research communications
and Hirshfeld surface analysis of a halogen bond between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene
aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The 6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.
of the title 2:1 molecular complex between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene, CKeywords: crystal structure; halogen bond; Hirshfeld surface analysis.
CCDC reference: 2362511
1. Chemical context
Earlier research investigated the deprotonation of allylic silicon compounds with organolithium reagents (Strohmann et al., 2006). In this work, 2-(allylthio)pyridine was synthesized to compare the chemical behavior to similar systems. The chosen synthetic route was adapted from the literature (Baudin et al., 1993) and could lead to two similar products (Fig. 1) that would be hard to distinguish based on 1H- and 13C-NMR alone. Since the 2-(allylthio)pyridine did not crystallize and was quite impure, 1,2,4,5,-tetrafluoro-3,6-diiodobenzene was added, which led to a two-component referred to as complex 5. Halogen bonds between an aromatic iodine compound and a nitrogen compound can vary in their bond strength, length and angle (Otte et al., 2023). Since only the desired compound formed a halogen bond, the product could be separated from the impurities by simply isolating the co-crystals. Afterwards the 2-(allylthio)pyridine was reobtained by column chromatography.
2. Structural commentary
Complex 5 crystallized from heptane at 193.15 K as colorless plates in the monoclinic P21/c. The consists of one molecule of 3 and half a molecule of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene. The second half is generated by inversion symmetry (Fig. 2; −x, −y, 1 − z). The formula unit of the title compound consists of two molecules 2-(allylthio)pyridine and one molecule 1,2,4,5,-tetrafluoro-3,6-diiodobenzene, which lies on an inversion center.
The complex consists of multiple functional groups: an allyl group, a thioether, a pyridine and a perfluorinated diiodobenzene. The C1—C2 bond length [1.492 (2) Å] is longer than the C2—C3 bond length [1.316 (3) Å], which is explained by the double bond between C2 and C3. These lengths coincide with the C—C single bond length of 1.54 Å in ethane and the C=C double bond length of 1.33 Å in ethene (Lide, 2005). The C4—S1—C1 bond angle [102.91 (7)°] is a little bit larger than the C—S—C angle in dimethylsulfide [99.2 (1)°; Mitzel & Losehand, 2004]. The difference in bond angles might be explained by the larger pyridine substituent, of which C4 is a part. The bond lengths in the pyridine ring [C4—C5: 1.3976 (18) Å, C5—C6: 1.391 (2) Å, C6—C7: 1.387 (2) Å, C7—C8: 1.384 (2) Å, C8—N1: 1.3454 (18) Å and N1—C4: 1.3422 (17) Å] are not significantly longer compared to the bond lengths in pyridine (Lide, 2005). The bond angles of the pyridine moiety vary around 118°, which is typical for pyridine. The largest deviations from planarity of the pyridine (r.m.s. deviation 0.010 Å) are observed for C7 [–0.0124 (12) Å] and C4 [–0.0140 (9) Å]. The angle between the normal of the pyridine plane (N1,C4–C8) and the double bond between C2 and C3 is 115.35 (13)°.
The bond lengths and angles of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene are consistent with those present in the Cambridge Structural Database. The benzene ring makes a dihedral angle of 12.88 (5)° with the pyridine ring.
3. Supramolecular features
Fig. 3 shows the packing of the complex. The most important supramolecular feature is the close contact between N1 and I1 with a coordination distance of 2.8628 (12) Å, which is shorter than the sum of the van der Waals radii of 3.73 Å (Nyburg & Faerman, 1985). The strength of a halogen bond is determined by the bond length and the bond angle. Strong halogen bonds are expected to have a bond length in the region of 2.781 (2) Å (Otte et al., 2023), which is shorter than the distance observed for 5. The N1—I1—C9 bond angle is 173.90 (4)°, which is slightly less than a theoretical ideal angle of 180°. In conclusion, the here presented structure shows a medium-strength halogen bond between N1 and I1. Further evidence for this is the small difference in 1H-NMR chemical shifts between compounds 3 and 5 (Fig. 4). Theoretically, the sulfur present here could also form a halogen bond with the iodine, but this behavior is not observed.
To better understand the van der Waals interactions, a Hirshfeld surface analysis was performed. In Fig. 5, the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021) is mapped over dnorm (Spackman & Jayatilaka, 2009) and red dots are used to represent close contacts.
For further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated as shown in Fig. 6. The H⋯H interaction with a contribution of 32.1% has the biggest impact on the packing in the solid state. The C⋯H/H⋯C bonds with 20.0%, F⋯H with 16.8%, S⋯H/H⋯S with 14.1%, N⋯H/H⋯N with 3.3%, N⋯I/I⋯N with 3.2% C⋯I/I⋯C with 2.2% or N⋯C/C⋯N with 1.5% are less impactful in comparison.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, last update June 2024; Groom et al., 2016) for 1,2,4,5-tetrafluoro-3,6-diiodobenzene yielded 802 hits. In 261 structures, the iodo atom interacts with a pyridine nitrogen atom with N⋯I distances ranging from 2.662 to 3.511 Å and averaging 2.911 Å. The mean C—I⋯N angle is 171.9°.
A search for the keywords halogen bond, thioether and pyridine leads to a structure of 1,2,4,5-tetrafluoro-3,6-diiodobenzene–4-(pyridin-4-ylsulfanyl)pyridine (1/1) (Arman et al., 2010). The variety of publications containing halogen bonds is quite large and includes the previously discussed strong halogen bond with quinuclidine (Otte et al., 2023) or halogen bonds with carbonyl hypoiodites as bond donors (Yu et al., 2021). The structural motif of thioethers is also well known, especially in the context of ligand chemistry with silicon-based thioethers for palladium (Schneider et al., 2023; Bastero et al., 2002) or silver (Nomiya et al., 1996; Gaudillat et al., 2023). Sulfonium-based ionic liquids (Zhao et al., 2007) and other systems like (Z)-3-allyl-5-(4-nitrobenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one (Moreno et al., 2024) are good examples of compounds with allyl groups.
5. Synthesis and crystallization
Complex 5 was synthesized by adding 1,2,4,5-tetrafluoro-3,6-diiodobenzene (293.96 g mol−1, 0.33 mmol, 0.5 eq., 97.19 mg) to a solution of 2-(allylthio)pyridine (151.23 g mol−1, 0.66 mmol, 1.0 eq., 100,00 mg) and pentane at room temperature. The solution was stirred for one h and crystallized at 193.15 K.
1H NMR (400 MHz, benzene-d6, ppm): 8.24 (dt, J = 4.9, 1.4, 2H, C5H4N), 6.80 (ddt, J = 27.0, 6.3, 1.6, 4H, C5H4N), 6.41–6.34 (m, 2H, C5H4N), 5.95 (ddd, J = 16.9, 10.1, 1.5, 2H, CH—CH2), 5.15 (dq, J = 16.9, 1.5, 2H, CH—CH2), 4.93 (dt, J = 10.0, 1.3, 2H, CH—CH2), 3.85 (dq, J = 6.9, 1.3, 4H, S—CH2).
13C NMR (101 MHz, benzene-d6, ppm): 159.10 (C5H4N), 149.60 (C5H4N), 135.66 (C6F4I2), 134.68 (C6F4I2), 122.28 (C5H4N), 119.23 (CH-CH2), 117.15(C5H4N), 65.93 (C5H4N), 32.88 (CH-CH2), 15.60 (C6F4I2), 1.42 (S-CH2).
19F NMR (377 MHz, benzene-d6, ppm): −118.86 (C6F4I2).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms.
details are summarized in Table 1Supporting information
CCDC reference: 2362511
https://doi.org/10.1107/S2056989024005693/vm2304sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005693/vm2304Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005693/vm2304Isup3.cml
2C8H9NS·C6F4I2 | F(000) = 676 |
Mr = 704.30 | Dx = 1.934 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.184 (2) Å | Cell parameters from 9219 reflections |
b = 5.2951 (6) Å | θ = 4.0–28.0° |
c = 20.544 (3) Å | µ = 2.82 mm−1 |
β = 96.137 (6)° | T = 100 K |
V = 1209.7 (3) Å3 | Plate, colourless |
Z = 2 | 0.25 × 0.23 × 0.07 mm |
Bruker APEXII CCD diffractometer | 5719 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 5342 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.036 |
Detector resolution: 7.9 pixels mm-1 | θmax = 36.0°, θmin = 1.8° |
ω and φ scans | h = −17→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.468, Tmax = 0.567 | l = −33→33 |
91740 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0187P)2 + 0.9301P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
5719 reflections | Δρmax = 0.91 e Å−3 |
181 parameters | Δρmin = −0.73 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.13965 (2) | 0.45457 (2) | 0.60714 (2) | 0.01556 (2) | |
S1 | 0.40259 (3) | 0.94040 (6) | 0.63185 (2) | 0.02017 (6) | |
F1 | −0.07102 (9) | 0.05135 (19) | 0.62168 (4) | 0.02486 (17) | |
F2 | 0.17962 (9) | 0.28759 (19) | 0.45993 (5) | 0.02646 (18) | |
N1 | 0.22969 (11) | 0.8241 (2) | 0.70166 (6) | 0.01990 (19) | |
C10 | −0.03525 (12) | 0.0315 (2) | 0.56133 (6) | 0.01663 (19) | |
C5 | 0.34960 (12) | 1.1694 (3) | 0.74802 (7) | 0.0211 (2) | |
C7 | 0.17783 (15) | 1.0299 (3) | 0.79911 (7) | 0.0245 (3) | |
C11 | 0.09192 (11) | 0.1455 (2) | 0.48116 (6) | 0.01691 (19) | |
C9 | 0.05773 (11) | 0.1819 (2) | 0.54352 (6) | 0.01517 (18) | |
C6 | 0.27543 (14) | 1.1910 (3) | 0.79795 (7) | 0.0248 (3) | |
C4 | 0.32194 (11) | 0.9853 (2) | 0.70003 (6) | 0.01659 (19) | |
C8 | 0.15980 (14) | 0.8479 (3) | 0.75070 (7) | 0.0236 (2) | |
C1 | 0.49191 (14) | 1.2265 (3) | 0.63106 (8) | 0.0259 (3) | |
C2 | 0.53357 (17) | 1.2510 (4) | 0.56476 (9) | 0.0324 (3) | |
C3 | 0.64683 (17) | 1.2469 (5) | 0.55287 (9) | 0.0376 (4) | |
H3A | 0.666 (3) | 1.271 (6) | 0.5084 (14) | 0.057 (8)* | |
H8 | 0.091 (2) | 0.735 (5) | 0.7506 (12) | 0.037 (6)* | |
H5 | 0.418 (2) | 1.273 (5) | 0.7475 (11) | 0.035 (6)* | |
H7 | 0.126 (2) | 1.040 (5) | 0.8317 (14) | 0.042 (7)* | |
H1A | 0.441 (2) | 1.372 (6) | 0.6366 (13) | 0.042 (7)* | |
H2 | 0.463 (2) | 1.259 (6) | 0.5245 (13) | 0.050 (8)* | |
H6 | 0.291 (2) | 1.313 (5) | 0.8299 (11) | 0.033 (6)* | |
H1B | 0.564 (2) | 1.215 (5) | 0.6661 (11) | 0.032 (6)* | |
H3B | 0.714 (2) | 1.232 (5) | 0.5891 (12) | 0.039 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01687 (4) | 0.01338 (3) | 0.01582 (3) | 0.00101 (2) | −0.00106 (2) | −0.00098 (2) |
S1 | 0.02284 (14) | 0.01741 (13) | 0.02085 (13) | 0.00025 (11) | 0.00504 (11) | −0.00131 (11) |
F1 | 0.0313 (4) | 0.0287 (5) | 0.0160 (3) | −0.0073 (4) | 0.0087 (3) | −0.0051 (3) |
F2 | 0.0292 (4) | 0.0281 (4) | 0.0235 (4) | −0.0131 (4) | 0.0095 (3) | −0.0036 (3) |
N1 | 0.0244 (5) | 0.0172 (5) | 0.0182 (4) | −0.0040 (4) | 0.0027 (4) | −0.0015 (4) |
C10 | 0.0192 (5) | 0.0171 (5) | 0.0139 (4) | −0.0002 (4) | 0.0031 (4) | −0.0016 (4) |
C5 | 0.0220 (5) | 0.0191 (5) | 0.0217 (5) | −0.0024 (4) | −0.0004 (4) | −0.0039 (4) |
C7 | 0.0285 (6) | 0.0265 (6) | 0.0192 (5) | −0.0014 (5) | 0.0056 (5) | −0.0027 (5) |
C11 | 0.0185 (5) | 0.0162 (5) | 0.0163 (5) | −0.0021 (4) | 0.0028 (4) | −0.0003 (4) |
C9 | 0.0166 (4) | 0.0137 (4) | 0.0148 (4) | 0.0009 (4) | −0.0001 (3) | −0.0005 (4) |
C6 | 0.0298 (6) | 0.0234 (6) | 0.0210 (6) | −0.0018 (5) | 0.0019 (5) | −0.0066 (5) |
C4 | 0.0180 (5) | 0.0148 (5) | 0.0165 (5) | 0.0008 (4) | −0.0001 (4) | 0.0002 (4) |
C8 | 0.0269 (6) | 0.0240 (6) | 0.0202 (5) | −0.0068 (5) | 0.0047 (4) | −0.0017 (5) |
C1 | 0.0276 (6) | 0.0232 (6) | 0.0281 (7) | −0.0057 (5) | 0.0082 (5) | −0.0014 (5) |
C2 | 0.0346 (8) | 0.0356 (9) | 0.0274 (7) | −0.0067 (7) | 0.0047 (6) | 0.0066 (6) |
C3 | 0.0336 (8) | 0.0541 (12) | 0.0263 (7) | −0.0108 (8) | 0.0090 (6) | −0.0044 (8) |
I1—N1 | 2.8628 (12) | C7—C6 | 1.387 (2) |
I1—C9 | 2.0921 (12) | C7—C8 | 1.384 (2) |
S1—C4 | 1.7613 (14) | C7—H7 | 0.94 (3) |
S1—C1 | 1.8158 (16) | C11—C9 | 1.3891 (17) |
F1—C10 | 1.3471 (15) | C6—H6 | 0.92 (2) |
F2—C11 | 1.3452 (15) | C8—H8 | 0.97 (3) |
N1—C4 | 1.3422 (17) | C1—C2 | 1.492 (2) |
N1—C8 | 1.3454 (18) | C1—H1A | 0.97 (3) |
C10—C11i | 1.3867 (18) | C1—H1B | 1.03 (2) |
C10—C9 | 1.3895 (18) | C2—C3 | 1.316 (3) |
C5—C6 | 1.391 (2) | C2—H2 | 1.09 (3) |
C5—C4 | 1.3976 (18) | C3—H3A | 0.97 (3) |
C5—H5 | 0.94 (3) | C3—H3B | 1.01 (2) |
C9—I1—N1 | 173.90 (4) | C7—C6—C5 | 119.64 (13) |
C4—S1—C1 | 102.91 (7) | C7—C6—H6 | 120.4 (15) |
C4—N1—I1 | 129.30 (9) | N1—C4—S1 | 113.22 (10) |
C4—N1—C8 | 117.96 (12) | N1—C4—C5 | 122.60 (12) |
C8—N1—I1 | 112.43 (9) | C5—C4—S1 | 124.17 (10) |
F1—C10—C11i | 118.13 (11) | N1—C8—C7 | 123.47 (14) |
F1—C10—C9 | 120.12 (11) | N1—C8—H8 | 117.6 (15) |
C11i—C10—C9 | 121.74 (11) | C7—C8—H8 | 118.9 (15) |
C6—C5—C4 | 118.22 (13) | S1—C1—H1A | 109.2 (16) |
C6—C5—H5 | 120.7 (15) | S1—C1—H1B | 109.7 (14) |
C4—C5—H5 | 121.0 (15) | C2—C1—S1 | 107.84 (12) |
C6—C7—H7 | 122.0 (17) | C2—C1—H1A | 106.4 (16) |
C8—C7—C6 | 118.05 (14) | C2—C1—H1B | 110.3 (13) |
C8—C7—H7 | 119.9 (17) | H1A—C1—H1B | 113 (2) |
F2—C11—C10i | 118.29 (11) | C1—C2—H2 | 115.2 (15) |
F2—C11—C9 | 120.24 (11) | C3—C2—C1 | 124.68 (17) |
C10i—C11—C9 | 121.45 (11) | C3—C2—H2 | 120.0 (15) |
C10—C9—I1 | 121.41 (9) | C2—C3—H3A | 119.0 (17) |
C11—C9—I1 | 121.77 (9) | C2—C3—H3B | 121.7 (14) |
C11—C9—C10 | 116.81 (11) | H3A—C3—H3B | 119 (2) |
C5—C6—H6 | 120.0 (15) | ||
I1—N1—C4—S1 | −4.91 (15) | C6—C5—C4—S1 | 177.45 (11) |
I1—N1—C4—C5 | 174.94 (10) | C6—C5—C4—N1 | −2.4 (2) |
I1—N1—C8—C7 | −173.81 (13) | C6—C7—C8—N1 | −2.1 (2) |
S1—C1—C2—C3 | −117.0 (2) | C4—S1—C1—C2 | −162.02 (12) |
F1—C10—C9—I1 | −2.97 (17) | C4—N1—C8—C7 | 0.3 (2) |
F1—C10—C9—C11 | 178.18 (12) | C4—C5—C6—C7 | 0.5 (2) |
F2—C11—C9—I1 | −0.19 (17) | C8—N1—C4—S1 | −177.88 (11) |
F2—C11—C9—C10 | 178.65 (12) | C8—N1—C4—C5 | 2.0 (2) |
C10i—C11—C9—I1 | −178.42 (10) | C8—C7—C6—C5 | 1.6 (2) |
C10i—C11—C9—C10 | 0.4 (2) | C1—S1—C4—N1 | 165.66 (10) |
C11i—C10—C9—I1 | 178.43 (10) | C1—S1—C4—C5 | −14.19 (14) |
C11i—C10—C9—C11 | −0.4 (2) |
Symmetry code: (i) −x, −y, −z+1. |
References
Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bastero, A., Claver, C. & Ruiz, A. (2002). Catal. Lett. 82, 85–88. CrossRef CAS Google Scholar
Baudin, J. B., Hareau, G., Julia, S. A. & Ruel, O. (1993). Bull. Soc. Chim. Fr. 130, 78–856. Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaudillat, Q., Krupp, A., Zwingelstein, T., Humblot, V., Strohmann, C., Jourdain, I., Knorr, M. & Viau, L. (2023). Dalton Trans. 52, 5859–5864. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mitzel, N. W. & Losehand, U. (2004). Z. Naturforsch. B, 59, 635. CrossRef Google Scholar
Moreno, B., Jourdain, I., Knorr, M., Boudriga, S., Strohmann, C. & Schrimpf, T. (2024). Molbank, M1783. CSD CrossRef Google Scholar
Nomiya, K., Onoue, K. I., Kondoh, Y., Kasuga, N. C., Nagano, H., Oda, M. & Sakuma, S. (1996). Polyhedron, 15, 2303. Google Scholar
Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279. CrossRef CAS Web of Science IUCr Journals Google Scholar
Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531–21539. CSD CrossRef CAS PubMed Google Scholar
Schneider, P. E., Wattenberg, J., Wappelhorst, J. F., Knorr, M. & Strohmann, C. (2023). Z. Anorg. Allge Chem. 649, e202300185. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102–8103. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yu, S., Ward, J. S., Truong, K. N. & Rissanen, K. (2021). Angew. Chem. Int. Ed. 60, 20739–20743. CSD CrossRef CAS Google Scholar
Zhao, D., Fei, Z., Ang, W. H. & Dyson, P. J. (2007). Int. J. Mol. Sci. 8, 304–315. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.