4—S1—C1102.91 (7)C7—C6—H6120.4 (15)
C4—N1—I1129.30 (9)N1—C4—S1113.22 (10)
C4—N1—C8117.96 (12)N1—C4—C5122.60 (12)
C8—N1—I1112.43 (9)C5—C4—S1124.17 (10)
F1—C10—C11i118.13 (11)N1—C8—C7123.47 (14)
F1—C10—C9120.12 (11)N1—C8—H8117.6 (15)
C11i—C10—C9121.74 (11)C7—C8—H8118.9 (15)
C6—C5—C4118.22 (13)S1—C1—H1A109.2 (16)
C6—C5—H5120.7 (15)S1—C1—H1B109.7 (14)
C4—C5—H5121.0 (15)C2—C1—S1107.84 (12)
C6—C7—H7122.0 (17)C2—C1—H1A106.4 (16)
C8—C7—C6118.05 (14)C2—C1—H1B110.3 (13)
C8—C7—H7119.9 (17)H1A—C1—H1B113 (2)
F2—C11—C10i118.29 (11)C1—C2—H2115.2 (15)
F2—C11—C9120.24 (11)C3—C2—C1124.68 (17)
C10i—C11—C9121.45 (11)C3—C2—H2120.0 (15)
C10—C9—I1121.41 (9)C2—C3—H3A119.0 (17)
C11—C9—I1121.77 (9)C2—C3—H3B121.7 (14)
C11—C9—C10116.81 (11)H3A—C3—H3B119 (2)
C5—C6—H6120.0 (15)
I1—N1—C4—S14.91 (15)C6—C5—C4—S1177.45 (11)
I1—N1—C4—C5174.94 (10)C6—C5—C4—N12.4 (2)
I1—N1—C8—C7173.81 (13)C6—C7—C8—N12.1 (2)
S1—C1—C2—C3117.0 (2)C4—S1—C1—C2162.02 (12)
F1—C10—C9—I12.97 (17)C4—N1—C8—C70.3 (2)
F1—C10—C9—C11178.18 (12)C4—C5—C6—C70.5 (2)
F2—C11—C9—I10.19 (17)C8—N1—C4—S1177.88 (11)
F2—C11—C9—C10178.65 (12)C8—N1—C4—C52.0 (2)
C10i—C11—C9—I1178.42 (10)C8—C7—C6—C51.6 (2)
C10i—C11—C9—C100.4 (2)C1—S1—C4—N1165.66 (10)
C11i—C10—C9—I1178.43 (10)C1—S1—C4—C514.19 (14)
C11i—C10—C9—C110.4 (2)
Symmetry code: (i) x, y, z+1.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBastero, A., Claver, C. & Ruiz, A. (2002). Catal. Lett. 82, 85–88.  CrossRef CAS Google Scholar
First citationBaudin, J. B., Hareau, G., Julia, S. A. & Ruel, O. (1993). Bull. Soc. Chim. Fr. 130, 78–856.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaudillat, Q., Krupp, A., Zwingelstein, T., Humblot, V., Strohmann, C., Jourdain, I., Knorr, M. & Viau, L. (2023). Dalton Trans. 52, 5859–5864.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitzel, N. W. & Losehand, U. (2004). Z. Naturforsch. B, 59, 635.  CrossRef Google Scholar
First citationMoreno, B., Jourdain, I., Knorr, M., Boudriga, S., Strohmann, C. & Schrimpf, T. (2024). Molbank, M1783.  CSD CrossRef Google Scholar
First citationNomiya, K., Onoue, K. I., Kondoh, Y., Kasuga, N. C., Nagano, H., Oda, M. & Sakuma, S. (1996). Polyhedron, 15, 2303.  Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531–21539.  CSD CrossRef CAS PubMed Google Scholar
First citationSchneider, P. E., Wattenberg, J., Wappelhorst, J. F., Knorr, M. & Strohmann, C. (2023). Z. Anorg. Allge Chem. 649, e202300185.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102–8103.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, S., Ward, J. S., Truong, K. N. & Rissanen, K. (2021). Angew. Chem. Int. Ed. 60, 20739–20743.  CSD CrossRef CAS Google Scholar
First citationZhao, D., Fei, Z., Ang, W. H. & Dyson, P. J. (2007). Int. J. Mol. Sci. 8, 304–315.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds