research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the 1:1 co-crystal 4-(di­methylamino)­pyridin-1-ium 8-hy­dr­oxy­quinoline-5-sulfonate–N,N-di­methyl­pyridin-4-amine

crossmark logo

aDepartment of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan, bOsaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan, and cOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kasiwagi@orist.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 10 May 2024; accepted 1 July 2024; online 9 July 2024)

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate (HDMAP+·HqSA, C7H11N2+·C9H6NO4S) and neutral N,N-di­methyl­pyridin-4-amine mol­ecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA in the crystal. In the cation layer, there are inter­molecular N—H⋯N hydrogen bonds between the protonated HDMAP+ mol­ecule and the neutral DMAP mol­ecule. In the anion layer, each HqSA is surrounded by other six HqSA, where the planar network structure is formed by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

1. Chemical context

Ionic co-crystals have much attention in pharmaceuticals for the development of improved drugs based on crystal engin­eering (Bolla et al., 2022[Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514-11603.]) and in organic functional materials for achieving rare and multifunctional properties through tunable structures, morphologies, and sizes in co-crystal assemblies (Sun et al., 2019[Sun, L., Wang, Y., Yang, F., Zhang, X. & Hu, W. (2019). Adv. Mater. 31, 1902328.]). In structural chemistry, ionic co-crystals containing pyridine-pyridinium derivatives bridged by an N—H⋯N hydrogen bond have already been proposed (Doring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allge Chem. 642, 930-936.]; Fabry et al., 2017[Fábry, J. (2017). Acta Cryst. E73, 1344-1347.]; Zhang et al., 2018[Zhang, K., Shen, Y., Liu, J., Spingler, B. & Duttwyler, S. (2018). Chem. Commun. 54, 1698-1701.]; Vladiskovic et al., 2023[Vladiskovic, C., Mantegazza, S., Razzetti, G. & Masciocchi, N. (2023). Cryst. Growth Des. 23, 1119-1126.]). In addition, the supra­molecular synthon preference of pyridinium salts to 8-hy­droxy­quinoline-5-sulfonate (HqSA) and various sulfonates has been investigated (Ganie et al., 2021[Ganie, A. A., Ismail, T. M., Sajith, P. K. & Dar, A. A. (2021). New J. Chem. 45, 4780-4790.]). On the other hand, quinolin-8-ol and its sulfonated derivative, quinoline-8-ol sulfonic acid (H2qSA), are well-known chelating ligands and analytical reagents (Wiberley et al., 1949[Wiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609-612.]; Kashiwagi et al., 2020[Kashiwagi, Y., Kubono, K. & Tamai, T. (2020). Acta Cryst. E76, 1271-1274.]; Kubono et al., 2023[Kubono, K., Tanaka, R., Kashiwagi, Y., Tani, K. & Yokoi, K. (2023). Acta Cryst. E79, 726-729.]). H2qSA shows higher solubility to water than quionolin-8-ol, especially under basic conditions. We report here the crystal structure of the title compound as an ionic co-crystal composed of the salt of 4-(di­methyl­amino)­pyridin-1-ium (HDMAP+) and quinolin-8-ol-5-sulfonate (HqSA) with neutral N,N-di­methyl­pyridin-4-amine (DMAP).

2. Structural commentary

The title compound is composed of two independent HDMAP+·HqSA ion pairs and neutral DMAP mol­ecules, co-crystallized in the monoclinic system, space group Pc as shown in Fig. 1[link]. The phenolic H atoms (H6, H10) in the HqSA moieties are not dissociated.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

There are intra­molecular O—H⋯N hydrogen bonds involving the hy­droxy groups and quinoline N atoms (O6—H6⋯N11 and O10—H10⋯N12; Table 1[link]) generating S(5) ring motifs (Fig. 2[link]). The proton of the sulfonate group in H2qSA is dissociated and bound to the pyridyl N atom of one DMAP mol­ecule, but there is also another non-protonated DMAP mol­ecule in the crystal. As a result, the co-crystal is formulated as a 1:1:1 HDMAP+:HqSA:DMAP adduct. The cations of HDMAP+ are formed through inter­molecular N14—H14⋯N15 and N18—H18⋯N19 hydrogen bonds in a linear geometry (Fig. 2[link], see below). Each H atom attached to the N atom of the pyridine ring in HDMAP+ could be located in a Fourier density map, and the N14—H14 and N18—H18 bond lengths are similar, 0.90 (3) Å. The N atoms of the di­methyl­amino groups (N13, N16, N17 and N20) show no pyramidalization, with deviations from the plane of the bonded three C atoms of 0.029 (7), 0.031 (3), 0.037 (8) and 0.020 (4) Å, respectively. The quinoline ring systems in HqSA are essentially planar, the dihedral angles between the mean planes of the pyridine and benzene rings N12/C34–C38 and C30—C34/C38, and N11/C25–C29 and C21–C25/C29 being 0.46 (14) and 0.78 (13)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O8i 0.84 (5) 2.00 (5) 2.679 (3) 137 (4)
O6—H6⋯N11 0.84 (5) 2.24 (5) 2.728 (3) 117 (4)
O10—H10⋯O4 0.89 (5) 1.90 (5) 2.674 (3) 144 (4)
O10—H10⋯N12 0.89 (5) 2.31 (5) 2.730 (3) 109 (4)
N14—H14⋯N15 0.90 (3) 1.91 (3) 2.814 (4) 174 (3)
N18—H18⋯N19 0.90 (3) 1.92 (4) 2.816 (4) 177 (7)
C27—H27⋯O6ii 0.95 2.58 3.219 (4) 125
C27—H27⋯O8iii 0.95 2.27 3.194 (4) 164
C36—H36⋯O4iv 0.95 2.33 3.244 (4) 160
C36—H36⋯O10iv 0.95 2.58 3.216 (4) 125
C39—H39⋯O3v 0.95 2.32 3.200 (4) 154
C43—H43⋯O5 0.95 2.22 3.160 (4) 169
C46—H46⋯O5 0.95 2.46 3.373 (4) 161
C50—H50⋯O3v 0.95 2.43 3.292 (4) 151
C53—H53⋯O9vi 0.95 2.22 3.146 (4) 164
C54—H54⋯O10vii 0.95 2.55 3.450 (4) 158
C57—H57⋯O7 0.95 2.22 3.143 (4) 165
C60—H60⋯O7 0.95 2.40 3.325 (4) 163
C64—H64⋯O9vi 0.95 2.35 3.267 (4) 162
C40—H40⋯Cg1v 0.95 2.63 3.498 (3) 153
C49—H49⋯Cg2viii 0.95 2.87 3.754 (3) 156
C61—H61⋯Cg2 0.95 2.70 3.571 (3) 152
Symmetry codes: (i) [x, y-1, z]; (ii) [x-1, y, z]; (iii) [x-1, y-1, z]; (iv) [x+1, y, z]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x, -y+2, z+{\script{1\over 2}}]; (vii) [x+1, -y+2, z+{\script{1\over 2}}]; (viii) [x-1, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The layer structure of the [HDMAP·DMAP]+ cationic unit in the ab plane. The inter­molecular N—H⋯N hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the title co-crystal, both the cation layers of [HDMAP·DMAP]+ and the anion layers of HqSA run parallel to the ab plane. The hydrogen-bond geometry is summarized in Table 1[link]. The pyridine rings in the cation layer are stacked along the ab plane as shown in Fig. 2[link]. In the cation layer, two independent cation units of [HDMAP·DMAP]+ are formed by inter­molecular N—H⋯N hydrogen bonds (N14—H14⋯N15 and N18—H18⋯N19). The N14—H14⋯N15 and N18—H18⋯N19 angles are 174 (3) and 177 (7)°, respectively. The dihedral angles between the two pyridine rings in the [HDMAP·DMAP]+ units are 0.21 (15)° (N14/C39–C43 and N15/C46–C50 rings) and 1.60 (15)° (N18/C53–C57 and N19/C60–C64). The quinoline ring system in the anion layer faces the ab plane as shown in Fig. 3[link]. In the anion layer, each HqSA mol­ecule is surrounded by six HqSA mol­ecules through inter­molecular hydrogen bonds, essentially forming an sheet. Each HqSA mol­ecule binds with two HqSA mol­ecules having the same mol­ecular orientation through inter­molecular C—H⋯O hydrogen bonds [C27—H27⋯O6ii and C36—H36⋯O10iv; symmetry codes: (ii) x − 1, y, z; (iv) x + 1, y, z] and also binds with four HqSA mol­ecules having the different mol­ecular orientation through inter­molecular O—H⋯O and C—H⋯O hydrogen bonds [O6—H6⋯O8i, O10—H10⋯O4, C27—H27⋯O8iii and C36—H36⋯O4iv; symmetry codes: (i) x, y − 1, z; (iii) x − 1, y − 1, z]. The C27—H27⋯O6ii, C36—H36⋯O10iv, O6—H6⋯O8i, O10—H10⋯O4, C27—H27⋯O8iii and C36—H36⋯O4iv angles are 125, 125, 137 (4), 144 (4), 164 and 160°, respectively. The inter­planar spacing between adjacent anionic layers (the distance between the closest centroids of the mean planes through N12/C22/C23/C37 within the anionic layers, being across the cationic layer from each other) is 9.562 Å. The inter­actions between the cationic and anionic layers are attributed to the extended 3D hydrogen-bonding linkages, three C—H⋯π inter­actions [C40—H40⋯Cg1i, C49—H49⋯Cg2viii, C61—H61⋯Cg2; Cg1 and Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively; symmetry code: (viii) x − 1, 1 − y, z + [{1\over 2}]] and five C—H⋯O inter­actions [C39—H39⋯O3v, C50—H50⋯O3v, C53—H53⋯O9vi, C54—H54⋯O10vii, C64—H64⋯O9vi; symmetry code: (v) x, 1 − y, z + [{1\over 2}]; (vi) x, 2 − y, z + [{1\over 2}]; (vii) x + 1, 2 − y, z + [{1\over 2}]] as shown in Fig. 4[link] and Table 1[link]. In addition, each independent ion pair forms R33(8) motif by one inter­molecular N—H⋯N hydrogen bond and two inter­molecular C—H⋯O hydrogen bonds (N14—H14⋯N15, C39—H39⋯O3v and C50—H50⋯O3v; N18—H18⋯N19, C53—H53⋯O9vi and C64—H64⋯O9vi).

[Figure 3]
Figure 3
The S(5) ring motifs formed by intra­molecular O—H⋯N hydrogen bonds involving the hy­droxy groups and quinoline N atoms of the HqSA anionic units. The intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. The sheet structure of the HqSA anionic units is formed by the planar inter­molecular hydrogen-bond networks in the ab plane. The inter­molecular O—H⋯O, C—H⋯O, O—H⋯N hydrogen bonds are also shown as dashed lines. [Symmetry codes: (i) x, y − 1, z; (ii) x − 1, y, z; (iii) x − 1, y − 1, z; (iv) x + 1, y, z.].
[Figure 4]
Figure 4
The network structure between [HDMAP·DMAP]+ cationic layers and HqSA anion layers. The inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines. The R33(8) motifs of independent ion pairs formed by an inter­molecular N—H⋯N hydrogen bond and two inter­molecular C—H⋯O hydrogen bonds are also shown as dashed lines. [Symmetry codes: (v) x, −y + 1, z + [{1\over 2}]; (vi) x, −y + 2, z + [{1\over 2}]; (vii) x + 1, −y + 2, z + [{1\over 2}]; (viii) x − 1, −y + 1, z + [{1\over 2}].].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing the 4-amino­pyridine skeleton with hydrogen atom bound at the 2, 3, 5, 6-positions of the pyridine ring gave 5687 hits. Among those, a search for the containing DMAP mol­ecule gave 1794 hits and for those of protonated DMAP gave 360 hits. A search for compounds containing a pyridine-protonated pyridine skeleton gave 15 hits. In these compounds, the dihedral angles between two pyridine rings are close to 0° in seven structures, which are essentially co-planar due to unique hydrogen-bonding networks stemming from the substituents on the pyridine rings (BAYBIN; Kobayashi et al., 2003[Kobayashi, N., Naito, T. & Inabe, T. (2003). Bull. Chem. Soc. Jpn, 76, 1351-1362.]; BECHOG; Glidewell et al., 1982[Glidewell, C. & Holden, H. D. (1982). Acta Cryst. B38, 667-669.]; KIFBIO; Vladiskovic et al., 2023[Vladiskovic, C., Mantegazza, S., Razzetti, G. & Masciocchi, N. (2023). Cryst. Growth Des. 23, 1119-1126.]; WAZNET; Lackova et al., 2014[Lacková, D., Ondrejkovičová, I., Padělková, Z. & Koman, M. (2014). J. Coord. Chem. 67, 1652-1663.]; WEVHOX; Zhang et al., 2018[Zhang, K., Shen, Y., Liu, J., Spingler, B. & Duttwyler, S. (2018). Chem. Commun. 54, 1698-1701.]; XACFOW; Mautner & Goher, 1998[Mautner, F. A. & Goher, M. A. S. (1998). Polyhedron, 18, 553-559.]; XOHWAT; Santra et al., 2008[Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673-1676.]). In single crystals of salts of the mellitate anion, which is obtained by deprotonation of mellitic acid (benzene hexa­carb­oxy­lic acid), with substituted pyridinium derivatives, the triangular hydrogen-bonded unit between the anions induces a two-dimensional sheet self-organizing structure (BAYBIN, Kobayashi et al., 2003[Kobayashi, N., Naito, T. & Inabe, T. (2003). Bull. Chem. Soc. Jpn, 76, 1351-1362.]). On the other hand, ferrocene derivatives substituted with pyridine form cationic dimers via a hydrogen bond between two pyridine rings (WOFGII; Braga et al., 2008[Braga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). New J. Chem. 32, 820-828.]). A search for containing both of protonated DMAP and the other neutral DMAP gave 14 hits. There are five hits having the proton between two N-(4-pyrid­yl)di­methyl­amine skeletons (2, 3, 5, 6-carbon atoms are bound to hydrogen atoms). In these compounds, the dihedral angles between two pyridine rings are close to 0° in three structures, which are essentially co-planar structures [1.3 (1)° in FETDEO, Aakeroy et al., 2005[Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102-107.]; 3.47 (7)° in GOFRUQ, Wagler et al., 2014[Wagler, J. & Kronstein, M. (2014). CSD Communication.]; 3.8 (4)° in ZAPNIN, Biradha et al., 1995[Biradha, H., Edwards, R. E., Foulds, G. J., Robinson, W. T. & Desiraju, G. R. (1995). Chem. Commun. pp. 1705-1707.]]. A fragment search for the 8-hy­droxy­quinoline-5-sulfonic acid skeleton gave 84 hits, which include two hydrate co-crystals composed of the 8-hy­droxy­quinoline-5-sulfonicin anion and 4-phenyl­pyridine (EMEDUY; Ganie et al., 2021[Ganie, A. A., Ismail, T. M., Sajith, P. K. & Dar, A. A. (2021). New J. Chem. 45, 4780-4790.]), 4,4′-bipyrydine (INEMAP; Baskar Raj et al., 2003[Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o1980-o1983.]) cations and three hydrate co-crystals composed of the 8-hy­droxy-7-iodo­quinoline-5-sulfonic anion and various pyridine derivative cations (EFAQUZ, Smith et al., 2012[Smith, G. (2012). Acta Cryst. E68, o3349.]; EYIYOA, Smith et al., 2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600-o603.]; ISUTAR, Hemamalini et al., 2004[Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284-o286.]). According to the crystal structures of BAYBIN, EFAQUZ, EYIYOA and ISUTAR, these compounds form layered structures by constructing 2D layers of the cationic and anionic moieties with these layers arranged sterically.

5. Synthesis and crystallization

To a solution of DMAP (611 mg, 5.0 mmol) in H2O (5 mL) at 353 K, an ethanol (1 mL) solution of H2qSA (450 mg, 2.0 mmol) was added and then stirred for 30 min. Orange single crystals of the title compound suitable for X-ray diffraction were grown by slow evaporation of the aqueous ethanol solution mentioned above for a week at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The title compound was refined as an inversion twin in Pc whose twin component mass ratio refined to 0.522 (18):0.478 (18). The hy­droxy H atoms, H6 and H10, were located in a difference-Fourier map and freely refined. The N-bound H atoms, H14 and H18, were located in difference-Fourier maps but were refined with a distance restraint of N—H = 0.86 ± 0.02 Å. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C7H11N2+·C9H6NO4S·C7H10N2
Mr 469.55
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 8.00032 (10), 15.14469 (18), 18.9141 (2)
β (°) 100.6050 (12)
V3) 2252.53 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.62
Crystal size (mm) 0.4 × 0.30 × 0.11
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16358, 6813, 6608
Rint 0.030
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.04
No. of reflections 6813
No. of parameters 620
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.39
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.478 (18)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine top
Crystal data top
C7H11N2+·C9H6NO4S·C7H10N2F(000) = 992
Mr = 469.55Dx = 1.385 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 8.00032 (10) ÅCell parameters from 11719 reflections
b = 15.14469 (18) Åθ = 3.8–76.8°
c = 18.9141 (2) ŵ = 1.62 mm1
β = 100.6050 (12)°T = 100 K
V = 2252.53 (5) Å3Block, colourless
Z = 40.4 × 0.30 × 0.11 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6813 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6608 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 77.2°, θmin = 3.8°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1719
Tmin = 0.731, Tmax = 1.000l = 2223
16358 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5548P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
6813 reflectionsΔρmin = 0.39 e Å3
620 parametersAbsolute structure: Refined as an inversion twin
4 restraintsAbsolute structure parameter: 0.478 (18)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

1. Twinned data refinement Scales: 0.522 (18) 0.478 (18) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3. Restrained distances H18-N18 0.86 with sigma of 0.02 H14-N14 0.86 with sigma of 0.02 4.a Aromatic/amide H refined with riding coordinates: C35(H35), C23(H23), C27(H27), C26(H26), C49(H49), C31(H31), C28(H28), C61(H61), C54(H54), C36(H36), C60(H60), C50(H50), C22(H22), C40(H40), C53(H53), C37(H37), C42(H42), C47(H47), C64(H64), C63(H63), C46(H46), C43(H43), C39(H39), C32(H32), C56(H56), C57(H57) 4.b Idealised Me refined as rotating group: C52(H52A,H52B,H52C), C44(H44A,H44B,H44C), C58(H58A,H58B,H58C), C66(H66A,H66B, H66C), C51(H51A,H51B,H51C), C45(H45A,H45B,H45C), C65(H65A,H65B,H65C), C59(H59A, H59B,H59C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17772 (8)0.49921 (4)0.37557 (4)0.01431 (15)
S20.88938 (8)0.99725 (4)0.36763 (4)0.01686 (16)
O50.0868 (3)0.46728 (13)0.43037 (11)0.0198 (4)
O100.3080 (3)0.75413 (13)0.36853 (12)0.0189 (4)
O40.2618 (3)0.58342 (12)0.39552 (12)0.0222 (4)
O71.0147 (3)0.97468 (16)0.43079 (12)0.0274 (5)
O60.7498 (3)0.25632 (14)0.35776 (12)0.0191 (4)
N110.4365 (3)0.18427 (15)0.35601 (13)0.0168 (5)
O30.0728 (3)0.49865 (13)0.30454 (12)0.0251 (5)
N140.0994 (3)0.57921 (17)0.61872 (14)0.0228 (5)
O90.9547 (3)0.98318 (15)0.30206 (12)0.0253 (5)
N181.0806 (4)1.06837 (18)0.62048 (15)0.0283 (6)
N120.6186 (3)0.68257 (14)0.36322 (13)0.0153 (5)
N171.3114 (3)1.31360 (18)0.63022 (14)0.0268 (6)
N130.3275 (3)0.82252 (17)0.60874 (14)0.0248 (6)
C250.3141 (4)0.33136 (18)0.36637 (15)0.0132 (5)
N160.3146 (4)0.16966 (18)0.60144 (14)0.0300 (6)
N150.0827 (3)0.41978 (17)0.61461 (14)0.0258 (6)
C300.4422 (3)0.80852 (18)0.36639 (15)0.0152 (6)
N200.6851 (4)0.65381 (18)0.61189 (15)0.0297 (6)
C290.4524 (4)0.27401 (18)0.36172 (15)0.0141 (5)
N190.9083 (4)0.90581 (18)0.61654 (15)0.0271 (6)
C350.9054 (4)0.79031 (19)0.36300 (15)0.0157 (5)
H351.0033750.8257600.3630380.019*
O80.8170 (3)1.08342 (14)0.37345 (18)0.0427 (7)
C480.2420 (4)0.25088 (19)0.60531 (16)0.0222 (6)
C230.5063 (4)0.45581 (18)0.37350 (16)0.0165 (6)
H230.5259640.5175800.3780680.020*
C240.3458 (4)0.42408 (18)0.37218 (15)0.0156 (6)
C270.1385 (4)0.20164 (19)0.35746 (16)0.0195 (6)
H270.0310560.1739690.3552660.023*
C260.1533 (4)0.29119 (19)0.36372 (15)0.0162 (6)
H260.0563120.3263660.3662900.019*
C340.7451 (3)0.82997 (18)0.36388 (15)0.0137 (5)
C490.2102 (4)0.29987 (19)0.66961 (16)0.0224 (6)
H490.2430390.2770780.7118170.027*
C310.4187 (4)0.89824 (19)0.36710 (17)0.0192 (6)
H310.3090000.9219340.3676590.023*
C380.6054 (4)0.77244 (17)0.36430 (15)0.0130 (5)
C280.2840 (4)0.15080 (18)0.35428 (16)0.0197 (6)
H280.2714730.0884980.3506660.024*
C330.7176 (4)0.92240 (18)0.36554 (15)0.0152 (5)
C610.8018 (4)0.7746 (2)0.55202 (16)0.0215 (6)
H610.7810030.7440430.5073930.026*
C541.1908 (4)1.1940 (2)0.68862 (16)0.0220 (6)
H541.2123041.2237950.7335670.026*
C360.9166 (4)0.70039 (19)0.36211 (16)0.0184 (6)
H361.0227300.6726080.3614130.022*
C620.7562 (4)0.7356 (2)0.61344 (17)0.0237 (6)
C600.8763 (4)0.8566 (2)0.55657 (17)0.0257 (7)
H600.9073080.8801420.5142580.031*
C500.1315 (4)0.3809 (2)0.67126 (17)0.0247 (6)
H500.1102040.4115810.7158220.030*
C220.6432 (4)0.39925 (19)0.36825 (17)0.0193 (6)
H220.7532370.4230090.3686490.023*
C400.2142 (4)0.7096 (2)0.67653 (16)0.0209 (6)
H400.2402630.7435340.7193630.025*
C531.1159 (4)1.1131 (2)0.68335 (18)0.0257 (7)
H531.0873821.0871160.7252750.031*
C370.7696 (4)0.64896 (18)0.36221 (17)0.0183 (6)
H370.7804380.5865070.3615220.022*
C420.2165 (4)0.6872 (2)0.55097 (16)0.0229 (6)
H420.2437820.7051890.5063330.027*
C410.2560 (4)0.74334 (19)0.61167 (16)0.0200 (6)
C210.6173 (4)0.30979 (18)0.36257 (15)0.0145 (5)
C470.1930 (4)0.2920 (2)0.54526 (16)0.0237 (6)
H470.2128120.2632690.4998380.028*
C640.8639 (4)0.8686 (2)0.67528 (18)0.0296 (7)
H640.8854570.9013870.7188430.036*
C551.2371 (4)1.23419 (19)0.62685 (16)0.0218 (6)
C520.3516 (5)0.1263 (2)0.66566 (19)0.0318 (7)
H52A0.2463200.1201900.7011700.048*
H52B0.3999160.0677730.6528890.048*
H52C0.4332710.1619350.6860960.048*
C630.7900 (4)0.7873 (2)0.67674 (17)0.0282 (7)
H630.7615390.7656090.7201460.034*
C440.3650 (5)0.8790 (2)0.67269 (19)0.0302 (7)
H44A0.2586730.8947300.6883140.045*
H44B0.4223230.9328400.6610720.045*
H44C0.4390970.8471740.7114210.045*
C460.1165 (4)0.3737 (2)0.55256 (17)0.0250 (6)
H460.0853020.3993690.5110480.030*
C430.1398 (4)0.6079 (2)0.55592 (17)0.0238 (6)
H430.1137950.5716020.5143810.029*
C390.1381 (4)0.6302 (2)0.67832 (17)0.0230 (6)
H390.1110830.6096540.7223360.028*
C320.5578 (4)0.95491 (19)0.36698 (17)0.0202 (6)
H320.5410651.0169670.3679260.024*
C561.2007 (4)1.1840 (2)0.56237 (17)0.0252 (6)
H561.2308491.2069240.5196610.030*
C581.3420 (5)1.3650 (2)0.69703 (19)0.0322 (7)
H58A1.2334751.3770470.7121410.048*
H58B1.3971491.4209690.6889450.048*
H58C1.4159651.3314470.7346770.048*
C571.1241 (4)1.1046 (2)0.56067 (18)0.0292 (7)
H571.1000011.0730590.5165310.035*
C660.6549 (5)0.6125 (2)0.6777 (2)0.0355 (8)
H66A0.7612790.6107610.7129320.053*
H66B0.6131110.5521850.6672760.053*
H66C0.5698700.6466430.6973070.053*
C510.3476 (5)0.1193 (2)0.53443 (18)0.0345 (8)
H51A0.4292890.1514120.4985510.052*
H51B0.3945040.0614450.5432160.052*
H51C0.2410900.1114220.5165670.052*
C450.3605 (5)0.8585 (2)0.54079 (18)0.0316 (7)
H45A0.4340780.8179480.5202210.047*
H45B0.4167250.9160030.5495710.047*
H45C0.2525860.8657380.5070930.047*
C650.6452 (5)0.6043 (2)0.54515 (19)0.0320 (7)
H65A0.5699080.6394350.5090790.048*
H65B0.5883610.5490170.5536270.048*
H65C0.7504750.5910310.5277170.048*
C591.3515 (5)1.3552 (2)0.5656 (2)0.0355 (8)
H59A1.4294591.3173050.5450160.053*
H59B1.4052421.4126370.5782140.053*
H59C1.2465321.3636090.5303090.053*
H140.047 (5)0.5262 (17)0.616 (2)0.029 (9)*
H100.336 (6)0.697 (3)0.372 (2)0.037 (11)*
H181.027 (6)1.016 (2)0.618 (3)0.057 (15)*
H60.714 (6)0.204 (3)0.357 (2)0.039 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0135 (3)0.0121 (3)0.0179 (3)0.0021 (2)0.0043 (2)0.0012 (2)
S20.0140 (3)0.0113 (3)0.0270 (4)0.0012 (2)0.0083 (3)0.0004 (2)
O50.0221 (10)0.0170 (9)0.0228 (11)0.0007 (8)0.0104 (8)0.0003 (8)
O100.0124 (10)0.0129 (10)0.0327 (12)0.0020 (8)0.0079 (8)0.0022 (8)
O40.0193 (10)0.0115 (9)0.0376 (12)0.0007 (8)0.0100 (9)0.0005 (8)
O70.0270 (12)0.0331 (11)0.0216 (11)0.0145 (10)0.0027 (9)0.0034 (9)
O60.0117 (10)0.0142 (10)0.0321 (12)0.0006 (8)0.0054 (8)0.0000 (8)
N110.0166 (11)0.0136 (11)0.0202 (12)0.0000 (9)0.0030 (9)0.0005 (9)
O30.0270 (12)0.0286 (12)0.0185 (11)0.0128 (9)0.0012 (9)0.0007 (8)
N140.0237 (13)0.0207 (12)0.0239 (14)0.0030 (10)0.0041 (10)0.0013 (10)
O90.0251 (11)0.0316 (11)0.0205 (11)0.0083 (9)0.0076 (9)0.0026 (9)
N180.0251 (14)0.0240 (14)0.0335 (16)0.0010 (11)0.0006 (11)0.0050 (11)
N120.0142 (11)0.0127 (11)0.0188 (12)0.0001 (9)0.0029 (9)0.0001 (9)
N170.0303 (14)0.0248 (13)0.0229 (13)0.0001 (11)0.0010 (11)0.0038 (10)
N130.0297 (14)0.0218 (13)0.0231 (14)0.0044 (10)0.0052 (11)0.0012 (10)
C250.0125 (12)0.0147 (13)0.0128 (12)0.0001 (10)0.0035 (10)0.0009 (10)
N160.0447 (17)0.0249 (13)0.0179 (13)0.0064 (12)0.0008 (12)0.0001 (10)
N150.0263 (14)0.0231 (13)0.0275 (14)0.0001 (11)0.0036 (11)0.0002 (10)
C300.0120 (13)0.0159 (13)0.0178 (14)0.0007 (11)0.0029 (10)0.0012 (11)
N200.0382 (16)0.0294 (14)0.0225 (14)0.0068 (12)0.0081 (12)0.0030 (10)
C290.0135 (13)0.0158 (13)0.0132 (13)0.0016 (10)0.0029 (10)0.0012 (10)
N190.0289 (15)0.0246 (13)0.0264 (14)0.0010 (11)0.0014 (11)0.0038 (10)
C350.0134 (13)0.0174 (13)0.0165 (14)0.0010 (11)0.0035 (10)0.0008 (10)
O80.0219 (12)0.0115 (10)0.100 (2)0.0016 (9)0.0251 (13)0.0010 (12)
C480.0210 (15)0.0243 (15)0.0199 (15)0.0037 (12)0.0001 (12)0.0005 (12)
C230.0158 (12)0.0119 (13)0.0220 (14)0.0004 (11)0.0037 (11)0.0004 (10)
C240.0167 (14)0.0138 (13)0.0167 (14)0.0028 (11)0.0039 (11)0.0014 (10)
C270.0133 (13)0.0160 (13)0.0295 (16)0.0032 (11)0.0045 (11)0.0022 (11)
C260.0157 (14)0.0149 (13)0.0190 (14)0.0032 (10)0.0057 (11)0.0009 (10)
C340.0128 (13)0.0163 (13)0.0119 (12)0.0005 (11)0.0023 (10)0.0003 (10)
C490.0241 (15)0.0249 (15)0.0182 (14)0.0009 (12)0.0039 (11)0.0013 (11)
C310.0110 (14)0.0170 (13)0.0308 (17)0.0032 (11)0.0070 (11)0.0025 (11)
C380.0131 (13)0.0130 (12)0.0129 (12)0.0002 (10)0.0026 (10)0.0004 (10)
C280.0178 (14)0.0130 (13)0.0274 (16)0.0008 (10)0.0017 (12)0.0014 (11)
C330.0144 (13)0.0148 (13)0.0172 (14)0.0010 (11)0.0048 (10)0.0006 (10)
C610.0237 (15)0.0239 (15)0.0160 (14)0.0009 (12)0.0015 (11)0.0010 (11)
C540.0199 (14)0.0267 (15)0.0185 (14)0.0022 (12)0.0016 (11)0.0023 (11)
C360.0139 (14)0.0169 (13)0.0248 (15)0.0034 (11)0.0050 (11)0.0003 (11)
C620.0217 (15)0.0281 (15)0.0212 (15)0.0027 (12)0.0039 (12)0.0021 (12)
C600.0259 (16)0.0286 (16)0.0219 (15)0.0012 (13)0.0028 (12)0.0012 (13)
C500.0241 (15)0.0269 (15)0.0218 (15)0.0011 (12)0.0006 (12)0.0047 (12)
C220.0143 (14)0.0179 (14)0.0272 (16)0.0007 (11)0.0075 (12)0.0005 (11)
C400.0195 (14)0.0254 (15)0.0172 (14)0.0003 (11)0.0021 (11)0.0011 (11)
C530.0211 (15)0.0280 (16)0.0270 (17)0.0036 (12)0.0019 (12)0.0001 (12)
C370.0158 (13)0.0102 (12)0.0295 (16)0.0012 (10)0.0054 (11)0.0003 (11)
C420.0231 (15)0.0290 (16)0.0176 (14)0.0013 (12)0.0064 (11)0.0005 (12)
C410.0191 (14)0.0202 (14)0.0206 (15)0.0024 (11)0.0030 (11)0.0029 (11)
C210.0129 (13)0.0157 (13)0.0154 (13)0.0024 (11)0.0038 (10)0.0006 (11)
C470.0239 (15)0.0266 (15)0.0198 (15)0.0037 (12)0.0020 (11)0.0034 (11)
C640.0304 (17)0.0340 (17)0.0237 (16)0.0047 (14)0.0033 (13)0.0076 (13)
C550.0187 (14)0.0223 (14)0.0229 (16)0.0049 (11)0.0001 (12)0.0012 (11)
C520.0371 (19)0.0279 (17)0.0296 (18)0.0070 (14)0.0044 (14)0.0041 (13)
C630.0316 (17)0.0341 (17)0.0196 (16)0.0034 (14)0.0070 (13)0.0004 (13)
C440.0347 (18)0.0234 (15)0.0319 (18)0.0074 (13)0.0052 (14)0.0007 (13)
C460.0219 (15)0.0311 (16)0.0218 (15)0.0003 (13)0.0034 (12)0.0040 (12)
C430.0228 (15)0.0260 (15)0.0222 (15)0.0002 (12)0.0035 (12)0.0037 (12)
C390.0256 (16)0.0233 (15)0.0205 (15)0.0013 (12)0.0053 (12)0.0007 (12)
C320.0200 (14)0.0115 (13)0.0309 (17)0.0023 (11)0.0096 (12)0.0016 (11)
C560.0258 (16)0.0296 (16)0.0194 (15)0.0044 (13)0.0023 (12)0.0015 (12)
C580.0369 (19)0.0261 (16)0.0303 (18)0.0032 (14)0.0025 (14)0.0027 (13)
C570.0275 (16)0.0318 (17)0.0254 (16)0.0057 (13)0.0024 (13)0.0090 (13)
C660.038 (2)0.0373 (19)0.0331 (19)0.0040 (15)0.0117 (15)0.0101 (15)
C510.042 (2)0.0318 (18)0.0269 (18)0.0040 (15)0.0022 (15)0.0051 (14)
C450.0344 (18)0.0333 (17)0.0287 (18)0.0062 (14)0.0100 (14)0.0082 (13)
C650.0346 (19)0.0261 (16)0.0348 (19)0.0073 (13)0.0054 (15)0.0003 (13)
C590.0352 (19)0.0381 (19)0.0317 (19)0.0014 (15)0.0023 (14)0.0119 (15)
Geometric parameters (Å, º) top
S1—O51.455 (2)C31—C321.406 (4)
S1—O41.459 (2)C28—H280.9500
S1—O31.447 (2)C33—C321.375 (4)
S1—C241.772 (3)C61—H610.9500
S2—O71.452 (2)C61—C621.409 (4)
S2—O91.448 (2)C61—C601.373 (4)
S2—O81.440 (2)C54—H540.9500
S2—C331.776 (3)C54—C531.359 (4)
O10—C301.359 (3)C54—C551.426 (4)
O10—H100.90 (4)C36—H360.9500
O6—C211.350 (3)C36—C371.410 (4)
O6—H60.84 (4)C62—C631.414 (4)
N11—C291.367 (4)C60—H600.9500
N11—C281.316 (4)C50—H500.9500
N14—C431.358 (4)C22—H220.9500
N14—C391.354 (4)C22—C211.372 (4)
N14—H140.90 (2)C40—H400.9500
N18—C531.353 (4)C40—C411.425 (4)
N18—C571.359 (5)C40—C391.351 (4)
N18—H180.90 (2)C53—H530.9500
N12—C381.366 (3)C37—H370.9500
N12—C371.315 (4)C42—H420.9500
N17—C551.338 (4)C42—C411.417 (4)
N17—C581.466 (4)C42—C431.360 (4)
N17—C591.462 (4)C47—H470.9500
N13—C411.334 (4)C47—C461.375 (4)
N13—C441.467 (4)C64—H640.9500
N13—C451.464 (4)C64—C631.369 (5)
C25—C291.422 (4)C55—C561.421 (4)
C25—C241.428 (4)C52—H52A0.9800
C25—C261.415 (4)C52—H52B0.9800
N16—C481.356 (4)C52—H52C0.9800
N16—C521.458 (4)C63—H630.9500
N16—C511.461 (4)C44—H44A0.9800
N15—C501.342 (4)C44—H44B0.9800
N15—C461.350 (4)C44—H44C0.9800
C30—C311.372 (4)C46—H460.9500
C30—C381.423 (4)C43—H430.9500
N20—C621.362 (4)C39—H390.9500
N20—C661.453 (4)C32—H320.9500
N20—C651.452 (4)C56—H560.9500
C29—C211.424 (4)C56—C571.348 (5)
N19—C601.342 (4)C58—H58A0.9800
N19—C641.350 (4)C58—H58B0.9800
C35—H350.9500C58—H58C0.9800
C35—C341.419 (4)C57—H570.9500
C35—C361.365 (4)C66—H66A0.9800
C48—C491.407 (4)C66—H66B0.9800
C48—C471.413 (4)C66—H66C0.9800
C23—H230.9500C51—H51A0.9800
C23—C241.367 (4)C51—H51B0.9800
C23—C221.408 (4)C51—H51C0.9800
C27—H270.9500C45—H45A0.9800
C27—C261.365 (4)C45—H45B0.9800
C27—C281.407 (4)C45—H45C0.9800
C26—H260.9500C65—H65A0.9800
C34—C381.419 (4)C65—H65B0.9800
C34—C331.418 (4)C65—H65C0.9800
C49—H490.9500C59—H59A0.9800
C49—C501.377 (4)C59—H59B0.9800
C31—H310.9500C59—H59C0.9800
N14···H140.84
O5—S1—O4111.94 (13)C23—C22—H22120.1
O5—S1—C24107.15 (12)C21—C22—C23119.9 (3)
O4—S1—C24104.71 (13)C21—C22—H22120.1
O3—S1—O5112.26 (14)C41—C40—H40119.3
O3—S1—O4113.97 (13)C39—C40—H40119.3
O3—S1—C24106.09 (13)C39—C40—C41121.3 (3)
O7—S2—C33106.42 (13)N18—C53—C54122.3 (3)
O9—S2—O7111.50 (14)N18—C53—H53118.9
O9—S2—C33106.67 (13)C54—C53—H53118.9
O8—S2—O7112.15 (17)N12—C37—C36123.7 (2)
O8—S2—O9114.36 (16)N12—C37—H37118.2
O8—S2—C33105.04 (14)C36—C37—H37118.2
C30—O10—H10114 (3)C41—C42—H42119.6
C21—O6—H6107 (3)C43—C42—H42119.6
C28—N11—C29117.2 (2)C43—C42—C41120.7 (3)
C43—N14—H14115 (2)N13—C41—C40121.9 (3)
C39—N14—C43119.4 (3)N13—C41—C42122.6 (3)
C39—N14—H14125 (2)C42—C41—C40115.4 (3)
C53—N18—C57119.1 (3)O6—C21—C29120.6 (2)
C53—N18—H18121 (3)O6—C21—C22119.3 (3)
C57—N18—H18120 (3)C22—C21—C29120.2 (3)
C37—N12—C38117.4 (2)C48—C47—H47120.0
C55—N17—C58121.4 (3)C46—C47—C48120.0 (3)
C55—N17—C59120.8 (3)C46—C47—H47120.0
C59—N17—C58117.6 (3)N19—C64—H64117.6
C41—N13—C44120.9 (3)N19—C64—C63124.9 (3)
C41—N13—C45121.3 (3)C63—C64—H64117.6
C45—N13—C44117.7 (3)N17—C55—C54121.7 (3)
C29—C25—C24118.4 (2)N17—C55—C56122.7 (3)
C26—C25—C29116.6 (2)C56—C55—C54115.6 (3)
C26—C25—C24125.0 (2)N16—C52—H52A109.5
C48—N16—C52120.9 (3)N16—C52—H52B109.5
C48—N16—C51121.8 (3)N16—C52—H52C109.5
C52—N16—C51117.1 (3)H52A—C52—H52B109.5
C50—N15—C46115.2 (3)H52A—C52—H52C109.5
O10—C30—C31119.3 (2)H52B—C52—H52C109.5
O10—C30—C38120.1 (2)C62—C63—H63120.1
C31—C30—C38120.6 (2)C64—C63—C62119.8 (3)
C62—N20—C66120.6 (3)C64—C63—H63120.1
C62—N20—C65120.8 (3)N13—C44—H44A109.5
C65—N20—C66118.5 (3)N13—C44—H44B109.5
N11—C29—C25123.4 (3)N13—C44—H44C109.5
N11—C29—C21116.8 (2)H44A—C44—H44B109.5
C25—C29—C21119.8 (2)H44A—C44—H44C109.5
C60—N19—C64115.2 (3)H44B—C44—H44C109.5
C34—C35—H35120.5N15—C46—C47124.5 (3)
C36—C35—H35120.5N15—C46—H46117.7
C36—C35—C34118.9 (3)C47—C46—H46117.7
N16—C48—C49122.2 (3)N14—C43—C42121.7 (3)
N16—C48—C47122.4 (3)N14—C43—H43119.1
C49—C48—C47115.4 (3)C42—C43—H43119.1
C24—C23—H23119.2N14—C39—H39119.3
C24—C23—C22121.7 (2)C40—C39—N14121.4 (3)
C22—C23—H23119.2C40—C39—H39119.3
C25—C24—S1120.6 (2)C31—C32—H32119.3
C23—C24—S1119.4 (2)C33—C32—C31121.4 (2)
C23—C24—C25120.0 (2)C33—C32—H32119.3
C26—C27—H27120.4C55—C56—H56119.4
C26—C27—C28119.2 (3)C57—C56—C55121.2 (3)
C28—C27—H27120.4C57—C56—H56119.4
C25—C26—H26120.2N17—C58—H58A109.5
C27—C26—C25119.6 (3)N17—C58—H58B109.5
C27—C26—H26120.2N17—C58—H58C109.5
C35—C34—C38117.1 (2)H58A—C58—H58B109.5
C33—C34—C35124.2 (2)H58A—C58—H58C109.5
C33—C34—C38118.7 (2)H58B—C58—H58C109.5
C48—C49—H49120.0N18—C57—H57119.2
C50—C49—C48119.9 (3)C56—C57—N18121.7 (3)
C50—C49—H49120.0C56—C57—H57119.2
C30—C31—H31120.2N20—C66—H66A109.5
C30—C31—C32119.7 (3)N20—C66—H66B109.5
C32—C31—H31120.2N20—C66—H66C109.5
N12—C38—C30117.2 (2)H66A—C66—H66B109.5
N12—C38—C34123.3 (3)H66A—C66—H66C109.5
C34—C38—C30119.5 (2)H66B—C66—H66C109.5
N11—C28—C27124.0 (3)N16—C51—H51A109.5
N11—C28—H28118.0N16—C51—H51B109.5
C27—C28—H28118.0N16—C51—H51C109.5
C34—C33—S2120.5 (2)H51A—C51—H51B109.5
C32—C33—S2119.3 (2)H51A—C51—H51C109.5
C32—C33—C34120.2 (3)H51B—C51—H51C109.5
C62—C61—H61119.9N13—C45—H45A109.5
C60—C61—H61119.9N13—C45—H45B109.5
C60—C61—C62120.1 (3)N13—C45—H45C109.5
C53—C54—H54119.9H45A—C45—H45B109.5
C53—C54—C55120.2 (3)H45A—C45—H45C109.5
C55—C54—H54119.9H45B—C45—H45C109.5
C35—C36—H36120.2N20—C65—H65A109.5
C35—C36—C37119.6 (3)N20—C65—H65B109.5
C37—C36—H36120.2N20—C65—H65C109.5
N20—C62—C61122.2 (3)H65A—C65—H65B109.5
N20—C62—C63122.4 (3)H65A—C65—H65C109.5
C61—C62—C63115.4 (3)H65B—C65—H65C109.5
N19—C60—C61124.6 (3)N17—C59—H59A109.5
N19—C60—H60117.7N17—C59—H59B109.5
C61—C60—H60117.7N17—C59—H59C109.5
N15—C50—C49124.9 (3)H59A—C59—H59B109.5
N15—C50—H50117.6H59A—C59—H59C109.5
C49—C50—H50117.6H59B—C59—H59C109.5
S2—C33—C32—C31178.5 (2)C38—C30—C31—C321.1 (4)
O5—S1—C24—C2550.1 (3)C38—C34—C33—S2178.2 (2)
O5—S1—C24—C23131.4 (2)C38—C34—C33—C320.5 (4)
O10—C30—C31—C32178.2 (3)C28—N11—C29—C250.5 (4)
O10—C30—C38—N121.2 (4)C28—N11—C29—C21179.2 (3)
O10—C30—C38—C34178.4 (2)C28—C27—C26—C250.5 (4)
O4—S1—C24—C25169.1 (2)C33—C34—C38—N12179.6 (3)
O4—S1—C24—C2312.4 (3)C33—C34—C38—C300.0 (4)
O7—S2—C33—C3457.5 (3)C61—C62—C63—C640.7 (5)
O7—S2—C33—C32121.2 (3)C54—C55—C56—C571.3 (4)
N11—C29—C21—O60.1 (4)C36—C35—C34—C380.5 (4)
N11—C29—C21—C22179.9 (3)C36—C35—C34—C33179.4 (3)
O3—S1—C24—C2570.0 (3)C62—C61—C60—N191.2 (5)
O3—S1—C24—C23108.5 (2)C60—N19—C64—C630.5 (5)
O9—S2—C33—C3461.6 (3)C60—C61—C62—N20178.7 (3)
O9—S2—C33—C32119.6 (3)C60—C61—C62—C631.1 (5)
N17—C55—C56—C57179.3 (3)C50—N15—C46—C470.9 (5)
C25—C29—C21—O6179.6 (3)C22—C23—C24—S1177.6 (2)
C25—C29—C21—C220.4 (4)C22—C23—C24—C250.9 (4)
N16—C48—C49—C50178.0 (3)C53—N18—C57—C560.4 (5)
N16—C48—C47—C46178.6 (3)C53—C54—C55—N17179.8 (3)
C30—C31—C32—C330.6 (5)C53—C54—C55—C560.4 (4)
N20—C62—C63—C64179.1 (3)C37—N12—C38—C30179.2 (3)
C29—N11—C28—C270.4 (4)C37—N12—C38—C340.5 (4)
C29—C25—C24—S1178.2 (2)C41—C40—C39—N140.4 (5)
C29—C25—C24—C230.3 (4)C41—C42—C43—N140.4 (5)
C29—C25—C26—C270.4 (4)C47—C48—C49—C501.9 (4)
N19—C64—C63—C620.4 (5)C64—N19—C60—C610.9 (5)
C35—C34—C38—N120.7 (4)C55—C54—C53—N180.8 (5)
C35—C34—C38—C30179.0 (3)C55—C56—C57—N180.9 (5)
C35—C34—C33—S20.7 (4)C52—N16—C48—C494.7 (5)
C35—C34—C33—C32179.4 (3)C52—N16—C48—C47175.2 (3)
C35—C36—C37—N120.1 (5)C44—N13—C41—C400.5 (5)
O8—S2—C33—C34176.6 (2)C44—N13—C41—C42179.4 (3)
O8—S2—C33—C322.1 (3)C46—N15—C50—C490.3 (5)
C48—C49—C50—N151.2 (5)C43—N14—C39—C400.8 (5)
C48—C47—C46—N150.1 (5)C43—C42—C41—N13178.4 (3)
C23—C22—C21—O6179.8 (3)C43—C42—C41—C401.6 (4)
C23—C22—C21—C290.2 (4)C39—N14—C43—C420.8 (5)
C24—C25—C29—N11180.0 (3)C39—C40—C41—N13178.4 (3)
C24—C25—C29—C210.3 (4)C39—C40—C41—C421.6 (4)
C24—C25—C26—C27179.4 (3)C58—N17—C55—C542.7 (4)
C24—C23—C22—C210.8 (4)C58—N17—C55—C56177.9 (3)
C26—C25—C29—N110.9 (4)C57—N18—C53—C541.2 (5)
C26—C25—C29—C21178.7 (3)C66—N20—C62—C61174.1 (3)
C26—C25—C24—S10.8 (4)C66—N20—C62—C635.7 (5)
C26—C25—C24—C23179.3 (3)C51—N16—C48—C49179.8 (3)
C26—C27—C28—N110.9 (5)C51—N16—C48—C470.3 (5)
C34—C35—C36—C370.1 (4)C45—N13—C41—C40176.3 (3)
C34—C33—C32—C310.2 (5)C45—N13—C41—C423.7 (5)
C49—C48—C47—C461.3 (4)C65—N20—C62—C613.0 (5)
C31—C30—C38—N12179.6 (3)C65—N20—C62—C63177.2 (3)
C31—C30—C38—C340.8 (4)C59—N17—C55—C54177.4 (3)
C38—N12—C37—C360.1 (4)C59—N17—C55—C563.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively
D—H···AD—HH···AD···AD—H···A
O6—H6···O8i0.84 (5)2.00 (5)2.679 (3)137 (4)
O6—H6···N110.84 (5)2.24 (5)2.728 (3)117 (4)
O10—H10···O40.89 (5)1.90 (5)2.674 (3)144 (4)
O10—H10···N120.89 (5)2.31 (5)2.730 (3)109 (4)
N14—H14···N150.90 (3)1.91 (3)2.814 (4)174 (3)
N18—H18···N190.90 (3)1.92 (4)2.816 (4)177 (7)
C27—H27···O6ii0.952.583.219 (4)125
C27—H27···O8iii0.952.273.194 (4)164
C36—H36···O4iv0.952.333.244 (4)160
C36—H36···O10iv0.952.583.216 (4)125
C39—H39···O3v0.952.323.200 (4)154
C43—H43···O50.952.223.160 (4)169
C46—H46···O50.952.463.373 (4)161
C50—H50···O3v0.952.433.292 (4)151
C53—H53···O9vi0.952.223.146 (4)164
C54—H54···O10vii0.952.553.450 (4)158
C57—H57···O70.952.223.143 (4)165
C60—H60···O70.952.403.325 (4)163
C64—H64···O9vi0.952.353.267 (4)162
C40—H40···Cg1v0.952.633.498 (3)153
C49—H49···Cg2viii0.952.873.754 (3)156
C61—H61···Cg20.952.703.571 (3)152
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y, z; (v) x, y+1, z+1/2; (vi) x, y+2, z+1/2; (vii) x+1, y+2, z+1/2; (viii) x1, y+1, z+1/2.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP23 KJ1830 to M. Isobe).

References

First citationAakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.  Google Scholar
First citationBaskar Raj, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o1980–o1983.  CrossRef IUCr Journals Google Scholar
First citationBiradha, H., Edwards, R. E., Foulds, G. J., Robinson, W. T. & Desiraju, G. R. (1995). Chem. Commun. pp. 1705–1707.  CrossRef Google Scholar
First citationBolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBraga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). New J. Chem. 32, 820–828.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allge Chem. 642, 930–936.  Google Scholar
First citationFábry, J. (2017). Acta Cryst. E73, 1344–1347.  CrossRef IUCr Journals Google Scholar
First citationGanie, A. A., Ismail, T. M., Sajith, P. K. & Dar, A. A. (2021). New J. Chem. 45, 4780–4790.  CrossRef CAS Google Scholar
First citationGlidewell, C. & Holden, H. D. (1982). Acta Cryst. B38, 667–669.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284–o286.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKashiwagi, Y., Kubono, K. & Tamai, T. (2020). Acta Cryst. E76, 1271–1274.  CrossRef IUCr Journals Google Scholar
First citationKobayashi, N., Naito, T. & Inabe, T. (2003). Bull. Chem. Soc. Jpn, 76, 1351–1362.  CrossRef CAS Google Scholar
First citationKubono, K., Tanaka, R., Kashiwagi, Y., Tani, K. & Yokoi, K. (2023). Acta Cryst. E79, 726–729.  CrossRef IUCr Journals Google Scholar
First citationLacková, D., Ondrejkovičová, I., Padělková, Z. & Koman, M. (2014). J. Coord. Chem. 67, 1652–1663.  Google Scholar
First citationMautner, F. A. & Goher, M. A. S. (1998). Polyhedron, 18, 553–559.  CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSantra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673–1676.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2012). Acta Cryst. E68, o3349.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600–o603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Wang, Y., Yang, F., Zhang, X. & Hu, W. (2019). Adv. Mater. 31, 1902328.  Web of Science CrossRef Google Scholar
First citationVladiskovic, C., Mantegazza, S., Razzetti, G. & Masciocchi, N. (2023). Cryst. Growth Des. 23, 1119–1126.  CrossRef CAS Google Scholar
First citationWagler, J. & Kronstein, M. (2014). CSD CommunicationGoogle Scholar
First citationWiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609–612.  CrossRef CAS Web of Science Google Scholar
First citationZhang, K., Shen, Y., Liu, J., Spingler, B. & Duttwyler, S. (2018). Chem. Commun. 54, 1698–1701.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds