research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­dr­oxy-N′-(propan-2-yl­­idene)benzohydrazide]

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1 - Frères Mentouri, 25017, Constantine, Algeria
*Correspondence e-mail: beghidja@umc.edu.dz

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 13 May 2024; accepted 12 August 2024; online 20 August 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N′-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N′-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped ππ stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.

1. Chemical context

Schiff bases are organic compounds that have important applications in many areas of chemistry, including organic synthesis and inorganic chemistry (Sinicropi et al., 2022[Sinicropi, M., Ceramella, J., Iacopetta, D., Catalano, A., Mariconda, A., Rosano, C., Saturnino, C., El-Kashef, H. & Longo, P. (2022). Int. J. Mol. Sci. 23, 14840.]). Over the years, Schiff bases have gained a lot of popularity as chelating ligands in coordination chemistry with transition metals, due to their versatility and ability to act as multiple linkers and their stability under various oxidizing and reducing conditions (DeepikaVerma et al., 2023[DeepikaVerma, Sharma, S. & Vashishtha, M. (2023). Environ. Sci. Pollut. Res. 30, 20874-20886.]). These ligands make excellent coordination mol­ecules and can show variety in structures with metal complexes (Guo et al., 2011[Guo, Y.-N., Xu, G.-F., Guo, Y. & Tang, J. (2011). Dalton Trans. 40, 9953-9963.]), thus leading to a variety of properties (DeepikaVerma et al., 2023[DeepikaVerma, Sharma, S. & Vashishtha, M. (2023). Environ. Sci. Pollut. Res. 30, 20874-20886.]).

Hydrazone ligands constitute a distinct category of Schiff bases, arising from the condensation reaction involving hydrazine and either an aldehyde or a ketone in the presence of an acid or a base. The literature has reported that coordin­ation complexes formed between hydrazones and metals can be used in several areas, such as in catalysis for various reactions (Dile et al., 2016[Dile, O., Sorrentino, A. M. & Bane, S. (2016). Synlett, 27, 1335-1338.]), as materials for gas adsorption (Roztocki et al., 2016[Roztocki, K., Senkovska, I., Kaskel, S. & Matoga, D. (2016). Eur. J. Inorg. Chem. pp. 4450-4456.]), for the detection of heavy metals in the environment (Sharma et al., 2019[Sharma, S., Dubey, G., Sran, B. S., Bharatam, P. V. & Hundal, G. (2019). ACS Omega, 4, 18520-18529.]), in electrochemistry (Toledano-Magaña et al., 2015[Toledano-Magaña, Y., García-Ramos, J. C., Navarro-Olivarria, M., Flores-Alamo, M., Manzanera-Estrada, M., Ortiz-Frade, L., Galindo-Murillo, R., Ruiz-Azuara, L., Meléndrez-Luevano, R. & Cabrera-Vivas, B. (2015). Molecules, 20, 9929-9948.]) and in mol­ecular magnetism (Sadhukhan et al., 2018[Sadhukhan, D., Ghosh, P., Gómez-García, C. & Rouzieres, M. (2018). Magnetochemistry, 4, 56.]). In addition, these complexes are widely studied in pharmaceutical chemistry, (Haider & Khan, 2022[Haider, M. & Khan, K. M. (2022). Pharmaceutical Patent Analyst, 12, 1-3.]) due to their potential as bioactive compounds, especially as anti­cancer (Šermukšnytė et al., 2022[Šermukšnytė, A., Kantminiene, K., Jonuškienė, I., Tumosienė, I. & Petrikaite, V. (2022). Pharmaceuticals, 15, 1026.]; Gaur et al., 2022[Gaur, A., Peerzada, M. N., Khan, N. S., Ali, I. & Azam, A. (2022). ACS Omega, 7, 42036-42043.]), anti­tuberculosis (Mathew et al., 2015[Mathew, B., Suresh, J., Ahsan, M. J., Mathew, G. E., Usman, D., Subramanyan, P. N. S., Safna, K. F. & Maddela, S. (2015). Infect. Disord. Drug Targets, 15, 76-88.]; Teneva et al., 2023[Teneva, Y., Simeonova, R., Valcheva, V. & Angelova, V. (2023). Pharmaceuticals, 16, 484.]) and anti­fungal agents (Kajal et al., 2014[Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 761030.]) (Yankin et al., 2022[Yankin, A., Nosova, N., Novikova, V. & Gein, V. (2022). Russ. J. Gen. Chem. 92, 166-173.]), as well as for the design of drugs against Alzheimer's disease (Boulguemh et al., 2020[Boulguemh, I.-E., Beghidja, A., Khattabi, L., Long, J. & Beghidja, C. (2020). Inorg. Chim. Acta, 507, 119519.]) and Parkinson's disease (Kondeva-Burdina et al., 2022[Kondeva-Burdina, M., Mateev, E., Angelov, B., Tzankova, V. & Georgieva, M. (2022). Molecules, 27, 8485.]).

[Scheme 1]

As a continuation of our research on the synthesis and the study of the biological and magnetic properties of new Schiff base-type ligands and their complexes (Ouilia et al., 2012[Ouilia, S., Beghidja, C., Beghidja, A. & Michaud, F. (2012). Acta Cryst. E68, m943.]; Boussadia et al., 2020[Boussadia, A., Beghidja, A., Gali, L., Beghidja, C., Elhabiri, M., Rabu, P. & Rogez, G. (2020). Inorg. Chim. Acta, 508, 119656.]; Boulguemh et al., 2020[Boulguemh, I.-E., Beghidja, A., Khattabi, L., Long, J. & Beghidja, C. (2020). Inorg. Chim. Acta, 507, 119519.]), we report here the synthesis, structural characterization and Hirshfeld surface analysis of a new dinuclear copper(II) complex [Cu(H2L)2(μ-Cl)CuCl3]·H2O with a hydrazine ligand (H2L = 2-hy­droxy-N′-(propan-2-yl­idene)benzohydrazide).

2. Structural commentary

The asymmetric unit of the title compound, which comprises a dinuclear CuII complex and one water solvation mol­ecule, is illustrated in Fig. 1[link]. The first copper ion Cu1 is in penta­coordinated environment with trigonality index parameter τ5 = 0.516. The tau value for penta­coordinated complexes is calculated using the equation elaborated by Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]): τ5 = (β − α)/60, where α and β are the largest basal angles. τ5 equals 1 for an ideal trigonal bipyramid and 0 for a square-pyramidal coordination. The coordination geometry around the Cu1 ion lies between a distorted trigonal bipyramidal and square pyramidal. The copper ion Cu1 is coordin­ated to the two carbonyl oxygen atoms O1 and O3, and the two imine nitro­gens N2 and N4 from two bidentate chelating H2L ligands. The fifth coordination site is occupied by a bridging chloride Cl1 with a Cu1—Cl1 distance of 2.5001 (14) Å, consistent with literature values (Comba et al., 1988[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497-502.]). The Cu1—O bond lengths are Cu1—O1 = 1.971 (3) Å and Cu1—O3 = 1.959 (3) Å, while the Cu1—N2 and Cu1—N4 bond lengths are 1.999 (4) and 2.009 (4) Å, respectively. The distorted tetra­hedral site around the second copper ion, Cu2, is occupied by three terminal chloride ions, Cl2, Cl3, and Cl4 and a bridging chloride ion Cl1. The terminal Cu—Cl bond distances range from 2.2209 (16) to 2.2601 (12) Å, while the Cu—Cl bridging bond is slightly longer, with a Cu2—Cl1 distance of 2.2897 (15) Å (Table 1[link]). These distances are comparable to those observed for other tetra­chloro­metallate (Vasilevesky et al., 1991[Vasilevesky, I., Rose, N. R., Stenkamp, R. & Willett, R. D. (1991). Inorg. Chem. 30, 4082-4084.]; Ramos Silva et al., 2005[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005). Acta Cryst. C61, m380-m382.]; Comba et al., 1988[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497-502.]). The geometry index for tetra­coordinated copper ions, τ4, is calculated as [360° − (α + β)]/141° (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), inspired by the τ5 index for five-coordinate complexes developed by Addison and Reedijk (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The values of τ4 range from 1 for a perfect tetra­hedral geometry to 0 for a perfect square-planar geometry. For the tetra­coordinated coordination geometry around the Cu2 ion, τ4 = 0.61, indicating a very distorted tetra­hedral geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). This distortion has been noted in numerous salts containing [CuCl4]2− ions, with some displaying thermochromic properties attributed to the deformation of tetra­chloro­metallate ions in response to temperature changes (Willett et al., 1974[Willett, R. D., Haugen, J. A., Lebsack, J. & Morrey, J. (1974). Inorg. Chem. 13, 2510-2513.]).

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.5001 (14) Cu2—Cl1 2.2897 (15)
Cu1—O1 1.971 (3) Cu2—Cl2 2.2601 (12)
Cu1—O3 1.959 (3) Cu2—Cl3 2.2209 (16)
Cu1—N2 1.999 (4) Cu2—Cl4 2.2269 (13)
Cu1—N4 2.009 (4)    
       
Cl1—Cu1—O1 108.38 (10) N2—Cu1—N4 173.85 (15)
Cl1—Cu1—O3 108.44 (11) Cl1—Cu2—Cl2 99.52 (5)
Cl1—Cu1—N2 96.87 (11) Cl1—Cu2—Cl3 135.68 (6)
Cl1—Cu1—N4 89.26 (11) Cl1—Cu2—Cl4 94.92 (5)
O1—Cu1—O3 143.06 (14) Cl2—Cu2—Cl3 98.34 (5)
O1—Cu1—N2 81.01 (13) Cl2—Cu2—Cl4 137.89 (5)
O1—Cu1—N4 96.61 (13) Cl3—Cu2—Cl4 98.32 (5)
O3—Cu1—N2 97.49 (13) Cu1—Cl1—Cu2 135.00 (5)
O3—Cu1—N4 80.97 (12)    
[Figure 1]
Figure 1
The title compound showing the atom-labelling scheme with ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.

The Cu1—Cl1—Cu2 bridging angle of 135.00 (5)° is larger than those observed in the literature for yellow terminal tetra­chloro­metallate ligands (Ramos Silva et al., 2005[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005). Acta Cryst. C61, m380-m382.]). However, the inter­metallic Cu⋯Cu distance observed in the title compound [4.426 (8) Å] is within the range observed for similar compounds (Comba et al., 1988[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497-502.]; Ramos Silva et al., 2005[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005). Acta Cryst. C61, m380-m382.]). Some correlations between the magnetic and structural parameters for mono-μ-chloro–copper chains have been observed, while the magnetic and structural data suggest a limited number of exchange pathways (van Albada et al., 2004[Albada, G. A. van, Roubeau, O., Gamez, P., Kooijman, H., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 4522-4527.]; Alves et al., 2009[Alves, W. A., Matos, I. O., Takahashi, P. M., Bastos, E. L., Martinho, H., Ferreira, J. G., Silva, C. C., de Almeida Santos, R. H., Paduan-Filho, A. & Da Costa Ferreira, A. M. (2009). Eur. J. Inorg. Chem. pp. 2219-2228.]). However, following these correlations, overall ferromagnetic behaviour can be expected for values of the quotient φ/R (where φ is the Cu—Cl—Cu bridge angle and R is the Cu—Cl long bond length) lower than approximately 40 and higher than 57, whereas anti­ferromagnetic behaviour is observed when this quotient φ/R is between these two values. However, the terminal halometallate counter-ion has no impact on the nature of the inter­action. In the title compound, the Cu—Cl—Cu bond angle is 135.00 (5)°, with Cu—Cl distances of 2.5001 (14) and 2.2897 (15) Å, resulting in φ/R ratios of 54 and 59, respectively. These values suggest anti­ferromagnetic behaviour.

3. Supra­molecular features

In the crystal, the supra­molecular network consists of an extensive set of intra- and inter­molecular hydrogen-bonding interactions (numerical details are given in Table 2[link]). Two intra­molecular hydrogen bonds are formed between the imine N1 and N3 atoms and phenolic O2, O4 atoms of the ligand via the respective hydrogen atoms H1 and H3 (Fig. 1[link]). While the carbon donor atoms C10 and C20 of the methyl groups are involved in hydrogen bonds with the acceptor atoms O3 and O1, respectively, of the carbonyl groups via the H10C and H20C atoms (Fig. 1[link]). The solvent water mol­ecule is linked to the complex mol­ecule via the oxygen atom O2 of the phenolic group by a O2—H2⋯O1W hydrogen bond (Fig. 1[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1W 0.82 1.79 2.606 (6) 171
N1—H1⋯O2 0.86 1.94 2.597 (5) 132
N3—H3⋯O4 0.86 1.96 2.612 (5) 132
O1W—H1WA⋯O3i 0.85 2.53 3.375 (6) 170
O1W—H1WA⋯N3i 0.85 2.59 3.303 (7) 142
O1W—H1WB⋯Cl3ii 0.85 2.38 3.195 (6) 160
O4—H4⋯Cl2iii 0.82 2.40 3.215 (3) 175
C7—H7⋯O1 0.93 2.44 2.762 (5) 1
C10—H10C⋯O3 0.96 2.35 3.099 (6) 135
C20—H20C⋯O1 0.96 2.41 3.043 (5) 123
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

The complex mol­ecules are connected via two hydrogen bonds involving the water mol­ecule, O1W—H1WB⋯Cl3 and O1W—H1WA⋯O3, leading to chains propagating along the a-axis direction (Fig. 2[link]). The two-dimensional arrangement parallel to the ac plane is established by connecting two adjacent chains through two types of patterns. The first arrangement is formed by a succession of R44(20) and R44(24) rings, and the second one through a succession of R64(30) rings (Fig. 3[link]). The first two ring structures are formed by two water and two complex mol­ecules, except for the third ring, which is formed by two solvent water and four complex mol­ecules.

[Figure 2]
Figure 2
Partial view of the crystal structure showing the inter­molecular hydrogen bonds (indicated by green dashed lines) forming infinite chains propagating along the a-axis direction.
[Figure 3]
Figure 3
Mol­ecular view of the arrangement of chains (a) via R44(20) and R44(24) rings and (b) R46(30) rings along the ac plane. Hydrogen bonds are shown as dashed green lines.

In the first arrangement, the two water mol­ecules act as acceptor and donor, forming R44(20) and R44(24) rings. O2—H2⋯O1W—H1WA⋯O3 inter­actions are observed in the first ring and O2—H2⋯O1W—H1WB⋯Cl3 in the second ring (Fig. 3[link]a). The second arrangement of inter­connected chains is generated by a succession of R64(30) rings, where the two water mol­ecules act as donors in Cl3⋯ H1WB —O1W—H1WA⋯O3 inter­actions, and two phenol donor groups in O4—H4⋯Cl2 inter­actions (Fig. 3[link]b).

The junction between the resulting two double chains via hydrogen bonds O4—H4⋯Cl2 and C10—H10A⋯Cl4 establishes two-dimensional layers parallel to the ac plane (Fig. 4[link]). Slipped ππ stacking inter­actions are also observed in this structure, involving the aromatic rings of the ligands with an inter­centroid distance Cg1⋯·Cg2([{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z) of 3.683 (3) Å (where Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings, respectively), resulting in a three-dimensional network by linking chains along the b axis (Fig. 5[link]).

[Figure 4]
Figure 4
Crystal packing of the title compound shown in a projection of the two-dimensional network connected through hydrogen bonds (shown as dashed green lines).
[Figure 5]
Figure 5
Crystal packing of the title compound showing the 3D network and the chains parallel to the b axis formed by ππ stacking inter­actions between the aromatic rings of the ligands (shown in red).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.45, updated in November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed that crystal structures have been reported for complexes of several hydrazone derivatives with various metal ions, such as copper (Balsa et al., 2021[Balsa, L. M., Ferraresi-Curotto, V., Lavecchia, M. J., Echeverría, G. A., Piro, O. E., García-Tojal, J., Pis-Diez, R., González-Baró, A. C. & León, I. E. (2021). Dalton Trans. 50, 9812-9826.]), zinc (Dasgupta et al., 2020[Dasgupta, S., Karim, S., Banerjee, S., Saha, M., Das Saha, K. & Das, D. (2020). Dalton Trans. 49, 1232-1240.]), cadmium (Govindaiah et al., 2021[Govindaiah, S., Naha, S., Madhuchakrapani Rao, T., Revanasiddappa, B. C., Srinivasa, S. M., Parashuram, L., Velmathi, S. & Sreenivasa, S. (2021). Results Chem. 3, 100197.]), cobalt (Han et al., 2020[Han, A., Su, H., Xu, G., Khan, M. A. & Li, H. (2020). RSC Adv. 10, 23372-23378.]), magnesium (Khandar et al., 2019[Khandar, A. A., Azar, Z. M., Eskandani, M., Hubschle, C. B., van Smaalen, S., Shaabani, B. & Omidi, Y. (2019). Polyhedron, 171, 237-248.]). Only one complex based on copper and benzoic acid, 2-(1-methyl­ethyl­idene)hydrazide has been reported (Mohamad et al., 2019[Mohamad, A. D. M., Abualreish, M. J. A. & Abu-Dief, A. M. (2019). J. Mol. Liq. 290, 111162.]). No complexes containing two copper ions connected to each other by a chlorine atom and coordinated to two mol­ecules of acetone hydrazone have been documented in the CSD.

To the best of our knowledge, there are only a few examples of asymmetric binuclear copper-based complexes reported in the CSD with some instances where a copper complex is bridged by any type of tetra­metallate (Barz et al., 1998[Barz, M., Herdtweck, E. & Thiel, W. R. (1998). Polyhedron, 17, 1121-1131.]; Shi et al., 2014[Shi, W.-B., Cui, A.-L. & Kou, H.-Z. (2014). CrystEngComm, 16, 8027-8034.]; Alves et al., 2014[Alves, L. G., Souto, M., Madeira, F., Adão, P., Munhá, R. F. & Martins, A. M. (2014). J. Organomet. Chem. 760, 130-137.]; Kaur et al., 2019[Kaur, G., Polson, M. I. J. & Hartshorn, R. M. (2019). J. Coord. Chem. 72, 1013-1035.]; Singh et al., 2014[Singh, R., Lloret, F. & Mukherjee, R. (2014). Z. Anorg. Allge Chem. 640, 1086-1094.]; Comba et al., 1988[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497-502.]; Ramos Silva et al., 2005[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005). Acta Cryst. C61, m380-m382.]).

5. Hirshfeld surface analysis

For further characterization of the inter­molecular inter­actions in the title compound, we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and generated the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The HS of the title compound mapped over dnorm in the range 0.4396 to +2.3676 a.u. is illustrated in Fig. 6[link] using colour to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The red spots on the surface mapped over dnorm (Fig. 6[link]a) indicate the involvement of atoms in hydrogen-bonding inter­actions. The HS mapped over shape-index (Fig. 6[link]b) is used to check for the presence of inter­actions such as C—H⋯π and ππ stacking (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The existence of adjacent red and blue triangular regions around the aromatic rings conforms to the presence of ππ stacking inter­actions in the title compound (Fig. 6[link]b), and the curvedness plots (Fig. 6[link]c) show flat surface patches characteristic of planar stacking. The two-dimensional fingerprint plots provide unique information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). Fig. 7[link] shows the two-dimensional fingerprint plot for the overall inter­actions with their relative contributions to the Hirshfeld surface. The most important inter­atomic contact is H⋯Cl as it makes the highest contribution to the crystal packing (35.6%, Fig. 7[link]b). The other major contributor is H⋯H inter­actions (32.3%, Fig. 7[link]c). Other inter­actions contributing less to the crystal packing are C⋯H (9.9%, Fig. 7[link]d), O⋯H (6.7%, Fig. 7[link]e), C⋯C (4.7%, Fig. 7[link]f), N⋯H (2.8%, Fig. 7[link]g), C⋯O (1.7%, Fig. 7[link]h), Cl⋯O (1.7%, Fig. 7[link]i), N⋯C (1.5%, Fig. 7[link]j) and O⋯O (0.8%, Fig. 7[link]k). Other contacts make a contribution of 2.3% in total and are not discussed in this work.

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over (a) dnorm, (b) shape-index and (c) curvedness.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/ H⋯C, (e) O⋯H/ H⋯O, (f) C⋯C, (g) N⋯H/H⋯N, (h) O⋯C/C⋯O, (i) N⋯C/C⋯N and (j) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

6. Synthesis and crystallization

A mixture of CuCl2·2H2O (0.170 g, 1mmol) with salicylhydrazide (0.304 g, 2 mmol) and NaOH (0.08 g, 2 mmol), was dissolved in 10 mL of a mixed methanol/acetone (3/1) solution then stirred for 2 h at room temperature. Yellow crystals suitable for X-ray analysis were obtained after 5 days in (0.022 g, 52%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions with C—H = 0.93–0.95 Å, N—H = 0.86 Å, O—H = 0.82–0.85 Å and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C,N,O). A solvent mask was calculated via the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.], 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and 120 electrons were found in a volume of 234 Å3 in two voids per unit cell. This is consistent with the presence of 1[H2O], 1.5[CH3OH] per formula unit, which account for 122 electrons per unit cell.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2Cl4(C10H12N2O2)2]·2H2O·1.5CH4O
Mr 737.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 273
a, b, c (Å) 11.6514 (4), 20.1507 (8), 12.8149 (4)
β (°) 110.858 (2)
V3) 2811.56 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.94
Crystal size (mm) 0.14 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21699, 5708, 3843
Rint 0.055
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.06
No. of reflections 5708
No. of parameters 324
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

[Trichloridocopper(II)]-µ-chlorido-{bis[2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]copper(II)} monohydrate top
Crystal data top
[Cu2Cl4(C10H12N2O2)2]·2H2O·1.5CH4OF(000) = 1360
Mr = 737.40Dx = 1.704 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3635 reflections
a = 11.6514 (4) Åθ = 2.6–23.4°
b = 20.1507 (8) ŵ = 1.94 mm1
c = 12.8149 (4) ÅT = 273 K
β = 110.858 (2)°Block, yellow
V = 2811.56 (18) Å30.14 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5708 independent reflections
Radiation source: MoKα3843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 18.4 pixels mm-1θmax = 26.4°, θmin = 2.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2125
Tmin = 0.673, Tmax = 0.745l = 1614
21699 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.146 W = 1/[Σ2(FO2) + (0.0793P)2] WHERE P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max = 0.001
5708 reflectionsΔρmax = 0.71 e Å3
324 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups, All O(H,H) groups

2. Uiso/Uaniso restraints and constraints Uanis(C21) ~ Ueq: with sigma of 0.001 and sigma for terminal atoms of 0.002 Uanis(O5) ~ Ueq: with sigma of 0.001 and sigma for terminal atoms of 0.002

3.a Free rotating group: O1W(H1WA,H1WB)

3.b Aromatic/amide H refined with riding coordinates: N1(H1), N3(H3), C4(H4A), C5(H5), C6(H6), C7(H7), C14(H14), C15(H15), C16(H16), C17(H17)

3.c Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C19(H19A,H19B,H19C), C20(H20A,H20B, H20C), C21(H21A,H21B,H21C)

3.d Idealised tetrahedral OH refined as rotating group: O2(H2), O4(H4), O5(H5A).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75452 (5)0.61586 (3)0.24378 (4)0.0340 (2)
Cu20.36066 (5)0.63824 (3)0.19419 (4)0.0381 (2)
Cl10.52667 (11)0.61036 (6)0.14739 (9)0.0440 (4)
Cl20.40338 (12)0.57786 (6)0.35215 (9)0.0498 (4)
Cl30.29411 (16)0.72976 (7)0.25093 (11)0.0676 (5)
Cl40.22690 (12)0.63604 (6)0.01947 (10)0.0521 (4)
O10.8210 (3)0.52516 (15)0.2546 (2)0.0384 (10)
O20.8882 (3)0.42800 (17)0.5540 (3)0.0529 (11)
O30.8022 (3)0.70917 (14)0.2734 (2)0.0365 (10)
O40.8657 (3)0.81403 (15)0.0217 (2)0.0467 (10)
N10.8076 (3)0.52971 (17)0.4240 (3)0.0343 (11)
N20.7577 (3)0.59260 (17)0.3964 (3)0.0329 (11)
N30.8051 (3)0.70518 (17)0.1001 (3)0.0340 (11)
N40.7711 (3)0.63902 (16)0.0973 (3)0.0307 (11)
C10.8365 (4)0.4970 (2)0.3474 (3)0.0304 (12)
O1W0.9308 (4)0.3537 (3)0.7302 (4)0.119 (2)
C20.8862 (4)0.4296 (2)0.3687 (3)0.0343 (12)
C30.9105 (4)0.3962 (2)0.4704 (4)0.0395 (14)
C40.9573 (4)0.3314 (2)0.4824 (4)0.0517 (17)
C50.9782 (5)0.3009 (3)0.3947 (5)0.0585 (19)
C60.9532 (5)0.3324 (3)0.2941 (4)0.0539 (17)
C70.9075 (4)0.3963 (2)0.2808 (4)0.0429 (17)
C80.7218 (4)0.6229 (2)0.4683 (4)0.0376 (14)
C90.7308 (5)0.5926 (3)0.5773 (4)0.0523 (17)
C100.6685 (5)0.6909 (2)0.4417 (4)0.0503 (17)
C110.8230 (4)0.7382 (2)0.1949 (3)0.0310 (12)
C120.8656 (4)0.8069 (2)0.2065 (3)0.0311 (12)
C130.8874 (4)0.8439 (2)0.1218 (3)0.0328 (12)
C140.9286 (4)0.9088 (2)0.1416 (3)0.0366 (14)
C150.9450 (4)0.9386 (2)0.2436 (4)0.0404 (14)
C160.9226 (4)0.9033 (2)0.3277 (4)0.0412 (16)
C170.8840 (4)0.8387 (2)0.3086 (3)0.0356 (14)
C180.7490 (4)0.6063 (2)0.0057 (4)0.0396 (14)
C190.7628 (7)0.6374 (3)0.0940 (4)0.074 (3)
C200.7147 (5)0.5358 (2)0.0012 (4)0.0455 (16)
H10.819390.512650.488460.0410*
H20.895690.401900.605090.0800*
H30.814240.724040.043320.0410*
H40.870290.841590.023700.0700*
H4A0.974190.309030.549710.0620*
H51.009880.258060.403830.0700*
H60.966960.310860.235430.0640*
H70.890490.417690.212670.0520*
H9A0.669400.558740.564790.0790*
H9B0.718150.626220.625170.0790*
H9C0.810820.573340.612130.0790*
H10A0.720800.722060.493710.0750*
H10B0.588400.691590.446920.0750*
H10C0.662210.702670.367230.0750*
H140.945310.932460.086410.0440*
H150.971010.982530.255750.0490*
H160.933750.923210.396060.0500*
H170.869530.815230.365100.0430*
H19A0.708560.674740.116930.1110*
H19B0.742790.605530.153550.1110*
H19C0.846140.651900.076060.1110*
H20A0.784880.508730.008170.0680*
H20B0.650360.526580.068780.0680*
H20C0.686400.525960.061320.0680*
H1WA0.994070.332900.729780.1790*
H1WB0.880090.323350.730230.1790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0510 (4)0.0231 (3)0.0307 (3)0.0007 (2)0.0181 (2)0.0037 (2)
Cu20.0512 (4)0.0320 (3)0.0345 (3)0.0030 (2)0.0193 (3)0.0012 (2)
Cl10.0426 (6)0.0525 (7)0.0402 (6)0.0021 (5)0.0188 (5)0.0021 (5)
Cl20.0742 (9)0.0429 (7)0.0369 (6)0.0065 (6)0.0256 (6)0.0047 (5)
Cl30.1140 (12)0.0390 (7)0.0589 (8)0.0198 (7)0.0419 (8)0.0043 (6)
Cl40.0633 (8)0.0474 (8)0.0386 (6)0.0069 (6)0.0094 (6)0.0016 (5)
O10.0520 (19)0.0294 (16)0.0341 (16)0.0060 (14)0.0156 (14)0.0043 (13)
O20.073 (2)0.044 (2)0.0352 (18)0.0046 (18)0.0113 (17)0.0127 (15)
O30.058 (2)0.0241 (16)0.0315 (15)0.0039 (14)0.0209 (14)0.0020 (12)
O40.083 (2)0.0310 (17)0.0346 (16)0.0098 (17)0.0313 (17)0.0014 (13)
N10.045 (2)0.0292 (19)0.0293 (17)0.0012 (16)0.0140 (16)0.0057 (15)
N20.043 (2)0.0222 (18)0.0344 (19)0.0030 (15)0.0149 (16)0.0018 (14)
N30.050 (2)0.0257 (19)0.0301 (18)0.0050 (16)0.0189 (16)0.0010 (14)
N40.042 (2)0.0212 (18)0.0294 (18)0.0000 (15)0.0132 (15)0.0016 (13)
C10.035 (2)0.024 (2)0.032 (2)0.0045 (17)0.0116 (18)0.0001 (17)
O1W0.069 (3)0.195 (6)0.096 (3)0.026 (3)0.032 (3)0.098 (4)
C20.034 (2)0.026 (2)0.036 (2)0.0033 (18)0.0040 (18)0.0020 (17)
C30.043 (3)0.030 (2)0.037 (2)0.0046 (19)0.004 (2)0.0007 (18)
C40.047 (3)0.032 (3)0.059 (3)0.002 (2)0.002 (2)0.015 (2)
C50.051 (3)0.028 (3)0.080 (4)0.007 (2)0.003 (3)0.002 (3)
C60.055 (3)0.040 (3)0.062 (3)0.008 (2)0.015 (3)0.008 (2)
C70.049 (3)0.035 (3)0.042 (3)0.002 (2)0.013 (2)0.004 (2)
C80.040 (3)0.031 (2)0.040 (2)0.0055 (19)0.012 (2)0.0015 (19)
C90.068 (3)0.060 (3)0.035 (3)0.002 (3)0.026 (2)0.001 (2)
C100.070 (3)0.034 (3)0.057 (3)0.001 (2)0.035 (3)0.007 (2)
C110.036 (2)0.025 (2)0.031 (2)0.0014 (17)0.0106 (18)0.0023 (16)
C120.037 (2)0.023 (2)0.034 (2)0.0007 (17)0.0137 (18)0.0025 (16)
C130.042 (2)0.028 (2)0.029 (2)0.0001 (18)0.0135 (18)0.0033 (17)
C140.046 (3)0.031 (2)0.035 (2)0.006 (2)0.017 (2)0.0061 (18)
C150.048 (3)0.028 (2)0.042 (2)0.003 (2)0.012 (2)0.0041 (19)
C160.054 (3)0.035 (3)0.034 (2)0.005 (2)0.015 (2)0.0057 (19)
C170.046 (3)0.032 (2)0.030 (2)0.0027 (19)0.0151 (19)0.0025 (17)
C180.058 (3)0.027 (2)0.032 (2)0.001 (2)0.014 (2)0.0025 (18)
C190.138 (6)0.052 (4)0.037 (3)0.025 (4)0.036 (3)0.003 (2)
C200.066 (3)0.032 (3)0.036 (2)0.005 (2)0.015 (2)0.0033 (19)
Geometric parameters (Å, º) top
Cu1—Cl12.5001 (14)C11—C121.460 (6)
Cu1—O11.971 (3)C12—C131.412 (6)
Cu1—O31.959 (3)C12—C171.403 (5)
Cu1—N21.999 (4)C13—C141.385 (6)
Cu1—N42.009 (4)C14—C151.389 (6)
Cu2—Cl12.2897 (15)C15—C161.391 (7)
Cu2—Cl22.2601 (12)C16—C171.371 (6)
Cu2—Cl32.2209 (16)C18—C191.482 (7)
Cu2—Cl42.2269 (13)C18—C201.471 (6)
O1—C11.271 (5)O1W—H1WB0.8500
O2—C31.351 (6)O1W—H1WA0.8500
O3—C111.260 (5)C4—H4A0.9300
O4—C131.357 (5)C5—H50.9300
N1—N21.387 (5)C6—H60.9300
N1—C11.322 (5)C7—H70.9300
N2—C81.293 (6)C9—H9A0.9600
O2—H20.8200C9—H9C0.9600
N3—C111.335 (5)C9—H9B0.9600
N3—N41.388 (5)C10—H10B0.9600
N4—C181.290 (6)C10—H10C0.9600
O4—H40.8200C10—H10A0.9600
N1—H10.8600C14—H140.9300
C1—C21.464 (6)C15—H150.9300
C2—C31.403 (6)C16—H160.9300
C2—C71.407 (6)C17—H170.9300
N3—H30.8600C19—H19B0.9600
C3—C41.402 (6)C19—H19C0.9600
C4—C51.377 (8)C19—H19A0.9600
C5—C61.372 (8)C20—H20C0.9600
C6—C71.381 (7)C20—H20A0.9600
C8—C101.493 (6)C20—H20B0.9600
C8—C91.494 (7)
Cl1—Cu1—O1108.38 (10)C13—C12—C17117.8 (4)
Cl1—Cu1—O3108.44 (11)C11—C12—C17117.5 (4)
Cl1—Cu1—N296.87 (11)C12—C13—C14120.2 (3)
Cl1—Cu1—N489.26 (11)O4—C13—C14121.9 (4)
O1—Cu1—O3143.06 (14)O4—C13—C12117.9 (4)
O1—Cu1—N281.01 (13)C13—C14—C15120.2 (4)
O1—Cu1—N496.61 (13)C14—C15—C16120.5 (4)
O3—Cu1—N297.49 (13)C15—C16—C17119.2 (4)
O3—Cu1—N480.97 (12)C12—C17—C16122.1 (4)
N2—Cu1—N4173.85 (15)C19—C18—C20119.1 (4)
Cl1—Cu2—Cl299.52 (5)N4—C18—C19121.4 (4)
Cl1—Cu2—Cl3135.68 (6)N4—C18—C20119.5 (4)
Cl1—Cu2—Cl494.92 (5)H1WA—O1W—H1WB104.00
Cl2—Cu2—Cl398.34 (5)C3—C4—H4A120.00
Cl2—Cu2—Cl4137.89 (5)C5—C4—H4A120.00
Cl3—Cu2—Cl498.32 (5)C6—C5—H5119.00
Cu1—Cl1—Cu2135.00 (5)C4—C5—H5119.00
Cu1—O1—C1113.7 (3)C5—C6—H6120.00
Cu1—O3—C11114.4 (2)C7—C6—H6120.00
N2—N1—C1117.5 (3)C6—C7—H7119.00
Cu1—N2—N1108.9 (3)C2—C7—H7119.00
Cu1—N2—C8133.5 (3)C8—C9—H9A110.00
N1—N2—C8117.6 (4)C8—C9—H9C109.00
C3—O2—H2109.00H9A—C9—H9B109.00
N4—N3—C11116.9 (3)H9A—C9—H9C109.00
Cu1—N4—N3108.7 (3)H9B—C9—H9C109.00
N3—N4—C18118.5 (4)C8—C9—H9B109.00
Cu1—N4—C18132.6 (3)C8—C10—H10A109.00
C13—O4—H4109.00C8—C10—H10C109.00
O1—C1—N1118.9 (4)H10A—C10—H10B110.00
N2—N1—H1121.00C8—C10—H10B109.00
C1—N1—H1121.00H10B—C10—H10C109.00
N1—C1—C2120.9 (3)H10A—C10—H10C109.00
O1—C1—C2120.3 (4)C13—C14—H14120.00
C1—C2—C7117.7 (3)C15—C14—H14120.00
C3—C2—C7118.7 (4)C16—C15—H15120.00
C1—C2—C3123.6 (4)C14—C15—H15120.00
O2—C3—C4122.1 (4)C15—C16—H16120.00
C2—C3—C4119.4 (4)C17—C16—H16120.00
C11—N3—H3122.00C16—C17—H17119.00
O2—C3—C2118.5 (4)C12—C17—H17119.00
N4—N3—H3122.00C18—C19—H19A110.00
C3—C4—C5120.1 (5)C18—C19—H19B109.00
C4—C5—C6121.4 (5)H19A—C19—H19B110.00
C5—C6—C7119.4 (5)H19A—C19—H19C110.00
C2—C7—C6121.1 (4)C18—C19—H19C109.00
C9—C8—C10118.3 (4)H19B—C19—H19C109.00
N2—C8—C9122.7 (4)C18—C20—H20B110.00
N2—C8—C10119.0 (4)C18—C20—H20C110.00
O3—C11—N3118.9 (4)C18—C20—H20A110.00
N3—C11—C12120.2 (4)H20A—C20—H20C109.00
O3—C11—C12120.9 (3)H20B—C20—H20C109.00
C11—C12—C13124.7 (3)H20A—C20—H20B109.00
O1—Cu1—Cl1—Cu2119.83 (11)C11—N3—N4—Cu12.0 (5)
O3—Cu1—Cl1—Cu263.23 (12)C11—N3—N4—C18177.7 (4)
N2—Cu1—Cl1—Cu237.05 (13)N4—N3—C11—O33.7 (6)
N4—Cu1—Cl1—Cu2143.46 (12)N4—N3—C11—C12176.6 (4)
Cl1—Cu1—O1—C195.8 (3)Cu1—N4—C18—C19176.3 (4)
O3—Cu1—O1—C189.0 (4)Cu1—N4—C18—C206.5 (7)
N2—Cu1—O1—C11.5 (3)N3—N4—C18—C191.8 (7)
N4—Cu1—O1—C1172.8 (3)N3—N4—C18—C20179.0 (4)
Cl1—Cu1—O3—C1187.9 (3)O1—C1—C2—C3177.4 (4)
O1—Cu1—O3—C1187.3 (3)O1—C1—C2—C74.3 (7)
N2—Cu1—O3—C11172.3 (3)N1—C1—C2—C32.3 (7)
N4—Cu1—O3—C111.7 (3)N1—C1—C2—C7176.0 (4)
Cl1—Cu1—N2—N1110.0 (3)C1—C2—C3—O20.7 (7)
Cl1—Cu1—N2—C868.4 (4)C1—C2—C3—C4179.5 (4)
O1—Cu1—N2—N12.4 (3)C7—C2—C3—O2179.0 (4)
O1—Cu1—N2—C8176.0 (5)C7—C2—C3—C41.2 (7)
O3—Cu1—N2—N1140.3 (3)C1—C2—C7—C6179.4 (5)
O3—Cu1—N2—C841.3 (5)C3—C2—C7—C61.0 (7)
Cl1—Cu1—N4—N3108.6 (3)O2—C3—C4—C5179.8 (5)
Cl1—Cu1—N4—C1866.3 (4)C2—C3—C4—C50.5 (8)
O1—Cu1—N4—N3143.0 (3)C3—C4—C5—C60.6 (9)
O1—Cu1—N4—C1842.2 (5)C4—C5—C6—C70.8 (9)
O3—Cu1—N4—N30.2 (3)C5—C6—C7—C20.0 (8)
O3—Cu1—N4—C18175.1 (5)O3—C11—C12—C13177.9 (4)
Cl2—Cu2—Cl1—Cu155.79 (9)O3—C11—C12—C170.9 (7)
Cl3—Cu2—Cl1—Cu156.67 (11)N3—C11—C12—C131.9 (7)
Cl4—Cu2—Cl1—Cu1163.90 (8)N3—C11—C12—C17179.3 (4)
Cu1—O1—C1—N10.2 (5)C11—C12—C13—O41.0 (7)
Cu1—O1—C1—C2179.5 (3)C11—C12—C13—C14179.6 (4)
Cu1—O3—C11—N33.4 (5)C17—C12—C13—O4177.8 (4)
Cu1—O3—C11—C12176.8 (3)C17—C12—C13—C141.6 (7)
C1—N1—N2—Cu13.2 (5)C11—C12—C17—C16179.3 (4)
C1—N1—N2—C8175.5 (4)C13—C12—C17—C160.4 (7)
N2—N1—C1—O12.2 (6)O4—C13—C14—C15177.4 (4)
N2—N1—C1—C2178.2 (4)C12—C13—C14—C152.1 (7)
Cu1—N2—C8—C9177.6 (4)C13—C14—C15—C161.3 (7)
Cu1—N2—C8—C102.2 (7)C14—C15—C16—C170.1 (7)
N1—N2—C8—C90.7 (7)C15—C16—C17—C120.3 (7)
N1—N2—C8—C10179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1W0.821.792.606 (6)171
N1—H1···O20.861.942.597 (5)132
N3—H3···O40.861.962.612 (5)132
O1W—H1WA···O3i0.852.533.375 (6)170
O1W—H1WA···N3i0.852.593.303 (7)142
O1W—H1WB···Cl3ii0.852.383.195 (6)160
O4—H4···Cl2iii0.822.403.215 (3)175
C7—H7···O10.932.442.762 (5)1
C10—H10C···O30.962.353.099 (6)135
C17—H17···O30.932.432.760 (5)101
C20—H20C···O10.962.413.043 (5)123
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to University Constantine 1- Frères Mentouri, MESRS (Algeria). The Algerian PRFU project (2023–2026: grant No. B00L01UN250120230004) is also acknowledged.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlbada, G. A. van, Roubeau, O., Gamez, P., Kooijman, H., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 4522–4527.  Google Scholar
First citationAlves, L. G., Souto, M., Madeira, F., Adão, P., Munhá, R. F. & Martins, A. M. (2014). J. Organomet. Chem. 760, 130–137.  CSD CrossRef CAS Google Scholar
First citationAlves, W. A., Matos, I. O., Takahashi, P. M., Bastos, E. L., Martinho, H., Ferreira, J. G., Silva, C. C., de Almeida Santos, R. H., Paduan-Filho, A. & Da Costa Ferreira, A. M. (2009). Eur. J. Inorg. Chem. pp. 2219–2228.  CSD CrossRef Google Scholar
First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBalsa, L. M., Ferraresi-Curotto, V., Lavecchia, M. J., Echeverría, G. A., Piro, O. E., García-Tojal, J., Pis-Diez, R., González-Baró, A. C. & León, I. E. (2021). Dalton Trans. 50, 9812–9826.  CSD CrossRef CAS PubMed Google Scholar
First citationBarz, M., Herdtweck, E. & Thiel, W. R. (1998). Polyhedron, 17, 1121–1131.  CSD CrossRef CAS Google Scholar
First citationBoulguemh, I.-E., Beghidja, A., Khattabi, L., Long, J. & Beghidja, C. (2020). Inorg. Chim. Acta, 507, 119519.  CSD CrossRef Google Scholar
First citationBoussadia, A., Beghidja, A., Gali, L., Beghidja, C., Elhabiri, M., Rabu, P. & Rogez, G. (2020). Inorg. Chim. Acta, 508, 119656.  CSD CrossRef Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497–502.  CSD CrossRef Google Scholar
First citationDasgupta, S., Karim, S., Banerjee, S., Saha, M., Das Saha, K. & Das, D. (2020). Dalton Trans. 49, 1232–1240.  CSD CrossRef CAS PubMed Google Scholar
First citationDeepikaVerma, Sharma, S. & Vashishtha, M. (2023). Environ. Sci. Pollut. Res. 30, 20874–20886.  CrossRef CAS Google Scholar
First citationDile, O., Sorrentino, A. M. & Bane, S. (2016). Synlett, 27, 1335–1338.  PubMed Google Scholar
First citationGaur, A., Peerzada, M. N., Khan, N. S., Ali, I. & Azam, A. (2022). ACS Omega, 7, 42036–42043.  CrossRef CAS PubMed Google Scholar
First citationGovindaiah, S., Naha, S., Madhuchakrapani Rao, T., Revanasiddappa, B. C., Srinivasa, S. M., Parashuram, L., Velmathi, S. & Sreenivasa, S. (2021). Results Chem. 3, 100197.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Guo, Y. & Tang, J. (2011). Dalton Trans. 40, 9953–9963.  CrossRef CAS PubMed Google Scholar
First citationHaider, M. & Khan, K. M. (2022). Pharmaceutical Patent Analyst, 12, 1–3.  Google Scholar
First citationHan, A., Su, H., Xu, G., Khan, M. A. & Li, H. (2020). RSC Adv. 10, 23372–23378.  CSD CrossRef CAS PubMed Google Scholar
First citationKajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 761030.  Google Scholar
First citationKaur, G., Polson, M. I. J. & Hartshorn, R. M. (2019). J. Coord. Chem. 72, 1013–1035.  CSD CrossRef CAS Google Scholar
First citationKhandar, A. A., Azar, Z. M., Eskandani, M., Hubschle, C. B., van Smaalen, S., Shaabani, B. & Omidi, Y. (2019). Polyhedron, 171, 237–248.  CSD CrossRef CAS Google Scholar
First citationKondeva-Burdina, M., Mateev, E., Angelov, B., Tzankova, V. & Georgieva, M. (2022). Molecules, 27, 8485.  PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMathew, B., Suresh, J., Ahsan, M. J., Mathew, G. E., Usman, D., Subramanyan, P. N. S., Safna, K. F. & Maddela, S. (2015). Infect. Disord. Drug Targets, 15, 76–88.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamad, A. D. M., Abualreish, M. J. A. & Abu-Dief, A. M. (2019). J. Mol. Liq. 290, 111162.  CrossRef Google Scholar
First citationOuilia, S., Beghidja, C., Beghidja, A. & Michaud, F. (2012). Acta Cryst. E68, m943.  CSD CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005). Acta Cryst. C61, m380–m382.  CSD CrossRef IUCr Journals Google Scholar
First citationRoztocki, K., Senkovska, I., Kaskel, S. & Matoga, D. (2016). Eur. J. Inorg. Chem. pp. 4450–4456.  CSD CrossRef Google Scholar
First citationSadhukhan, D., Ghosh, P., Gómez-García, C. & Rouzieres, M. (2018). Magnetochemistry, 4, 56.  Google Scholar
First citationŠermukšnytė, A., Kantminiene, K., Jonuškienė, I., Tumosienė, I. & Petrikaite, V. (2022). Pharmaceuticals, 15, 1026.  PubMed Google Scholar
First citationSharma, S., Dubey, G., Sran, B. S., Bharatam, P. V. & Hundal, G. (2019). ACS Omega, 4, 18520–18529.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, W.-B., Cui, A.-L. & Kou, H.-Z. (2014). CrystEngComm, 16, 8027–8034.  CSD CrossRef CAS Google Scholar
First citationSingh, R., Lloret, F. & Mukherjee, R. (2014). Z. Anorg. Allge Chem. 640, 1086–1094.  CSD CrossRef CAS Google Scholar
First citationSinicropi, M., Ceramella, J., Iacopetta, D., Catalano, A., Mariconda, A., Rosano, C., Saturnino, C., El-Kashef, H. & Longo, P. (2022). Int. J. Mol. Sci. 23, 14840.  CrossRef PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeneva, Y., Simeonova, R., Valcheva, V. & Angelova, V. (2023). Pharmaceuticals, 16, 484.  CrossRef PubMed Google Scholar
First citationToledano-Magaña, Y., García-Ramos, J. C., Navarro-Olivarria, M., Flores-Alamo, M., Manzanera-Estrada, M., Ortiz-Frade, L., Galindo-Murillo, R., Ruiz-Azuara, L., Meléndrez-Luevano, R. & Cabrera-Vivas, B. (2015). Molecules, 20, 9929–9948.  PubMed Google Scholar
First citationVasilevesky, I., Rose, N. R., Stenkamp, R. & Willett, R. D. (1991). Inorg. Chem. 30, 4082–4084.  CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Haugen, J. A., Lebsack, J. & Morrey, J. (1974). Inorg. Chem. 13, 2510–2513.  CrossRef CAS Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYankin, A., Nosova, N., Novikova, V. & Gein, V. (2022). Russ. J. Gen. Chem. 92, 166–173.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds