research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rerefinement of the crystal structure of BiF5

crossmark logo

aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 May 2024; accepted 14 June 2024; online 9 July 2024)

The crystal structure of bis­muth penta­fluoride, BiF5, was rerefined from single-crystal data. BiF5 crystallizes in the α-UF5 structure type in the form of colorless needles. In comparison with the previously reported crystal-structure model [Hebecker (1971[Hebecker, C. (1971). Z. Anorg. Allg. Chem. 384, 111-114.]). Z. Anorg. Allg. Chem. 384, 111–114], the lattice parameters and fractional atomic coordinates were determined to much higher precision and all atoms were refined anisotropically, leading to a significantly improved structure model. The Bi atom (site symmetry 4/m..) is surrounded by six F atoms in a distorted octa­hedral coordination environment. The [BiF6] octa­hedra are corner-linked to form infinite straight chains extending parallel to [001]. Density functional theory (DFT) calculations at the PBE0/TZVP level of theory were performed on the crystal structure of BiF5 to calculate its IR and Raman spectra. These are compared with experimental data.

1. Chemical context

Bismuth(V) fluoride was first synthesized in the year 1940 (von Wartenberg et al., 1940[Wartenberg, H. von (1940). Z. Anorg. Allg. Chem. 244, 337-347.]). Hebecker first determined its crystal structure in 1971 (Hebecker, 1971[Hebecker, C. (1971). Z. Anorg. Allg. Chem. 384, 111-114.]). During our studies of the chemistry of BiF5, we rerefined its crystal structure on basis of single-crystal data and recorded its IR and Raman spectra.

2. Structural commentary

Bismuth(V) fluoride crystallizes in the tetra­gonal space group I4/m, Pearson symbol tI12 and Wyckoff sequence 87.hba. BiF5 adopts the α-UF5 structure type and exhibits Bi—F bond lengths of 1.941 (4) (4×) and 2.1130 (5) Å (2×). The structure consists of chains of trans-corner-sharing [BiF6] octa­hedra (point group symmetry 4/m..; Fig. 1[link]) running parallel to the c axis. The chains can be described by the Niggli formula 1[BiF4/1F2/2]. The F1 atom bridges adjacent Bi atoms in the straight chain. As expected, the axial Bi—F1 bond lengths are longer than the four equatorial Bi—F2 bond lengths to the terminal ligands. Sections of the crystal structure showing the chains are shown in Fig. 2[link].

[Figure 1]
Figure 1
The coordination sphere of the Bi atom in the crystal structure of BiF5. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (i) x, y, z  − 1; (ii) y, −x, z; (iii) −y, x, z; (iv) −x, −y, z.]
[Figure 2]
Figure 2
Crystal structure of BiF5 viewed along the b axis (left) and the c axis (right). The [BiF6] octa­hedra are shown in grey.

van der Waals contacts exist between neighbouring chains with inter­atomic distances of 2.944 (5) Å (F2⋯F2v) and 2.952 (5) Å (F1⋯F2v) [symmetry code: (v) [{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] + z). Compared with the distances reported previously (Hebecker, 1971[Hebecker, C. (1971). Z. Anorg. Allg. Chem. 384, 111-114.]), these are 0.12 Å shorter for d(F2⋯F2) and 0.05 Å longer for d(F1⋯F2).

Regarding the crystal packing, a Bi atom is surrounded by 14 other Bi atoms in the shape of a distorted rhombic dodeca­hedron, which would correspond to the arrangement of the atoms in the W structure type. However, the rhombic dodeca­hedron is compressed due to the shorter intra­chain and the longer inter­chain Bi⋯Bi distances. The F1 atoms reside in the octa­hedral voids of the (idealized) body-centered cubic packing, while the F2 atoms are strongly displaced from these as the octa­hedra are rotated around the c axis (Fig. 2[link]).

3. Vibrational spectra

IR and Raman spectra were recorded on a polycrystalline sample of BiF5 at 293 K. Quantum-chemical calculations at the DFT-PBE0/TZVP level of theory (Dovesi et al., 2018[Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.]; Zicovich-Wilson et al., 2004[Zicovich-Wilson, C. M., Pascale, F., Roetti, C., Saunders, V. R., Orlando, R. & Dovesi, R. (2004). J. Comput. Chem. 25, 1873-1881.]; Pascale et al., 2004[Pascale, F., Zicovich-Wilson, C. M., López Gejo, F., Civalleri, B., Orlando, R. & Dovesi, R. (2004). J. Comput. Chem. 25, 888-897.]; Maschio et al., 2013[Maschio, L., Kirtman, B., Rérat, M., Orlando, R. & Dovesi, R. (2013). J. Chem. Phys. 139, 164102.]) were performed on basis of the crystal structure of BiF5 to obtain the theoretical IR and Raman spectra. The recorded and calculated spectra are in good agreement, as shown in Figs. 3[link] and 4[link]. A comparison of the observed and calculated bands is given in Table 1[link].

Table 1
Band positions (cm−1) and band assignment of the IR and Raman spectra of solid BiF5 based on the calculated spectrum

ν = stretching vibration, δ = bending vibration, s = symmetric, as = asymmetric, – = not observed.

IR   Raman   Assignment
νcalc vobs νcalc vobs  
630 618 vas(Bi—F2) + δ(Bi—F1—Bi)
607 596, 593 vs(Bi—F2)
578 571, 567 vas(Bi—F2)
453 441 vas(Bi—Fμ)
256 254 δ(F2—Bi—F2)
202 δ(F—Bi—F)
168 δ(F—Bi—F)
177 164 δ(F2—Bi—F1)
125 δ(F2—Bi—F1) + vas(Bi—F1)
[Figure 3]
Figure 3
Recorded IR spectrum of crystalline BiF5 in black and calculated IR absorbance spectrum of solid BiF5 at the DFT-PBE0/TZVP level of theory in red. No bands were observed in the region from 1000 to 4000 cm−1.
[Figure 4]
Figure 4
Recorded Raman spectrum (532 nm laser) of crystalline BiF5 in black, calculated Raman spectrum of solid BiF5 at the DFT-PBE0/TZVP level of theory in red. No bands were observed in the region from 1000 to 4000 cm−1.

4. Synthesis and crystallization

Bismuth(III) fluoride (1.05 g, 3.95 mmol) was loaded in a corundum boat and placed inside a tube furnace. By passing diluted fluorine (F2/Ar, 10:90 v/v, Solvay) over the submitted material, bis­muth(V) fluoride was synthesized at 723 K, using a heating rate of 4 K min−1 from room temperature to 723 K and a holding time of 10 h while diluted fluorine was passed with a flow rate of 5 standard cubic centimeters per minute. After cooling down to room temperature, colorless needles of bis­muth(V) fluoride (601 mg, 1.98 mmol, 57%) were isolated.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula BiF5
Mr 303.98
Crystal system, space group Tetragonal, I4/m
Temperature (K) 100
a, c (Å) 6.4439 (9), 4.2260 (9)
V3) 175.48 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 49.84
Crystal size (mm) 0.31 × 0.13 × 0.11
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kozisek, J. (2016). Acta Chim. Slov. 9, 136-140.])
Tmin, Tmax 0.006, 0.078
No. of measured, independent and observed [I > 2σ(I)] reflections 1134, 174, 174
Rint 0.027
(sin θ/λ)max−1) 0.742
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.12
No. of reflections 174
No. of parameters 12
Δρmax, Δρmin (e Å−3) 0.90, −1.38
Computer programs: X-AREA (Stoe, 2020[Stoe (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2022[Brandenburg, K. & Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Bismuth pentafluoride top
Crystal data top
BiF5Dx = 5.753 Mg m3
Mr = 303.98Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mCell parameters from 5333 reflections
a = 6.4439 (9) Åθ = 8.8–60.0°
c = 4.2260 (9) ŵ = 49.84 mm1
V = 175.48 (6) Å3T = 100 K
Z = 2Needle, colorless
F(000) = 2560.31 × 0.13 × 0.11 mm
Data collection top
Stoe IPDS 2T
diffractometer
174 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus174 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.027
rotation method, ω scansθmax = 31.8°, θmin = 4.5°
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
h = 99
Tmin = 0.006, Tmax = 0.078k = 99
1134 measured reflectionsl = 56
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0237P)2 + 2.0256P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 0.90 e Å3
S = 1.12Δρmin = 1.38 e Å3
174 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 parametersExtinction coefficient: 0.0080 (17)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi0.0000000.0000000.0000000.0199 (2)
F10.0000000.0000000.5000000.0255 (15)
F20.2859 (7)0.0950 (7)0.0000000.0275 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.0225 (2)0.0225 (2)0.0147 (2)0.0000.0000.000
F10.029 (2)0.029 (2)0.018 (3)0.0000.0000.000
F20.0232 (17)0.0320 (19)0.0274 (19)0.0031 (14)0.0000.000
Geometric parameters (Å, º) top
Bi—F2i1.941 (4)Bi—F21.941 (4)
Bi—F2ii1.941 (4)Bi—F12.1130 (5)
Bi—F2iii1.941 (4)Bi—F1iv2.1130 (5)
F2i—Bi—F2ii90.0F2iii—Bi—F190.0
F2i—Bi—F2iii90.0F2—Bi—F190.0
F2ii—Bi—F2iii180.0 (3)F2i—Bi—F1iv90.0
F2i—Bi—F2180.0F2ii—Bi—F1iv90.0
F2ii—Bi—F290.0F2iii—Bi—F1iv90.0
F2iii—Bi—F290.0F2—Bi—F1iv90.0
F2i—Bi—F190.0F1—Bi—F1iv180.0
F2ii—Bi—F190.0Biv—F1—Bi180.0
Symmetry codes: (i) x, y, z; (ii) y, x, z; (iii) y, x, z; (iv) x, y, z1; (v) x, y, z+1.
Band positions (cm–1) and band assignment of the IR and Raman spectra of solid BiF5 based on the calculated spectrum top
ν = stretching vibration, δ = bending vibration, s = symmetric, as = asymmetric, – = not observed.
IRRamanAssignment
νcalcvobsνcalcvobs
630618vas(Bi—F2) + δ(Bi—F1—Bi)
607596, 593vs(Bi—F2)
578571, 567vas(Bi—F2)
453441vas(Bi—Fµ)
256254δ(F2—Bi—F2)
202δ(F—Bi—F)
168δ(F—Bi—F)
177164δ(F2—Bi—F1)
125δ(F2—Bi—F1) + vas(Bi—F1)
Fractional atomic coordinates and isotropic displacement parameters (Å2). top
xyzUiso
Bi0000.0199 (2)
F1001/20.0255 (15)
F20.2859 (7)0.0950 (7)00.0275 (8)

Acknowledgements

We thank the X-ray facilities of Dr Sergei I. Ivlev for their great service. We thank Solvay for the kind donation of fluorine. We thank Dr Tambornino for drawing our attention to BiF5.

References

First citationBrandenburg, K. & Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDovesi, R., Erba, A., Orlando, R., Zicovich–Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.  Google Scholar
First citationHebecker, C. (1971). Z. Anorg. Allg. Chem. 384, 111–114.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kozisek, J. (2016). Acta Chim. Slov. 9, 136–140.  CrossRef CAS Google Scholar
First citationMaschio, L., Kirtman, B., Rérat, M., Orlando, R. & Dovesi, R. (2013). J. Chem. Phys. 139, 164102.  Web of Science CrossRef PubMed Google Scholar
First citationPascale, F., Zicovich–Wilson, C. M., López Gejo, F., Civalleri, B., Orlando, R. & Dovesi, R. (2004). J. Comput. Chem. 25, 888–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWartenberg, H. von (1940). Z. Anorg. Allg. Chem. 244, 337–347.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZicovich–Wilson, C. M., Pascale, F., Roetti, C., Saunders, V. R., Orlando, R. & Dovesi, R. (2004). J. Comput. Chem. 25, 1873–1881.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds