research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 July 2024; accepted 22 July 2024; online 31 July 2024)

Gold complexes with amine ligands, Part 17. Part 16: Döring & Jones (2024a).

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z′ = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z′ = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or XX contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 18.

1. Chemical context

In the previous part (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729-737.]) of our series of publications `Gold complexes with amine ligands', we reported the structures of four gold(I) halide complexes involving methyl­pyridine (picoline) and di­methyl­pyridine (lutidine) ligands. That publication presents much introductory material that we do not repeat here. For convenience, we have inter­preted the term `amine' liberally to include aza-aromatics.

In this publication we describe the structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br). These are: tri­chlorido­(2-methyl­pyridine)­gold(III) 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III) 2; tri­bromido­(3-methyl­pyridine)­gold(III) 3; tri­bromido­(2,4-di­methyl­pyridine)­gold(III) 4; tri­chlorido­(3,5-di­methyl­pyridine)gold(III) 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III) 6 and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III) 7. Additionally, we present the structure of 8, the 1:1 adduct of 2 and 6.

[Scheme 1]

Note added during revision: A referee commented that 8 might be referred to as a co-crystal rather than an adduct. This is certainly a reasonable suggestion in view of the IUCr definition of a co-crystal (https://dictionary.iucr.org/Co-crystal): `Solid consisting of a crystalline single-phase material composed of two or more different mol­ecular and/or ionic compounds, generally in a stoichiometric ratio, which are neither solvates nor simple salts.' The problem in our view is that a solid is not necessarily the same as a crystal. We would therefore prefer to say that we studied a co-crystal of the adduct 8. The IUCr dictionary is an extremely useful document, but it is often difficult to provide watertight definitions of any given concept. For example, Bombicz (2024[Bombicz, P. (2024). IUCrJ, 11, 3-6.]) recently offered reasoned criticism of the IUCr definition of `isostructural/isotypic', and we supported her views in our previous paper (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729-737.]).

The structure of the parent compound (py)AuCl3, Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode PYAUCL10, was presented by Adams & Strähle (1982[Adams, H.-N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]) (`py' = `pyridine' throughout this paper). Two other compounds with the composition (py)AuX3 were in fact adducts of the type {[(py)2AuX2]+[AuX4]·[(py)AuX3]} [X = Cl, KILFIV; Bourosh et al. (2007[Bourosh, P., Bologa, O., Simonov, Y., Gerbeleu, N., Lipkowski, J. & Gdaniec, M. (2007). Inorg. Chim. Acta, 360, 3250-3254.]); X = Br, WOQMEU; Peters et al., 2000[Peters, K., Peters, E.-M., von Schnering, H. G., Hönle, W., Schmidt, R. & Binder, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 413-414.])]. The only related alkyl­pyridine structure is that of (4-Et-py)AuCl3 (ESITIM; Hobbollahi et al., 2019[Hobbollahi, E., List, M. & Monkowius, U. (2019). Monatsh. Chem. 150, 877-883.]). Other derivatives involving `simple' substituted pyridines as ligands are the isotypic pair (4-CN-py)AuX3 (X = Cl, WIRGAH or Br, WIRFUA; Mohammad-Natij et al., 2013[Mohammad-Nataj, R., Abedi, A. & Amani, V. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1375-1380.]) and several complexes (3-X1-py)AuX23 (X1 = halogen, X2 = Cl or Br) (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]). The structures of this latter series and of (4-Et-py)AuCl3 are discussed in the section Database survey.

2. Structural commentary

All the structures crystallize solvent-free; Z′ values are 0.5 for 5 and 7, which display crystallographic twofold symmetry (with atoms N11, C14, Au1 and Cl1 on the twofold rotation axes 0.5, y, 0.75 and 0.5, y, 0.25, respectively), 2 for 4 and 1 for all other structures. Structures 1a and 2 are isotypic, but 5 and 6, which also differ only in the halogen, are not. Figs. 1[link]–9[link][link][link][link][link][link][link][link] show the mol­ecules of these compounds in the crystal, with ellipsoids drawn at the 50% probability level. Selected bond lengths and angles are given in Tables 1[link]–9[link][link][link][link][link][link][link][link]. The mol­ecules are numbered such that atoms X1 (and X4, where two independent mol­ecules are present) are trans to the pyridinic nitro­gen atoms. The numbering of X2/X3, cis to the pyridinic nitro­gen, is chosen to make X2—Au1—N11—C12 the smallest absolute torsion angle (with appropriately altered numbering for structures with two residues). This does not apply to 5 and 7, for which the cis sites are symmetry-related. The ring numbering of 6 (C12 to C16), otherwise ambiguous, is assigned by the same criterion.

Table 1
Selected geometric parameters (Å, °) for 1a[link]

Au1—N11 2.039 (4) Au1—Cl2 2.2799 (15)
Au1—Cl3 2.2632 (15) N11—C12 1.333 (7)
Au1—Cl1 2.2708 (14) N11—C16 1.364 (7)
       
N11—Au1—Cl3 89.27 (13) Cl3—Au1—Cl2 177.20 (5)
N11—Au1—Cl1 178.94 (13) Cl1—Au1—Cl2 90.91 (5)
Cl3—Au1—Cl1 91.06 (6) C12—N11—C16 121.2 (5)
N11—Au1—Cl2 88.81 (13)    
       
Cl3—Au1—N11—C12 101.8 (4) Cl3—Au1—N11—C16 −80.4 (4)
Cl2—Au1—N11—C12 −76.2 (4) Cl2—Au1—N11—C16 101.6 (4)

Table 2
Selected geometric parameters (Å, °) for 1b[link]

Au1—N11 2.030 (4) Au1—Cl2 2.2766 (12)
Au1—Cl3 2.2652 (14) N11—C16 1.347 (6)
Au1—Cl1 2.2688 (13) N11—C12 1.354 (7)
       
N11—Au1—Cl3 89.65 (14) Cl3—Au1—Cl2 177.79 (5)
N11—Au1—Cl1 178.32 (13) Cl1—Au1—Cl2 90.90 (5)
Cl3—Au1—Cl1 91.17 (5) C16—N11—C12 120.1 (5)
N11—Au1—Cl2 88.27 (13)    
       
Cl3—Au1—N11—C16 −86.0 (4) Cl3—Au1—N11—C12 98.2 (4)
Cl2—Au1—N11—C16 93.3 (4) Cl2—Au1—N11—C12 −82.5 (4)

Table 3
Selected geometric parameters (Å, °) for 2[link]

Au1—N11 2.050 (5) Au1—Br2 2.4220 (8)
Au1—Br1 2.3996 (7) N11—C16 1.349 (7)
Au1—Br3 2.4085 (8) N11—C12 1.359 (8)
       
N11—Au1—Br1 178.93 (15) Br1—Au1—Br2 90.88 (3)
N11—Au1—Br3 89.24 (16) Br3—Au1—Br2 177.16 (3)
Br1—Au1—Br3 90.84 (3) C16—N11—C12 120.3 (6)
N11—Au1—Br2 89.08 (16)    
       
Br3—Au1—N11—C16 −80.7 (5) Br3—Au1—N11—C12 101.2 (5)
Br2—Au1—N11—C16 101.6 (5) Br2—Au1—N11—C12 −76.5 (5)

Table 4
Selected geometric parameters (Å, °) for 3[link]

Au1—N11 2.062 (4) Au1—Br3 2.4276 (5)
Au1—Br1 2.4009 (5) N11—C16 1.341 (6)
Au1—Br2 2.4225 (5) N11—C12 1.346 (6)
       
N11—Au1—Br1 176.62 (10) Br1—Au1—Br3 90.653 (17)
N11—Au1—Br2 88.25 (10) Br2—Au1—Br3 176.494 (17)
Br1—Au1—Br2 90.649 (17) C16—N11—C12 120.3 (4)
N11—Au1—Br3 90.63 (10)    
       
Br2—Au1—N11—C16 120.5 (3) Br2—Au1—N11—C12 −58.4 (3)
Br3—Au1—N11—C16 −56.1 (3) Br3—Au1—N11—C12 124.9 (3)

Table 5
Selected geometric parameters (Å, °) for 4[link]

Au1—N11 2.062 (3) Au2—N21 2.054 (4)
Au1—Br1 2.3998 (4) Au2—Br4 2.3963 (4)
Au1—Br3 2.4070 (5) Au2—Br6 2.4187 (5)
Au1—Br2 2.4235 (4) Au2—Br5 2.4266 (5)
N11—C16 1.336 (5) N21—C22 1.346 (5)
N11—C12 1.350 (5) N21—C26 1.348 (5)
       
N11—Au1—Br1 179.86 (11) N21—Au2—Br4 178.91 (10)
N11—Au1—Br3 88.97 (10) N21—Au2—Br6 88.46 (10)
Br1—Au1—Br3 90.901 (16) Br4—Au2—Br6 90.810 (16)
N11—Au1—Br2 89.16 (10) N21—Au2—Br5 90.10 (10)
Br1—Au1—Br2 90.974 (15) Br4—Au2—Br5 90.672 (16)
Br3—Au1—Br2 177.518 (17) Br6—Au2—Br5 176.590 (17)
C16—N11—C12 120.5 (4) C22—N21—C26 120.8 (4)
       
Br3—Au1—N11—C16 84.7 (3) Br6—Au2—N21—C22 106.4 (3)
Br2—Au1—N11—C16 −93.7 (3) Br5—Au2—N21—C22 −76.7 (3)
Br3—Au1—N11—C12 −97.3 (3) Br6—Au2—N21—C26 −72.5 (3)
Br2—Au1—N11—C12 84.3 (3) Br5—Au2—N21—C26 104.4 (3)

Table 6
Selected geometric parameters (Å, °) for 5[link]

Au1—N11 2.037 (3) Au1—Cl2 2.2867 (6)
Au1—Cl1 2.2716 (8) N11—C12 1.352 (3)
       
N11—Au1—Cl1 180.0 Cl2—Au1—Cl2i 179.56 (3)
N11—Au1—Cl2 89.779 (14) C12—N11—C12i 121.0 (3)
Cl1—Au1—Cl2 90.221 (14)    
       
Cl2—Au1—N11—C12 51.15 (11) Cl2—Au1—N11—C12i −128.85 (11)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 7
Selected geometric parameters (Å, °) for 6[link]

Au1—N11 2.078 (4) Au1—Br3 2.4295 (4)
Au1—Br1 2.3892 (5) N11—C16 1.344 (6)
Au1—Br2 2.4167 (5)    
       
N11—Au1—Br1 178.39 (10) Br1—Au1—Br3 89.674 (17)
N11—Au1—Br2 90.03 (10) Br2—Au1—Br3 179.045 (17)
Br1—Au1—Br2 89.437 (17) C16—N11—C12 121.8 (4)
N11—Au1—Br3 90.85 (10)    
       
Br2—Au1—N11—C16 124.0 (3) Br2—Au1—N11—C12 −55.8 (3)
Br3—Au1—N11—C16 −56.3 (3) Br3—Au1—N11—C12 123.9 (3)

Table 8
Selected geometric parameters (Å, °) for 7[link]

Au1—N11 2.036 (2) Au1—Cl2 2.2811 (5)
Au1—Cl1 2.2648 (7) N11—C12 1.360 (2)
       
N11—Au1—Cl1 180.0 Cl2—Au1—Cl2i 178.75 (2)
N11—Au1—Cl2 89.375 (12) C12i—N11—C12 121.7 (2)
Cl1—Au1—Cl2 90.625 (12)    
       
Cl2—Au1—N11—C12i −92.76 (10) Cl2—Au1—N11—C12 87.24 (10)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 9
Selected geometric parameters (Å, °) for 8[link]

Au1—N11 2.053 (8) Au2—Br5 2.4136 (9)
Au1—Br1 2.3922 (11) Au2—Br6 2.4253 (10)
Au1—Br3 2.4162 (9) N11—C12 1.347 (11)
Au1—Br2 2.4306 (10) N11—C16 1.360 (10)
Au2—N21 2.056 (8) N21—C26 1.348 (11)
Au2—Br4 2.3901 (11) N21—C22 1.360 (11)
       
N11—Au1—Br1 177.6 (2) N21—Au2—Br5 89.90 (19)
N11—Au1—Br3 90.3 (2) Br4—Au2—Br5 90.14 (4)
Br1—Au1—Br3 90.02 (4) N21—Au2—Br6 89.95 (19)
N11—Au1—Br2 89.0 (2) Br4—Au2—Br6 90.01 (4)
Br1—Au1—Br2 90.84 (4) Br5—Au2—Br6 179.59 (4)
Br3—Au1—Br2 176.66 (4) C12—N11—C16 120.2 (9)
N21—Au2—Br4 179.8 (2) C26—N21—C22 120.6 (9)
       
Br3—Au1—N11—C12 −121.6 (6) Br5—Au2—N21—C26 96.6 (6)
Br2—Au1—N11—C12 55.2 (6) Br6—Au2—N21—C26 −83.8 (6)
Br3—Au1—N11—C16 60.5 (6) Br5—Au2—N21—C22 −86.0 (7)
Br2—Au1—N11—C16 −122.7 (6) Br6—Au2—N21—C22 93.7 (7)
[Figure 1]
Figure 1
The mol­ecular structure of compound 1 (polymorph 1a) in the crystal.
[Figure 2]
Figure 2
The mol­ecular structure of compound 1 (polymorph 1b) in the crystal.
[Figure 3]
Figure 3
The mol­ecular structure of compound 2 in the crystal.
[Figure 4]
Figure 4
The mol­ecular structure of compound 3 in the crystal.
[Figure 5]
Figure 5
The mol­ecular structure of compound 4 (with two independent mol­ecules) in the crystal.
[Figure 6]
Figure 6
The mol­ecular structure of compound 5 in the crystal. Only the asymmetric unit is numbered.
[Figure 7]
Figure 7
The mol­ecular structure of compound 6 in the crystal.
[Figure 8]
Figure 8
The mol­ecular structure of compound 7 in the crystal. Only the asymmetric unit is numbered.
[Figure 9]
Figure 9
The mol­ecular structures of compound 8 (an adduct of 2 and 6) in the crystal.

The pyridine rings are as expected planar, with r.m.s. deviations of the six ring atoms between 0.002 and 0.01 Å. The coordination geometry at the central gold(III) atoms is, also as expected, square-planar; the r.m.s. deviations from the plane of Au, N and the three X atoms range from zero for 5 and 7 (by symmetry) to 0.058 Å for 3, whereby the donor atoms alternate above and below the plane by ca 0.06 Å; a similar alternation is observed for the di­methyl­pyridine component of the adduct 8, whereas the same mol­ecule alone (structure 6) has a much lower r.m.s. deviation of 0.012 Å. The angles between these two planes are 78.4 (1)° for 1a, 84.7 (2)° for 1b, 78.7 (2)° for 2, 57.2 (1)° for 3, 84.5 (1)° and 74.8 (1)° for the two mol­ecules of 4, 51.0 (1)° for 5, 56.0 (1)° for 6, 83.4 (1)° for 7 and 58.2 (2) and 84.3 (2)° for the two components of the adduct 8, corresponding to compounds 6 and 2. The largest angles are thus observed for those structures with a 2-methyl substituent of the pyridine ring, and presumably serve to reduce steric stress between these substituents and the X atoms cis to the nitro­gen donor atom at Au. The gold atoms lie up to 0.15 (1) Å (for 1b) out of the pyridine plane, but lie exactly in this plane (by symmetry) for 5 and 7.

Bond lengths and angles may be regarded as normal. The Au—N bonds are consistently longer trans to Br [average (av.) of seven bonds: 2.059 Å] than trans to Cl (av. of four bonds: 2.036 Å), reflecting a greater trans influence of the bromido ligand compared to chlorido. There is no clear difference between Au—Cl bond lengths trans to N compared with those cis to N, whereas Au—Br bonds trans to N (av. of seven bonds: 2.395 Å) are significantly shorter than those cis to N (av. of fourteen bonds: 2.421 Å). The bond angles at Au are close to the ideal 90°/180°; the angles with the largest deviations for the former are 88.25 (10)° for N1—Au1—Br2 of 3 and 91.17 (5)° for Cl3—Au1—Cl1 of 1b, and for the latter 176.590 (17)° for Br6—Au2—Br5 of 4. The C—N—C angles of the py ligands are all close to 120° (av. of eleven angles: 120.8°).

A least-squares fit of the polymorphs 1a and 1b gave an r.m.s. deviation of 0.08 Å; a similar fit of the two independent mol­ecules of 4 (one inverted) gave a deviation of 0.16 Å. Fits of mol­ecules 2 and 6 (the latter inverted) to the same mol­ecules of the adduct 8 gave r.m.s. deviations of 0.091 and 0.061 Å, respectively. More informative figures are however obtained by fitting only the pyridine ligands, which are closely similar; the differences associated with the AuX3 moieties are then shown more clearly. For 1a/1b, the atoms Cl2 and Cl3 differ in position by 0.26 and 0.20 Å respectively (Fig. 10[link]). For 4, the gold atoms lie on opposite sides of the pyridine plane, and this, coupled with the 10° difference in the inter­planar angle, leads to significant differences in the positions of the bromine atoms (0.39, 0.50, 0.51 Å, respectively for Br1–3; Fig. 11[link]). A similar effect, although the inter­planar angles are almost equal, is seen for the fit of 1b with its counterpart in the adduct 8 (deviations 0.50, 0.43, 0.40 Å; Fig. 12[link]), whereas the largest difference for the fit of 6 with its counterpart in 8 is for Br1 (0.22 Å; Fig. 13[link]).

[Figure 10]
Figure 10
A least-squares fit of the pyridinic ligands of 1a and 1b (excluding H atoms). 1a is the dotted mol­ecule.
[Figure 11]
Figure 11
A least-squares fit of the pyridinic ligands of both mol­ecules of 4 (excluding H atoms). Mol­ecule 1 (centred on Au1) is dotted.
[Figure 12]
Figure 12
A least-squares fit of the pyridinic ligands of 1b and its counterpart in the adduct 8 (excluding H atoms). 1b is the dotted mol­ecule.
[Figure 13]
Figure 13
A least-squares fit of the pyridinic ligands of 6 and its counterpart in the adduct 8 (excluding H atoms). 6 is the dotted mol­ecule.

3. Supra­molecular features

Hydrogen bonds of the type C—H⋯X for all structures are given in Tables 10[link]–18[link][link][link][link][link][link][link][link]. These include several borderline cases that are not discussed explicitly. For all packing diagrams, the labelling indicates the asymmetric unit, and hydrogen atoms not involved in secondary contacts are omitted for clarity. The choice of `important' inter­actions and their hierarchy is necessarily subjective, at least to some extent; diagrams with a small number of heavy-atom contacts are easier to inter­pret than those involving a larger number of hydrogen bonds, and this is especially true for H⋯Br contacts, which are probably weaker than H⋯Cl. Primes (′,′′) indicate symmetry-equivalent atoms; operators are not given in full each time. A summary of the packing features is given in Table 19[link].

Table 10
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯Cl1i 0.98 2.96 3.888 (6) 159
C14—H14⋯Cl2ii 0.95 2.93 3.538 (6) 123
C16—H16⋯Cl2iii 0.95 2.75 3.553 (6) 142
C17—H17C⋯Cl2 0.98 2.90 3.596 (6) 129
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+2].

Table 11
Hydrogen-bond geometry (Å, °) for 1b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cl1i 0.95 2.79 3.683 (6) 157
C15—H15⋯Cl1ii 0.95 2.88 3.527 (6) 126
C17—H17C⋯Cl1i 0.98 2.86 3.798 (6) 160
C16—H16⋯Cl2iii 0.95 2.70 3.610 (6) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z].

Table 12
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Br1i 0.95 3.09 3.754 (7) 129
C17—H17A⋯Br1ii 0.98 3.05 3.972 (7) 156
C17—H17B⋯Br1iii 0.98 3.06 3.982 (6) 157
C14—H14⋯Br2iv 0.95 3.04 3.636 (7) 122
C16—H16⋯Br2v 0.95 2.86 3.683 (7) 146
C17—H17C⋯Br2 0.98 2.96 3.690 (7) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, y, z-1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y+1, -z+2].

Table 13
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Br1i 0.95 2.97 3.905 (5) 168
C16—H16⋯Br1ii 0.95 2.86 3.721 (5) 151
C12—H12⋯Br2iii 0.95 2.88 3.684 (4) 144
C14—H14⋯Br3iv 0.95 3.08 3.880 (5) 143
C17—H17B⋯Br3iv 0.98 3.06 3.984 (5) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y, -z+1].

Table 14
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Br2i 0.95 2.86 3.755 (5) 158
C17—H17C⋯Br4 0.98 2.89 3.861 (5) 171
C23—H23⋯Br4ii 0.95 2.95 3.765 (4) 145
C25—H25⋯Br2iii 0.95 2.92 3.851 (4) 166
C26—H26⋯Br5iv 0.95 2.98 3.890 (4) 161
C27—H27B⋯Br3ii 0.98 3.07 3.855 (4) 138
C27—H27C⋯Br5 0.98 3.01 3.647 (4) 124
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1].

Table 15
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1ii 0.95 2.67 3.564 (2) 158
C14—H14⋯Cl2iii 0.95 2.87 3.659 (3) 142
C14—H14⋯Cl2iv 0.95 2.87 3.659 (3) 142
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 16
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Br1i 0.95 2.91 3.792 (4) 154
C17—H17C⋯Br1ii 0.98 2.87 3.749 (5) 149
C18—H18A⋯Br1i 0.98 2.89 3.784 (5) 151
C18—H18C⋯Br3iii 0.98 2.93 3.902 (5) 174
C14—H14⋯Br2iv 0.95 3.02 3.826 (5) 144
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x, y, z+1]; (iii) [-x, -y+1, -z+2]; (iv) [-x+1, -y+1, -z+2].

Table 17
Hydrogen-bond geometry (Å, °) for 7[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯Cl1ii 0.98 2.87 3.701 (2) 144
C14—H14⋯Cl1iii 0.95 2.67 3.621 (3) 180
Symmetry codes: (ii) [-x+1, -y, -z]; (iii) [x, y+1, z].

Table 18
Hydrogen-bond geometry (Å, °) for 8[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯Br3i 0.98 3.05 3.892 (10) 145
C23—H23⋯Br4ii 0.95 3.01 3.815 (10) 143
C17—H17C⋯Br6i 0.98 2.90 3.792 (10) 152
C16—H16⋯Br5iii 0.95 3.06 4.007 (9) 172
C25—H25⋯Br1iv 0.95 3.06 3.721 (10) 128
C26—H26⋯Br2 0.95 2.94 3.835 (10) 159
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z]; (iii) [x, y, z+1]; (iv) [-x, -y, -z+1].

Table 19
Summary of packing features

Compound No. of axial Au⋯X contacts Offset-stacked dimers [(Au—X)2 quadrilaterals] Connected to form ⋯b Further linkagesb
(py)AuCl (Adams & Strähle, 1982[Adams, H.-N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]) 2 yes double chain (ladder) via edge-linked quadrilaterals  
1a and 2 (isotypic) 1 yes double chain via XX contacts  
1b 0 no double chain via Cl⋯Cl and H⋯Cl contacts  
3 2 yes layer via Br⋯Br contacts layers connected via Br⋯Br contacts
4 (both mol­ecules) 1 yes double chain via Br⋯Br contacts (analogous to 1a and 2) layers connected via Br⋯Br contacts
5 2 yes chain via apex-linked quadrilaterals connected to form layers via Cl⋯Cl contacts
6 1 yes double chain via Br⋯Br contacts (analogous to 1a and 2) connected to form double layer via Br⋯Br contacts
7 0 no layer via H⋯Cl and Cl⋯π contacts  
8 Au1 2, Au2 0 Au1 yes, Au2 no layer via Br⋯Br contacts layers connected via Br⋯Br contacts
ESITIM (Hobbollahi et al., 2019[Hobbollahi, E., List, M. & Monkowius, U. (2019). Monatsh. Chem. 150, 877-883.])a 2 no layer structure with linked tetra­meric rings  
WEFQAD (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.])a 2 yes ladder structure ladders connected via Br⋯Cl contacts
WEFQEH (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.])a 2 no layer structure analogous to ESITIM layers connected via F⋯F contacts
WEFQIL (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.])a 2 yes chain via apex-linked quadrilaterals connected to form layers via Cl⋯Clpy contacts
WEFQOR (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.])a 2 yes ladder structure connected to form layers via I⋯Cl contacts.
WEFRAE (Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.])a 2 yes chain via apex-linked quadrilaterals connected to form layers via Br⋯Br contacts
Notes: (a) Refcodes refer to structures whose packing is discussed in the section Database survey; (b) these columns do not necessarily present an exhaustive list; see text for further details.

Before discussing the packing of 18 in detail, it is useful to look back on the packing of (py)AuCl3 (Adams & Strähle, 1982[Adams, H.-N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]; space group C2/c, Z = 8), to see what types of secondary inter­action can arise. Short non-bonded contacts were observed between the gold atom and two chlorine atoms, positioned axially to the main coordination plane in such a way as to complete a highly stretched octa­hedron at the gold atom (Au⋯Cl 3.636 and 3.648 Å, Cl⋯Au⋯Cl 173.0°; operators [{1\over 2}] − x, −[{1\over 2}] + y, 1 − z and [{1\over 2}] − x, [{1\over 2}] + y, 1 − z ). This leads to ladder-like double chains of residues (Fig. 14[link]), parallel to the b axis, in which the mol­ecules display offset stacking of the AuX3 groups; one Au—Cl bond of each mol­ecule (the rungs of the ladder) shares two Au⋯Cl contacts with anti­parallel Cl—Au bonds of each neighbouring mol­ecule (the side rails of the ladder). The (Au—X)2 quadrilaterals, approximately rectangular and with side lengths corresponding to the Au—Cl bond length and the Au⋯Cl contact distance, are a recurring feature in the structures discussed here. Offset stacking of this type is a common feature in AuX3 complexes, and we have observed it e.g. in four modifications of (tetra­hydro­thio­phene)AuCl3 (Upmann et al., 2017[Upmann, D., Näther, C., Jess, J. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311-316.]). In general, any suitable donor atoms can occupy these two contact sites. It might be argued that such contacts are merely connected with the steric ease of approach to the two sides of the coordination plane; this has also been argued for short contacts to the linearly coordinated gold atom of gold(I) complexes, although H⋯Au hydrogen bonding in such systems is reasonably well established (Schmidbaur, 2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]; Schmidbaur et al., 2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]). However, recent studies and calculations (Daolio et al., 2021[Daolio, D., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385-14389.]; Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]) have indicated that there is a π-hole at the gold atom, and that there is thus a definite attractive inter­action, a `coinage bond', between the gold atom and the additional donor(s) (see below).

[Figure 14]
Figure 14
The packing of (py)AuCl3 (Adams & Strähle, 1982[Adams, H.-N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]), showing two adjacent ladder-like double chains parallel to the b axis at (x, z) = (0.25, 0) and (0.75, 0.5). The view direction is approximately parallel to the c axis (but rotated slightly to reduce overlap). Thick dashed lines indicate Au⋯Cl contacts; thin dashed lines indicate `weak' H⋯Cl hydrogen bonds or short Cl⋯Cl contacts. Atomic coordinates were taken from the database (refcode PYAUCL10); hydrogen-atom positions were calculated using the HADD option of XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]). Colour codes for this Figure and for Figs. 29[link]–34[link][link][link][link][link] are the same as for those of 18 (C and H black, N dark blue, Au yellow, Cl green, Br brick-red), but we do not number the atoms in these Figures because the database numbering is not consistent e.g. for cis and trans halogen atoms.

At the time of publication of the (py)AuCl3 structure, more than 40 years ago (the data were probably recorded in the late 1970s), the main inter­est in crystal structure determinations generally centred on the mol­ecule being studied, whereas inter­molecular contacts were often neglected. The analysis of the Au⋯Cl contacts in (py)AuCl3 constituted a welcome exception. However, the structure contains other secondary contacts that were not mentioned, probably because at the time such contacts were not regarded as significant. First, there is a short Cl⋯Cl contact of 3.462 Å connecting the `ladders'. Such formally non-bonding contacts between halogen atoms have been the subject of considerable inter­est for some time and are usually termed `halogen bonds'. For C—XX—C systems, they are considered to involve a small region of positive charge in the extension of the C—X bond vectors beyond the atom X, often leading to one C—XX angle of ca 90° and one of ca 180° (see e.g. Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.], or Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.], for review articles); they are quite common for Au—X systems, but we are not aware of any systematic and/or theoretical study of XX contacts in these systems. We have drawn attention to XX contacts in various tetra­halogenidoaurate(III) salts (e.g. Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]) and in LAuX3 complexes (e.g. Döring & Jones, 2024b[Döring, C. & Jones, P. G. (2024b). Acta Cryst. E80, 476-480.]), and recently presented a short database survey of the latter (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]). Secondly, there are short contacts of the type C—H⋯Cl that are now regarded as hydrogen bonds and are, somewhat misleadingly, often termed `weak' hydrogen bonds. These were not mentioned in the 1982 publication, and indeed no hydrogen atoms were included in the refinement, which was not unusual at the time for heavy-atom structures. We used the program XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]) to calculate the hydrogen-atom positions, and established that there are three short H⋯Cl contacts, one as short as 2.79 Å; this connects neighbouring mol­ecules in the ladders. Two further such contacts (2.85 and 2.86 Å) connect the ladders; these are omitted from Fig. 14[link] for clarity.

The packing diagram of compound 1a is shown in Fig. 15[link]. The mol­ecules are linked to form inversion-symmetric dimers (operator 1 − x, 1 − y, 2 − z) in an offset packing pattern, with Au1⋯Cl2′ = 3.441 (2) Å; reinforcement is provided by the shortest hydrogen bond H16⋯Cl2′. The dimers are in turn linked by a short contact Cl2⋯Cl3(1 + x, y, z) = 3.239 (2) Å to form double chains parallel to the a axis. The angles Au1—Cl2⋯Cl3′ and Au1—Cl3⋯Cl2′ are 161.09 (6) and 162.30 (7)°, respectively. There are no other Cl⋯Cl contacts < 3.8 Å. In the packing of compound 2 (isotypic to 1a) the corresponding dimensions are Au1⋯Br2′ = 3.5654 (8), Br2⋯Br3 = 3.3840 (9) Å, Au1—Br2⋯Br3′ = 164.38 (3), Au1—Br3⋯Br2′ = 159.34 (3)°. The second polymorph 1b has no Au⋯Cl contact shorter than 3.833 (2) Å for Au1⋯Cl2(−x, 1 − y, −z), but has an even shorter Cl⋯Cl contact: Cl2⋯Cl3(x, y, −1 + z) = 3.164 (2) Å. This combines with the shortest H⋯Cl hydrogen bond, again H16⋯Cl2, to form double chains of mol­ecules parallel to the a axis (Fig. 16[link]), with Au1—Cl2⋯Cl3′ = 172.65 (7)° and Au1—Cl3⋯Cl2′ = 174.55 (8)°. The double chains are linked in the b direction by the hydrogen bond H13⋯Cl1. It is notable throughout this series of structures that the cis (to the pyridine ligands) halogen atoms X2 and X3 (or X5 and X6) tend to be involved in the main packing features, whereas the trans halogen atom X1 (or X4) often provides the additional linkages.

[Figure 15]
Figure 15
Packing diagram of compound 1, polymorph 1a, viewed parallel to the b axis in the region y ≃ 0.5. Dashed bonds indicate Au⋯Cl or Cl⋯Cl contacts (thick) or H⋯Cl hydrogen bonds (thin).
[Figure 16]
Figure 16
Packing diagram of compound 1, polymorph 1b, viewed parallel to the b axis in the region y ≃ 0.5. Dashed bonds indicate Cl⋯Cl contacts (thick) or H⋯Cl hydrogen bonds (thin).

The packing of compound 3 consists of layers parallel to the bc plane (Fig. 17[link]) at x ≃ 0.25 and 0.75, in which the two contacts Au1⋯Br2([{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z) = 3.4688 (5) Å and Au1⋯Br3([{1\over 2}] − x, [{1\over 2}] − y, 1 − z) = 3.6535 (5) Å complete a stretched octa­hedron at the gold atom [angles Br2′⋯Au1⋯Br3′ = 173.91 (1)°, Au1—Br2⋯Au1′ = 148.42 (2)°]. The Au1⋯Br3 contacts generate an offset-stacked dimer, but this stacking is not further extended. The contact Br3⋯Br3([{1\over 2}] − x, −[{1\over 2}] − y, 1 − z) = 3.5256 (9) Å completes the layer, with Au1—Br3⋯Br3′ = 170.31 (3)°. The two shortest H⋯Br contacts also lie within this layer, but are omitted from Fig. 17[link] for clarity. The layers are linked by the Br1⋯Br1(−x, y, [{1\over 2}] + z) contact of 3.4531 (9) Å, with Au1—Br1⋯Br1′ = 174.62 (3) Å, and by stacking of the pyridine rings [inter­centroid distances 3.657 (2) and 3.619 (2) Å, slippage 1.28 and 1.38 Å, operators 1 − x, −y, 1 − z and 1 − x, 1 − y, 1 − z respectively] (Fig. 18[link]). No other structure presented here has an inter­centroid distance between the rings < 3.70 Å.

[Figure 17]
Figure 17
Packing diagram of compound 3, viewed perpendicular to the bc plane in the region x ≃ 0.25. Dashed bonds indicate Au⋯Br contacts (thick) or Br3⋯Br3 contacts (thin).
[Figure 18]
Figure 18
Packing diagram of compound 3, projected parallel to the b axis, showing the linking of the layers of Fig. 17[link] by the Br1⋯Br1 contacts (thick dashed lines, vertical).

The packing of compound 4 is closely related to that of 1a. Each independent mol­ecule forms double chains parallel to the a axis that are topologically analogous to those of 1a, with dimers arising from anti­parallel (Au—Br)2 contacts and further linked by Br⋯Br contacts; dimensions (Å and °) are Au1⋯Br2(1 − x, 1 − y, −z) = 3.6606 (5), Br2⋯Br3(1 + x, y, z) = 3.3117 (6), Au—Br2⋯Br3′ = 164.67 (2), Au1—Br3⋯Br2′ = 165.45 (2) for the first mol­ecule (Fig. 19[link]) and Au2⋯Br5(−x, 1 − y, 1 − z) = 3.8328 (5), Br5⋯Br6(−1 + x, y, z) = 3.5191 (6), Au2—Br5⋯Br6′ = 147.93 (2), Au2—Br6⋯Br5′ = 151.00 (2) for the second mol­ecule (Fig. 20[link]). It is notable that the contact distances are shorter and the angles more linear for mol­ecule 1 than for mol­ecule 2, for reasons that are not apparent. The main difference from 1a is that the two chains are further linked in 4 by the contacts Br1⋯Br6(x, [{3\over 2}] − y, −[{1\over 2}] + z) = 3.5977 (6) and Br3⋯Br4 = 3.5591 (6) Å (Fig. 21[link]).

[Figure 19]
Figure 19
A double chain of mol­ecules 1 for compound 4, with view direction parallel to the b axis. Dashed lines indicate Au⋯Br and Br⋯Br contacts.
[Figure 20]
Figure 20
A double chain of mol­ecules 2 for compound 4, with view direction parallel to the b axis. Dashed lines indicate Au⋯Br and Br⋯Br contacts.
[Figure 21]
Figure 21
Projection of the structure of compound 4 parallel to the a axis. Mol­ecules 2 are indicated by the thicker bonds of the rings. Thick dashed lines indicate Br⋯Br contacts between the double chains of mol­ecule 1 and 2 (in the regions y ≃ 0.5, z ≃ 0 and y ≃ 0.5, z ≃ 0.5 respectively, and in regions related to these by symmetry). Thin dashed lines are contacts within the chains, as seen in the previous two figures.

The packing of compound 5 resembles that of (py)AuCl in that the mol­ecules are assembled into chains linked by offset stacking, with Au1⋯Cl2(1 − x, 1 − y, 1 − z and x, 1 − y, [{1\over 2}] + z) = 3.6401 (7) Å, Cl2′⋯Au1⋯Cl2′′ = 163.15 (2)°; the chains run parallel to the a axis. However, the Au2Cl2 quadrilaterals are not edge-linked as in (py)AuCl, but apex-linked. Similar chains were observed in the isotypic pair (4-CN-py)AuX3 (X = Cl or Br; Mohammad-Natij et al., 2013[Mohammad-Nataj, R., Abedi, A. & Amani, V. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1375-1380.]). Adjacent chains are linked by the contact Cl2⋯Cl2(2 − x, y, [{3\over 2}] − z) = 3.5501 (13) Å to form layers parallel to the ac plane (Fig. 22[link]). The hydrogen bond H2⋯Cl1, 2.67 Å, is not included in Fig. 22[link] because of the view direction, in which the rings, lying in or close to the planes at x ≃ 0, 0.5, 1 etc., are seen edge-on. Layers are connected in the b direction by the three-centre hydrogen bond from H14 to two Cl2 atoms (Fig. 23[link]).

[Figure 22]
Figure 22
The layer structure of compound 5 viewed parallel to the b axis. Dashed lines indicate Au⋯Cl and Cl⋯Cl inter­actions. The Au coordination planes are seen edge-on, so that Au1 obscures Cl1 or vice versa.
[Figure 23]
Figure 23
Projection of the structure of compound 5 viewed perpendicular to the ab plane. The dashed lines connecting the layers (see Fig. 22[link]) are the three-centre hydrogen bonds H14⋯Cl2 (with two symmetry-equivalent Cl2 atoms).

The packing of compound 6 involves double chains, parallel to the a axis (Fig. 24[link]) that are topologically the same as those of 1a and 4. The usual dimers are formed, although the contact distance is rather long: Au1⋯Br3(−x, 1 − y, 1 − z) = 3.7738 (6) Å. The dimers are connected by the contacts Br2⋯Br3(1 + x, y, z) = 3.4644 (6) Å, with angles Au1—Br2⋯Br3′ = 165.93 (2)° and Au1—Br3⋯Br2′ = 166.15 (2)°. The double chains are connected by the contacts Br1⋯Br1(−x, −y, −z) = 3.4284 (9) Å, with Au1—Br1⋯Br1′ = 156.36 (3)°, to form a double layer parallel to (0[\overline{2}]1) (Fig. 25[link]).

[Figure 24]
Figure 24
A double chain of compound 6, viewed parallel to the c axis. Dashed bonds indicate Au⋯Br or Br⋯Br inter­actions.
[Figure 25]
Figure 25
A double layer of compound 6 parallel to the plane (0[\overline{2}]1). The double chains of Fig. 24[link] are linked by Br1⋯Br1 contacts [approximately vertical in this view, which is rotated by ca 20° around the horizontal axis from the direction perpendicular to (0[\overline{2}]1)].

The packing of compound 7 is unexpected; it involves neither Au⋯Cl nor Cl⋯Cl inter­actions. Instead, the two important contacts are the short hydrogen bond H14⋯Cl1′(x, 1 + y, z) and a Cl⋯π contact from Cl2 to the centroid (Cg) of the pyridine ring at ([{3\over 2}] − x, [{1\over 2}] − y, 1 − z); the contact distance Cl2⋯Cg′ is 3.5458 (5) Å, with angles Au1—Cl2⋯Cg′ = 162.6° and Cg′⋯Cl2⋯Cg" = 171.4°. The Cl⋯π inter­actions propagate parallel to [101], so that the result is a layer structure parallel to (10[\overline{1}]) (Fig. 26[link]). This type of inter­action can be regarded as a halogen bond from the chlorine atom to the π electron cloud of the pyridine ligand.

[Figure 26]
Figure 26
The layer structure of compound 7 viewed perpendicular to (10[\overline{1}]). The dashed lines indicate H⋯Cl hydrogen bonds (thin) or Cl⋯π inter­actions (thick).

The main feature of the packing of adduct 8 (composed of 2 and 6) is a layer structure (Fig. 27[link]) parallel to (110). Chains of alternating mol­ecules of 2 and 6, horizontal in Fig. 27[link], run parallel to [1[\overline{1}][\overline{1}]]; they are propagated by the contacts Br2⋯Br5(1 − x, −y, −z) = 3.2915 (11) Å and Br3⋯Br6(−x, 1 − y, 1 − z) = 3.5493 (13) Å, with Au1—Br2⋯Br5′ = 161.86 (5), Au2—Br5⋯ Br2′ = 169.76 (5), Au1—Br3⋯Br6′ = 162.49 (5) and Au2—Br6⋯Br3′ = 151.56 (5)°. As in the structure of 2 alone, there are no axial contacts to the gold atom Au2 [discounting Au2⋯Br2 3.9093 (11) Å as too long]. The gold atom of mol­ecule 6 has two axial contacts, Au1⋯Br2(1 − x, −y, 1 − z) = 3.5279 (10) and Au1⋯Br6 = 3.5169 (10) Å, with Br2′⋯Au1⋯Br6 = 169.74 (2)°, in contrast to its single axial contact in the structure of 6 alone. The former contact is part of an offset-stacked dimer (see the small quadrilaterals in Fig. 27[link]), but these quadrilaterals do not associate directly to form more extensive elements of the packing. The linkages between layers are provided by the contacts Br1⋯Br1(−x, −y, 1 − z) = 3.362 (2) and Br4⋯Br4(1 − x, 1 − y, −z) = 3.343 (2) Å, with Au1—Br1⋯Br1′ = 175.87 (7) and Au2—Br4⋯Br4′ = 153.75 (6)° (Fig. 28[link]), in a manner reminiscent of the inter­layer links in 3 and those within the double layers of 6.

[Figure 27]
Figure 27
The layer structure of adduct 8 viewed perpendicular to (110). The dashed lines indicate Au⋯Br or Br⋯Br contacts.
[Figure 28]
Figure 28
The links between the layers (seen edge-on) of adduct 8 are provided by the contacts Br1⋯Br1′ and Br4⋯Br4′, drawn with thick dashed lines. The former are almost exactly vertical in this diagram; the latter are slightly angled to the vertical direction. The view direction is parallel to the c axis.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2024.1.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for `simple' compounds of the form LAuCl3 (L = pyridine ligand with no substituents involved in further rings, X = halogen) gave 21 hits. The Au—N bond lengths were 2.015–2.073, av. 2.043 (13) Å, the Au—Cl bond lengths trans to N were 2.255–2.273, av. 2.263 (3) Å, and the Au—Cl bond lengths cis to Au—N were 2.221–2.29, av. 2.275 (11) Å. No clear trans influences can be recognised in these values. The three hits for X = Br were the (py)AuBr3 component of {[(py)2AuBr2]+[AuBr4]·[(py)AuBr3]} (WOQMEU, Peters et al., 2000[Peters, K., Peters, E.-M., von Schnering, H. G., Hönle, W., Schmidt, R. & Binder, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 413-414.]); (4-CN-py)AuBr3 (WIRFUA, Mohammad-Natij et al., 2013[Mohammad-Nataj, R., Abedi, A. & Amani, V. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1375-1380.]); and (3-F-py)AuBr3 (WEFRAE, Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]). All showed Au—Brtrans bonds significantly shorter than Au—Brcis, by ca 0.02–0.03 Å, but the Au—N bond lengths were variable at 2.040–2.098 Å. The sample is probably too small to draw reliable conclusions.

It is instructive to take six of the simplest compounds thus found and briefly compare their packing features with those of 18. The compounds chosen are: L = 4-ethyl­pyridine, X = Cl (ESITIM, Hobbollahi et al., 2019[Hobbollahi, E., List, M. & Monkowius, U. (2019). Monatsh. Chem. 150, 877-883.]); L = 3-bromo­pyridine, X = Cl (WEFQAD); L = 3-fluoro­pyridine, X = Cl (WEFQEH); L = 3-chloro­pyridine, X = Cl (WEFQIL); L = 3-iodo­pyridine, X = Cl (WEFQOR); and L = 3-fluoro­pyridine, X = Br (WEFRAE; all from Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]). In all cases, the authors drew attention to the short Au⋯X contacts. These compounds are included in Table 19[link]. C—H⋯X hydrogen bonding is neglected.

ESITIM crystallizes in Pcab with Z = 8. In the original publication, the Au⋯Cl contacts (3.244, 3.409 Å) were described as linking the mol­ecules to form infinite chains. In fact, they combine to form a layer structure, involving Au4Cl4 rings, parallel to the ab plane at z ≃ 0.25, 0.75 (Fig. 29[link]). In the series of 3-halo­pyridine complexes, the halogen substituents of the pyridine rings are `non-innocent' atoms as regards to inter­molecular inter­actions. In WEFQAD (P[\overline{1}], Z = 2), the Au⋯Cl contacts (3.492, 3.579 Å) combine to form a `ladder' structure parallel to the a axis. Two short Br⋯Cl contacts to the trans chlorine atom (3.490, 3.690 Å) are observed, which link the layers (Fig. 30[link]). In the corresponding 3-fluoro derivative WEFQEH (P21/n, Z = 4), the Au⋯Cl contacts (3.373, 3.426 Å) combine to form a layer structure, involving Au4Cl4 rings, parallel to the ab plane at z ≃ 0.25, 0.75 (Fig. 31[link]; an equivalent diagram was presented by Pizzi et al. (2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]) but we include this Figure for completeness and for consistency of format). A short F⋯F contact of 2.684 Å links the layers. In the 3-chloro derivative WEFQIL (P21/n, Z = 4), the Au⋯Cl contacts (3.402, 3.412 Å) combine to form a chain of apex-linked quadrilaterals (analogous to the chains in 5) parallel to the a axis; these are liked by Cl⋯Clpy contacts of 3.536 Å to form layers parallel to the ac plane at y ≃ 0.25, 0.75 (Fig. 32[link]), and the layers are connected in the third dimension by another Cl⋯Clpy contact of 3.495 Å. In the 3-iodo derivative WEFQOR (C2/c, Z = 8), the Au⋯Cl contacts (3.368, 3.483 Å) combine to form a `ladder' structure parallel to the b axis; ladders are linked by I⋯Cl contacts of 3.500 Å to form layers parallel to the ab plane at z ≃ 0.25, 0.75 (Fig. 33[link]). The layers are linked in the third dimension by a Cltrans⋯Cltrans contact of 3.433 Å. In WEFRAE (P212121, Z = 4), the tri­bromido analogue of WEFQEH, the Au⋯Br contacts (3.542, 3.588 Å) combine to form a chain of apex-linked quadrilaterals parallel to the a axis; these are linked directly by quite long Br⋯Br contacts of 3.710 Å to form a layer structure parallel to the ab plane at z ≃ 0.25, 0.75 (Fig. 34[link]). Layers are linked in the third dimension by Brtrans⋯Brtrans contacts of 3.712 Å. The fluorine atom is not involved in short contacts.

[Figure 29]
Figure 29
The packing of ESITIM, tri­chlorido­(4-ethyl­pyridine)­gold(III), viewed parallel to the c axis in the region z ≃ 0.75. Dashed lines indicate Au⋯Cl contacts.
[Figure 30]
Figure 30
The packing of WEFQAD, (3-bromo­pyridine)­tri­chlorido­gold(III), viewed perpendicular to the ac plane. Dashed lines indicate Au⋯Cl (thick) or Br⋯Cl (thin) contacts.
[Figure 31]
Figure 31
The packing of WEFQEH, tri­chlorido­(3-fluoro­pyridine)­gold(III), viewed perpendicular to the ab plane in the region z ≃ 0.25. Dashed lines indicate Au⋯Cl contacts. Fluorine atoms are the smaller green circles. This is a redrawn version of Fig. 2[link] of Pizzi et al. (2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]).
[Figure 32]
Figure 32
The packing of WEFQIL, tri­chlorido­(3-chloro­pyridine)­gold(III), viewed perpendicular to the ac plane in the region y ≃ 0.25. Dashed lines indicate Au⋯Cl (thick) or Cl⋯Cl (thin) contacts.
[Figure 33]
Figure 33
The packing of WEFQOR, tri­chlorido­(3-iodo­pyridine)­gold(III), viewed perpendicular to the ab plane in the region z ≃ 0.75. Dashed lines indicate Au⋯Cl or I⋯Cl contacts. Iodine atoms are coloured violet.
[Figure 34]
Figure 34
The packing of WEFRAE, tri­bromido­(3-fluoro­pyridine)­gold(III), viewed perpendicular to the ab plane in the region z ≃ 0.75. Dashed lines indicate Au⋯Br (thick) or Br⋯Br (thin) contacts. Fluorine atoms are coloured green.

A search for AuIII structures related to 7, containing Au—Cl and Au—Npyridinic bonds together with a short Cl⋯π contact (defined by the distance from Cl to the pyridine ring centroid Cg) gave thirteen hits with Cl⋯Cg < 3.7 Å. The shortest distance is 3.344 Å in tri­chlorido-(1,7,15,15-tetra­methyl-3,10-di­aza­tetra­cyclo­[10.2.1.02,11.04,9]penta­deca-2,4,6,8,10-penta­ene)gold(III), a camphorquinoxaline complex (SUYXAN; Glišić et al., 2018[Glišić, B. Đ., Hoffmann, M., Warżaitis, B., Genčić, M. S., Blagojević, P. D., Radulović, N. S., Rychiewska, U. & Duran, M. I. (2018). Polyhedron, 105, 137-149.]).

5. Synthesis and crystallization

Tri­chlorido­(2-methyl­pyridine)­gold(III) (1): 114.2 mg (0.351 mmol) of the gold(I) precursor chlorido­(2-methyl­pyridine)­gold(I) was prepared by the method of Ahrens (1999[Ahrens, B. (1999). Münzmetallkomplexe mit sekundären Bindungen. Dissertation, Technical University of Braunschweig, Germany.]). This was dissolved in 5 ml of di­chloro­methane, and the solution was added to a solution of 100 mg (0.363 mmol) of PhICl2 in 5 ml of di­chloro­methane. Equal (0.4 ml) portions of the solution were transferred to five ignition tubes and overlayered with the five precipitants n-pentane, n-heptane, diethyl ether, diisopropyl ether and petroleum ether (b.p. 313–333 K). The tubes were stoppered and transferred to the refrigerator overnight. Crystals of compound 1, polymorph a, were obtained as yellow prisms and tablets from the tube with diisopropyl ether. In general for these syntheses, crystals also formed in at least some of the other tubes, but the best, judged by inspection under a microscope, were selected for X-ray measurements. Elemental analysis [%]: calc.: C 18.18, H 1.78, N 3.53; found C 17.78, H 1.79, N 3.59. Because of the problem of incomplete oxidation that we have sometimes encountered using PhICl2, the procedure was repeated in parallel using two equivalents of PhICl2, although this precaution later proved to have been unnecessary for the reactions presented here. The same crystallization experiments were carried out. Crystals of compound 1, polymorph b, were obtained as yellow plates from the tube with n-pentane. Elemental analysis [%]: calc.: C 18.18, H 1.78, N 3.53; found: C 17.63, H 1.78, N 3.58.

Tri­bromido­(2-methyl­pyridine)­gold(III) (2): 90 mg (0.247 mmol) of (tht)AuBr (tht = tetra­hydro­thio­phene) were converted to bis­(2-methyl­pyridine)­gold(I) di­bromido­aurate(I) (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729-737.]), which was immediately (without drying) dissolved in 2 ml of di­chloro­methane, and two drops of elemental bromine were added. The usual crystallization experiments were carried out. Crystals of compound 2 were obtained in the form of red blocks and tablets from the tube with n-pentane. Elemental analysis [%]: calc: C 13.60, H 1.33, N 2.64; found: C 12.60, H 1.37, N 2.62.

Tri­bromido­(3-methyl­pyridine)­gold(III) (3): 90 mg (0.247 mmol) of (tht)AuBr were converted to bis­(3-methyl­pyridine)­gold(I) di­bromido­aurate(I) (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729-737.]), which was immediately (without drying) dissolved in 2 ml of di­chloro­methane. Two drops of elemental bromine were added. The usual crystallization experiments were carried out. Crystals of compound 3 were obtained in the form of red plates from the tube with n-pentane. Elemental analysis [%]: calc.: C 13.60, H 1.33, N 2.64; found: C 13.47, H 1.35, N 2.78.

Tri­bromido­(2,4-di­methyl­pyridine)­gold(III) (4): 45,2 mg (0.124 mmol) of (tht)AuBr were dissolved in 2 ml of 2,4-di­methyl­pyridine. The solution was transferred to a 5 ml glass vial and overlayered with diisopropyl ether. The vial was closed and stored in the refrigerator. The supernatant was then pipetted off and the remaining colourless crystals, assumed to be bis­(2,4-di­methyl­pyridine)­gold(I) di­bromido­aurate(I), dried in vacuo, yielded 32.5 mg (48%). The crystals proved to be unsuitable for structure determination because of streaking of the diffraction peaks. They were dissolved in 2 ml of di­chloro­methane and 3 drops of elemental bromine were added, leading to a red solution. This was overlayered with n-pentane and stored in the refrigerator for a week. Crystals of 4 were obtained in the form of red plates and needles. The elemental analysis gave an unsatisfactory value for C: [%] calc.: C 15.46, H 1.67, N 2.58; found: C 13.81, H 1.53, N 2.43.

Tri­chlorido­(3,5-di­methyl­pyridine)­gold(III) (5): 166 mg (0.518 mmol) of (tht)AuCl were converted to bis­(3,5-di­methyl­pyridine)­gold(I) di­chlorido­aurate(I) (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729-737.]). The sample was divided in half; each half was dissolved in 5 ml of di­chloro­methane, and then treated with one or two equivalents of PhICl2. The solutions were subjected to the usual crystallization experiments. Crystals of 5 were obtained in the form of yellow blocks from all tubes; those chosen were from the 1:2 experiment using diethyl ether. Elemental analysis [%]: calc.: C 20.48, H 2.21, N 3.41; found: C 20.23, H 2.121, N 3.58.

Tri­bromido­(3,5-di­methyl­pyridine)­gold(III) (6): see (8) below.

Tri­chlorido­(2,6-di­methyl­pyridine)­gold(III) (7): 122.5 mg (0.382 mmol) of (tht)AuCl were converted to 119 mg (0.175 mmol) of (2,6-di­methyl­pyridine)­gold(I) di­chloro­aurate(I) (Hashmi et al., 2010[Hashmi, A. S. K., Lothschütz, C., Ackermann, M., Doepp, R., Anantharaman, S., Marchetti, B., Bertagnolli, H. & Rominger, F. (2010). Chem. Eur. J. 16, 8012-8019.]). This was divided into two portions, and 2 ml of di­chloro­methane were added to each. A solution of 24.1 mg (0.088 mmol) of PhICl2 in 2 ml of di­chloro­methane was added to one aliquot and a solution of 48.2 mg (0.175 mmol) of PhICl2 in 2 ml of di­chloro­methane to the other. These solutions were subjected to the usual crystallization experiments. Crystals of 7 in the form of yellow blocks were obtained from the 1:2 experiment using n-heptane. Elemental analysis [%]: calc.: C 20.48, H 2.21, N 3.41; found: C 20.71, H 2.20, N 3.53.

Tri­bromido­(2-methyl­pyridine)­gold(III)/tri­bromido­(3,5-di­methyl­pyridine)­gold(III) (1/1) (8): Crystals of compounds 8 and 6 arose serendipitously, partly as a result of human error, as follows. 137.3 mg (0.376 mmol) of (tht)AuBr were converted to 84.0 mg (0.114 mmol) of bis­(2-methyl­pyridine)­gold(I) di­bromo­aurate(I) as above, of which 75.1 mg (0.102 mmol) were dissolved in 5 ml of di­chloro­methane. Five drops of elemental bromine were added. Half of the resulting red solution was overlayered with n-pentane. At some stage, which can no longer be identified (but the 2-picoline was checked by NMR and was pure), the system became contaminated with 3,5-di­methyl­pyridine. One of the red crystals that formed was investigated and proved to be the 1/1 adduct 8. The 1H NMR spectrum of the sample showed the expected two methyl singlets, but in the ratio 4:1 rather than the expected 2:1 for a 1/1 mixture of 2 and 6; this would suggest that the sample of red crystals from which 8 was taken consisted of both 6 and 8. Consistent with this, the solution of the red crystals in CDCl3, left to stand for some time, deposited a few red crystals that proved on X-ray examination to be compound 6.

6. Refinement

Details of the measurements and refinements are given in Table 20[link]. For all structures, multi-scan absorption corrections were applied using spherical harmonics, as implemented in the SCALE3 ABSPACK scaling algorithm (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). For compound 6, analytical numeric absorption corrections using a face-indexed crystal model, based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]), were applied first.

Table 20
Experimental details

  1a 1b 2 3 4
Crystal data
Chemical formula [AuCl3(C6H7N)] [AuCl3(C6H7N)] [AuBr3(C6H7N)] [AuBr3(C6H7N)] [AuBr3(C7H9N)]
Mr 396.44 396.44 529.82 529.82 543.85
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 100 100 100 100 100
a, b, c (Å) 7.6852 (7), 14.3992 (12), 8.7963 (7) 7.8077 (8), 16.4881 (15), 7.6929 (9) 8.0776 (4), 14.7230 (7), 8.9682 (4) 18.6763 (6), 6.78409 (14), 18.4807 (5) 8.07477 (17), 17.2853 (4), 16.3527 (4)
α, β, γ (°) 90, 95.860 (8), 90 90, 103.920 (12), 90 90, 96.617 (5), 90 90, 118.887 (4), 90 90, 90.818 (2), 90
V3) 968.32 (14) 961.26 (18) 1059.45 (9) 2050.18 (12) 2282.19 (8)
Z 4 4 4 8 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 15.96 16.07 25.14 25.99 23.35
Crystal size (mm) 0.30 × 0.03 × 0.02 0.22 × 0.10 × 0.02 0.07 × 0.07 × 0.07 0.12 × 0.10 × 0.02 0.10 × 0.10 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.333, 1.000 0.254, 1.000 0.571, 1.000 0.309, 1.000 0.338, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3572, 3572, 2943 3603, 3603, 2910 3597, 3597, 2716 40540, 3120, 2563 139727, 6677, 5614
Rint 0.064 0.086
θ values (°) θmax = 28.3, θmin = 3.4 θmax = 28.3, θmin = 3.0 θmax = 28.3, θmin = 3.2 θmax = 31.0, θmin = 2.5 θmax = 30.0, θmin = 2.4
(sin θ/λ)max−1) 0.667 0.667 0.667 0.724 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.049, 0.93 0.025, 0.050, 1.00 0.028, 0.040, 0.80 0.026, 0.054, 1.04 0.026, 0.048, 1.05
No. of reflections 3572 3603 3597 3120 6677
No. of parameters 102 102 102 101 222
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.86, −0.87 4.52, −0.87 1.26, −1.40 2.01, −1.71 1.39, −1.59
  5 6 7 8
Crystal data
Chemical formula [AuCl3(C7H9N)] [AuBr3(C7H9N)] [AuCl3(C7H9N)] [AuBr3(C7H9N)]·[AuBr3(C6H7N)]
Mr 410.47 543.85 410.47 1073.67
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100
a, b, c (Å) 7.6240 (3), 15.9360 (6), 9.2538 (4) 8.2506 (3), 8.4726 (4), 9.4210 (4) 11.0184 (3), 10.6600 (2), 9.7760 (3) 9.1741 (9), 11.1922 (9), 11.4596 (7)
α, β, γ (°) 90, 112.333 (5), 90 113.828 (4), 103.543 (4), 98.368 (4) 90, 113.053 (3), 90 83.990 (6), 80.777 (6), 69.147 (8)
V3) 1039.97 (8) 563.93 (5) 1056.55 (5) 1083.92 (16)
Z 4 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 14.86 23.62 14.63 24.58
Crystal size (mm) 0.20 × 0.12 × 0.04 0.21 × 0.15 × 0.02 0.22 × 0.20 × 0.12 0.13 × 0.06 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Analytical (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.270, 1.000 0.050, 0.683 0.267, 1.000 0.052, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13810, 1563, 1496 30785, 3392, 3017 15246, 1600, 1553 7479, 7479, 5015
Rint 0.037 0.071 0.030
θ values (°) θmax = 30.9, θmin = 2.6 θmax = 31.1, θmin = 2.5 θmax = 31.1, θmin = 2.8 θmax = 28.3, θmin = 2.4
(sin θ/λ)max−1) 0.722 0.727 0.726 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.032, 1.07 0.027, 0.059, 1.06 0.013, 0.026, 1.12 0.035, 0.055, 0.82
No. of reflections 1563 3392 1600 7479
No. of parameters 58 111 59 212
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.26, −0.88 1.61, −1.50 0.83, −1.17 2.16, −1.91
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Aromatic hydrogen atoms were included at calculated positions and refined using a riding model with C—H = 0.95 Å. Methyl groups were included as idealized rigid groups with C—H = 0.98 Å and H—C—H = 109.5°, and were allowed to rotate but not tip (command `AFIX 137’). U values of the hydrogen atoms were fixed at 1.5 × Ueq of the parent carbon atoms for methyl groups and 1.2 × Ueq of the parent carbon atoms for other hydrogens. A small number of badly fitting reflections were omitted (1a, two reflections with deviations > 8σ; 1b, seven reflections > 7σ; 2, one reflection > 15σ; 5, one reflection > 6σ; 8, one reflection > 29σ).

Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, with twinning by 180° rotation about the a axis for 1a, 1b and 2 and about [1[\overline{1}]1] for 8. These structures were refined using the `HKLF 5’ method (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The relative volumes of the smaller twinning components refined to 0.4710 (6), 0.4583 (6), 0.4641 (5) and 0.4440 (5), respectively. The twin data reduction merges equivalent reflections before writing the intensity file, so that Rint is meaningless (and is not given in Table 20[link]). The intensity datasets comprise all non-overlapped reflections from both components and all overlapped reflections, so that the number of reflections should be inter­preted with caution. More stringent checks during the data reduction of twins (e.g. the command `remove outliers') mean that the completeness of some datasets is less than ideal, typically around 95%.

Special features and exceptions: For 1b, the large difference peak of 4.5 e Å−3 has coordinates that are arithmetically related to those of the gold atom and thus may represent residual twinning errors. For 3, the x and y coordinates of the gold atom are ca 0.25, which leads to systematically weak reflection classes; checkCIF comments on (pseudo-) B-centring. The second weighting parameter b (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) does not converge, but oscillates over a small range. For 6, the methyl hydrogen atoms at C18 were unclear, and were therefore refined as an ideal hexa­gon of half-occupied sites (command ‘AFIX 127’). However, the disorder may be more extensive than this simple model.

Supporting information


Computing details top

Trichlorido(2-methylpyridine-κN)gold(III) (1a) top
Crystal data top
[AuCl3(C6H7N)]F(000) = 720
Mr = 396.44Dx = 2.719 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6852 (7) ÅCell parameters from 9050 reflections
b = 14.3992 (12) Åθ = 3.0–29.9°
c = 8.7963 (7) ŵ = 15.96 mm1
β = 95.860 (8)°T = 100 K
V = 968.32 (14) Å3Needle, yellow
Z = 40.30 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3572 independent reflections
Radiation source: Enhance (Mo) X-ray Source2943 reflections with I > 2σ(I)
Graphite monochromatorRint = –
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1919
Tmin = 0.333, Tmax = 1.000l = 1111
3572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 1.86 e Å3
0 restraintsΔρmin = 0.86 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.31798 (3)0.60929 (2)0.91424 (2)0.01336 (6)
Cl10.3814 (2)0.68716 (10)1.13752 (16)0.0235 (3)
Cl20.60819 (18)0.59459 (10)0.88550 (16)0.0216 (3)
Cl30.02767 (19)0.62595 (10)0.93062 (17)0.0228 (3)
N110.2625 (6)0.5372 (3)0.7158 (5)0.0145 (10)
C120.2733 (7)0.5754 (4)0.5791 (7)0.0180 (13)
C130.2423 (8)0.5203 (4)0.4490 (7)0.0213 (13)
H130.2497950.5466070.3508650.026*
C140.2010 (8)0.4280 (4)0.4621 (7)0.0240 (14)
H140.1815970.3901430.3735540.029*
C150.1879 (8)0.3911 (4)0.6045 (7)0.0268 (14)
H150.1571400.3277020.6150890.032*
C160.2193 (8)0.4459 (4)0.7300 (7)0.0217 (14)
H160.2110630.4204480.8286210.026*
C170.3146 (8)0.6764 (4)0.5693 (7)0.0251 (15)
H17A0.2281290.7124690.6188850.038*
H17B0.3110910.6947400.4617930.038*
H17C0.4315740.6882230.6209340.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01501 (10)0.01177 (10)0.01354 (10)0.00077 (10)0.00270 (8)0.00073 (11)
Cl10.0311 (9)0.0223 (8)0.0167 (7)0.0007 (6)0.0013 (6)0.0037 (6)
Cl20.0161 (7)0.0276 (9)0.0207 (7)0.0037 (6)0.0009 (6)0.0014 (6)
Cl30.0179 (7)0.0270 (9)0.0239 (8)0.0025 (6)0.0035 (6)0.0025 (7)
N110.015 (3)0.017 (2)0.012 (2)0.0020 (19)0.0009 (19)0.0006 (19)
C120.015 (3)0.014 (3)0.024 (3)0.001 (2)0.003 (3)0.003 (2)
C130.023 (4)0.030 (4)0.011 (3)0.001 (3)0.002 (2)0.001 (3)
C140.030 (4)0.025 (3)0.017 (3)0.001 (3)0.002 (3)0.005 (3)
C150.038 (4)0.015 (3)0.028 (4)0.001 (3)0.003 (3)0.002 (3)
C160.027 (4)0.020 (3)0.017 (3)0.003 (3)0.001 (3)0.001 (3)
C170.039 (4)0.022 (3)0.014 (3)0.000 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
Au1—N112.039 (4)C13—H130.9500
Au1—Cl32.2632 (15)C14—C151.374 (8)
Au1—Cl12.2708 (14)C14—H140.9500
Au1—Cl22.2799 (15)C15—C161.359 (8)
N11—C121.333 (7)C15—H150.9500
N11—C161.364 (7)C16—H160.9500
C12—C131.393 (8)C17—H17A0.9800
C12—C171.493 (8)C17—H17B0.9800
C13—C141.373 (8)C17—H17C0.9800
N11—Au1—Cl389.27 (13)C13—C14—C15119.3 (6)
N11—Au1—Cl1178.94 (13)C13—C14—H14120.3
Cl3—Au1—Cl191.06 (6)C15—C14—H14120.3
N11—Au1—Cl288.81 (13)C16—C15—C14119.5 (6)
Cl3—Au1—Cl2177.20 (5)C16—C15—H15120.2
Cl1—Au1—Cl290.91 (5)C14—C15—H15120.2
C12—N11—C16121.2 (5)C15—C16—N11120.7 (6)
C12—N11—Au1122.4 (4)C15—C16—H16119.7
C16—N11—Au1116.4 (4)N11—C16—H16119.7
N11—C12—C13119.0 (5)C12—C17—H17A109.5
N11—C12—C17119.2 (5)C12—C17—H17B109.5
C13—C12—C17121.8 (5)H17A—C17—H17B109.5
C14—C13—C12120.2 (6)C12—C17—H17C109.5
C14—C13—H13119.9H17A—C17—H17C109.5
C12—C13—H13119.9H17B—C17—H17C109.5
Cl3—Au1—N11—C12101.8 (4)N11—C12—C13—C140.1 (9)
Cl2—Au1—N11—C1276.2 (4)C17—C12—C13—C14178.6 (6)
Cl3—Au1—N11—C1680.4 (4)C12—C13—C14—C151.0 (9)
Cl2—Au1—N11—C16101.6 (4)C13—C14—C15—C161.2 (9)
C16—N11—C12—C131.0 (8)C14—C15—C16—N110.4 (9)
Au1—N11—C12—C13176.6 (4)C12—N11—C16—C150.8 (9)
C16—N11—C12—C17177.8 (5)Au1—N11—C16—C15177.0 (4)
Au1—N11—C12—C174.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl1i0.953.003.876 (6)153
C14—H14···Cl1ii0.952.963.617 (6)127
C15—H15···Cl1ii0.953.003.634 (6)126
C17—H17A···Cl1iii0.983.053.964 (6)156
C17—H17B···Cl1i0.982.963.888 (6)159
C14—H14···Cl2iv0.952.933.538 (6)123
C16—H16···Cl2v0.952.753.553 (6)142
C17—H17C···Cl20.982.903.596 (6)129
C14—H14···Cl3vi0.952.993.793 (6)144
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+2; (vi) x, y+1, z+1.
Trichlorido(2-methylpyridine-κN)gold(III) (1b) top
Crystal data top
[AuCl3(C6H7N)]F(000) = 720
Mr = 396.44Dx = 2.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8077 (8) ÅCell parameters from 5189 reflections
b = 16.4881 (15) Åθ = 3.0–29.8°
c = 7.6929 (9) ŵ = 16.07 mm1
β = 103.920 (12)°T = 100 K
V = 961.26 (18) Å3Plate, yellow
Z = 40.22 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3603 independent reflections
Radiation source: Enhance (Mo) X-ray Source2910 reflections with I > 2σ(I)
Graphite monochromatorRint = –
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2121
Tmin = 0.254, Tmax = 1.000l = 1010
3603 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0258P)2]
where P = (Fo2 + 2Fc2)/3
3603 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 4.52 e Å3
0 restraintsΔρmin = 0.87 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.25056 (3)0.51656 (2)0.21354 (3)0.01380 (6)
Cl10.31201 (18)0.38204 (8)0.21459 (18)0.0207 (3)
Cl20.2469 (2)0.52510 (9)0.08269 (17)0.0223 (3)
Cl30.2480 (2)0.51253 (9)0.50724 (19)0.0257 (3)
N110.1889 (6)0.6363 (3)0.2071 (6)0.0150 (9)
C120.3133 (7)0.6947 (4)0.2214 (7)0.0175 (12)
C130.2617 (8)0.7753 (4)0.2035 (8)0.0226 (12)
H130.3482790.8167010.2145210.027*
C140.0857 (7)0.7958 (3)0.1698 (8)0.0216 (12)
H140.0502620.8510250.1559560.026*
C150.0382 (8)0.7352 (4)0.1565 (10)0.0230 (13)
H150.1602840.7479100.1337550.028*
C160.0171 (7)0.6567 (4)0.1764 (8)0.0201 (12)
H160.0682170.6148810.1684600.024*
C170.5037 (7)0.6680 (3)0.2567 (10)0.0287 (15)
H17A0.5211660.6359870.1550390.043*
H17B0.5329900.6348640.3656120.043*
H17C0.5804320.7158240.2724020.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01750 (10)0.01050 (9)0.01386 (9)0.00089 (10)0.00467 (7)0.00015 (10)
Cl10.0253 (7)0.0121 (7)0.0248 (7)0.0018 (5)0.0061 (6)0.0012 (5)
Cl20.0381 (8)0.0163 (7)0.0138 (7)0.0021 (6)0.0088 (7)0.0005 (5)
Cl30.0375 (8)0.0243 (8)0.0174 (7)0.0053 (7)0.0105 (7)0.0011 (6)
N110.019 (2)0.008 (2)0.017 (2)0.0010 (17)0.0030 (19)0.0011 (19)
C120.018 (3)0.018 (3)0.017 (3)0.002 (2)0.005 (2)0.001 (2)
C130.025 (3)0.015 (3)0.027 (3)0.003 (3)0.006 (3)0.001 (3)
C140.027 (3)0.013 (3)0.026 (3)0.003 (2)0.008 (3)0.000 (2)
C150.021 (3)0.022 (3)0.026 (3)0.004 (2)0.005 (3)0.007 (3)
C160.018 (3)0.017 (3)0.026 (3)0.005 (2)0.007 (2)0.006 (3)
C170.021 (3)0.016 (3)0.049 (4)0.004 (2)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Au1—N112.030 (4)C13—H130.9500
Au1—Cl32.2652 (14)C14—C151.378 (8)
Au1—Cl12.2688 (13)C14—H140.9500
Au1—Cl22.2766 (12)C15—C161.361 (8)
N11—C161.347 (6)C15—H150.9500
N11—C121.354 (7)C16—H160.9500
C12—C131.385 (8)C17—H17A0.9800
C12—C171.512 (7)C17—H17B0.9800
C13—C141.378 (7)C17—H17C0.9800
N11—Au1—Cl389.65 (14)C13—C14—C15119.1 (6)
N11—Au1—Cl1178.32 (13)C13—C14—H14120.4
Cl3—Au1—Cl191.17 (5)C15—C14—H14120.4
N11—Au1—Cl288.27 (13)C16—C15—C14118.9 (6)
Cl3—Au1—Cl2177.79 (5)C16—C15—H15120.6
Cl1—Au1—Cl290.90 (5)C14—C15—H15120.6
C16—N11—C12120.1 (5)N11—C16—C15122.2 (5)
C16—N11—Au1117.9 (4)N11—C16—H16118.9
C12—N11—Au1121.9 (4)C15—C16—H16118.9
N11—C12—C13119.3 (5)C12—C17—H17A109.5
N11—C12—C17117.5 (5)C12—C17—H17B109.5
C13—C12—C17123.2 (5)H17A—C17—H17B109.5
C14—C13—C12120.5 (5)C12—C17—H17C109.5
C14—C13—H13119.8H17A—C17—H17C109.5
C12—C13—H13119.8H17B—C17—H17C109.5
Cl3—Au1—N11—C1686.0 (4)N11—C12—C13—C140.6 (8)
Cl2—Au1—N11—C1693.3 (4)C17—C12—C13—C14179.4 (6)
Cl3—Au1—N11—C1298.2 (4)C12—C13—C14—C150.8 (9)
Cl2—Au1—N11—C1282.5 (4)C13—C14—C15—C160.2 (10)
C16—N11—C12—C130.2 (8)C12—N11—C16—C150.9 (9)
Au1—N11—C12—C13175.5 (4)Au1—N11—C16—C15175.0 (5)
C16—N11—C12—C17179.7 (5)C14—C15—C16—N110.6 (10)
Au1—N11—C12—C174.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl1i0.952.793.683 (6)157
C15—H15···Cl1ii0.952.883.527 (6)126
C17—H17C···Cl1i0.982.863.798 (6)160
C16—H16···Cl2iii0.952.703.610 (6)162
C17—H17B···Cl3iv0.983.003.771 (6)137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
Tribromido(2-methylpyridine-κN)gold(III) (2) top
Crystal data top
[AuBr3(C6H7N)]F(000) = 936
Mr = 529.82Dx = 3.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0776 (4) ÅCell parameters from 7970 reflections
b = 14.7230 (7) Åθ = 3.2–29.2°
c = 8.9682 (4) ŵ = 25.14 mm1
β = 96.617 (5)°T = 100 K
V = 1059.45 (9) Å3Cube, red
Z = 40.07 × 0.07 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3597 independent reflections
Radiation source: Enhance (Mo) X-ray Source2716 reflections with I > 2σ(I)
Graphite monochromatorRint = –
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1919
Tmin = 0.571, Tmax = 1.000l = 1111
3597 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0102P)2]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.40 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.32350 (4)0.61053 (2)0.91242 (3)0.01172 (7)
Br10.39636 (9)0.69112 (5)1.14322 (8)0.01898 (18)
Br20.61485 (9)0.59456 (5)0.87711 (8)0.01859 (19)
Br30.03134 (9)0.62958 (5)0.93519 (8)0.01940 (19)
N110.2616 (7)0.5394 (3)0.7174 (6)0.0123 (14)
C120.2659 (8)0.5774 (5)0.5798 (7)0.0125 (16)
C130.2314 (9)0.5240 (5)0.4544 (8)0.0198 (19)
H130.2350110.5498130.3577700.024*
C140.1919 (9)0.4339 (5)0.4666 (8)0.0202 (19)
H140.1698810.3973840.3792190.024*
C150.1846 (9)0.3971 (5)0.6052 (8)0.0194 (16)
H150.1552680.3351360.6155230.023*
C160.2203 (9)0.4512 (5)0.7299 (8)0.0197 (18)
H160.2157910.4258990.8268170.024*
C170.3074 (8)0.6761 (4)0.5701 (7)0.0181 (18)
H17A0.2265560.7120640.6184630.027*
H17B0.3032660.6939400.4644160.027*
H17C0.4196460.6870210.6209660.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01248 (15)0.01227 (12)0.01070 (13)0.00019 (14)0.00261 (11)0.00070 (14)
Br10.0246 (5)0.0187 (4)0.0136 (4)0.0007 (4)0.0021 (3)0.0033 (3)
Br20.0137 (4)0.0249 (5)0.0175 (4)0.0014 (4)0.0034 (3)0.0014 (4)
Br30.0139 (4)0.0250 (4)0.0197 (4)0.0033 (3)0.0039 (3)0.0007 (4)
N110.016 (4)0.012 (3)0.010 (3)0.000 (3)0.004 (3)0.000 (3)
C120.009 (4)0.015 (4)0.014 (4)0.006 (3)0.005 (3)0.001 (3)
C130.022 (5)0.027 (5)0.010 (4)0.000 (4)0.003 (4)0.008 (3)
C140.025 (5)0.019 (4)0.015 (4)0.002 (4)0.003 (4)0.007 (3)
C150.022 (4)0.013 (4)0.023 (4)0.004 (4)0.000 (3)0.003 (4)
C160.017 (5)0.017 (4)0.025 (4)0.001 (4)0.003 (4)0.005 (4)
C170.027 (5)0.018 (4)0.010 (4)0.004 (4)0.005 (3)0.006 (3)
Geometric parameters (Å, º) top
Au1—N112.050 (5)C13—H130.9500
Au1—Br12.3996 (7)C14—C151.363 (9)
Au1—Br32.4085 (8)C14—H140.9500
Au1—Br22.4220 (8)C15—C161.377 (8)
N11—C161.349 (7)C15—H150.9500
N11—C121.359 (8)C16—H160.9500
C12—C131.375 (8)C17—H17A0.9800
C12—C171.496 (9)C17—H17B0.9800
C13—C141.372 (9)C17—H17C0.9800
N11—Au1—Br1178.93 (15)C15—C14—C13119.5 (7)
N11—Au1—Br389.24 (16)C15—C14—H14120.3
Br1—Au1—Br390.84 (3)C13—C14—H14120.3
N11—Au1—Br289.08 (16)C14—C15—C16119.0 (7)
Br1—Au1—Br290.88 (3)C14—C15—H15120.5
Br3—Au1—Br2177.16 (3)C16—C15—H15120.5
C16—N11—C12120.3 (6)N11—C16—C15121.4 (7)
C16—N11—Au1117.3 (5)N11—C16—H16119.3
C12—N11—Au1122.4 (4)C15—C16—H16119.3
N11—C12—C13118.9 (6)C12—C17—H17A109.5
N11—C12—C17118.8 (6)C12—C17—H17B109.5
C13—C12—C17122.3 (6)H17A—C17—H17B109.5
C14—C13—C12121.0 (7)C12—C17—H17C109.5
C14—C13—H13119.5H17A—C17—H17C109.5
C12—C13—H13119.5H17B—C17—H17C109.5
Br3—Au1—N11—C1680.7 (5)N11—C12—C13—C140.5 (10)
Br2—Au1—N11—C16101.6 (5)C17—C12—C13—C14179.3 (7)
Br3—Au1—N11—C12101.2 (5)C12—C13—C14—C150.9 (11)
Br2—Au1—N11—C1276.5 (5)C13—C14—C15—C161.2 (11)
C16—N11—C12—C131.5 (10)C12—N11—C16—C151.2 (10)
Au1—N11—C12—C13176.5 (5)Au1—N11—C16—C15176.9 (5)
C16—N11—C12—C17178.2 (6)C14—C15—C16—N110.2 (11)
Au1—N11—C12—C173.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br1i0.953.214.059 (7)150
C14—H14···Br1ii0.953.093.754 (7)129
C15—H15···Br1ii0.953.143.775 (7)126
C17—H17A···Br1iii0.983.053.972 (7)156
C17—H17B···Br1i0.983.063.982 (6)157
C14—H14···Br2iv0.953.043.636 (7)122
C16—H16···Br2v0.952.863.683 (7)146
C17—H17C···Br20.982.963.690 (7)132
C14—H14···Br3vi0.953.113.951 (7)148
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+2; (vi) x, y+1, z+1.
Tribromido(3-methylpyridine-κN)gold(III) (3) top
Crystal data top
[AuBr3(C6H7N)]F(000) = 1872
Mr = 529.82Dx = 3.433 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.6763 (6) ÅCell parameters from 7609 reflections
b = 6.78409 (14) Åθ = 2.5–30.2°
c = 18.4807 (5) ŵ = 25.99 mm1
β = 118.887 (4)°T = 100 K
V = 2050.18 (12) Å3Plate, red
Z = 80.12 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3120 independent reflections
Radiation source: Enhance (Mo) X-ray Source2563 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.064
ω scanθmax = 31.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 2626
Tmin = 0.309, Tmax = 1.000k = 99
40540 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0194P)2 + 10.7877P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 1.71 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.25213 (2)0.25929 (2)0.37416 (2)0.01140 (5)
Br10.10545 (3)0.26127 (7)0.29684 (3)0.01921 (10)
Br20.25822 (3)0.55197 (7)0.30223 (3)0.01973 (11)
Br30.24913 (3)0.02193 (7)0.45387 (3)0.01697 (10)
N110.3782 (2)0.2527 (5)0.4343 (2)0.0120 (7)
C120.4162 (3)0.2409 (6)0.3884 (3)0.0135 (8)
H120.3840980.2333630.3299400.016*
C130.4998 (3)0.2393 (6)0.4233 (3)0.0142 (9)
C140.5454 (3)0.2506 (6)0.5089 (3)0.0151 (9)
H140.6034480.2502580.5349800.018*
C150.5065 (3)0.2623 (6)0.5564 (3)0.0150 (9)
H150.5372670.2696240.6149380.018*
C160.4220 (3)0.2631 (6)0.5169 (3)0.0141 (9)
H160.3945160.2710210.5486980.017*
C170.5387 (3)0.2290 (7)0.3688 (3)0.0205 (10)
H17A0.5038310.1518180.3192150.031*
H17B0.5924260.1658590.3988910.031*
H17C0.5452280.3625450.3525790.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00696 (8)0.01682 (9)0.00889 (8)0.00109 (6)0.00261 (6)0.00037 (6)
Br10.0074 (2)0.0358 (3)0.0120 (2)0.00234 (19)0.00275 (17)0.00061 (18)
Br20.0159 (2)0.0234 (2)0.0155 (2)0.00211 (18)0.00399 (18)0.00782 (18)
Br30.0128 (2)0.0176 (2)0.0204 (2)0.00011 (17)0.00787 (18)0.00323 (17)
N110.0085 (18)0.0128 (16)0.0128 (17)0.0012 (14)0.0035 (14)0.0017 (14)
C120.013 (2)0.015 (2)0.0097 (19)0.0018 (17)0.0032 (17)0.0018 (16)
C130.012 (2)0.013 (2)0.014 (2)0.0020 (17)0.0037 (17)0.0006 (16)
C140.010 (2)0.013 (2)0.015 (2)0.0001 (17)0.0000 (17)0.0013 (17)
C150.011 (2)0.016 (2)0.013 (2)0.0004 (17)0.0026 (17)0.0010 (17)
C160.016 (2)0.012 (2)0.013 (2)0.0002 (17)0.0065 (18)0.0013 (16)
C170.015 (2)0.030 (3)0.019 (2)0.001 (2)0.010 (2)0.0009 (19)
Geometric parameters (Å, º) top
Au1—N112.062 (4)C13—C171.501 (6)
Au1—Br12.4009 (5)C14—C151.386 (6)
Au1—Br22.4225 (5)C14—H140.9500
Au1—Br32.4276 (5)C15—C161.382 (6)
N11—C161.341 (6)C15—H150.9500
N11—C121.346 (6)C16—H160.9500
C12—C131.372 (6)C17—H17A0.9800
C12—H120.9500C17—H17B0.9800
C13—C141.391 (6)C17—H17C0.9800
N11—Au1—Br1176.62 (10)C15—C14—C13120.3 (4)
N11—Au1—Br288.25 (10)C15—C14—H14119.9
Br1—Au1—Br290.649 (17)C13—C14—H14119.9
N11—Au1—Br390.63 (10)C16—C15—C14118.7 (4)
Br1—Au1—Br390.653 (17)C16—C15—H15120.7
Br2—Au1—Br3176.494 (17)C14—C15—H15120.7
C16—N11—C12120.3 (4)N11—C16—C15120.9 (4)
C16—N11—Au1121.4 (3)N11—C16—H16119.5
C12—N11—Au1118.3 (3)C15—C16—H16119.5
N11—C12—C13122.1 (4)C13—C17—H17A109.5
N11—C12—H12119.0C13—C17—H17B109.5
C13—C12—H12119.0H17A—C17—H17B109.5
C12—C13—C14117.8 (4)C13—C17—H17C109.5
C12—C13—C17119.6 (4)H17A—C17—H17C109.5
C14—C13—C17122.5 (4)H17B—C17—H17C109.5
Br2—Au1—N11—C16120.5 (3)N11—C12—C13—C17179.1 (4)
Br3—Au1—N11—C1656.1 (3)C12—C13—C14—C150.2 (6)
Br2—Au1—N11—C1258.4 (3)C17—C13—C14—C15179.2 (4)
Br3—Au1—N11—C12124.9 (3)C13—C14—C15—C160.2 (6)
C16—N11—C12—C130.1 (6)C12—N11—C16—C150.2 (6)
Au1—N11—C12—C13178.8 (3)Au1—N11—C16—C15178.8 (3)
N11—C12—C13—C140.0 (6)C14—C15—C16—N110.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Br1i0.952.973.905 (5)168
C16—H16···Br1ii0.952.863.721 (5)151
C12—H12···Br2iii0.952.883.684 (4)144
C14—H14···Br3iv0.953.083.880 (5)143
C17—H17B···Br3iv0.983.063.984 (5)159
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z+1.
Tribromido(2,4-dimethylpyridine-κN)gold(III) (4) top
Crystal data top
[AuBr3(C7H9N)]F(000) = 1936
Mr = 543.85Dx = 3.166 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.07477 (17) ÅCell parameters from 19274 reflections
b = 17.2853 (4) Åθ = 2.5–30.3°
c = 16.3527 (4) ŵ = 23.35 mm1
β = 90.818 (2)°T = 100 K
V = 2282.19 (8) Å3Plate, red
Z = 80.10 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6677 independent reflections
Radiation source: Enhance (Mo) X-ray Source5614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2424
Tmin = 0.338, Tmax = 1.000l = 2222
139727 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0166P)2 + 4.8838P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6677 reflectionsΔρmax = 1.39 e Å3
222 parametersΔρmin = 1.59 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000318 (17)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.37066 (2)0.53353 (2)0.11463 (2)0.01033 (4)
Br10.35705 (5)0.66385 (2)0.06436 (3)0.01563 (9)
Br20.66835 (5)0.53128 (2)0.09789 (3)0.01426 (9)
Br30.07450 (5)0.53012 (3)0.12900 (3)0.01837 (10)
N110.3818 (4)0.4216 (2)0.1579 (2)0.0121 (7)
C120.4170 (5)0.4049 (3)0.2370 (3)0.0130 (8)
C130.4288 (5)0.3282 (3)0.2610 (3)0.0151 (9)
H130.4546900.3165120.3165170.018*
C140.4035 (5)0.2683 (3)0.2061 (3)0.0162 (9)
C150.3669 (5)0.2879 (3)0.1251 (3)0.0150 (9)
H150.3487180.2486290.0853060.018*
C160.3573 (5)0.3649 (3)0.1036 (3)0.0166 (9)
H160.3325710.3780200.0483450.020*
C170.4415 (6)0.4704 (3)0.2961 (3)0.0183 (9)
H17A0.5309020.5039200.2771200.027*
H17B0.4707370.4495970.3501650.027*
H17C0.3388320.5003280.2996340.027*
C180.4170 (6)0.1852 (3)0.2307 (3)0.0244 (11)
H18A0.5311100.1673880.2233360.037*
H18B0.3418910.1539680.1965470.037*
H18C0.3869450.1796410.2882210.037*
Au20.05459 (2)0.61831 (2)0.47994 (2)0.01028 (4)
Br40.04989 (6)0.59206 (3)0.33604 (3)0.01625 (9)
Br50.23631 (5)0.58457 (3)0.48885 (3)0.01582 (9)
Br60.34824 (5)0.64545 (3)0.47627 (3)0.01783 (9)
N210.0611 (4)0.6427 (2)0.6029 (2)0.0109 (7)
C220.0021 (5)0.7083 (2)0.6339 (3)0.0125 (8)
C230.0127 (5)0.7219 (3)0.7175 (3)0.0141 (9)
H230.0297970.7685770.7395240.017*
C240.0882 (6)0.6686 (3)0.7695 (3)0.0157 (9)
C250.1492 (5)0.6013 (2)0.7343 (3)0.0138 (9)
H250.2008040.5630140.7677310.017*
C260.1350 (5)0.5900 (2)0.6520 (3)0.0139 (9)
H260.1782700.5440380.6286840.017*
C270.0856 (6)0.7651 (3)0.5782 (3)0.0166 (9)
H27A0.0157750.7745660.5307170.025*
H27B0.1033120.8137760.6075040.025*
H27C0.1926170.7441480.5597990.025*
C280.1065 (6)0.6835 (3)0.8595 (3)0.0225 (11)
H28A0.2148120.7070640.8709270.034*
H28B0.0980200.6345000.8893100.034*
H28C0.0187610.7186450.8771360.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00968 (8)0.00956 (8)0.01173 (8)0.00064 (6)0.00049 (6)0.00167 (6)
Br10.0168 (2)0.0106 (2)0.0194 (2)0.00176 (16)0.00143 (17)0.00387 (16)
Br20.00955 (19)0.0156 (2)0.0176 (2)0.00043 (16)0.00044 (16)0.00493 (16)
Br30.0101 (2)0.0200 (2)0.0250 (2)0.00089 (17)0.00161 (17)0.00309 (18)
N110.0124 (17)0.0114 (18)0.0124 (17)0.0013 (14)0.0008 (14)0.0008 (14)
C120.0079 (19)0.017 (2)0.014 (2)0.0007 (16)0.0059 (16)0.0008 (17)
C130.017 (2)0.016 (2)0.013 (2)0.0017 (17)0.0005 (17)0.0037 (17)
C140.012 (2)0.015 (2)0.021 (2)0.0010 (17)0.0005 (17)0.0049 (18)
C150.015 (2)0.014 (2)0.016 (2)0.0001 (17)0.0012 (17)0.0027 (17)
C160.016 (2)0.017 (2)0.017 (2)0.0007 (17)0.0017 (18)0.0011 (17)
C170.021 (2)0.016 (2)0.018 (2)0.0007 (19)0.0022 (18)0.0007 (18)
C180.032 (3)0.015 (2)0.026 (3)0.001 (2)0.005 (2)0.005 (2)
Au20.01084 (8)0.00909 (8)0.01092 (8)0.00035 (6)0.00056 (6)0.00007 (6)
Br40.0218 (2)0.0154 (2)0.0117 (2)0.00044 (17)0.00153 (17)0.00077 (16)
Br50.0116 (2)0.0174 (2)0.0184 (2)0.00171 (16)0.00051 (16)0.00224 (17)
Br60.0121 (2)0.0191 (2)0.0223 (2)0.00219 (17)0.00266 (17)0.00037 (18)
N210.0082 (16)0.0091 (17)0.0155 (18)0.0009 (13)0.0010 (14)0.0004 (14)
C220.010 (2)0.011 (2)0.017 (2)0.0029 (16)0.0015 (16)0.0004 (16)
C230.014 (2)0.016 (2)0.013 (2)0.0004 (17)0.0030 (16)0.0002 (17)
C240.018 (2)0.017 (2)0.012 (2)0.0076 (18)0.0016 (17)0.0004 (17)
C250.014 (2)0.013 (2)0.014 (2)0.0005 (16)0.0019 (17)0.0028 (16)
C260.014 (2)0.011 (2)0.017 (2)0.0015 (16)0.0021 (17)0.0010 (16)
C270.021 (2)0.010 (2)0.018 (2)0.0028 (17)0.0009 (18)0.0024 (17)
C280.033 (3)0.022 (3)0.013 (2)0.002 (2)0.005 (2)0.0034 (18)
Geometric parameters (Å, º) top
Au1—N112.062 (3)Au2—N212.054 (4)
Au1—Br12.3998 (4)Au2—Br42.3963 (4)
Au1—Br32.4070 (5)Au2—Br62.4187 (5)
Au1—Br22.4235 (4)Au2—Br52.4266 (5)
N11—C161.336 (5)N21—C221.346 (5)
N11—C121.350 (5)N21—C261.348 (5)
C12—C131.385 (6)C22—C231.390 (6)
C12—C171.500 (6)C22—C271.493 (6)
C13—C141.384 (6)C23—C241.388 (6)
C13—H130.9500C23—H230.9500
C14—C151.394 (6)C24—C251.392 (6)
C14—C181.496 (6)C24—C281.499 (6)
C15—C161.379 (6)C25—C261.364 (6)
C15—H150.9500C25—H250.9500
C16—H160.9500C26—H260.9500
C17—H17A0.9800C27—H27A0.9800
C17—H17B0.9800C27—H27B0.9800
C17—H17C0.9800C27—H27C0.9800
C18—H18A0.9800C28—H28A0.9800
C18—H18B0.9800C28—H28B0.9800
C18—H18C0.9800C28—H28C0.9800
N11—Au1—Br1179.86 (11)N21—Au2—Br4178.91 (10)
N11—Au1—Br388.97 (10)N21—Au2—Br688.46 (10)
Br1—Au1—Br390.901 (16)Br4—Au2—Br690.810 (16)
N11—Au1—Br289.16 (10)N21—Au2—Br590.10 (10)
Br1—Au1—Br290.974 (15)Br4—Au2—Br590.672 (16)
Br3—Au1—Br2177.518 (17)Br6—Au2—Br5176.590 (17)
C16—N11—C12120.5 (4)C22—N21—C26120.8 (4)
C16—N11—Au1117.0 (3)C22—N21—Au2122.5 (3)
C12—N11—Au1122.5 (3)C26—N21—Au2116.7 (3)
N11—C12—C13119.3 (4)N21—C22—C23119.0 (4)
N11—C12—C17118.7 (4)N21—C22—C27119.6 (4)
C13—C12—C17122.0 (4)C23—C22—C27121.4 (4)
C14—C13—C12121.5 (4)C24—C23—C22121.4 (4)
C14—C13—H13119.3C24—C23—H23119.3
C12—C13—H13119.3C22—C23—H23119.3
C13—C14—C15117.5 (4)C23—C24—C25117.1 (4)
C13—C14—C18122.3 (4)C23—C24—C28121.6 (4)
C15—C14—C18120.1 (4)C25—C24—C28121.3 (4)
C16—C15—C14119.1 (4)C26—C25—C24120.1 (4)
C16—C15—H15120.4C26—C25—H25119.9
C14—C15—H15120.4C24—C25—H25119.9
N11—C16—C15122.1 (4)N21—C26—C25121.5 (4)
N11—C16—H16119.0N21—C26—H26119.3
C15—C16—H16119.0C25—C26—H26119.3
C12—C17—H17A109.5C22—C27—H27A109.5
C12—C17—H17B109.5C22—C27—H27B109.5
H17A—C17—H17B109.5H27A—C27—H27B109.5
C12—C17—H17C109.5C22—C27—H27C109.5
H17A—C17—H17C109.5H27A—C27—H27C109.5
H17B—C17—H17C109.5H27B—C27—H27C109.5
C14—C18—H18A109.5C24—C28—H28A109.5
C14—C18—H18B109.5C24—C28—H28B109.5
H18A—C18—H18B109.5H28A—C28—H28B109.5
C14—C18—H18C109.5C24—C28—H28C109.5
H18A—C18—H18C109.5H28A—C28—H28C109.5
H18B—C18—H18C109.5H28B—C28—H28C109.5
Br3—Au1—N11—C1684.7 (3)Br6—Au2—N21—C22106.4 (3)
Br2—Au1—N11—C1693.7 (3)Br5—Au2—N21—C2276.7 (3)
Br3—Au1—N11—C1297.3 (3)Br6—Au2—N21—C2672.5 (3)
Br2—Au1—N11—C1284.3 (3)Br5—Au2—N21—C26104.4 (3)
C16—N11—C12—C130.4 (6)C26—N21—C22—C231.2 (6)
Au1—N11—C12—C13177.5 (3)Au2—N21—C22—C23177.6 (3)
C16—N11—C12—C17179.2 (4)C26—N21—C22—C27179.1 (4)
Au1—N11—C12—C172.8 (5)Au2—N21—C22—C272.1 (5)
N11—C12—C13—C140.6 (6)N21—C22—C23—C241.2 (6)
C17—C12—C13—C14179.0 (4)C27—C22—C23—C24179.1 (4)
C12—C13—C14—C150.4 (6)C22—C23—C24—C250.3 (6)
C12—C13—C14—C18179.4 (4)C22—C23—C24—C28179.1 (4)
C13—C14—C15—C160.1 (6)C23—C24—C25—C260.7 (6)
C18—C14—C15—C16179.1 (4)C28—C24—C25—C26178.2 (4)
C12—N11—C16—C150.1 (6)C22—N21—C26—C250.3 (6)
Au1—N11—C16—C15178.0 (3)Au2—N21—C26—C25178.6 (3)
C14—C15—C16—N110.1 (7)C24—C25—C26—N210.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Br2i0.952.863.755 (5)158
C17—H17C···Br40.982.893.861 (5)171
C23—H23···Br4ii0.952.953.765 (4)145
C25—H25···Br2iii0.952.923.851 (4)166
C26—H26···Br5iv0.952.983.890 (4)161
C27—H27B···Br3ii0.983.073.855 (4)138
C27—H27C···Br50.983.013.647 (4)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
Trichlorido(3,5-dimethylpyridine-κN)gold(III) (5) top
Crystal data top
[AuCl3(C7H9N)]F(000) = 752
Mr = 410.47Dx = 2.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.6240 (3) ÅCell parameters from 6320 reflections
b = 15.9360 (6) Åθ = 3.2–30.3°
c = 9.2538 (4) ŵ = 14.86 mm1
β = 112.333 (5)°T = 100 K
V = 1039.97 (8) Å3Block, yellow
Z = 40.20 × 0.12 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1563 independent reflections
Radiation source: Enhance (Mo) X-ray Source1496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.6°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2222
Tmin = 0.270, Tmax = 1.000l = 1313
13810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.032H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0144P)2 + 1.5857P]
where P = (Fo2 + 2Fc2)/3
1563 reflections(Δ/σ)max = 0.002
58 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 0.88 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.51448 (2)0.7500000.01045 (4)
Cl10.5000000.37193 (5)0.7500000.01757 (16)
Cl20.74832 (9)0.51503 (3)0.66883 (7)0.01690 (12)
N110.5000000.64233 (17)0.7500000.0120 (5)
C120.4966 (3)0.68410 (14)0.6218 (3)0.0131 (4)
H120.4935750.6534480.5328350.016*
C130.4975 (3)0.77107 (15)0.6184 (3)0.0148 (4)
C140.5000000.8142 (2)0.7500000.0152 (6)
H140.5000010.8738530.7500010.018*
C170.4978 (4)0.81692 (16)0.4755 (3)0.0205 (5)
H17A0.6269200.8180200.4768470.031*
H17B0.4529290.8745200.4758490.031*
H17C0.4137580.7879380.3812160.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01446 (7)0.00766 (7)0.00989 (6)0.0000.00535 (5)0.000
Cl10.0311 (5)0.0091 (3)0.0146 (4)0.0000.0111 (3)0.000
Cl20.0189 (3)0.0140 (3)0.0222 (3)0.00270 (19)0.0128 (2)0.0012 (2)
N110.0134 (13)0.0101 (13)0.0117 (13)0.0000.0039 (10)0.000
C120.0157 (11)0.0121 (10)0.0121 (10)0.0004 (8)0.0061 (9)0.0006 (8)
C130.0134 (11)0.0137 (11)0.0174 (11)0.0006 (8)0.0061 (9)0.0044 (9)
C140.0129 (15)0.0099 (14)0.0210 (17)0.0000.0046 (13)0.000
C170.0239 (13)0.0167 (12)0.0218 (13)0.0003 (9)0.0098 (11)0.0053 (10)
Geometric parameters (Å, º) top
Au1—N112.037 (3)C12—H120.9500
Au1—Cl12.2716 (8)C13—C141.392 (3)
Au1—Cl22.2867 (6)C13—C171.512 (3)
Au1—Cl2i2.2867 (6)C14—H140.9500
N11—C121.352 (3)C17—H17A0.9800
N11—C12i1.352 (3)C17—H17B0.9800
C12—C131.386 (3)C17—H17C0.9800
N11—Au1—Cl1180.0C12—C13—C14118.2 (2)
N11—Au1—Cl289.779 (14)C12—C13—C17120.3 (2)
Cl1—Au1—Cl290.221 (14)C14—C13—C17121.5 (2)
N11—Au1—Cl2i89.779 (14)C13—C14—C13i120.8 (3)
Cl1—Au1—Cl2i90.221 (14)C13—C14—H14119.6
Cl2—Au1—Cl2i179.56 (3)C13i—C14—H14119.6
C12—N11—C12i121.0 (3)C13—C17—H17A109.5
C12—N11—Au1119.50 (14)C13—C17—H17B109.5
C12i—N11—Au1119.50 (14)H17A—C17—H17B109.5
N11—C12—C13120.9 (2)C13—C17—H17C109.5
N11—C12—H12119.6H17A—C17—H17C109.5
C13—C12—H12119.6H17B—C17—H17C109.5
Cl2—Au1—N11—C1251.15 (11)Au1—N11—C12—C13179.68 (16)
Cl2i—Au1—N11—C12128.85 (11)N11—C12—C13—C140.6 (3)
Cl2—Au1—N11—C12i128.85 (11)N11—C12—C13—C17178.70 (19)
Cl2i—Au1—N11—C12i51.15 (11)C12—C13—C14—C13i0.31 (15)
C12i—N11—C12—C130.32 (16)C17—C13—C14—C13i179.0 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1ii0.952.673.564 (2)158
C17—H17C···Cl1ii0.983.003.666 (3)126
C14—H14···Cl2iii0.952.873.659 (3)142
C14—H14···Cl2iv0.952.873.659 (3)142
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z; (iv) x+3/2, y+1/2, z+3/2.
Tribromido(3,5-dimethylpyridine-κN)gold(III) (6) top
Crystal data top
[AuBr3(C7H9N)]Z = 2
Mr = 543.85F(000) = 484
Triclinic, P1Dx = 3.203 Mg m3
a = 8.2506 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4726 (4) ÅCell parameters from 9505 reflections
c = 9.4210 (4) Åθ = 2.5–30.5°
α = 113.828 (4)°µ = 23.62 mm1
β = 103.543 (4)°T = 100 K
γ = 98.368 (4)°Plate, red
V = 563.93 (5) Å30.21 × 0.15 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3392 independent reflections
Radiation source: Enhance (Mo) X-ray Source3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 16.1419 pixels mm-1θmax = 31.1°, θmin = 2.5°
ω scanh = 1111
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2020)
k = 1211
Tmin = 0.050, Tmax = 0.683l = 1313
30785 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.2689P]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.12370 (2)0.25661 (2)0.49051 (2)0.01349 (6)
Br10.03437 (6)0.14810 (6)0.19990 (6)0.01893 (10)
Br20.40986 (6)0.22579 (7)0.48839 (6)0.02386 (11)
Br30.16592 (6)0.28402 (6)0.48783 (6)0.01976 (10)
N110.2017 (4)0.3438 (5)0.7424 (5)0.0147 (7)
C120.2688 (6)0.2381 (6)0.8004 (6)0.0168 (9)
H120.2790480.1267520.7263720.020*
C130.3231 (5)0.2900 (6)0.9669 (6)0.0158 (9)
C140.3052 (6)0.4523 (6)1.0705 (6)0.0190 (9)
H140.3407330.4895161.1852040.023*
C150.2367 (6)0.5623 (6)1.0112 (6)0.0151 (8)
C160.1850 (6)0.5024 (6)0.8425 (6)0.0166 (9)
H160.1373850.5742530.7976470.020*
C170.4003 (6)0.1710 (7)1.0302 (6)0.0214 (10)
H17A0.5216240.2323311.0979810.032*
H17B0.3940760.0590440.9374530.032*
H17C0.3355450.1441351.0963190.032*
C180.2204 (7)0.7414 (6)1.1209 (6)0.0214 (10)
H18A0.1244620.7700221.0611490.032*0.5
H18B0.3282970.8332841.1560300.032*0.5
H18C0.1978400.7379611.2174110.032*0.5
H18D0.3092700.7908231.2285780.032*0.5
H18E0.1054360.7275611.1336970.032*0.5
H18F0.2358930.8228841.0723160.032*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01095 (9)0.01390 (9)0.01380 (9)0.00301 (6)0.00348 (6)0.00499 (7)
Br10.0185 (2)0.0214 (2)0.0142 (2)0.00721 (18)0.00391 (17)0.00575 (18)
Br20.0129 (2)0.0346 (3)0.0185 (2)0.00827 (19)0.00475 (18)0.0063 (2)
Br30.0126 (2)0.0245 (2)0.0206 (2)0.00569 (18)0.00643 (18)0.00792 (19)
N110.0085 (16)0.0160 (18)0.021 (2)0.0032 (14)0.0021 (15)0.0115 (16)
C120.015 (2)0.011 (2)0.024 (2)0.0024 (16)0.0077 (18)0.0066 (18)
C130.0098 (19)0.017 (2)0.020 (2)0.0006 (16)0.0028 (17)0.0105 (19)
C140.015 (2)0.017 (2)0.022 (2)0.0005 (18)0.0044 (19)0.0083 (19)
C150.016 (2)0.012 (2)0.017 (2)0.0020 (16)0.0054 (17)0.0065 (17)
C160.015 (2)0.013 (2)0.022 (2)0.0036 (17)0.0055 (18)0.0085 (18)
C170.019 (2)0.024 (3)0.029 (3)0.008 (2)0.007 (2)0.019 (2)
C180.028 (3)0.021 (2)0.016 (2)0.007 (2)0.008 (2)0.0075 (19)
Geometric parameters (Å, º) top
Au1—N112.078 (4)C15—C161.391 (6)
Au1—Br12.3892 (5)C15—C181.499 (6)
Au1—Br22.4167 (5)C16—H160.9500
Au1—Br32.4295 (4)C17—H17A0.9800
N11—C161.344 (6)C17—H17B0.9800
N11—C121.344 (6)C17—H17C0.9800
C12—C131.382 (7)C18—H18A0.9800
C12—H120.9500C18—H18B0.9800
C13—C141.381 (6)C18—H18C0.9800
C13—C171.508 (6)C18—H18D0.9800
C14—C151.388 (6)C18—H18E0.9800
C14—H140.9500C18—H18F0.9800
N11—Au1—Br1178.39 (10)H17A—C17—H17B109.5
N11—Au1—Br290.03 (10)C13—C17—H17C109.5
Br1—Au1—Br289.437 (17)H17A—C17—H17C109.5
N11—Au1—Br390.85 (10)H17B—C17—H17C109.5
Br1—Au1—Br389.674 (17)C15—C18—H18A109.5
Br2—Au1—Br3179.045 (17)C15—C18—H18B109.5
C16—N11—C12121.8 (4)H18A—C18—H18B109.5
C16—N11—Au1120.0 (3)C15—C18—H18C109.5
C12—N11—Au1118.2 (3)H18A—C18—H18C109.5
N11—C12—C13120.5 (4)H18B—C18—H18C109.5
N11—C12—H12119.7C15—C18—H18D109.5
C13—C12—H12119.7H18A—C18—H18D141.1
C14—C13—C12118.0 (4)H18B—C18—H18D56.3
C14—C13—C17122.1 (4)H18C—C18—H18D56.3
C12—C13—C17119.9 (4)C15—C18—H18E109.5
C13—C14—C15121.6 (5)H18A—C18—H18E56.3
C13—C14—H14119.2H18B—C18—H18E141.1
C15—C14—H14119.2H18C—C18—H18E56.3
C14—C15—C16117.5 (4)H18D—C18—H18E109.5
C14—C15—C18122.9 (4)C15—C18—H18F109.5
C16—C15—C18119.7 (4)H18A—C18—H18F56.3
N11—C16—C15120.5 (4)H18B—C18—H18F56.3
N11—C16—H16119.7H18C—C18—H18F141.1
C15—C16—H16119.7H18D—C18—H18F109.5
C13—C17—H17A109.5H18E—C18—H18F109.5
C13—C17—H17B109.5
Br2—Au1—N11—C16124.0 (3)C12—C13—C14—C150.6 (7)
Br3—Au1—N11—C1656.3 (3)C17—C13—C14—C15178.9 (4)
Br2—Au1—N11—C1255.8 (3)C13—C14—C15—C160.5 (6)
Br3—Au1—N11—C12123.9 (3)C13—C14—C15—C18178.2 (4)
C16—N11—C12—C130.1 (6)C12—N11—C16—C150.2 (6)
Au1—N11—C12—C13179.9 (3)Au1—N11—C16—C15180.0 (3)
N11—C12—C13—C140.4 (6)C14—C15—C16—N110.1 (6)
N11—C12—C13—C17179.2 (4)C18—C15—C16—N11178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Br1i0.952.913.792 (4)154
C17—H17C···Br1ii0.982.873.749 (5)149
C18—H18A···Br1i0.982.893.784 (5)151
C18—H18C···Br3iii0.982.933.902 (5)174
C14—H14···Br2iv0.953.023.826 (5)144
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2.
Trichlorido(2,6-dimethylpyridine-κN)gold(III) (7) top
Crystal data top
[AuCl3(C7H9N)]F(000) = 752
Mr = 410.47Dx = 2.580 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.0184 (3) ÅCell parameters from 11513 reflections
b = 10.6600 (2) Åθ = 2.8–30.8°
c = 9.7760 (3) ŵ = 14.63 mm1
β = 113.053 (3)°T = 100 K
V = 1056.55 (5) Å3Block, yellow
Z = 40.22 × 0.20 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1600 independent reflections
Radiation source: Enhance (Mo) X-ray Source1553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1419 pixels mm-1θmax = 31.1°, θmin = 2.8°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1515
Tmin = 0.267, Tmax = 1.000l = 1413
15246 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.026 w = 1/[σ2(Fo2) + (0.008P)2 + 2.0823P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1600 reflectionsΔρmax = 0.83 e Å3
59 parametersΔρmin = 1.17 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00079 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.07715 (2)0.2500000.00999 (4)
Cl10.5000000.13530 (6)0.2500000.01876 (14)
Cl20.67610 (5)0.07948 (5)0.47293 (6)0.01738 (10)
N110.5000000.2681 (2)0.2500000.0116 (4)
C120.5772 (2)0.33032 (19)0.1927 (2)0.0134 (4)
C130.5773 (2)0.4602 (2)0.1918 (2)0.0188 (4)
H130.6302690.5045310.1513320.023*
C140.5000000.5250 (3)0.2500000.0209 (7)
H140.5000000.6141520.2499990.025*
C170.6610 (2)0.2555 (2)0.1346 (3)0.0209 (4)
H17A0.7283840.2103840.2167070.031*
H17B0.7039830.3118720.0879950.031*
H17C0.6058570.1952080.0607620.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00944 (6)0.00806 (5)0.01165 (6)0.0000.00326 (4)0.000
Cl10.0217 (4)0.0089 (3)0.0221 (4)0.0000.0047 (3)0.000
Cl20.0149 (2)0.0166 (2)0.0153 (2)0.00108 (17)0.00006 (19)0.00011 (17)
N110.0128 (11)0.0086 (10)0.0119 (10)0.0000.0031 (9)0.000
C120.0121 (9)0.0150 (9)0.0114 (9)0.0026 (7)0.0028 (8)0.0004 (7)
C130.0205 (11)0.0143 (9)0.0171 (10)0.0062 (8)0.0025 (9)0.0015 (8)
C140.0222 (16)0.0106 (13)0.0226 (16)0.0000.0011 (13)0.000
C170.0224 (11)0.0214 (11)0.0249 (11)0.0048 (9)0.0157 (9)0.0040 (9)
Geometric parameters (Å, º) top
Au1—N112.036 (2)C12—C171.491 (3)
Au1—Cl12.2648 (7)C13—C141.380 (3)
Au1—Cl22.2811 (5)C13—H130.9500
Au1—Cl2i2.2811 (5)C14—H140.9500
N11—C12i1.360 (2)C17—H17A0.9800
N11—C121.360 (2)C17—H17B0.9800
C12—C131.385 (3)C17—H17C0.9800
N11—Au1—Cl1180.0C14—C13—C12119.8 (2)
N11—Au1—Cl289.375 (12)C14—C13—H13120.1
Cl1—Au1—Cl290.625 (12)C12—C13—H13120.1
N11—Au1—Cl2i89.375 (12)C13—C14—C13i119.9 (3)
Cl1—Au1—Cl2i90.625 (12)C13—C14—H14120.1
Cl2—Au1—Cl2i178.75 (2)C13i—C14—H14120.1
C12i—N11—C12121.7 (2)C12—C17—H17A109.5
C12i—N11—Au1119.17 (12)C12—C17—H17B109.5
C12—N11—Au1119.16 (12)H17A—C17—H17B109.5
N11—C12—C13119.4 (2)C12—C17—H17C109.5
N11—C12—C17118.50 (18)H17A—C17—H17C109.5
C13—C12—C17122.0 (2)H17B—C17—H17C109.5
Cl2—Au1—N11—C12i92.76 (10)C12i—N11—C12—C17178.9 (2)
Cl2i—Au1—N11—C12i87.24 (10)Au1—N11—C12—C171.1 (2)
Cl2—Au1—N11—C1287.24 (10)N11—C12—C13—C140.5 (3)
Cl2i—Au1—N11—C1292.76 (10)C17—C12—C13—C14178.59 (17)
C12i—N11—C12—C130.27 (15)C12—C13—C14—C13i0.27 (15)
Au1—N11—C12—C13179.73 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl1ii0.982.873.701 (2)144
C14—H14···Cl1iii0.952.673.621 (3)180
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.
Tribromido(2-methylpyridine-κN)gold(III)–tribromido(3,5-dimethylpyridine-κN)gold(III) (8) top
Crystal data top
[AuBr3(C7H9N)]·[AuBr3(C6H7N)]Z = 2
Mr = 1073.67F(000) = 952
Triclinic, P1Dx = 3.290 Mg m3
a = 9.1741 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1922 (9) ÅCell parameters from 9704 reflections
c = 11.4596 (7) Åθ = 2.4–28.2°
α = 83.990 (6)°µ = 24.58 mm1
β = 80.777 (6)°T = 100 K
γ = 69.147 (8)°Plate, red
V = 1083.92 (16) Å30.13 × 0.06 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7479 independent reflections
Radiation source: Enhance (Mo) X-ray Source5015 reflections with I > 2σ(I)
Graphite monochromatorRint = –
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1414
Tmin = 0.052, Tmax = 1.000l = 1515
7479 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0197P)2]
where P = (Fo2 + 2Fc2)/3
7479 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 2.15 e Å3
0 restraintsΔρmin = 1.91 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.31055 (5)0.18855 (4)0.47765 (3)0.01428 (9)
Au20.26051 (4)0.26264 (4)0.06975 (3)0.01319 (9)
Br10.12467 (12)0.08172 (11)0.48592 (9)0.0298 (3)
Br20.48387 (11)0.05181 (9)0.32392 (8)0.0193 (2)
Br30.13402 (12)0.33442 (10)0.62169 (9)0.0229 (2)
Br40.44662 (11)0.37133 (9)0.03511 (8)0.0208 (2)
Br50.38703 (11)0.14154 (9)0.10337 (8)0.0235 (3)
Br60.13174 (11)0.38514 (9)0.24300 (8)0.0201 (2)
N110.4748 (9)0.2745 (7)0.4755 (6)0.0151 (19)
C120.5284 (11)0.3271 (8)0.3743 (8)0.019 (2)
H120.4863870.3268090.3038040.022*
C130.6413 (10)0.3808 (8)0.3701 (7)0.015 (2)
C140.7044 (10)0.3796 (8)0.4740 (8)0.017 (2)
H140.7845770.4149860.4731720.021*
C150.6476 (11)0.3256 (8)0.5787 (8)0.018 (2)
C160.5329 (10)0.2740 (8)0.5777 (8)0.017 (2)
H160.4935710.2376390.6488900.020*
C170.6978 (11)0.4381 (8)0.2553 (7)0.023 (2)
H17A0.6720710.5300730.2621250.035*
H17B0.6461820.4245550.1917950.035*
H17C0.8120180.3969590.2368850.035*
C180.7075 (11)0.3281 (9)0.6942 (8)0.028 (3)
H18A0.6611460.2808320.7568580.042*
H18B0.6776590.4170310.7155500.042*
H18C0.8223850.2882050.6845600.042*
N210.1008 (9)0.1688 (7)0.1000 (6)0.0181 (19)
C220.0324 (12)0.2102 (9)0.0472 (8)0.024 (3)
C230.1378 (12)0.1462 (10)0.0739 (9)0.027 (3)
H230.2290910.1725140.0351020.032*
C240.1124 (11)0.0427 (10)0.1576 (9)0.027 (3)
H240.1864890.0001530.1787920.032*
C250.0248 (12)0.0055 (9)0.2077 (8)0.028 (3)
H250.0463560.0647930.2644050.033*
C260.1292 (12)0.0668 (9)0.1779 (7)0.024 (2)
H260.2241490.0378010.2124180.028*
C270.0574 (11)0.3212 (9)0.0393 (8)0.025 (3)
H27A0.0542520.3947070.0015730.037*
H27B0.1601730.3427100.0664780.037*
H27C0.0255930.2996270.1070680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0161 (2)0.0168 (2)0.01202 (19)0.00802 (17)0.00045 (15)0.00383 (15)
Au20.0150 (2)0.0127 (2)0.01178 (19)0.00456 (17)0.00136 (15)0.00158 (15)
Br10.0368 (7)0.0457 (8)0.0205 (6)0.0322 (6)0.0043 (4)0.0086 (5)
Br20.0224 (5)0.0190 (6)0.0171 (5)0.0080 (4)0.0021 (4)0.0074 (4)
Br30.0177 (5)0.0311 (6)0.0204 (5)0.0085 (5)0.0045 (4)0.0138 (4)
Br40.0217 (6)0.0206 (6)0.0231 (5)0.0116 (5)0.0017 (4)0.0008 (4)
Br50.0271 (6)0.0279 (6)0.0173 (5)0.0121 (5)0.0043 (4)0.0100 (5)
Br60.0213 (5)0.0192 (5)0.0189 (5)0.0057 (4)0.0006 (4)0.0068 (4)
N110.012 (4)0.014 (4)0.021 (4)0.005 (4)0.001 (4)0.009 (3)
C120.018 (5)0.012 (5)0.019 (5)0.002 (4)0.001 (4)0.007 (4)
C130.013 (5)0.010 (5)0.018 (5)0.000 (4)0.002 (4)0.007 (4)
C140.013 (5)0.016 (5)0.024 (5)0.004 (4)0.001 (4)0.008 (4)
C150.014 (5)0.015 (5)0.022 (5)0.001 (4)0.007 (4)0.001 (4)
C160.018 (5)0.018 (5)0.013 (5)0.006 (4)0.003 (4)0.000 (4)
C170.033 (6)0.021 (6)0.022 (5)0.015 (5)0.001 (4)0.010 (4)
C180.021 (6)0.034 (6)0.036 (6)0.016 (5)0.017 (5)0.013 (5)
N210.019 (5)0.017 (5)0.013 (4)0.001 (4)0.002 (3)0.003 (3)
C220.024 (6)0.023 (6)0.018 (5)0.005 (5)0.006 (5)0.013 (5)
C230.014 (5)0.035 (7)0.031 (6)0.006 (5)0.004 (5)0.019 (5)
C240.018 (6)0.030 (7)0.035 (6)0.012 (5)0.013 (5)0.025 (5)
C250.036 (7)0.023 (6)0.026 (6)0.015 (5)0.003 (5)0.002 (5)
C260.032 (6)0.029 (6)0.008 (5)0.008 (5)0.003 (4)0.001 (4)
C270.023 (6)0.029 (6)0.019 (5)0.002 (5)0.007 (4)0.003 (4)
Geometric parameters (Å, º) top
Au1—N112.053 (8)C17—H17B0.9800
Au1—Br12.3922 (11)C17—H17C0.9800
Au1—Br32.4162 (9)C18—H18A0.9800
Au1—Br22.4306 (10)C18—H18B0.9800
Au2—N212.056 (8)C18—H18C0.9800
Au2—Br42.3901 (11)N21—C261.348 (11)
Au2—Br52.4136 (9)N21—C221.360 (11)
Au2—Br62.4253 (10)C22—C231.376 (14)
N11—C121.347 (11)C22—C271.480 (12)
N11—C161.360 (10)C23—C241.400 (13)
C12—C131.362 (12)C23—H230.9500
C12—H120.9500C24—C251.377 (13)
C13—C141.402 (11)C24—H240.9500
C13—C171.501 (12)C25—C261.349 (13)
C14—C151.395 (12)C25—H250.9500
C14—H140.9500C26—H260.9500
C15—C161.371 (12)C27—H27A0.9800
C15—C181.519 (11)C27—H27B0.9800
C16—H160.9500C27—H27C0.9800
C17—H17A0.9800
N11—Au1—Br1177.6 (2)C13—C17—H17C109.5
N11—Au1—Br390.3 (2)H17A—C17—H17C109.5
Br1—Au1—Br390.02 (4)H17B—C17—H17C109.5
N11—Au1—Br289.0 (2)C15—C18—H18A109.5
Br1—Au1—Br290.84 (4)C15—C18—H18B109.5
Br3—Au1—Br2176.66 (4)H18A—C18—H18B109.5
N21—Au2—Br4179.8 (2)C15—C18—H18C109.5
N21—Au2—Br589.90 (19)H18A—C18—H18C109.5
Br4—Au2—Br590.14 (4)H18B—C18—H18C109.5
N21—Au2—Br689.95 (19)C26—N21—C22120.6 (9)
Br4—Au2—Br690.01 (4)C26—N21—Au2117.7 (7)
Br5—Au2—Br6179.59 (4)C22—N21—Au2121.6 (7)
C12—N11—C16120.2 (9)N21—C22—C23119.1 (9)
C12—N11—Au1120.9 (6)N21—C22—C27118.7 (10)
C16—N11—Au1118.8 (6)C23—C22—C27122.2 (9)
N11—C12—C13121.9 (9)C22—C23—C24120.9 (9)
N11—C12—H12119.1C22—C23—H23119.5
C13—C12—H12119.1C24—C23—H23119.5
C12—C13—C14118.9 (9)C25—C24—C23117.1 (10)
C12—C13—C17120.0 (8)C25—C24—H24121.5
C14—C13—C17121.1 (9)C23—C24—H24121.5
C15—C14—C13119.0 (9)C26—C25—C24121.2 (10)
C15—C14—H14120.5C26—C25—H25119.4
C13—C14—H14120.5C24—C25—H25119.4
C16—C15—C14119.6 (8)N21—C26—C25121.0 (9)
C16—C15—C18119.9 (9)N21—C26—H26119.5
C14—C15—C18120.5 (9)C25—C26—H26119.5
N11—C16—C15120.5 (9)C22—C27—H27A109.5
N11—C16—H16119.7C22—C27—H27B109.5
C15—C16—H16119.7H27A—C27—H27B109.5
C13—C17—H17A109.5C22—C27—H27C109.5
C13—C17—H17B109.5H27A—C27—H27C109.5
H17A—C17—H17B109.5H27B—C27—H27C109.5
Br3—Au1—N11—C12121.6 (6)Br5—Au2—N21—C2696.6 (6)
Br2—Au1—N11—C1255.2 (6)Br6—Au2—N21—C2683.8 (6)
Br3—Au1—N11—C1660.5 (6)Br5—Au2—N21—C2286.0 (7)
Br2—Au1—N11—C16122.7 (6)Br6—Au2—N21—C2293.7 (7)
C16—N11—C12—C130.1 (12)C26—N21—C22—C230.4 (14)
Au1—N11—C12—C13177.7 (6)Au2—N21—C22—C23177.7 (6)
N11—C12—C13—C140.8 (13)C26—N21—C22—C27179.0 (8)
N11—C12—C13—C17179.9 (7)Au2—N21—C22—C273.6 (12)
C12—C13—C14—C151.1 (12)N21—C22—C23—C242.4 (14)
C17—C13—C14—C15179.8 (8)C27—C22—C23—C24178.9 (9)
C13—C14—C15—C160.6 (13)C22—C23—C24—C252.5 (14)
C13—C14—C15—C18177.1 (8)C23—C24—C25—C260.5 (15)
C12—N11—C16—C150.7 (12)C22—N21—C26—C251.6 (14)
Au1—N11—C16—C15177.2 (6)Au2—N21—C26—C25175.8 (7)
C14—C15—C16—N110.3 (13)C24—C25—C26—N211.6 (15)
C18—C15—C16—N11178.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···Br3i0.983.053.892 (10)145
C23—H23···Br4ii0.953.013.815 (10)143
C17—H17C···Br6i0.982.903.792 (10)152
C12—H12···Br40.953.134.023 (9)158
C16—H16···Br5iii0.953.064.007 (9)172
C25—H25···Br1iv0.953.063.721 (10)128
C26—H26···Br20.952.943.835 (10)159
C27—H27C···Br3v0.983.144.010 (9)149
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y, z+1; (v) x, y, z1.
Summary of packing features top
CompoundNo. of axial Au···X contactsOffset-stacked dimers [(Au—X)2 quadrilaterals]Connected to form ···bFurther linkagesb
(py)AuCl (Adams & Strähle, 1982)2yesdouble chain (ladder) via edge-linked quadrilaterals
1a and 2 (isotypic)1yesdouble chain via X···X contacts
1b0nodouble chain via Cl···Cl and H···Cl contacts
32yeslayer via Br···Br contactslayers connected via Br···Br contacts
4 (both molecules)1yesdouble chain via Br···Br contacts (analogous to 1a and 2)layers connected via Br···Br contacts
52yeschain via apex-linked quadrilateralsconnected to form layers by Cl···Cl contacts
61yesdouble chain via Br···Br contacts (analogous to 1a and 2)connected to form double layer by Br···Br contacts
70nolayer via H···Cl and Cl···π contacts
8Au1 2, Au2 0Au1 yes, Au2 nolayer via Br···Br contactslayers connected via Br···Br contacts
ESITIM (Hobbollahi et al., 2019)a2nolayer structure with linked tetrameric rings
WEFQAD (Pizzi et al., 2022)2yesladder structureladders connected by Br···Cl contacts
WEFQEH (Pizzi et al., 2022)a2nolayer structure analogous to ESITIMlayers connected by F···F contacts
WEFQIL (Pizzi et al., 2022)a2yeschain via apex-linked quadrilateralsconnected to form layers via Cl···Clpy contacts
WEFQOR (Pizzi et al., 2022)a2yesladder structureconnected to form layers via I···Cl contacts.
WEFRAE (Pizzi et al., 2022)a2yeschain via apex-linked quadrilateralsconnected to form layers via Br···Br contacts
Notes: (a) Refcodes refer to structures whose packing is discussed in the section Database survey; (b) these columns do not necessarily present an exhaustive list; see text for further details.
 

Acknowledgements

We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAdams, H.-N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65–80.  CrossRef CAS Web of Science Google Scholar
First citationAhrens, B. (1999). Münzmetallkomplexe mit sekundären Bindungen. Dissertation, Technical University of Braunschweig, Germany.  Google Scholar
First citationBombicz, P. (2024). IUCrJ, 11, 3–6.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBourosh, P., Bologa, O., Simonov, Y., Gerbeleu, N., Lipkowski, J. & Gdaniec, M. (2007). Inorg. Chim. Acta, 360, 3250–3254.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDaolio, D., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385–14389.  CrossRef CAS Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 729–737.  CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024b). Acta Cryst. E80, 476–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlišić, B. Đ., Hoffmann, M., Warżaitis, B., Genčić, M. S., Blagojević, P. D., Radulović, N. S., Rychiewska, U. & Duran, M. I. (2018). Polyhedron, 105, 137–149.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHashmi, A. S. K., Lothschütz, C., Ackermann, M., Doepp, R., Anantharaman, S., Marchetti, B., Bertagnolli, H. & Rominger, F. (2010). Chem. Eur. J. 16, 8012–8019.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHobbollahi, E., List, M. & Monkowius, U. (2019). Monatsh. Chem. 150, 877–883.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationMohammad-Nataj, R., Abedi, A. & Amani, V. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1375–1380.  CAS Google Scholar
First citationPeters, K., Peters, E.-M., von Schnering, H. G., Hönle, W., Schmidt, R. & Binder, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 413–414.  CrossRef CAS Google Scholar
First citationPizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846–3851.  CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Näther, C., Jess, J. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311–316.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds