research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­glycinium dodeca­iodo­triplumbate

crossmark logo

aInstitute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia, and bInstitute of Mineralogy and Crystallography, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
*Correspondence e-mail: itonoyan1@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 31 May 2024; accepted 1 August 2024; online 6 August 2024)

The crystal structure of hexa­glycinium tetra-μ-iodido-octa­iodido­triplumbate, (C2H6NO2)6[Pb3I12] or (GlyH)6[Pb3I12], is reported. The compound crystallizes in the triclinic space group P[\overline{1}]. The [Pb3I12]6− anion is discrete and located around a special position: the central Pb ion located on the inversion center is holodirected, while the other two are hemidirected. The supra­molecular nature is mainly based on C—H⋯I, N—H⋯I, O—H⋯I and N—H⋯O hydrogen bonds. Dimeric cations of type (A+A+) for the amino acid glycine are observed for the first time.

1. Chemical context

Various inorganic and organic–inorganic hybrid materials are used in third-generation photovoltaic devices as solar energy converters (Peng et al., 2015[Peng, G., Xu, X. & Xu, G. (2015). J. Nanomater., 41853.]; Ahmed et al., 2015[Ahmed, M. I., Habib, A. & Javaid, S. S. (2015). Int. J. Photoenergy, 92308. http://dx.doi.org/10.1155/2015/592308]; Zhou et al., 2018[Zhou, D., Zhou, T., Tian, Y., Zhu, X. & Tu, Y. (2018). J. Nanomaterials, 8148072.]).

Haloplumbates were also considered to be `solar' materials (Kojima et al., 2009[Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009). J. Am. Chem. Soc. 131, 6050-6051.]; Naza­renko et al., 2018[Nazarenko, O., Kotyrba, M. R., Yakunin, S., Aebli, M., Rainò, G., Benin, B. M., Wörle, M. & Kovalenko, M. V. (2018). J. Am. Chem. Soc. 140, 3850-3853.]), but it turned out that plumbates have unfavorable properties, such as instability and toxicity. However, these compounds may have applications in other inter­esting areas: white–light emitting materials (Peng et al., 2018[Peng, Ch., Zhuang, Z., Yang, H., Zhang, G. & Fei, H. (2018). Chem. Sci. 9, 1627-1633.]), luminescent sensing (Wang et al., 2019[Wang, J., Gao, L., Zhang, J., Zhao, L., Wang, X., Niu, X., Fan, L. & Hu, T. (2019). Cryst. Growth Des. 19, 630-637.]; Wang, 2020[Wang, L. (2020). J. Inorg. Organomet. Polym. 30, 291-298.]; Martínez Casado et al., 2012[Martínez Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Ramos Riesco, M., Marchese, L. & Rodríguez Cheda, J. A. (2012). CrystEngComm, 14, 2660-2668.]), ferroelectric materials (Gao et al., 2017[Gao, R., Reyes-Lillo, S. E., Xu, R., Dasgupta, A., Dong, Y., Dedon, L. R., Kim, J., Saremi, S., Chen, Z., Serrao, C. R., Zhou, H., Neaton, J. B. & Martin, L. W. (2017). Chem. Mater. 29, 6544-6551.]), non-linear optical materials (Chen et al., 2020[Chen, X., Jo, H. & Ok, K. M. (2020). Angew. Chem. Int. Ed. 59, 7514-7520.]) and semiconductors (Terpstra et al., 1997[Terpstra, H. J., De Groot, R. A. & Haas, C. (1997). J. Phys. Chem. Solids, 58, 561-566.]).

Our research group has been studying various amino acid salts for a long time (Fleck & Petrosyan, 2014[Fleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht, Springer.]), and we assumed that amino acids could be used to synthesize organic–inorganic hybrid materials. After the successful synthesis of (GlyH)PbBr3 (Tonoyan et al., 2024[Tonoyan, G. S., Giester, G., Ghazaryan, V. V., Badalyan, A. Y., Chilingaryan, R. Yu., Margaryan, A. A., Mkrtchyan, A. H. & Petrosyan, A. M. (2024). III Intern. Scientific School-Conference on Acoustophysics named after Academician A. R. Mkrtchyan, Book of Abstracts, p. 23., Yerevan-Sevan, Armenia. https://school. iapp. am/wp-content/uploads/2024/06/Book-of-Abstract-Sevan-2024.pdf]), efforts were focused on obtaining (GlyH)PbI3.

These compounds are also inter­esting for lead chemistry. Pb2+ has an electronic configuration of [Xe]6s2 4f14 5d10. The 6s2 electrons determine the stereochemistry of PbII. Upon hybridization of the s and p orbitals, the stereochemically active 6s2 electron pair occupies a position in the coordination sphere of the metal (hemidirected coordination). In this case, such hybridization does not occur, the 6s2 electron pair has only s character and is stereochemically inactive (holodirected coordination) (Casas et al., 2006[Casas, J. S., Sordo, J. & Vidarte, M. J. (2006). Lead(II) coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed., edited by J. S. Casas & J. Sordo, pp. 41-72. Amsterdam: Elsevier.]; Seth et al., 2018[Seth, S. K., Bauzá, A., Mahmoudi, Gh., Stilinović, V., López-Torres, E., Zaragoza, G., Keramidas, A. D. & Frontera, A. (2018). CrystEngComm, 20, 5033-5044.]). As the lead ion has released its two 6p2 electrons, σ-hole inter­actions are possible. These inter­actions are known among elements of group IV and usually include the tetrel bonding inter­action. In other words, the hemidirectional nature of lead(II) centers is the basic reason for different tetrel bonding inter­actions such as Pb⋯O (S, N, Cl, Br, I), which lead to the formation of supra­molecular assemblies.

[Scheme 1]

Instead of (GlyH)PbI3 crystals, those of (GlyH)6(Pb3I12) were formed unexpectedly. The [Pb3I12]6− anion is already known (Wang et al., 2015[Wang, C.-H., Du, H.-J., Li, Y., Niu, Y.-Y. & Hou, H.-W. (2015). New J. Chem. 39, 7372-7378.], 2017[Wang, R.-Y., Zhang, X., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). RSC Adv. 7, 19073-19080.]; Lemmerer & Billing, 2012[Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954-1966.]); it has three lead centers, which can be stereochemically different. In the [Pb3I12]6− anion of {(tbp)2[Pb3I12]}n obtained by Wang et al. (2015[Wang, C.-H., Du, H.-J., Li, Y., Niu, Y.-Y. & Hou, H.-W. (2015). New J. Chem. 39, 7372-7378.]), the lead centers are holodirected, coordinated by six iodine atoms, and have an octa­hedral geometry. In (GlyH)6(Pb3I12), the Pb1 center has a holodirected coordination and is bound to six I atoms, while the Pb2 centers with hemidirected coordination are linked to five I atoms. The anion described by Lemmerer & Billing (2012[Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954-1966.]), as well as that reported by Wang et al. (2017[Wang, R.-Y., Zhang, X., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). RSC Adv. 7, 19073-19080.]) both correspond to our case considering the long Pb1—I6 distance [3.482 (1) Å]; however, these authors misinter­preted the coordination as holodirected or six-coordinate.

2. Structural commentary

The title salt (GlyH)6(Pb3I12) crystallizes in the triclinic space group P[\overline{1}] with the asymmetric unit containing half of the formula unit. Selected bond lengths are given in Table 1[link] and the mol­ecular structure is shown in Fig. 1[link]. In (GlyH)6(Pb3I12) the [Pb3I12]6− anion is discrete. The Pb1 center has a holodirected coordination with six I atoms, thus forming an octa­hedron. The two Pb2 centers have hemidirected coordinations with five I atoms, forming distorted tetra­gonal pyramids. These hemidirected lead ions have stereochemically active lone pairs. Despite this, any donor–acceptor, covalent or tetrel bonds are missing. The lead centers are connected with each other via Pb—I—Pb covalent bonds (Fig. 2[link]). The anions are located parallel to each other, and the glycinium cations cross-link the entire structure through C—H⋯I, N—H⋯I and O—H⋯I hydrogen bonds (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

C1A—O1A 1.304 (4) C1B—O1B 1.302 (4) C1C—O1C 1.322 (4)
C1A—O2A 1.209 (4) C1B—O2B 1.210 (4) C1C—O2C 1.196 (4)
C1A—C2A 1.502 (4) C1B—C2B 1.499 (4) C1C—C2C 1.507 (5)
C2A—N1A 1.474 (4) C2B—N1B 1.476 (4) C2C—N1C 1.477 (4)
           
Pb1—I1 3.1575 (3) 2× Pb2—I1 3.4049 (3) Pb2—I4 3.0213 (3)
Pb1—I2 3.1988 (2) 2× Pb2—I2 3.4063 (3) Pb2—I5 3.0926 (3)
Pb1—I3 3.2432 (3) 2×     Pb2—I6 3.0663 (3)
[Figure 1]
Figure 1
Mol­ecular structure of (GlyH)6(Pb3I12). Symmetry code: (i) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
The packing of (GlyH)6(Pb3I12).
[Figure 3]
Figure 3
Parallel anions in the packing of (GlyH)6(Pb3I12) viewed along the a axis.

