research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, fDepartment of Chemistry and Chemical Engineering, Khazar University, Mahsati St. 41, AZ 1096, Baku, Azerbaijan, gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 12 August 2024; accepted 16 August 2024; online 30 August 2024)

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

Currently, a large number of derivatives of known tetra­hydro­quinolines are promising candidates for testing against various types of biological activity. This class of N-heterocyclic compounds has attracted attention of biochemists for the past 50 years, as derivatives of the tetra­hydro­quinoline frame possess anti­bacterial, anti­tumor, and anti­allergic properties. Some are already used as medicinal agents (Ghashghaei et al., 2018[Ghashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71-79.]).

In this regard, the synthesis and modification of the tetra­hydro­quinoline system to search for new drugs is an important task in organic chemistry. Over the years, several synthetic routes have been developed to obtain variously substituted tetra­hydro­quinolines (Sridharan et al., 2011[Sridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157-7259.]). However, the advantage remains with the Povarov reaction, due to the flexibility of this method, allowing the one-step synthesis of variously substituted 1,2,3,4-tetra­hydro­quinolines (Zubkov et al., 2007[Zubkov, F. I., Zaitsev, V. P., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). Russ. Chem. Bull. 56, 1063-1079.], 2010[Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192-1206.]; Kouznetsov, 2009[Kouznetsov, V. V. (2009). Tetrahedron, 65, 2721-2750.]; Varma et al., 2010[Varma, P. P., Sherigara, B. S., Mahadevan, K. M. & Hulikal, V. (2010). Synth. Commun. 40, 2220-2231.]; Zaytsev et al., 2013[Zaytsev, V. P., Zubkov, F. I., Toze, F. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, e18.]). Furthermore, the Povarov reaction is characterized by good yields and mild reaction conditions. Usually the reaction proceeds in two stages. The first stage is an aza-Diels–Alder reaction between N-aryl­imine and an electron-rich olefin in the presence of catalytic amounts of Lewis acid, which leads to the formation of a cyclo­adduct. The second stage involves a 1,3-H shift in the cyclo­adduct and results in the formation of the tetra­hydro­quinoline moiety.

[Scheme 1]

In this work, the synthesis of the corresponding azomethine 3 was carried out using a condensation reaction between 4-bromo­aniline (1) and 3-bromo­benzaldehyde (2) to form product 3, which was then introduced into the Povarov reaction. N-Vinyl­pyrrolidin-2-one was used as the alkene, and boron trifluoride etherate served as the Lewis acid (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one (4).

Thus, the Povarov method provides a convenient approach for the one-pot synthesis of substituted, partially hydrogenated quinolines and medicinal preparations based on the tetra­hydro­quinoline frame. Some stereochemical features of the resulting adduct 4 are discussed in this work. This work also discusses some stereochemical features of the resulting adduct 4.

2. Structural commentary

In the title compound (Fig. 2[link]), the 1,2,3,4-tetra­hydro­pyridine ring (N1/C2–C4/C4A/C8A) of the 1,2,3,4-tetra­hydro­quinoline ring system (N1/C2–C4/C4A/C5–C8/C8A) adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.523 (2) Å, θ = 131.7 (2)°, φ = 300.9 (3)°], while the benzene ring (C4A/C5–C8/C8A) is essentially planar (r.m.s. deviation = 0.002 Å). The plane (r.m.s deviation = 0.002 Å) of the 1,2,3,4-tetra­hydro­quinoline ring system forms angles of 56.85 (9) and 83.05 (10)°, respectively, with the bromo­benzene ring (C21–C26) and the pyrrolidine ring (N11/ C12–C15; r.m.s deviation = 0.002 Å), which has a distorted envelope conformation [the puckering parameters are Q(2) = 0.225 (2) Å, φ(2) = 117.2 (6)°]. The angle between the pyrrolidine and bromo­benzene rings is 84.92 (12)°. The geometric parameters in the mol­ecule are normal and in good agreement with those in the compounds discussed in the Database survey (section 4).

[Figure 2]
Figure 2
View of the title mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 3[link], 4[link] and 5[link]). In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions (Table 1[link]; Figs. 6[link], 7[link] and 8[link]). To qu­antify the inter­molecular inter­actions in the crystal, the Hirshfeld surfaces of the title mol­ecule and the two-dimensional fingerprints were generated with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). On the dnorm surfaces, bright-red spots show the locations of the N—H⋯O, C—H⋯O and C—H⋯Br inter­actions (Table 1[link]; Fig. 9[link]a,b). The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (Fig. 10[link]b; 36.9%), Br⋯H/H⋯Br (Fig. 10[link]c; 28.2%) and C⋯H/H⋯C (Fig. 10[link]d; 24.3%) contacts are shown in Fig. 10[link]. O⋯H/H⋯O (7.1%), Br⋯O/O⋯Br (1.8%), Br⋯C/C⋯Br (0.9%), N⋯H/H⋯N (0.4%) and Br⋯N/N⋯Br (0.3%) contacts have little directional influence on the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4A/C5–C8/C8A benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.99 2.46 3.431 (3) 169
C13—H13A⋯Br2ii 0.99 3.06 3.740 (3) 127
C14—H14A⋯Br2ii 0.99 3.12 3.664 (3) 116
C14—H14B⋯Br1iii 0.99 3.02 3.786 (2) 135
C15—H15A⋯Br1iii 0.99 3.00 3.748 (2) 133
C15—H15B⋯Br2ii 0.99 3.09 3.768 (2) 127
C22—H22⋯Br1iv 0.95 2.94 3.820 (2) 155
C24—H24⋯Br2v 0.95 3.04 3.932 (2) 158
N1—H1⋯O1vi 0.86 (3) 2.30 (3) 3.115 (3) 159 (2)
C2—H2⋯Cg3vi 1.00 2.66 3.655 (3) 173
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y+1, z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
A view of the mol­ecular packing along the a axis of the title compound, showing the N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds as dashed lines.
[Figure 4]
Figure 4
A view of the mol­ecular packing along the b axis of the title compound.
[Figure 5]
Figure 5
A view of the mol­ecular packing along the c axis of the title compound.
[Figure 6]
Figure 6
A view of the mol­ecular packing along the a axis of the title compound, showing the C—H⋯π inter­actions.
[Figure 7]
Figure 7
A view of the mol­ecular packing along the b axis of the title compound.
[Figure 8]
Figure 8
A view of the mol­ecular packing along the c axis of the title compound.
[Figure 9]
Figure 9
(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound. Some N—H⋯O, C—H⋯O and C—H⋯Br inter­actions are shown as dashed lines.
[Figure 10]
Figure 10
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 1,2,3,4-tetra­hydro­quinoline unit showed that the seven most closely related to the title compound are refcodes POSWAZ (Pronina et al., 2024[Pronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 777-782.]), EZOMIR (Çelik et al., 2016[Çelik, İ., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). IUCrData, 1, x161854.]), SUFDEE (Jeyaseelan, et al., 2015c[Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249-o250.]), NOVGAI (Jeyaseelan et al., 2015a[Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.]), WUFBEG (Jeyaseelan et al., 2015b[Jeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660-662.]), WACWOO (Çelik et al., 2010a[Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, o3133.]) and CEDNUW (Çelik et al., 2010b[Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997-o2998.]).

In the crystal of POSWAZ, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect mol­ecules into ribbons along the b-axis direction, consolidating the mol­ecular packing. In the crystal of EZOMIR, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops. In the crystal of SUFDEE, mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating C(8) and C(4) chains propagating along [100] and [010], respectively, which together generate (001) sheets. In the crystal of NOVGAI, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(8) loops. In the crystal of WUFBEG, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Additional inter­molecular C—H⋯O hydrogen bonds generate C(7) chains along [100]. The crystal structure of WACWOO is stabilized by weak aromatic ππ inter­actions [centroid–centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent mol­ecules. In the crystal of CEDNUW, ππ stacking inter­actions are present between the pyridine and benzene rings of adjacent mol­ecules [centroid–centroid distances = 3.634 (4) Å], and short Br⋯Br contacts [3.4443 (13) Å] occur.

5. Synthesis and crystallization

N-[(E)-(3-Bromo­phen­yl)methyl­idene]-4-bromoaniline (3): A mixture of 4-bromoaniline (1) (2.00 g, 0.012 mol), 3-bromobenzaldehyde (2) (2.22 g, 0.012 mol) and anhydrous MgSO4 (2.89 g, 0.024 mol) was stirred in CH2Cl2 (40 mL) for 24 h at room temperature. Then, the reaction mixture was passed through a silica gel layer (2 × 3 cm) (eluent CH2Cl2) and the solvent was evaporated under reduced pressure. Compound 3 was isolated as a yellow powder in 87% yield (3.54 g).

1-(6-Bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl)pyrrolidin-2-one (4): Boron trifluoride ether (0.25 mL, 0.002 mol) and N-vinyl­pyrrolidin-2-one (1.18 mL, 0.011 mol) were added sequentially to a solution of the azomethine (3) (3.5 g, 0.010 mol) in freshly distilled CH2Cl2 (30 mL), under cooling (275–277 K) and constant stirring. The reaction was monitored by TLC (EtOAc/hexane, 1:2). After the reaction was complete (∼24 h), the reaction mixture was treated with a small amount of water (0.2–0.3 mL) to decompose the catalyst. Then the resulting mixture was passed through a layer of silica gel (2 × 3 cm) and washed with dry CH2Cl2 (2 × 25 mL). The solvent was evaporated under reduced pressure. The obtained precipitate was recrystallized from a mixture of hexa­ne/EtOAc. The desired product, 4, was isolated as a white microcrystalline precipitate in 39% yield (1.76 g), m.p. 470.3–471.8 K. IR (KBr), ν (cm−1): 3344 (NH), 2951 (Ph), 2889 (Ph), 1667 (N—C=O). 1H NMR (700.2 MHz, CDCl3, 298 K) (J, Hz): δ 2.01–2.10 (m, 4H, H-3 + H-4-pyrrole), 2.43–2.48 (m, 1H, H-3-pyrrole-A), 2.52–2.57 (m, 1H, H-3-pyrrole-B), 3.19–3.26 (m, 2H, H-5-pyrrole), 4.07 (s, 1H, NH), 4.54 (dd, J = 11.2, J = 2.9, 1H, H-2), 5.66 (dd, J = 11.7, J = 6.0 Hz, 1H, H-4), 6.49 (d, J = 8.6, 1H, H-8), 6.95 (s, 1H, H-5), 7.15 (dd, J = 8.6, J = 2.2, 1H, H-7), 7.24 (t, J = 7.9, 1H, H-5-C6H4-Br), 7.31 (d, J = 7.6, 1H, H-6-C6H4-Br), 7.45 (d, J = 7.9, 1H, H-4-C6H4-Br), 7.61 (s, 1H, H-2-C6H4-Br) ppm. 13C{1H} NMR (176 MHz, CDCl3, 298 K): δ 18.00, 31.00, 34.58, 42.03, 47.79, 55.60, 109.93, 116.48, 120.73, 122.71, 125.08, 128.93, 129.17, 130.20, 130.95, 131.00, 144.33, 144.69, 175.66 ppm.

Elemental analysis calculated (%) for C19H18Br2N2O: C, 50.69; H, 4.03; N, 6.22; found: C, 50.61; H, 3.94; N, 6.42.

Single crystals (splices of prisms) of compound 4 were grown from a mixture of hexane and ethyl acetate (∼3:1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C19H18Br2N2O
Mr 450.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.8691 (8), 9.4578 (7), 17.7217 (14)
β (°) 104.364 (3)
V3) 1764.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.60
Crystal size (mm) 0.36 × 0.32 × 0.26
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.714, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25906, 4041, 3231
Rint 0.054
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.057, 1.02
No. of reflections 4041
No. of parameters 220
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.47
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

1-[6-Bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one top
Crystal data top
C19H18Br2N2OF(000) = 896
Mr = 450.17Dx = 1.694 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8691 (8) ÅCell parameters from 5029 reflections
b = 9.4578 (7) Åθ = 2.9–26.4°
c = 17.7217 (14) ŵ = 4.60 mm1
β = 104.364 (3)°T = 100 K
V = 1764.8 (2) Å3Bulk, colourless
Z = 40.36 × 0.32 × 0.26 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3231 reflections with I > 2σ(I)
φ and ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 4.2°
Tmin = 0.714, Tmax = 1.000h = 1314
25906 measured reflectionsk = 1112
4041 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0176P)2 + 1.5651P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4041 reflectionsΔρmax = 0.47 e Å3
220 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3972 (2)0.7031 (2)0.42197 (14)0.0095 (5)
H20.4171060.6954390.4800260.011*
C30.5184 (2)0.7407 (2)0.39791 (14)0.0103 (5)
H3A0.5510790.8332840.4202600.012*
H3B0.5009820.7469940.3404680.012*
C40.6161 (2)0.6251 (2)0.42821 (14)0.0090 (5)
H4A0.6236910.6173920.4854610.011*
C4A0.5649 (2)0.4840 (2)0.39280 (14)0.0103 (5)
C50.6438 (2)0.3756 (2)0.37979 (14)0.0116 (5)
H5A0.7323820.3917680.3877560.014*
C60.5933 (2)0.2444 (2)0.35526 (14)0.0141 (5)
C70.4649 (2)0.2184 (2)0.34323 (14)0.0153 (5)
H7A0.4315560.1271130.3276850.018*
C80.3852 (2)0.3264 (2)0.35403 (14)0.0141 (5)
H8A0.2965500.3094700.3445830.017*
C8A0.4337 (2)0.4609 (2)0.37876 (14)0.0099 (5)
C120.8464 (2)0.6433 (2)0.47857 (15)0.0108 (5)
C130.9605 (2)0.6920 (2)0.45130 (16)0.0164 (6)
H13A1.0142490.6105730.4447610.020*
H13B1.0124480.7591320.4889330.020*
C140.9045 (2)0.7642 (2)0.37321 (16)0.0183 (6)
H14A0.9542170.7405100.3350830.022*
H14B0.9037070.8681510.3795160.022*
C150.7689 (2)0.7064 (2)0.34649 (15)0.0140 (5)
H15A0.7088600.7810530.3211940.017*
H15B0.7644910.6265630.3097940.017*
C210.2979 (2)0.8177 (2)0.39562 (14)0.0098 (5)
C220.2170 (2)0.8162 (2)0.32186 (14)0.0108 (5)
H220.2191000.7398840.2873170.013*
C230.1327 (2)0.9274 (2)0.29887 (14)0.0113 (5)
C240.1280 (2)1.0400 (2)0.34733 (16)0.0176 (6)
H240.0701471.1156040.3305700.021*
C250.2095 (3)1.0404 (3)0.42109 (17)0.0207 (6)
H250.2075181.1172520.4552960.025*
C260.2935 (2)0.9304 (2)0.44550 (15)0.0157 (5)
H260.3483840.9315660.4963890.019*
N10.35049 (19)0.5666 (2)0.38807 (12)0.0121 (4)
H10.283 (3)0.538 (3)0.3999 (15)0.014*
N110.74188 (18)0.65967 (19)0.41920 (12)0.0105 (4)
O10.84580 (15)0.59639 (17)0.54316 (10)0.0153 (4)
Br10.70318 (3)0.09579 (2)0.34029 (2)0.02171 (8)
Br20.01897 (2)0.91972 (2)0.19816 (2)0.01641 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0097 (12)0.0106 (11)0.0073 (13)0.0004 (9)0.0003 (9)0.0003 (9)
C30.0121 (12)0.0083 (10)0.0106 (13)0.0009 (9)0.0031 (10)0.0009 (9)
C40.0072 (11)0.0102 (10)0.0097 (13)0.0008 (8)0.0025 (9)0.0018 (9)
C4A0.0143 (13)0.0078 (10)0.0088 (13)0.0014 (9)0.0031 (10)0.0028 (9)
C50.0144 (13)0.0126 (11)0.0092 (13)0.0020 (9)0.0052 (10)0.0031 (9)
C60.0222 (14)0.0103 (11)0.0114 (13)0.0063 (10)0.0073 (11)0.0023 (10)
C70.0257 (15)0.0089 (11)0.0098 (14)0.0016 (10)0.0016 (11)0.0014 (9)
C80.0156 (13)0.0135 (11)0.0120 (14)0.0024 (10)0.0011 (10)0.0017 (10)
C8A0.0132 (13)0.0106 (10)0.0059 (12)0.0003 (9)0.0021 (10)0.0031 (9)
C120.0106 (12)0.0065 (10)0.0149 (14)0.0024 (9)0.0023 (10)0.0036 (9)
C130.0094 (13)0.0146 (12)0.0248 (16)0.0010 (9)0.0034 (11)0.0036 (10)
C140.0140 (13)0.0136 (12)0.0302 (17)0.0008 (10)0.0111 (12)0.0043 (11)
C150.0152 (13)0.0117 (11)0.0170 (14)0.0037 (9)0.0074 (11)0.0025 (10)
C210.0079 (12)0.0109 (11)0.0117 (13)0.0005 (9)0.0047 (10)0.0021 (9)
C220.0110 (12)0.0115 (11)0.0107 (13)0.0001 (9)0.0044 (10)0.0009 (9)
C230.0081 (11)0.0128 (11)0.0117 (13)0.0021 (9)0.0003 (9)0.0032 (10)
C240.0131 (13)0.0112 (11)0.0283 (17)0.0045 (9)0.0047 (11)0.0039 (10)
C250.0245 (15)0.0128 (12)0.0253 (16)0.0015 (10)0.0074 (12)0.0068 (11)
C260.0163 (13)0.0188 (12)0.0098 (13)0.0004 (10)0.0009 (10)0.0013 (10)
N10.0070 (10)0.0101 (9)0.0194 (12)0.0008 (8)0.0036 (9)0.0001 (8)
N110.0100 (10)0.0113 (9)0.0106 (11)0.0010 (8)0.0030 (8)0.0012 (8)
O10.0141 (9)0.0190 (9)0.0112 (9)0.0034 (7)0.0001 (7)0.0003 (7)
Br10.03536 (17)0.01082 (12)0.02535 (16)0.00804 (11)0.01967 (13)0.00283 (11)
Br20.01226 (13)0.01562 (12)0.01764 (15)0.00140 (10)0.00331 (10)0.00727 (10)
Geometric parameters (Å, º) top
C2—N11.460 (3)C12—C131.511 (3)
C2—C211.519 (3)C13—C141.528 (4)
C2—C31.524 (3)C13—H13A0.9900
C2—H21.0000C13—H13B0.9900
C3—C41.526 (3)C14—C151.532 (3)
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—N111.453 (3)C15—N111.459 (3)
C4—C4A1.520 (3)C15—H15A0.9900
C4—H4A1.0000C15—H15B0.9900
C4A—C51.392 (3)C21—C221.383 (3)
C4A—C8A1.402 (3)C21—C261.393 (3)
C5—C61.383 (3)C22—C231.389 (3)
C5—H5A0.9500C22—H220.9500
C6—C71.380 (4)C23—C241.376 (3)
C6—Br11.905 (2)C23—Br21.903 (2)
C7—C81.383 (3)C24—C251.385 (4)
C7—H7A0.9500C24—H240.9500
C8—C8A1.404 (3)C25—C261.381 (3)
C8—H8A0.9500C25—H250.9500
C8A—N11.386 (3)C26—H260.9500
C12—O11.229 (3)N1—H10.86 (3)
C12—N111.352 (3)
N1—C2—C21110.84 (19)C14—C13—H13A110.8
N1—C2—C3109.13 (19)C12—C13—H13B110.8
C21—C2—C3110.18 (18)C14—C13—H13B110.8
N1—C2—H2108.9H13A—C13—H13B108.9
C21—C2—H2108.9C13—C14—C15104.92 (19)
C3—C2—H2108.9C13—C14—H14A110.8
C2—C3—C4107.97 (18)C15—C14—H14A110.8
C2—C3—H3A110.1C13—C14—H14B110.8
C4—C3—H3A110.1C15—C14—H14B110.8
C2—C3—H3B110.1H14A—C14—H14B108.8
C4—C3—H3B110.1N11—C15—C14102.9 (2)
H3A—C3—H3B108.4N11—C15—H15A111.2
N11—C4—C4A114.22 (19)C14—C15—H15A111.2
N11—C4—C3113.07 (18)N11—C15—H15B111.2
C4A—C4—C3109.42 (19)C14—C15—H15B111.2
N11—C4—H4A106.5H15A—C15—H15B109.1
C4A—C4—H4A106.5C22—C21—C26119.6 (2)
C3—C4—H4A106.5C22—C21—C2121.3 (2)
C5—C4A—C8A119.8 (2)C26—C21—C2119.0 (2)
C5—C4A—C4122.5 (2)C21—C22—C23119.2 (2)
C8A—C4A—C4117.5 (2)C21—C22—H22120.4
C6—C5—C4A120.0 (2)C23—C22—H22120.4
C6—C5—H5A120.0C24—C23—C22121.8 (2)
C4A—C5—H5A120.0C24—C23—Br2119.92 (18)
C7—C6—C5121.1 (2)C22—C23—Br2118.28 (18)
C7—C6—Br1119.47 (17)C23—C24—C25118.5 (2)
C5—C6—Br1119.45 (19)C23—C24—H24120.7
C6—C7—C8119.4 (2)C25—C24—H24120.7
C6—C7—H7A120.3C26—C25—C24120.8 (2)
C8—C7—H7A120.3C26—C25—H25119.6
C7—C8—C8A120.9 (2)C24—C25—H25119.6
C7—C8—H8A119.6C25—C26—C21120.1 (2)
C8A—C8—H8A119.6C25—C26—H26119.9
N1—C8A—C4A122.1 (2)C21—C26—H26119.9
N1—C8A—C8119.0 (2)C8A—N1—C2121.08 (19)
C4A—C8A—C8118.9 (2)C8A—N1—H1115.4 (17)
O1—C12—N11124.7 (2)C2—N1—H1114.1 (17)
O1—C12—C13127.0 (2)C12—N11—C4121.4 (2)
N11—C12—C13108.3 (2)C12—N11—C15114.0 (2)
C12—C13—C14104.5 (2)C4—N11—C15124.49 (19)
C12—C13—H13A110.8
N1—C2—C3—C460.0 (2)N1—C2—C21—C26149.1 (2)
C21—C2—C3—C4178.05 (19)C3—C2—C21—C2690.0 (3)
C2—C3—C4—N11171.22 (19)C26—C21—C22—C230.0 (3)
C2—C3—C4—C4A60.2 (2)C2—C21—C22—C23176.4 (2)
N11—C4—C4A—C522.9 (3)C21—C22—C23—C240.5 (4)
C3—C4—C4A—C5150.8 (2)C21—C22—C23—Br2178.16 (17)
N11—C4—C4A—C8A162.0 (2)C22—C23—C24—C250.5 (4)
C3—C4—C4A—C8A34.1 (3)Br2—C23—C24—C25178.1 (2)
C8A—C4A—C5—C61.9 (4)C23—C24—C25—C260.0 (4)
C4—C4A—C5—C6173.1 (2)C24—C25—C26—C210.5 (4)
C4A—C5—C6—C70.0 (4)C22—C21—C26—C250.5 (4)
C4A—C5—C6—Br1178.40 (18)C2—C21—C26—C25176.0 (2)
C5—C6—C7—C81.6 (4)C4A—C8A—N1—C27.4 (4)
Br1—C6—C7—C8179.91 (18)C8—C8A—N1—C2173.0 (2)
C6—C7—C8—C8A1.5 (4)C21—C2—N1—C8A155.7 (2)
C5—C4A—C8A—N1177.6 (2)C3—C2—N1—C8A34.2 (3)
C4—C4A—C8A—N17.2 (3)O1—C12—N11—C41.7 (3)
C5—C4A—C8A—C82.0 (3)C13—C12—N11—C4178.46 (19)
C4—C4A—C8A—C8173.2 (2)O1—C12—N11—C15175.2 (2)
C7—C8—C8A—N1179.3 (2)C13—C12—N11—C154.7 (3)
C7—C8—C8A—C4A0.3 (4)C4A—C4—N11—C12101.7 (2)
O1—C12—C13—C14169.8 (2)C3—C4—N11—C12132.3 (2)
N11—C12—C13—C1410.3 (2)C4A—C4—N11—C1574.8 (3)
C12—C13—C14—C1520.3 (2)C3—C4—N11—C1551.2 (3)
C13—C14—C15—N1122.5 (2)C14—C15—N11—C1217.5 (2)
N1—C2—C21—C2234.5 (3)C14—C15—N11—C4165.80 (19)
C3—C2—C21—C2286.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C4A/C5–C8/C8A benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.463.431 (3)169
C13—H13A···Br2ii0.993.063.740 (3)127
C14—H14A···Br2ii0.993.123.664 (3)116
C14—H14B···Br1iii0.993.023.786 (2)135
C15—H15A···Br1iii0.993.003.748 (2)133
C15—H15B···Br2ii0.993.093.768 (2)127
C22—H22···Br1iv0.952.943.820 (2)155
C24—H24···Br2v0.953.043.932 (2)158
N1—H1···O1vi0.86 (3)2.30 (3)3.115 (3)159 (2)
C2—H2···Cg3vi1.002.663.655 (3)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AAP and AGK; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) AAP, KIH and NDS; funding acquisition, AB and MA; supervision, MA and AB.

Funding information

This work was supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. This publication has been also supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000. EDY and ERS thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems".

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997–o2998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, o3133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, İ., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). IUCrData, 1, x161854.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71–79.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660–662.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249–o250.  CSD CrossRef IUCr Journals Google Scholar
First citationKouznetsov, V. V. (2009). Tetrahedron, 65, 2721–2750.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 777–782.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157–7259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVarma, P. P., Sherigara, B. S., Mahadevan, K. M. & Hulikal, V. (2010). Synth. Commun. 40, 2220–2231.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Zubkov, F. I., Toze, F. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, e18.  CrossRef Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). Russ. Chem. Bull. 56, 1063–1079.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds