research communications
of hexaglycinium dodecaiodotriplumbate
aInstitute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia, and bInstitute of Mineralogy and Crystallography, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
*Correspondence e-mail: itonoyan1@gmail.com
The μ-iodido-octaiodidotriplumbate, (C2H6NO2)6[Pb3I12] or (GlyH)6[Pb3I12], is reported. The compound crystallizes in the triclinic P. The [Pb3I12]6− anion is discrete and located around a special position: the central Pb ion located on the inversion center is holodirected, while the other two are hemidirected. The supramolecular nature is mainly based on C—H⋯I, N—H⋯I, O—H⋯I and N—H⋯O hydrogen bonds. Dimeric cations of type (A+⋯A+) for the amino acid glycine are observed for the first time.
of hexaglycinium tetra-CCDC reference: 2368898
1. Chemical context
Various inorganic and organic–inorganic hybrid materials are used in third-generation photovoltaic devices as solar energy converters (Peng et al., 2015; Ahmed et al., 2015; Zhou et al., 2018).
Haloplumbates were also considered to be `solar' materials (Kojima et al., 2009; Nazarenko et al., 2018), but it turned out that plumbates have unfavorable properties, such as instability and toxicity. However, these compounds may have applications in other interesting areas: white–light emitting materials (Peng et al., 2018), luminescent sensing (Wang et al., 2019; Wang, 2020; Martínez Casado et al., 2012), ferroelectric materials (Gao et al., 2017), non-linear optical materials (Chen et al., 2020) and semiconductors (Terpstra et al., 1997).
Our research group has been studying various amino acid salts for a long time (Fleck & Petrosyan, 2014), and we assumed that amino acids could be used to synthesize organic–inorganic hybrid materials. After the successful synthesis of (GlyH)PbBr3 (Tonoyan et al., 2024), efforts were focused on obtaining (GlyH)PbI3.
These compounds are also interesting for lead chemistry. Pb2+ has an of [Xe]6s2 4f14 5d10. The 6s2 electrons determine the stereochemistry of PbII. Upon of the s and p orbitals, the stereochemically active 6s2 electron pair occupies a position in the coordination sphere of the metal (hemidirected coordination). In this case, such does not occur, the 6s2 electron pair has only s character and is stereochemically inactive (holodirected coordination) (Casas et al., 2006; Seth et al., 2018). As the lead ion has released its two 6p2 electrons, σ-hole interactions are possible. These interactions are known among elements of group IV and usually include the tetrel bonding interaction. In other words, the hemidirectional nature of lead(II) centers is the basic reason for different tetrel bonding interactions such as Pb⋯O (S, N, Cl, Br, I), which lead to the formation of supramolecular assemblies.
Instead of (GlyH)PbI3 crystals, those of (GlyH)6(Pb3I12) were formed unexpectedly. The [Pb3I12]6− anion is already known (Wang et al., 2015, 2017; Lemmerer & Billing, 2012); it has three lead centers, which can be stereochemically different. In the [Pb3I12]6− anion of {(tbp)2[Pb3I12]}n obtained by Wang et al. (2015), the lead centers are holodirected, coordinated by six iodine atoms, and have an octahedral geometry. In (GlyH)6(Pb3I12), the Pb1 center has a holodirected coordination and is bound to six I atoms, while the Pb2 centers with hemidirected coordination are linked to five I atoms. The anion described by Lemmerer & Billing (2012), as well as that reported by Wang et al. (2017) both correspond to our case considering the long Pb1—I6 distance [3.482 (1) Å]; however, these authors misinterpreted the coordination as holodirected or six-coordinate.
2. Structural commentary
The title salt (GlyH)6(Pb3I12) crystallizes in the triclinic P with the containing half of the formula unit. Selected bond lengths are given in Table 1 and the molecular structure is shown in Fig. 1. In (GlyH)6(Pb3I12) the [Pb3I12]6− anion is discrete. The Pb1 center has a holodirected coordination with six I atoms, thus forming an octahedron. The two Pb2 centers have hemidirected coordinations with five I atoms, forming distorted tetragonal pyramids. These hemidirected lead ions have stereochemically active lone pairs. Despite this, any donor–acceptor, covalent or tetrel bonds are missing. The lead centers are connected with each other via Pb—I—Pb covalent bonds (Fig. 2). The anions are located parallel to each other, and the glycinium cations cross-link the entire structure through C—H⋯I, N—H⋯I and O—H⋯I hydrogen bonds (Fig. 3).
|
3. Supramolecular features
The via O—H⋯O, O—H⋯I, N—H⋯O, N—H⋯I and C—H⋯I hydrogen bonds (Table 2). The carboxyl group of the glycinium cation A forms a hydrogen bond [O1A—H1A⋯O2A, 2.637 (3) Å] with a symmetry-related glycinium A cation; the same is the case for the cation B: O1B—H1B⋯O2B [2.667 (3) Å]. However, the carboxyl group of the glycinium cation C establishes a hydrogen bond O1C—H1C⋯I5 [3.445 (3) Å] with the anion. Thus, the A and B glycinium cations form centrosymmetric (A+⋯A+) type dimeric cations, which so far have not been reported for glycine (Fleck & Petrosyan, 2014).
is consolidatedThe NH3+ groups form rather strong: N1A—H11A⋯I4 [3.549 (3) Å], N1A—H12A⋯I5 [3.588 (3) Å], N1B—H11B⋯I3 [3.648 (3) Å], N1B—H12B⋯I1 [3.647 (3) Å], N1C—H13C⋯I3 [3.628 (3) Å] and weak: N1A—H11A⋯I6 [3.655 (3) Å], N1A—H13A⋯I4 [3.605 (3) Å], N1B—H12B⋯I1 [3.647 (3) Å], N1C—H11C⋯I1 [3.711 (3) Å], N1C—H11C⋯I2 [3.640 (3) Å], N1C—H12C⋯I2 [3.779 (3) Å] hydrogen bonds with the anions. There are also C—H⋯I-type contacts: C2A—H21A⋯I1 [3.669 (3) Å], C2B—H21B⋯I2 [3.976 (3) Å], and C2C—H21C⋯I3 [4.068 (3) Å], which can be considered as very weak hydrogen bonds. Thus, these glycinium cations cross-link the entire structure and consolidate it.
4. Database survey
A survey of the Cambridge Structural Database (CSD2023.2.0, version 5.45, November update; Groom et al., 2016) revealed several similar structures. Currently, the Cambridge Structural Database contains 23 entries for the [Pb3I12]6− anion, which can exist in both discrete and polymeric forms that also have different subtypes. In particular, the discrete type has three subtypes: when the middle lead atom of the trinuclear [Pb3I12]6− anion has one (Leng et al., 2023), two, or three (Wang et al., 2015; Yue et al., 2019; Zhang et al., 2022) bridging iodine atoms. When there are one or two bridging iodine atoms, the central lead center has a holodirected coordination and the outer lead atoms have a hemidirected coordination. The anions presented in these works (Lemmerer & Billing, 2012; Wang et al., 2017; Cheng et al., 2023) correspond to our case, where the central lead atom has two bridging iodine atoms and the lead centers have different stereochemistry: holodirected (six-coordinate) and hemidirected (five-coordinate). The polymeric [Pb3I12]6− anion can be linear (Liang et al., 2023) or cross-linked (Michael & Harald, 2018; Nazarenko et al., 2018; Passarelli et al., 2020). In summary, 15 [Pb3I12]6− anions from the 23 entries in the CSD are discrete, 7 are polymeric and one case is remarkable (Yao et al., 2022) with both a polymer and a discrete [Pb3I12]6− anion being present in the crystal structure.
5. Synthesis and crystallization
As initial reagents we used amino acid glycine (99%) and hydriodic acid (57% w/w, distilled, stabilized with <1.5% hypophosphorous acid, 99.95%). Initially, lead and hydriodic acid were taken in a 1:3 stoichiometric ratio. When the amount of acid in the solution decreases, the reaction between metal and acid slows and eventually almost stops (when no H2 gas is released). At this point, the amount of obtained lead(II) iodide (PbI2) and remaining acid (HI) was calculated (1:6 stoichiometric ratio). Next, the appropriate amount of glycine was added and mixed. The final stoichiometric ratio of Gly, PbI2 and HI was 1:1:6. Instead of the desired compound (GlyH)PbI3, only (GlyH)6(Pb3I12) was obtained. Light-red, needle-shaped crystals were obtained by solvent evaporation in a closed container, using silica gel as an absorber. (GlyH)6(Pb3I12) is very hygroscopic: in the IR spectrum the absorption band at 3524 cm−1 corresponds to the ν(OH) stretching modes of the hygroscopic water molecules. The band with a peak at 3036 cm−1 is caused by ν(NH) of the NH3+ groups of glycinium cations. The peaks at 2916 cm−1 and 2854 cm−1 are assigned to ν(CH) of the CH2 groups, and the strong band at 1716 cm−1 to ν(C=O) of the carboxyl groups.
An attenuated total reflection Fourier-transform infrared spectrum (ATR-FTIR) was recorded on an Agilent Cary 630 spectrometer using a germanium (Ge) ATR sampling module (Ge crystal, Happ–Genzel apodization, ATR distortion corrected, 64 scans, 4 cm−1 resolution). The IR spectrum is shown in Fig. 4.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were treated as riding on their parent atoms [C—H = 0.99 Å, N—H = 0.91 Å; Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N)] except those of the carboxyl group, which were refined with the restraint Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2368898
https://doi.org/10.1107/S2056989024007606/jy2048sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024007606/jy2048Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024007606/jy2048Isup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989024007606/jy2048sup5.docx
(C2H6NO2)6[Pb3I12] | Z = 1 |
Mr = 2600.84 | F(000) = 1128 |
Triclinic, P1 | Dx = 3.421 Mg m−3 |
a = 8.5437 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2672 (7) Å | Cell parameters from 9918 reflections |
c = 14.8534 (9) Å | θ = 2.6–32.9° |
α = 105.900 (2)° | µ = 17.36 mm−1 |
β = 92.647 (2)° | T = 200 K |
γ = 111.477 (2)° | Block, yellow |
V = 1262.40 (13) Å3 | 0.1 × 0.08 × 0.06 mm |
Bruker APEXII CCD diffractometer | 8389 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 33.2°, θmin = 2.1° |
Tmin = 0.548, Tmax = 0.746 | h = −13→13 |
54402 measured reflections | k = −17→17 |
9640 independent reflections | l = −22→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.039 | w = 1/[σ2(Fo2) + (0.0087P)2 + 2.5693P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
9640 reflections | Δρmax = 2.29 e Å−3 |
215 parameters | Δρmin = −2.48 e Å−3 |
0 restraints | Extinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00049 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.500000 | 0.500000 | 0.500000 | 0.02041 (3) | |
Pb2 | 0.38342 (2) | 0.18885 (2) | 0.25654 (2) | 0.02316 (3) | |
I1 | 0.19064 (2) | 0.40522 (2) | 0.33606 (2) | 0.02537 (4) | |
I2 | 0.74935 (2) | 0.46827 (2) | 0.34936 (2) | 0.02390 (4) | |
I3 | 0.41471 (2) | 0.19237 (2) | 0.49364 (2) | 0.02463 (4) | |
I4 | 0.42551 (3) | 0.22381 (2) | 0.06337 (2) | 0.03591 (5) | |
I5 | 0.03007 (3) | −0.03864 (2) | 0.16590 (2) | 0.03305 (5) | |
I6 | 0.59810 (3) | 0.01929 (2) | 0.23522 (2) | 0.03749 (6) | |
O1A | 1.0289 (4) | 0.4863 (2) | 0.11937 (18) | 0.0392 (6) | |
H1A | 1.044 (5) | 0.540 (3) | 0.0923 (19) | 0.059* | |
O2A | 0.8915 (4) | 0.3408 (2) | −0.02294 (17) | 0.0389 (6) | |
C1A | 0.9400 (4) | 0.3667 (3) | 0.0605 (2) | 0.0263 (6) | |
C2A | 0.9034 (5) | 0.2593 (3) | 0.1076 (2) | 0.0330 (7) | |
H21A | 1.011081 | 0.252552 | 0.127759 | 0.040* | |
H22A | 0.852011 | 0.282924 | 0.164719 | 0.040* | |
N1A | 0.7854 (4) | 0.1293 (3) | 0.0409 (2) | 0.0366 (7) | |
H11A | 0.774867 | 0.062872 | 0.066806 | 0.055* | |
H12A | 0.826984 | 0.112846 | −0.014398 | 0.055* | |
H13A | 0.681464 | 0.132077 | 0.029277 | 0.055* | |
O1B | 0.6686 (3) | 0.5891 (3) | 0.10354 (18) | 0.0352 (6) | |
H1B | 0.6483 (17) | 0.542 (5) | 0.048 (3) | 0.053* | |
O2B | 0.3916 (3) | 0.5535 (3) | 0.07956 (16) | 0.0347 (5) | |
C1B | 0.5289 (4) | 0.5982 (3) | 0.1296 (2) | 0.0270 (6) | |
C2B | 0.5538 (5) | 0.6726 (4) | 0.2331 (2) | 0.0316 (7) | |
H21B | 0.578315 | 0.619973 | 0.271200 | 0.038* | |
H22B | 0.652301 | 0.759908 | 0.248893 | 0.038* | |
N1B | 0.3990 (4) | 0.6954 (3) | 0.2566 (2) | 0.0316 (6) | |
H11B | 0.404495 | 0.721763 | 0.320722 | 0.047* | |
H12B | 0.305401 | 0.618023 | 0.229916 | 0.047* | |
H13B | 0.391713 | 0.760631 | 0.233660 | 0.047* | |
O1C | 1.0019 (3) | 0.1093 (3) | 0.6226 (2) | 0.0377 (6) | |
H1C | 0.985 (5) | 0.104 (4) | 0.681 (3) | 0.057* | |
O2C | 0.8283 (3) | 0.2202 (3) | 0.64327 (18) | 0.0373 (6) | |
N1C | 0.8615 (4) | 0.2696 (3) | 0.4769 (2) | 0.0352 (7) | |
H11C | 0.867623 | 0.269306 | 0.415860 | 0.053* | |
H12C | 0.923265 | 0.353762 | 0.517012 | 0.053* | |
H13C | 0.750789 | 0.243678 | 0.485806 | 0.053* | |
C1C | 0.9138 (4) | 0.1728 (3) | 0.5965 (2) | 0.0268 (6) | |
C2C | 0.9311 (4) | 0.1753 (4) | 0.4965 (2) | 0.0304 (7) | |
H21C | 1.052603 | 0.204456 | 0.488863 | 0.037* | |
H22C | 0.867896 | 0.084242 | 0.451120 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.01827 (7) | 0.02247 (7) | 0.01990 (7) | 0.00920 (6) | 0.00231 (5) | 0.00423 (6) |
Pb2 | 0.02567 (6) | 0.02343 (6) | 0.02006 (5) | 0.01115 (4) | 0.00307 (4) | 0.00437 (4) |
I1 | 0.02081 (9) | 0.02978 (10) | 0.02544 (9) | 0.01089 (8) | −0.00022 (7) | 0.00788 (8) |
I2 | 0.02197 (9) | 0.02590 (10) | 0.02631 (9) | 0.01158 (7) | 0.00746 (7) | 0.00847 (7) |
I3 | 0.02360 (9) | 0.02525 (10) | 0.02430 (9) | 0.00811 (7) | 0.00517 (7) | 0.00853 (7) |
I4 | 0.04911 (14) | 0.02858 (11) | 0.02416 (10) | 0.00690 (10) | 0.00171 (9) | 0.01154 (8) |
I5 | 0.02567 (10) | 0.03563 (12) | 0.03222 (11) | 0.00594 (9) | 0.00550 (8) | 0.01039 (9) |
I6 | 0.04793 (14) | 0.03453 (12) | 0.04935 (14) | 0.02767 (11) | 0.02635 (11) | 0.02394 (11) |
O1A | 0.0489 (16) | 0.0251 (12) | 0.0306 (13) | 0.0009 (11) | −0.0040 (11) | 0.0096 (10) |
O2A | 0.0541 (16) | 0.0256 (12) | 0.0280 (12) | 0.0052 (11) | −0.0012 (11) | 0.0104 (10) |
C1A | 0.0240 (14) | 0.0240 (15) | 0.0280 (15) | 0.0063 (12) | 0.0050 (12) | 0.0083 (12) |
C2A | 0.0415 (19) | 0.0234 (16) | 0.0288 (16) | 0.0057 (14) | 0.0033 (14) | 0.0099 (13) |
N1A | 0.0476 (18) | 0.0240 (14) | 0.0322 (15) | 0.0063 (13) | 0.0139 (13) | 0.0092 (12) |
O1B | 0.0322 (13) | 0.0411 (15) | 0.0307 (12) | 0.0164 (11) | 0.0089 (10) | 0.0055 (11) |
O2B | 0.0351 (13) | 0.0478 (15) | 0.0253 (11) | 0.0217 (12) | 0.0083 (10) | 0.0096 (11) |
C1B | 0.0346 (17) | 0.0278 (16) | 0.0269 (15) | 0.0170 (14) | 0.0112 (13) | 0.0137 (13) |
C2B | 0.0414 (19) | 0.0333 (18) | 0.0260 (15) | 0.0214 (15) | 0.0051 (13) | 0.0093 (13) |
N1B | 0.0427 (17) | 0.0304 (15) | 0.0267 (13) | 0.0176 (13) | 0.0148 (12) | 0.0107 (12) |
O1C | 0.0382 (14) | 0.0470 (16) | 0.0442 (15) | 0.0249 (12) | 0.0123 (11) | 0.0273 (13) |
O2C | 0.0384 (14) | 0.0449 (15) | 0.0391 (14) | 0.0247 (12) | 0.0158 (11) | 0.0166 (12) |
N1C | 0.0302 (15) | 0.0430 (17) | 0.0437 (17) | 0.0180 (13) | 0.0108 (13) | 0.0254 (14) |
C1C | 0.0216 (14) | 0.0259 (15) | 0.0329 (16) | 0.0064 (12) | 0.0034 (12) | 0.0134 (13) |
C2C | 0.0298 (16) | 0.0336 (18) | 0.0345 (17) | 0.0163 (14) | 0.0081 (13) | 0.0151 (14) |
Pb1—I1i | 3.1575 (3) | O1B—C1B | 1.302 (4) |
Pb1—I1 | 3.1575 (2) | O1B—H1B | 0.82 (5) |
Pb1—I2i | 3.1988 (2) | O2B—C1B | 1.210 (4) |
Pb1—I2 | 3.1988 (2) | C1B—C2B | 1.499 (4) |
Pb1—I3 | 3.2432 (3) | C2B—N1B | 1.476 (4) |
Pb1—I3i | 3.2432 (3) | C2B—H21B | 0.9900 |
Pb2—I4 | 3.0213 (3) | C2B—H22B | 0.9900 |
Pb2—I6 | 3.0663 (3) | N1B—H11B | 0.9100 |
Pb2—I5 | 3.0926 (3) | N1B—H12B | 0.9100 |
Pb2—I1 | 3.4049 (3) | N1B—H13B | 0.9100 |
Pb2—I2 | 3.4063 (3) | O1C—C1C | 1.322 (4) |
O1A—C1A | 1.304 (4) | O1C—H1C | 0.90 (5) |
O1A—H1A | 0.79 (5) | O2C—C1C | 1.196 (4) |
O2A—C1A | 1.209 (4) | N1C—C2C | 1.477 (4) |
C1A—C2A | 1.502 (4) | N1C—H11C | 0.9100 |
C2A—N1A | 1.474 (4) | N1C—H12C | 0.9100 |
C2A—H21A | 0.9900 | N1C—H13C | 0.9100 |
C2A—H22A | 0.9900 | C1C—C2C | 1.507 (5) |
N1A—H11A | 0.9100 | C2C—H21C | 0.9900 |
N1A—H12A | 0.9100 | C2C—H22C | 0.9900 |
N1A—H13A | 0.9100 | ||
I1i—Pb1—I1 | 180.0 | C2A—N1A—H12A | 109.5 |
I1i—Pb1—I2i | 91.363 (7) | H11A—N1A—H12A | 109.5 |
I1—Pb1—I2i | 88.637 (8) | C2A—N1A—H13A | 109.5 |
I1i—Pb1—I2 | 88.637 (7) | H11A—N1A—H13A | 109.5 |
I1—Pb1—I2 | 91.363 (7) | H12A—N1A—H13A | 109.5 |
I2i—Pb1—I2 | 180.0 | C1B—O1B—H1B | 109.5 |
I1i—Pb1—I3 | 88.797 (5) | O2B—C1B—O1B | 126.6 (3) |
I1—Pb1—I3 | 91.203 (5) | O2B—C1B—C2B | 121.3 (3) |
I2i—Pb1—I3 | 91.693 (5) | O1B—C1B—C2B | 112.1 (3) |
I2—Pb1—I3 | 88.307 (5) | N1B—C2B—C1B | 110.1 (3) |
I1i—Pb1—I3i | 91.203 (5) | N1B—C2B—H21B | 109.6 |
I1—Pb1—I3i | 88.797 (6) | C1B—C2B—H21B | 109.6 |
I2i—Pb1—I3i | 88.307 (5) | N1B—C2B—H22B | 109.6 |
I2—Pb1—I3i | 91.693 (5) | C1B—C2B—H22B | 109.6 |
I3—Pb1—I3i | 180.0 | H21B—C2B—H22B | 108.2 |
I4—Pb2—I6 | 92.576 (7) | C2B—N1B—H11B | 109.5 |
I4—Pb2—I5 | 88.198 (8) | C2B—N1B—H12B | 109.5 |
I6—Pb2—I5 | 98.865 (9) | H11B—N1B—H12B | 109.5 |
I4—Pb2—I1 | 98.685 (7) | C2B—N1B—H13B | 109.5 |
I6—Pb2—I1 | 166.133 (7) | H11B—N1B—H13B | 109.5 |
I5—Pb2—I1 | 89.602 (8) | H12B—N1B—H13B | 109.5 |
I4—Pb2—I2 | 88.550 (7) | C1C—O1C—H1C | 109.5 |
I6—Pb2—I2 | 88.468 (8) | C2C—N1C—H11C | 109.5 |
I5—Pb2—I2 | 172.104 (7) | C2C—N1C—H12C | 109.5 |
I1—Pb2—I2 | 83.779 (8) | H11C—N1C—H12C | 109.5 |
Pb1—I1—Pb2 | 76.444 (6) | C2C—N1C—H13C | 109.5 |
Pb1—I2—Pb2 | 75.892 (6) | H11C—N1C—H13C | 109.5 |
C1A—O1A—H1A | 109.5 | H12C—N1C—H13C | 109.5 |
O2A—C1A—O1A | 125.6 (3) | O2C—C1C—O1C | 126.1 (3) |
O2A—C1A—C2A | 122.0 (3) | O2C—C1C—C2C | 123.3 (3) |
O1A—C1A—C2A | 112.4 (3) | O1C—C1C—C2C | 110.6 (3) |
N1A—C2A—C1A | 109.8 (3) | N1C—C2C—C1C | 108.8 (3) |
N1A—C2A—H21A | 109.7 | N1C—C2C—H21C | 109.9 |
C1A—C2A—H21A | 109.7 | C1C—C2C—H21C | 109.9 |
N1A—C2A—H22A | 109.7 | N1C—C2C—H22C | 109.9 |
C1A—C2A—H22A | 109.7 | C1C—C2C—H22C | 109.9 |
H21A—C2A—H22A | 108.2 | H21C—C2C—H22C | 108.3 |
C2A—N1A—H11A | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O2Aii | 0.79 (5) | 1.85 (3) | 2.638 (4) | 171 (4) |
C2A—H21A···I1iii | 0.99 | 3.10 | 3.669 (3) | 118 |
C2A—H22A···I2 | 0.99 | 3.33 | 4.271 (4) | 160 |
N1A—H11A···I4iv | 0.91 | 3.05 | 3.549 (3) | 116 |
N1A—H11A···I5iii | 0.91 | 3.27 | 3.983 (3) | 137 |
N1A—H11A···I6 | 0.91 | 3.04 | 3.655 (3) | 126 |
N1A—H12A···I5iv | 0.91 | 2.69 | 3.588 (3) | 170 |
N1A—H13A···I4 | 0.91 | 2.75 | 3.605 (3) | 156 |
O1B—H1B···O2Bv | 0.82 (4) | 1.85 (4) | 2.667 (3) | 176 (4) |
C2B—H21B···I2 | 0.99 | 3.03 | 3.976 (3) | 161 |
C2B—H22B···I6vi | 0.99 | 3.18 | 3.775 (3) | 120 |
N1B—H11B···I3i | 0.91 | 2.82 | 3.648 (3) | 151 |
N1B—H12B···I1 | 0.91 | 3.11 | 3.647 (3) | 119 |
N1B—H12B···O1Avii | 0.91 | 2.49 | 3.320 (4) | 151 |
N1B—H13B···I6vi | 0.91 | 2.79 | 3.528 (3) | 139 |
O1C—H1C···I5viii | 0.90 (5) | 2.57 (3) | 3.445 (3) | 164 (4) |
N1C—H11C···I1iii | 0.91 | 3.09 | 3.711 (3) | 127 |
N1C—H11C···I2 | 0.91 | 3.13 | 3.640 (3) | 117 |
N1C—H11C···I6 | 0.91 | 3.31 | 3.868 (3) | 122 |
N1C—H12C···I2ix | 0.91 | 3.00 | 3.779 (3) | 145 |
N1C—H13C···I3 | 0.91 | 2.73 | 3.628 (3) | 170 |
C2C—H21C···I3iii | 0.99 | 3.14 | 4.068 (3) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y, −z; (v) −x+1, −y+1, −z; (vi) x, y+1, z; (vii) x−1, y, z; (viii) −x+1, −y, −z+1; (ix) −x+2, −y+1, −z+1. |
C1A—O1A | 1.304 (4) | C1B—O1B | 1.302 (4) | C1C—O1C | 1.322 (4) |
C1A—O2A | 1.209 (4) | C1B—O2B | 1.210 (4) | C1C—O2C | 1.196 (4) |
C1A—C2A | 1.502 (4) | C1B—C2B | 1.499 (4) | C1C—C2C | 1.507 (5) |
C2A—N1A | 1.474 (4) | C2B—N1B | 1.476 (4) | C2C—N1C | 1.477 (4) |
Pb1—I1 | 3.1575 (3) 2× | Pb2—I1 | 3.4049 (3) | Pb2—I4 | 3.0213 (3) |
Pb1—I2 | 3.1988 (2) 2× | Pb2—I2 | 3.4063 (3) | Pb2—I5 | 3.0926 (3) |
Pb1—I3 | 3.2432 (3) 2× | Pb2—I6 | 3.0663 (3) |
Funding information
The work was supported by the Science Committee of RA, in the frame of research project No. 21AG-1D015.
References
Ahmed, M. I., Habib, A. & Javaid, S. S. (2015). Int. J. Photoenergy, 92308. http://dx.doi.org/10.1155/2015/592308 Google Scholar
Bruker (2024). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, J. S., Sordo, J. & Vidarte, M. J. (2006). Lead(II) coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed., edited by J. S. Casas & J. Sordo, pp. 41–72. Amsterdam: Elsevier. Google Scholar
Chen, X., Jo, H. & Ok, K. M. (2020). Angew. Chem. Int. Ed. 59, 7514–7520. Web of Science CrossRef ICSD Google Scholar
Cheng, X., Han, Y., Cheng, T., Xie, Y., Chang, X., Lin, Y., Lv, L., Li, J., Yin, J. & Cui, B.-B. (2023). Appl. Mater. Interfaces, 15, 32506–32514. Web of Science CSD CrossRef Google Scholar
Fleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht, Springer. Google Scholar
Gao, R., Reyes-Lillo, S. E., Xu, R., Dasgupta, A., Dong, Y., Dedon, L. R., Kim, J., Saremi, S., Chen, Z., Serrao, C. R., Zhou, H., Neaton, J. B. & Martin, L. W. (2017). Chem. Mater. 29, 6544–6551. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009). J. Am. Chem. Soc. 131, 6050–6051. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954–1966. Web of Science CSD CrossRef CAS Google Scholar
Leng, F., Zhang, X. & Yu, J.-H. (2023). Dalton Trans. 52, 5127–5140. Web of Science CSD CrossRef PubMed Google Scholar
Liang, B.-D., Fan, C.-C., Liu, C.-D., Ju, T.-Y., Chai, C.-Y., Han, X.-B. & Zhang, W. (2023). Inorg. Chem. Front. 10, 5035–5043. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martínez Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Ramos Riesco, M., Marchese, L. & Rodríguez Cheda, J. A. (2012). CrystEngComm, 14, 2660–2668. Google Scholar
Michael, D. & Harald, H. (2018). Z. Kristallogr. Cryst. Mater. 233, 555–564. Google Scholar
Nazarenko, O., Kotyrba, M. R., Yakunin, S., Aebli, M., Rainò, G., Benin, B. M., Wörle, M. & Kovalenko, M. V. (2018). J. Am. Chem. Soc. 140, 3850–3853. Web of Science CSD CrossRef PubMed Google Scholar
Passarelli, J. V., Mauck, C. M., Winslow, S. W., Perkinson, C. F., Bard, J. C., Sai, H., Williams, K. W., Narayanan, A., Fairfield, D. J., Hendricks, M. P., Tisdale, W. A. & Stupp, S. I. (2020). Nat. Chem. 12, 672–682. Web of Science CSD CrossRef CAS PubMed Google Scholar
Peng, Ch., Zhuang, Z., Yang, H., Zhang, G. & Fei, H. (2018). Chem. Sci. 9, 1627–1633. Web of Science CSD CrossRef PubMed Google Scholar
Peng, G., Xu, X. & Xu, G. (2015). J. Nanomater., 41853. Google Scholar
Seth, S. K., Bauzá, A., Mahmoudi, Gh., Stilinović, V., López-Torres, E., Zaragoza, G., Keramidas, A. D. & Frontera, A. (2018). CrystEngComm, 20, 5033–5044. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terpstra, H. J., De Groot, R. A. & Haas, C. (1997). J. Phys. Chem. Solids, 58, 561–566. CrossRef CAS Web of Science Google Scholar
Tonoyan, G. S., Giester, G., Ghazaryan, V. V., Badalyan, A. Y., Chilingaryan, R. Yu., Margaryan, A. A., Mkrtchyan, A. H. & Petrosyan, A. M. (2024). III Intern. Scientific School-Conference on Acoustophysics named after Academician A. R. Mkrtchyan, Book of Abstracts, p. 23., Yerevan-Sevan, Armenia. https://school. iapp. am/wp-content/uploads/2024/06/Book-of-Abstract-Sevan-2024.pdf Google Scholar
Wang, C.-H., Du, H.-J., Li, Y., Niu, Y.-Y. & Hou, H.-W. (2015). New J. Chem. 39, 7372–7378. Web of Science CSD CrossRef Google Scholar
Wang, J., Gao, L., Zhang, J., Zhao, L., Wang, X., Niu, X., Fan, L. & Hu, T. (2019). Cryst. Growth Des. 19, 630–637. Web of Science CSD CrossRef CAS Google Scholar
Wang, L. (2020). J. Inorg. Organomet. Polym. 30, 291–298. Web of Science CSD CrossRef CAS Google Scholar
Wang, R.-Y., Zhang, X., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). RSC Adv. 7, 19073–19080. Web of Science CSD CrossRef CAS Google Scholar
Yao, G., Zhao, L., Zeng, T. & Yang, Z. (2022). Nanotechnology, 33, 355701. Web of Science CSD CrossRef Google Scholar
Yue, C.-Y., Sun, H.-X., Liu, Q.-X., Wang, X.-M., Yuan, Z.-S., Wang, J., Wu, J.-H., Hu, B. & Lei, X.-W. (2019). Inorg. Chem. Front. 6, 2709–2717. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Sh., Xiao, T., Fadaei Tirani, F., Scopelliti, R., Nazeeruddin, M. K., Zhu, D., Dyson, P. J. & Fei, Z. (2022). Inorg. Chem. 61, 5010–5016. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhou, D., Zhou, T., Tian, Y., Zhu, X. & Tu, Y. (2018). J. Nanomaterials, 8148072. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.