3. Supra­molecular features

The crystal structure is consolidated via O—H⋯O, O—H⋯I, N—H⋯O, N—H⋯I and C—H⋯I hydrogen bonds (Table 2[link]). The carboxyl group of the glycinium cation A forms a hydrogen bond [O1A—H1A⋯O2A, 2.637 (3) Å] with a symmetry-related glycinium A cation; the same is the case for the cation B: O1B—H1B⋯O2B [2.667 (3) Å]. However, the carboxyl group of the glycinium cation C establishes a hydrogen bond O1C—H1C⋯I5 [3.445 (3) Å] with the anion. Thus, the A and B glycinium cations form centrosymmetric (A+A+) type dimeric cations, which so far have not been reported for glycine (Fleck & Petrosyan, 2014[Fleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht, Springer.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Ai 0.79 (5) 1.85 (3) 2.638 (3) 171 (4)
C2A—H21A⋯I1ii 0.99 3.10 3.669 (3) 118
C2A—H22A⋯I2 0.99 3.33 4.271 (4) 160
N1A—H11A⋯I4iii 0.91 3.05 3.549 (3) 116
N1A—H11A⋯I5ii 0.91 3.27 3.983 (3) 137
N1A—H11A⋯I6 0.91 3.04 3.655 (3) 126
N1A—H12A⋯I5iii 0.91 2.69 3.588 (3) 170
N1A—H13A⋯I4 0.91 2.75 3.605 (3) 156
O1B—H1B⋯O2Biv 0.82 (4) 1.85 (4) 2.667 (3) 176 (4)
C2B—H21B⋯I2 0.99 3.03 3.976 (3) 161
C2B—H22B⋯I6v 0.99 3.18 3.775 (3) 120
N1B—H11B⋯I3vi 0.91 2.82 3.648 (3) 151
N1B—H12B⋯I1 0.91 3.11 3.647 (3) 119
N1B—H12B⋯O1Avii 0.91 2.49 3.320 (4) 151
N1B—H13B⋯I6v 0.91 2.79 3.528 (3) 139
O1C—H1C⋯I5viii 0.90 (5) 2.57 (3) 3.445 (3) 164 (4)
N1C—H11C⋯I1ii 0.91 3.09 3.711 (3) 127
N1C—H11C⋯I2 0.91 3.13 3.640 (3) 117
N1C—H11C⋯I6 0.91 3.31 3.868 (3) 122
N1C—H12C⋯I2ix 0.91 3.00 3.779 (3) 145
N1C—H13C⋯I3 0.91 2.73 3.628 (3) 170
C2C—H21C⋯I3ii 0.99 3.14 4.068 (3) 156
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [x+1, y, z]; (iii) [-x+1, -y, -z]; (iv) [-x+1, -y+1, -z]; (v) [x, y+1, z]; (vi) [-x+1, -y+1, -z+1]; (vii) [x-1, y, z]; (viii) [-x+1, -y, -z+1]; (ix) [-x+2, -y+1, -z+1].

The NH3+ groups form rather strong: N1A—H11A⋯I4 [3.549 (3) Å], N1A—H12A⋯I5 [3.588 (3) Å], N1B—H11B⋯I3 [3.648 (3) Å], N1B—H12B⋯I1 [3.647 (3) Å], N1C—H13C⋯I3 [3.628 (3) Å] and weak: N1A—H11A⋯I6 [3.655 (3) Å], N1A—H13A⋯I4 [3.605 (3) Å], N1B—H12B⋯I1 [3.647 (3) Å], N1C—H11C⋯I1 [3.711 (3) Å], N1C—H11C⋯I2 [3.640 (3) Å], N1C—H12C⋯I2 [3.779 (3) Å] hydrogen bonds with the anions. There are also C—H⋯I-type contacts: C2A—H21A⋯I1 [3.669 (3) Å], C2B—H21B⋯I2 [3.976 (3) Å], and C2C—H21C⋯I3 [4.068 (3) Å], which can be considered as very weak hydrogen bonds. Thus, these glycinium cations cross-link the entire structure and consolidate it.

4. Database survey

A survey of the Cambridge Structural Database (CSD2023.2.0, version 5.45, November update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed several similar structures. Currently, the Cambridge Structural Database contains 23 entries for the [Pb3I12]6− anion, which can exist in both discrete and polymeric forms that also have different subtypes. In particular, the discrete type has three subtypes: when the middle lead atom of the trinuclear [Pb3I12]6− anion has one (Leng et al., 2023[Leng, F., Zhang, X. & Yu, J.-H. (2023). Dalton Trans. 52, 5127-5140.]), two, or three (Wang et al., 2015[Wang, C.-H., Du, H.-J., Li, Y., Niu, Y.-Y. & Hou, H.-W. (2015). New J. Chem. 39, 7372-7378.]; Yue et al., 2019[Yue, C.-Y., Sun, H.-X., Liu, Q.-X., Wang, X.-M., Yuan, Z.-S., Wang, J., Wu, J.-H., Hu, B. & Lei, X.-W. (2019). Inorg. Chem. Front. 6, 2709-2717.]; Zhang et al., 2022[Zhang, Sh., Xiao, T., Fadaei Tirani, F., Scopelliti, R., Nazeeruddin, M. K., Zhu, D., Dyson, P. J. & Fei, Z. (2022). Inorg. Chem. 61, 5010-5016.]) bridging iodine atoms. When there are one or two bridging iodine atoms, the central lead center has a holodirected coordination and the outer lead atoms have a hemidirected coordination. The anions presented in these works (Lemmerer & Billing, 2012[Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954-1966.]; Wang et al., 2017[Wang, R.-Y., Zhang, X., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). RSC Adv. 7, 19073-19080.]; Cheng et al., 2023[Cheng, X., Han, Y., Cheng, T., Xie, Y., Chang, X., Lin, Y., Lv, L., Li, J., Yin, J. & Cui, B.-B. (2023). Appl. Mater. Interfaces, 15, 32506-32514.]) correspond to our case, where the central lead atom has two bridging iodine atoms and the lead centers have different stereochemistry: holodirected (six-coordinate) and hemidirected (five-coordinate). The polymeric [Pb3I12]6− anion can be linear (Liang et al., 2023[Liang, B.-D., Fan, C.-C., Liu, C.-D., Ju, T.-Y., Chai, C.-Y., Han, X.-B. & Zhang, W. (2023). Inorg. Chem. Front. 10, 5035-5043.]) or cross-linked (Michael & Harald, 2018[Michael, D. & Harald, H. (2018). Z. Kristallogr. Cryst. Mater. 233, 555-564.]; Naza­renko et al., 2018[Nazarenko, O., Kotyrba, M. R., Yakunin, S., Aebli, M., Rainò, G., Benin, B. M., Wörle, M. & Kovalenko, M. V. (2018). J. Am. Chem. Soc. 140, 3850-3853.]; Passarelli et al., 2020[Passarelli, J. V., Mauck, C. M., Winslow, S. W., Perkinson, C. F., Bard, J. C., Sai, H., Williams, K. W., Narayanan, A., Fairfield, D. J., Hendricks, M. P., Tisdale, W. A. & Stupp, S. I. (2020). Nat. Chem. 12, 672-682.]). In summary, 15 [Pb3I12]6− anions from the 23 entries in the CSD are discrete, 7 are polymeric and one case is remarkable (Yao et al., 2022[Yao, G., Zhao, L., Zeng, T. & Yang, Z. (2022). Nanotechnology, 33, 355701.]) with both a polymer and a discrete [Pb3I12]6− anion being present in the crystal structure.

5. Synthesis and crystallization

As initial reagents we used amino acid glycine (99%) and hydriodic acid (57% w/w, distilled, stabilized with <1.5% hypo­phospho­rous acid, 99.95%). Initially, lead and hydriodic acid were taken in a 1:3 stoichiometric ratio. When the amount of acid in the solution decreases, the reaction between metal and acid slows and eventually almost stops (when no H2 gas is released). At this point, the amount of obtained lead(II) iodide (PbI2) and remaining acid (HI) was calculated (1:6 stoichiometric ratio). Next, the appropriate amount of glycine was added and mixed. The final stoichiometric ratio of Gly, PbI2 and HI was 1:1:6. Instead of the desired compound (GlyH)PbI3, only (GlyH)6(Pb3I12) was obtained. Light-red, needle-shaped crystals were obtained by solvent evaporation in a closed container, using silica gel as an absorber. (GlyH)6(Pb3I12) is very hygroscopic: in the IR spectrum the absorption band at 3524 cm−1 corresponds to the ν(OH) stretching modes of the hygroscopic water mol­ecules. The band with a peak at 3036 cm−1 is caused by ν(NH) of the NH3+ groups of glycinium cations. The peaks at 2916 cm−1 and 2854 cm−1 are assigned to ν(CH) of the CH2 groups, and the strong band at 1716 cm−1 to ν(C=O) of the carboxyl groups.

An attenuated total reflection Fourier-transform infrared spectrum (ATR-FTIR) was recorded on an Agilent Cary 630 spectrometer using a germanium (Ge) ATR sampling module (Ge crystal, Happ–Genzel apodization, ATR distortion corrected, 64 scans, 4 cm−1 resolution). The IR spectrum is shown in Fig. 4[link].

[Figure 4]
Figure 4
FTIR spectrum of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were treated as riding on their parent atoms [C—H = 0.99 Å, N—H = 0.91 Å; Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N)] except those of the carboxyl group, which were refined with the restraint Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula (C2H6NO2)6[Pb3I12]
Mr 2600.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.5437 (5), 11.2672 (7), 14.8534 (9)
α, β, γ (°) 105.900 (2), 92.647 (2), 111.477 (2)
V3) 1262.40 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 17.36
Crystal size (mm) 0.1 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.548, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54402, 9640, 8389
Rint 0.029
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.039, 1.03
No. of reflections 9640
No. of parameters 215
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.29, −2.49
Computer programs: APEX5 Bruker (2024[Bruker (2024). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Hexaglycinium tetra-µ-iodido-octaiodidotriplumbate top
Crystal data top
(C2H6NO2)6[Pb3I12]Z = 1
Mr = 2600.84F(000) = 1128
Triclinic, P1Dx = 3.421 Mg m3
a = 8.5437 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2672 (7) ÅCell parameters from 9918 reflections
c = 14.8534 (9) Åθ = 2.6–32.9°
α = 105.900 (2)°µ = 17.36 mm1
β = 92.647 (2)°T = 200 K
γ = 111.477 (2)°Block, yellow
V = 1262.40 (13) Å30.1 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
8389 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.2°, θmin = 2.1°
Tmin = 0.548, Tmax = 0.746h = 1313
54402 measured reflectionsk = 1717
9640 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0087P)2 + 2.5693P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
9640 reflectionsΔρmax = 2.29 e Å3
215 parametersΔρmin = 2.48 e Å3
0 restraintsExtinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00049 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.5000000.5000000.5000000.02041 (3)
Pb20.38342 (2)0.18885 (2)0.25654 (2)0.02316 (3)
I10.19064 (2)0.40522 (2)0.33606 (2)0.02537 (4)
I20.74935 (2)0.46827 (2)0.34936 (2)0.02390 (4)
I30.41471 (2)0.19237 (2)0.49364 (2)0.02463 (4)
I40.42551 (3)0.22381 (2)0.06337 (2)0.03591 (5)
I50.03007 (3)0.03864 (2)0.16590 (2)0.03305 (5)
I60.59810 (3)0.01929 (2)0.23522 (2)0.03749 (6)
O1A1.0289 (4)0.4863 (2)0.11937 (18)0.0392 (6)
H1A1.044 (5)0.540 (3)0.0923 (19)0.059*
O2A0.8915 (4)0.3408 (2)0.02294 (17)0.0389 (6)
C1A0.9400 (4)0.3667 (3)0.0605 (2)0.0263 (6)
C2A0.9034 (5)0.2593 (3)0.1076 (2)0.0330 (7)
H21A1.0110810.2525520.1277590.040*
H22A0.8520110.2829240.1647190.040*
N1A0.7854 (4)0.1293 (3)0.0409 (2)0.0366 (7)
H11A0.7748670.0628720.0668060.055*
H12A0.8269840.1128460.0143980.055*
H13A0.6814640.1320770.0292770.055*
O1B0.6686 (3)0.5891 (3)0.10354 (18)0.0352 (6)
H1B0.6483 (17)0.542 (5)0.048 (3)0.053*
O2B0.3916 (3)0.5535 (3)0.07956 (16)0.0347 (5)
C1B0.5289 (4)0.5982 (3)0.1296 (2)0.0270 (6)
C2B0.5538 (5)0.6726 (4)0.2331 (2)0.0316 (7)
H21B0.5783150.6199730.2712000.038*
H22B0.6523010.7599080.2488930.038*
N1B0.3990 (4)0.6954 (3)0.2566 (2)0.0316 (6)
H11B0.4044950.7217630.3207220.047*
H12B0.3054010.6180230.2299160.047*
H13B0.3917130.7606310.2336600.047*
O1C1.0019 (3)0.1093 (3)0.6226 (2)0.0377 (6)
H1C0.985 (5)0.104 (4)0.681 (3)0.057*
O2C0.8283 (3)0.2202 (3)0.64327 (18)0.0373 (6)
N1C0.8615 (4)0.2696 (3)0.4769 (2)0.0352 (7)
H11C0.8676230.2693060.4158600.053*
H12C0.9232650.3537620.5170120.053*
H13C0.7507890.2436780.4858060.053*
C1C0.9138 (4)0.1728 (3)0.5965 (2)0.0268 (6)
C2C0.9311 (4)0.1753 (4)0.4965 (2)0.0304 (7)
H21C1.0526030.2044560.4888630.037*
H22C0.8678960.0842420.4511200.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01827 (7)0.02247 (7)0.01990 (7)0.00920 (6)0.00231 (5)0.00423 (6)
Pb20.02567 (6)0.02343 (6)0.02006 (5)0.01115 (4)0.00307 (4)0.00437 (4)
I10.02081 (9)0.02978 (10)0.02544 (9)0.01089 (8)0.00022 (7)0.00788 (8)
I20.02197 (9)0.02590 (10)0.02631 (9)0.01158 (7)0.00746 (7)0.00847 (7)
I30.02360 (9)0.02525 (10)0.02430 (9)0.00811 (7)0.00517 (7)0.00853 (7)
I40.04911 (14)0.02858 (11)0.02416 (10)0.00690 (10)0.00171 (9)0.01154 (8)
I50.02567 (10)0.03563 (12)0.03222 (11)0.00594 (9)0.00550 (8)0.01039 (9)
I60.04793 (14)0.03453 (12)0.04935 (14)0.02767 (11)0.02635 (11)0.02394 (11)
O1A0.0489 (16)0.0251 (12)0.0306 (13)0.0009 (11)0.0040 (11)0.0096 (10)
O2A0.0541 (16)0.0256 (12)0.0280 (12)0.0052 (11)0.0012 (11)0.0104 (10)
C1A0.0240 (14)0.0240 (15)0.0280 (15)0.0063 (12)0.0050 (12)0.0083 (12)
C2A0.0415 (19)0.0234 (16)0.0288 (16)0.0057 (14)0.0033 (14)0.0099 (13)
N1A0.0476 (18)0.0240 (14)0.0322 (15)0.0063 (13)0.0139 (13)0.0092 (12)
O1B0.0322 (13)0.0411 (15)0.0307 (12)0.0164 (11)0.0089 (10)0.0055 (11)
O2B0.0351 (13)0.0478 (15)0.0253 (11)0.0217 (12)0.0083 (10)0.0096 (11)
C1B0.0346 (17)0.0278 (16)0.0269 (15)0.0170 (14)0.0112 (13)0.0137 (13)
C2B0.0414 (19)0.0333 (18)0.0260 (15)0.0214 (15)0.0051 (13)0.0093 (13)
N1B0.0427 (17)0.0304 (15)0.0267 (13)0.0176 (13)0.0148 (12)0.0107 (12)
O1C0.0382 (14)0.0470 (16)0.0442 (15)0.0249 (12)0.0123 (11)0.0273 (13)
O2C0.0384 (14)0.0449 (15)0.0391 (14)0.0247 (12)0.0158 (11)0.0166 (12)
N1C0.0302 (15)0.0430 (17)0.0437 (17)0.0180 (13)0.0108 (13)0.0254 (14)
C1C0.0216 (14)0.0259 (15)0.0329 (16)0.0064 (12)0.0034 (12)0.0134 (13)
C2C0.0298 (16)0.0336 (18)0.0345 (17)0.0163 (14)0.0081 (13)0.0151 (14)
Geometric parameters (Å, º) top
Pb1—I1i3.1575 (3)O1B—C1B1.302 (4)
Pb1—I13.1575 (2)O1B—H1B0.82 (5)
Pb1—I2i3.1988 (2)O2B—C1B1.210 (4)
Pb1—I23.1988 (2)C1B—C2B1.499 (4)
Pb1—I33.2432 (3)C2B—N1B1.476 (4)
Pb1—I3i3.2432 (3)C2B—H21B0.9900
Pb2—I43.0213 (3)C2B—H22B0.9900
Pb2—I63.0663 (3)N1B—H11B0.9100
Pb2—I53.0926 (3)N1B—H12B0.9100
Pb2—I13.4049 (3)N1B—H13B0.9100
Pb2—I23.4063 (3)O1C—C1C1.322 (4)
O1A—C1A1.304 (4)O1C—H1C0.90 (5)
O1A—H1A0.79 (5)O2C—C1C1.196 (4)
O2A—C1A1.209 (4)N1C—C2C1.477 (4)
C1A—C2A1.502 (4)N1C—H11C0.9100
C2A—N1A1.474 (4)N1C—H12C0.9100
C2A—H21A0.9900N1C—H13C0.9100
C2A—H22A0.9900C1C—C2C1.507 (5)
N1A—H11A0.9100C2C—H21C0.9900
N1A—H12A0.9100C2C—H22C0.9900
N1A—H13A0.9100
I1i—Pb1—I1180.0C2A—N1A—H12A109.5
I1i—Pb1—I2i91.363 (7)H11A—N1A—H12A109.5
I1—Pb1—I2i88.637 (8)C2A—N1A—H13A109.5
I1i—Pb1—I288.637 (7)H11A—N1A—H13A109.5
I1—Pb1—I291.363 (7)H12A—N1A—H13A109.5
I2i—Pb1—I2180.0C1B—O1B—H1B109.5
I1i—Pb1—I388.797 (5)O2B—C1B—O1B126.6 (3)
I1—Pb1—I391.203 (5)O2B—C1B—C2B121.3 (3)
I2i—Pb1—I391.693 (5)O1B—C1B—C2B112.1 (3)
I2—Pb1—I388.307 (5)N1B—C2B—C1B110.1 (3)
I1i—Pb1—I3i91.203 (5)N1B—C2B—H21B109.6
I1—Pb1—I3i88.797 (6)C1B—C2B—H21B109.6
I2i—Pb1—I3i88.307 (5)N1B—C2B—H22B109.6
I2—Pb1—I3i91.693 (5)C1B—C2B—H22B109.6
I3—Pb1—I3i180.0H21B—C2B—H22B108.2
I4—Pb2—I692.576 (7)C2B—N1B—H11B109.5
I4—Pb2—I588.198 (8)C2B—N1B—H12B109.5
I6—Pb2—I598.865 (9)H11B—N1B—H12B109.5
I4—Pb2—I198.685 (7)C2B—N1B—H13B109.5
I6—Pb2—I1166.133 (7)H11B—N1B—H13B109.5
I5—Pb2—I189.602 (8)H12B—N1B—H13B109.5
I4—Pb2—I288.550 (7)C1C—O1C—H1C109.5
I6—Pb2—I288.468 (8)C2C—N1C—H11C109.5
I5—Pb2—I2172.104 (7)C2C—N1C—H12C109.5
I1—Pb2—I283.779 (8)H11C—N1C—H12C109.5
Pb1—I1—Pb276.444 (6)C2C—N1C—H13C109.5
Pb1—I2—Pb275.892 (6)H11C—N1C—H13C109.5
C1A—O1A—H1A109.5H12C—N1C—H13C109.5
O2A—C1A—O1A125.6 (3)O2C—C1C—O1C126.1 (3)
O2A—C1A—C2A122.0 (3)O2C—C1C—C2C123.3 (3)
O1A—C1A—C2A112.4 (3)O1C—C1C—C2C110.6 (3)
N1A—C2A—C1A109.8 (3)N1C—C2C—C1C108.8 (3)
N1A—C2A—H21A109.7N1C—C2C—H21C109.9
C1A—C2A—H21A109.7C1C—C2C—H21C109.9
N1A—C2A—H22A109.7N1C—C2C—H22C109.9
C1A—C2A—H22A109.7C1C—C2C—H22C109.9
H21A—C2A—H22A108.2H21C—C2C—H22C108.3
C2A—N1A—H11A109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Aii0.79 (5)1.85 (3)2.638 (4)171 (4)
C2A—H21A···I1iii0.993.103.669 (3)118
C2A—H22A···I20.993.334.271 (4)160
N1A—H11A···I4iv0.913.053.549 (3)116
N1A—H11A···I5iii0.913.273.983 (3)137
N1A—H11A···I60.913.043.655 (3)126
N1A—H12A···I5iv0.912.693.588 (3)170
N1A—H13A···I40.912.753.605 (3)156
O1B—H1B···O2Bv0.82 (4)1.85 (4)2.667 (3)176 (4)
C2B—H21B···I20.993.033.976 (3)161
C2B—H22B···I6vi0.993.183.775 (3)120
N1B—H11B···I3i0.912.823.648 (3)151
N1B—H12B···I10.913.113.647 (3)119
N1B—H12B···O1Avii0.912.493.320 (4)151
N1B—H13B···I6vi0.912.793.528 (3)139
O1C—H1C···I5viii0.90 (5)2.57 (3)3.445 (3)164 (4)
N1C—H11C···I1iii0.913.093.711 (3)127
N1C—H11C···I20.913.133.640 (3)117
N1C—H11C···I60.913.313.868 (3)122
N1C—H12C···I2ix0.913.003.779 (3)145
N1C—H13C···I30.912.733.628 (3)170
C2C—H21C···I3iii0.993.144.068 (3)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1, y, z+1; (ix) x+2, y+1, z+1.
Selected bond lengths (Å) top
C1A—O1A1.304 (4)C1B—O1B1.302 (4)C1C—O1C1.322 (4)
C1A—O2A1.209 (4)C1B—O2B1.210 (4)C1C—O2C1.196 (4)
C1A—C2A1.502 (4)C1B—C2B1.499 (4)C1C—C2C1.507 (5)
C2A—N1A1.474 (4)C2B—N1B1.476 (4)C2C—N1C1.477 (4)
Pb1—I13.1575 (3) 2×Pb2—I13.4049 (3)Pb2—I43.0213 (3)
Pb1—I23.1988 (2) 2×Pb2—I23.4063 (3)Pb2—I53.0926 (3)
Pb1—I33.2432 (3) 2×Pb2—I63.0663 (3)
 

Funding information

The work was supported by the Science Committee of RA, in the frame of research project No. 21AG-1D015.

References

First citationAhmed, M. I., Habib, A. & Javaid, S. S. (2015). Int. J. Photoenergy, 92308. http://dx.doi.org/10.1155/2015/592308  Google Scholar
First citationBruker (2024). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Sordo, J. & Vidarte, M. J. (2006). Lead(II) coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed., edited by J. S. Casas & J. Sordo, pp. 41–72. Amsterdam: Elsevier.  Google Scholar
First citationChen, X., Jo, H. & Ok, K. M. (2020). Angew. Chem. Int. Ed. 59, 7514–7520.  Web of Science CrossRef ICSD Google Scholar
First citationCheng, X., Han, Y., Cheng, T., Xie, Y., Chang, X., Lin, Y., Lv, L., Li, J., Yin, J. & Cui, B.-B. (2023). Appl. Mater. Interfaces, 15, 32506–32514.  Web of Science CSD CrossRef Google Scholar
First citationFleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht, Springer.  Google Scholar
First citationGao, R., Reyes-Lillo, S. E., Xu, R., Dasgupta, A., Dong, Y., Dedon, L. R., Kim, J., Saremi, S., Chen, Z., Serrao, C. R., Zhou, H., Neaton, J. B. & Martin, L. W. (2017). Chem. Mater. 29, 6544–6551.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009). J. Am. Chem. Soc. 131, 6050–6051.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954–1966.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeng, F., Zhang, X. & Yu, J.-H. (2023). Dalton Trans. 52, 5127–5140.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLiang, B.-D., Fan, C.-C., Liu, C.-D., Ju, T.-Y., Chai, C.-Y., Han, X.-B. & Zhang, W. (2023). Inorg. Chem. Front. 10, 5035–5043.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Ramos Riesco, M., Marchese, L. & Rodríguez Cheda, J. A. (2012). CrystEngComm, 14, 2660–2668.  Google Scholar
First citationMichael, D. & Harald, H. (2018). Z. Kristallogr. Cryst. Mater. 233, 555–564.  Google Scholar
First citationNazarenko, O., Kotyrba, M. R., Yakunin, S., Aebli, M., Rainò, G., Benin, B. M., Wörle, M. & Kovalenko, M. V. (2018). J. Am. Chem. Soc. 140, 3850–3853.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPassarelli, J. V., Mauck, C. M., Winslow, S. W., Perkinson, C. F., Bard, J. C., Sai, H., Williams, K. W., Narayanan, A., Fairfield, D. J., Hendricks, M. P., Tisdale, W. A. & Stupp, S. I. (2020). Nat. Chem. 12, 672–682.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPeng, Ch., Zhuang, Z., Yang, H., Zhang, G. & Fei, H. (2018). Chem. Sci. 9, 1627–1633.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPeng, G., Xu, X. & Xu, G. (2015). J. Nanomater., 41853.  Google Scholar
First citationSeth, S. K., Bauzá, A., Mahmoudi, Gh., Stilinović, V., López-Torres, E., Zaragoza, G., Keramidas, A. D. & Frontera, A. (2018). CrystEngComm, 20, 5033–5044.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerpstra, H. J., De Groot, R. A. & Haas, C. (1997). J. Phys. Chem. Solids, 58, 561–566.  CrossRef CAS Web of Science Google Scholar
First citationTonoyan, G. S., Giester, G., Ghazaryan, V. V., Badalyan, A. Y., Chilingaryan, R. Yu., Margaryan, A. A., Mkrtchyan, A. H. & Petrosyan, A. M. (2024). III Intern. Scientific School-Conference on Acoustophysics named after Academician A. R. Mkrtchyan, Book of Abstracts, p. 23., Yerevan-Sevan, Armenia. https://school. iapp. am/wp-content/uploads/2024/06/Book-of-Abstract-Sevan-2024.pdf  Google Scholar
First citationWang, C.-H., Du, H.-J., Li, Y., Niu, Y.-Y. & Hou, H.-W. (2015). New J. Chem. 39, 7372–7378.  Web of Science CSD CrossRef Google Scholar
First citationWang, J., Gao, L., Zhang, J., Zhao, L., Wang, X., Niu, X., Fan, L. & Hu, T. (2019). Cryst. Growth Des. 19, 630–637.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L. (2020). J. Inorg. Organomet. Polym. 30, 291–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, R.-Y., Zhang, X., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). RSC Adv. 7, 19073–19080.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, G., Zhao, L., Zeng, T. & Yang, Z. (2022). Nanotechnology, 33, 355701.  Web of Science CSD CrossRef Google Scholar
First citationYue, C.-Y., Sun, H.-X., Liu, Q.-X., Wang, X.-M., Yuan, Z.-S., Wang, J., Wu, J.-H., Hu, B. & Lei, X.-W. (2019). Inorg. Chem. Front. 6, 2709–2717.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Sh., Xiao, T., Fadaei Tirani, F., Scopelliti, R., Nazeeruddin, M. K., Zhu, D., Dyson, P. J. & Fei, Z. (2022). Inorg. Chem. 61, 5010–5016.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, D., Zhou, T., Tian, Y., Zhu, X. & Tu, Y. (2018). J. Nanomaterials, 8148072.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds