research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a tris­(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, bDepartment of Chemistry and Biochemistry, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606, USA, and cCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 3 July 2024; accepted 26 August 2024; online 30 August 2024)

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.

1. Chemical context

The carbamoyl­methyl­phosphine oxide (CMPO) group (Fig. 1[link]) has been utilized by researchers in the area of f-element coordination chemistry to prepare compounds with an affinity for lanthanide and actinide metals. Perhaps the most well known use of this metal chelator is as part of the TRUEX (transuranium extraction) process for the remediation of spent nuclear fuel (Horwitz et al., 1985[Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75-109.]). Various research groups have studied the coordination complexes of CMPO-containing compounds with f-elements and found that, depending on the identity of the metal, two to three CMPO groups are able to coordinate to the metal center simultaneously (Horwitz et al., 1987[Horwitz, E. P., Diamond, H., Martin, K. A. & Chiarizia, R. (1987). Solvent Extr. Ion Exch. 5, 419-446.]). Based on these results, research groups have used a variety of di-, tri- and tetra­podal scaffolds to tether multiple CMPO groups together with the aim of preparing chelators for f-elements that have stronger binding affinities and higher extraction selectivities than their monomeric counterparts (Dam et al., 2007[Dam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev. 36, 367-377.]; Leoncini et al., 2017[Leoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev. 46, 7229-7273.]; Werner & Biros, 2019[Werner, E. J. & Biros, S. M. (2019). Org. Chem. Front. 6, 2067-2094.]). To this end, we have prepared a tripodal CMPO compound based on a tris(2-amino­eth­yl)methane scaffold and report here its characterization by X-ray diffraction and NMR spectroscopy.

[Scheme 1]
[Figure 1]
Figure 1
The general structure of the CMPO motif, along with the structure of the CMPO compound used in the TRUEX process.

2. Structural commentary

The mol­ecular structure of compound I is shown in Fig. 2[link] along with the atom-numbering scheme. The electron density corresponding to the capping carbon atoms C2, C3 and C4 was disordered and was modeled over two positions with a 0.676 (3):0.324 (3) occupancy ratio (see the Refinement section for more details). The three CMPO arms are oriented on the same side of the mol­ecule, and each phopshonate group is engaged in intra­molecular hydrogen bonds with a neighboring amide group (vide infra). For the phospho­nate groups, the three P=O bond lengths have values of 1.4696 (12), 1.4722 (12) and 1.4729 (12) Å. The longer P—O bond lengths range from 1.5681 (11) to 1.5811 (12) Å with P—C bond lengths ranging from 1.7881 (16) to 1.7936 (16) Å. Each phospho­rus atom has a τ4 descriptor of fourfold coordination of 0.92 (where 0.00 = square planar, 0.85 = trigonal pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), indicating that the geometry around these atoms resembles a slightly distorted tetra­hedron. The C=O bond lengths of the amide groups are nearly identical with values of 1.231 (2), 1.231 (2) and 1.230 (2) Å. The C(O)—N bond lengths range from 1.335 (2) to 1.344 (2) Å, and each amide group adopts a nearly perfect trans geometry with H—N—C—O torsion angles of 176.9 (19), 177.9 (18) and 179.0 (16)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen atoms bonded to carbon atoms have been omitted for clarity. With regard to the disordered atoms, only the major component is shown.

Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are present in the crystal of compound I between each of the P=O oxygen atoms and a neighboring amide group (Fig. 3[link] and Table 1[link]). These inter­actions have an average DA distance of 2.886 Å and an average D—H⋯A angle of 169° for the N—H⋯O inter­actions, and an average DA distance of 3.250 Å and an average D—H⋯A angle of 148° for the C—H⋯O inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 (2) 2.07 (2) 2.9138 (18) 168.8 (19)
N2—H2⋯O4 0.79 (2) 2.06 (2) 2.8465 (18) 170 (2)
N3—H3⋯O5 0.82 (2) 2.10 (2) 2.8975 (19) 167 (2)
C11—H11A⋯O6 0.99 2.36 3.2433 (19) 148
C11—H11B⋯O6i 0.99 2.48 3.3235 (19) 143
C12—H12A⋯O4 0.99 2.37 3.2476 (19) 148
C12—H12B⋯O2ii 0.99 2.35 3.321 (2) 168
C13—H13A⋯O5 0.99 2.37 3.259 (2) 149
C14—H14A⋯O1 0.99 2.56 3.326 (2) 135
C17—H17B⋯O3iii 0.98 2.65 3.427 (3) 137
C18—H18A⋯O2 0.99 2.57 3.215 (2) 122
C22—H22B⋯O1i 0.99 2.80 3.472 (2) 126
C23—H23C⋯O3 0.98 2.69 3.460 (2) 135
C24—H24A⋯O1i 0.99 2.55 3.480 (2) 156
C24—H24B⋯O8 0.99 2.57 3.444 (2) 147
C4A—H4AA⋯O2iv 0.99 2.39 3.241 (5) 144
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y+2, -z+1]; (iii) [x-1, y, z]; (iv) [-x+2, -y+2, -z+1].
[Figure 3]
Figure 3
Depictions of the intra­molecular C—H⋯O and N—H⋯O hydrogen bonds (green, dashed lines) present in the crystal of compound I using a ball-and-stick model with standard CPK colors. With regard to the disordered atoms, only the major component is shown.

3. Supra­molecular features

In the crystal, mol­ecules of the title compound form supra­molecular sheets that bis­ect the y- and z-axes. These sheets are held together by C—H⋯O hydrogen bonds (Table 1[link]). Additional C—H⋯O hydrogen bonds are found between the supra­molecular sheets.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.44 with updates through June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the general CMPO motif returned 104 hits, 63 of which were exclusively organic compounds. Of these 63 compounds, 14 structures contained the CMPO moiety tethered to a di-, tri- or tetra­podal scaffold. Structures CIWFAR (Ouizem et al., 2014[Ouizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). Dalton Trans. 43, 8368-8386.]) and GOGZAG (VanderWeide et al., 2019[VanderWeide, A. I., Staples, R. J. & Biros, S. M. (2019). Acta Cryst. E75, 991-996.]) contain aromatic rings decorated with two CMPO groups. Structures containing three CMPO groups tethered together can be found in entries IMIDEP (Coburn et al., 2016[Coburn, K. M., Hardy, D. A., Patterson, M. G., McGraw, S. N., Peruzzi, M. T., Boucher, F., Beelen, B., Sartain, H. T., Neils, T., Lawrence, C. L., Staples, R. J., Werner, E. J. & Biros, S. M. (2016). Inorg. Chim. Acta, 449, 96-106.]), XILJOR (Peters et al., 2002[Peters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem. 41, 1707-1716.]), JIVSUD and JIVTAK (Matloka et al., 2007[Matloka, K., Sah, A. K., Peters, M. W., Srinivasan, P., Gelis, A. V., Regalbuto, M. & Scott, M. J. (2007). Inorg. Chem. 46, 10549-10563.]). Lastly, a calix[4]arene scaffold was used to link four CMPO groups together in structures OLUWEX (Schmidt et al., 2003[Schmidt, C., Saadioui, M., Böhmer, V., Host, V., Spirlet, M.-R., Desreux, J. F., Brisach, F., Arnaud-Neu, F. & Dozol, J.-F. (2003). Org. Biomol. Chem. 1, 4089-4096.]), CUVNEN and CUVNIR (Rudzevich et al., 2010[Rudzevich, V., Kasyan, O., Drapailo, A., Bolte, M., Schollmeyer, D. & Böhmer, V. (2010). Chem. Asian J. 5, 1347-1355.]).

5. Synthesis and crystallization

A 25 mL round-bottom flask was charged with 1.15 g (7.90 mmol) of freshly distilled 1,1,1-tris(2-amino­eth­yl)methane (Archer et al., 2004[Archer, C. M., Wadsworth, H. J. & Engell, T. (2004). US Patent Application US 2004/0258619 A1.]) and 1.0 mL of methanol. Under an atmosphere of nitro­gen, the solution was cooled to ca. 230 K with a liquid N2/EtOAc bath. Tri­ethyl­phosphono­acetate (6.50 mL, 32.8 mmol) was added slowly to the flask via syringe, and the reaction was allowed to warm to room temperature. The reaction was stirred under an inert atmosphere for 3 days, and the volatiles were removed under reduced pressure. The crude product was purified via silica gel column chromatography (5–10% MeOH/CH2Cl2 gradient) to give compound I as a slightly yellow, waxy solid (typical yield = 50–60%, Rf in 10% MeOH/CH2Cl2 = 0.4). Crystals suitable for analysis by X-ray diffraction were grown serendipitously from a concentrated solution of compound I in methanol upon standing in the refrigerator for many months. NMR data was acquired with a JEOL ECZS 400 NMR spectrometer: 1H NMR (400 MHz, CDCl3) δ 8.24 (broad, 3H), 4.10 (m, 12 H), 3.22 (m, 6H), 2.95 (d, JP–H = 21.6 Hz, 6H), 1.68 (septet, J = 6.8 Hz, 3H), 1.40 (dt, J = 6.3, 13.7 Hz, 6H), 1.29 (t, J = 7.1 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ 164.8 (d, JC–P = 5.2 Hz), 62.5 (d, JC-P = 6.4 Hz), 36.3 (s), 35.0 (d, JC–P = 132 Hz), 31.8 (s), 25.2 (s), 16.4 (d, JC–P = 6.3 Hz); 31P NMR (161 MHz, CDCl3) δ 24.4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene and methine groups, and Uiso(H) = 1.5Ueq(C) for methyl groups. Hydrogen atoms bonded to nitro­gen atoms were located using electron-density difference maps. The disordered electron density corresponding to C2/C2A, C3/C3A and C4/C4A was modeled over two positions and refined against a free variable to give a relative occupancy ratio of 0.676 (3):0.324 (3). This disorder reverberated to the nearby carbon atoms C5, C6 and C7 to give two orientations of the attached hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C25H52N3O12P3
Mr 679.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.02487 (11), 11.92992 (15), 16.6237 (2)
α, β, γ (°) 100.4792 (11), 100.124 (1), 111.1313 (11)
V3) 1759.25 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.06
Crystal size (mm) 0.16 × 0.09 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, HyPix-6000HE
Absorption correction Gaussian (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.700, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27502, 7504, 6481
Rint 0.043
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.07
No. of reflections 7504
No. of parameters 438
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.35
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate top
Crystal data top
C25H52N3O12P3Z = 2
Mr = 679.60F(000) = 728
Triclinic, P1Dx = 1.283 Mg m3
a = 10.02487 (11) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.92992 (15) ÅCell parameters from 13811 reflections
c = 16.6237 (2) Åθ = 4.1–79.9°
α = 100.4792 (11)°µ = 2.06 mm1
β = 100.124 (1)°T = 100 K
γ = 111.1313 (11)°Irregular, colourless
V = 1759.25 (4) Å30.16 × 0.09 × 0.04 mm
Data collection top
XtaLAB Synergy-S, Dualflex, HyPix-6000HE
diffractometer
6481 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.043
ω scansθmax = 80.2°, θmin = 2.8°
Absorption correction: gaussian
(CrysAlisPro; Oxford Diffraction, 2006)
h = 1212
Tmin = 0.700, Tmax = 1.000k = 1514
27502 measured reflectionsl = 2021
7504 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.5632P]
where P = (Fo2 + 2Fc2)/3
7504 reflections(Δ/σ)max = 0.001
438 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.35890 (4)0.68848 (4)0.12527 (2)0.02154 (10)
P20.53282 (4)0.38100 (4)0.20227 (2)0.02071 (9)
P30.47290 (4)0.71266 (4)0.45959 (2)0.02314 (10)
O10.62953 (12)0.82490 (11)0.04850 (8)0.0286 (2)
O20.69588 (13)0.99779 (11)0.49775 (7)0.0314 (3)
O30.86359 (13)0.48663 (12)0.29651 (8)0.0336 (3)
O40.45143 (13)0.75898 (12)0.21164 (7)0.0310 (3)
O50.58783 (13)0.66867 (11)0.44337 (8)0.0304 (3)
O60.59114 (12)0.46394 (10)0.14955 (7)0.0261 (2)
O70.28427 (12)0.76460 (10)0.07967 (8)0.0283 (2)
O80.22248 (12)0.56567 (11)0.11756 (8)0.0276 (2)
O90.48562 (12)0.75646 (11)0.55729 (7)0.0274 (2)
O100.30802 (13)0.61449 (11)0.42340 (8)0.0299 (3)
O110.53576 (12)0.24858 (10)0.17424 (7)0.0249 (2)
O120.36511 (12)0.34604 (11)0.20133 (7)0.0267 (2)
N10.71852 (14)0.70410 (14)0.11270 (9)0.0242 (3)
H10.693 (2)0.636 (2)0.1277 (13)0.025 (5)*
N20.66717 (15)0.94335 (13)0.35606 (9)0.0248 (3)
H20.614 (2)0.896 (2)0.3124 (15)0.030 (5)*
N30.82763 (15)0.64181 (13)0.37830 (9)0.0250 (3)
H30.766 (2)0.661 (2)0.3961 (14)0.029 (5)*
C10.89282 (17)0.85561 (16)0.29672 (10)0.0270 (3)
H1A0.791 (2)0.7973 (18)0.2865 (13)0.025 (5)*
C50.87290 (17)0.79247 (17)0.13561 (11)0.0296 (3)
H5AA0.8930300.8278280.0873760.036*0.676 (3)
H5AB0.9374390.7475360.1459570.036*0.676 (3)
H5BC0.8785530.8767080.1344090.036*0.324 (3)
H5BD0.9241750.7671490.0946180.036*0.324 (3)
C60.81521 (18)1.02970 (15)0.35924 (11)0.0282 (3)
H6AA0.8463421.1054890.4062850.034*0.676 (3)
H6AB0.8129961.0550310.3056860.034*0.676 (3)
H6BC0.8821531.0495040.4160620.034*0.324 (3)
H6BD0.8119391.1083090.3497050.034*0.324 (3)
C70.97830 (17)0.73567 (16)0.39527 (11)0.0287 (3)
H7AA1.0490620.6961120.4048070.034*0.676 (3)
H7AB0.9998630.8009280.4477850.034*0.676 (3)
H7BC1.0305700.7071910.3561720.034*0.324 (3)
H7BD1.0341450.7498970.4541970.034*0.324 (3)
C80.60896 (16)0.72964 (15)0.07237 (9)0.0223 (3)
C90.62078 (18)0.93312 (14)0.42602 (10)0.0243 (3)
C100.78257 (17)0.52657 (15)0.32878 (10)0.0249 (3)
C110.45376 (16)0.63076 (14)0.05793 (10)0.0223 (3)
H11A0.4598840.5544700.0704410.027*
H11B0.3982140.6089460.0021280.027*
C120.46608 (17)0.83407 (15)0.41182 (10)0.0249 (3)
H12A0.4190420.7981800.3502000.030*
H12B0.4048810.8726270.4365420.030*
C130.61943 (17)0.44487 (15)0.31384 (10)0.0258 (3)
H13A0.5698380.4949360.3393640.031*
H13B0.6090950.3763630.3413860.031*
C140.36017 (19)0.89977 (15)0.09918 (12)0.0308 (4)
H14A0.4475020.9227090.0756910.037*
H14B0.3944670.9365640.1613440.037*
C150.2526 (2)0.94742 (19)0.06022 (16)0.0436 (5)
H15A0.2179050.9091490.0011060.065*
H15B0.3014971.0382120.0712380.065*
H15C0.1679350.9261410.0850070.065*
C160.1174 (2)0.56953 (19)0.16770 (12)0.0359 (4)
H16A0.1362180.6571600.1936690.043*
H16B0.1294420.5288680.2137310.043*
C170.0359 (2)0.5030 (2)0.11089 (15)0.0528 (6)
H17A0.0467620.5436310.0654030.079*
H17B0.1073910.5057560.1436870.079*
H17C0.0542020.4160410.0862210.079*
C180.62943 (17)0.81483 (17)0.61951 (10)0.0287 (3)
H18A0.7087010.8509730.5919460.034*
H18B0.6500820.7522040.6452080.034*
C190.6248 (2)0.91549 (17)0.68647 (12)0.0343 (4)
H19A0.6120750.9802350.6611740.051*
H19B0.7177920.9522080.7314210.051*
H19C0.5416370.8797070.7105290.051*
C200.2548 (2)0.5026 (2)0.45184 (15)0.0457 (5)
H20A0.2096060.5170260.4989610.055*
H20B0.3386920.4811820.4729700.055*
C210.1447 (3)0.3995 (2)0.38158 (18)0.0587 (7)
H21A0.1911320.3826720.3362720.088*
H21B0.0632150.4220580.3597400.088*
H21C0.1059370.3248490.4016570.088*
C220.64205 (19)0.22577 (17)0.13194 (11)0.0291 (3)
H22A0.7085980.3042580.1229220.035*
H22B0.5894770.1645760.0759480.035*
C230.7309 (2)0.17610 (18)0.18627 (13)0.0364 (4)
H23A0.7971290.1535450.1561730.055*
H23B0.6637320.1021420.1986460.055*
H23C0.7898140.2401730.2394810.055*
C240.25179 (18)0.28757 (16)0.12104 (11)0.0298 (3)
H24A0.2820730.2349420.0812840.036*
H24B0.2370040.3520050.0950380.036*
C250.1120 (2)0.2097 (3)0.13888 (17)0.0668 (8)
H25A0.0327900.1702730.0859770.100*
H25B0.0841400.2624600.1790470.100*
H25C0.1273350.1450650.1633570.100*
C20.9138 (3)0.9024 (2)0.21687 (16)0.0273 (5)0.676 (3)
H2A1.0182990.9610800.2274610.033*0.676 (3)
H2B0.8506600.9484540.2062760.033*0.676 (3)
C30.9259 (3)0.9732 (2)0.37186 (16)0.0286 (6)0.676 (3)
H3A0.9274440.9478450.4253960.034*0.676 (3)
H3B1.0256481.0372970.3778400.034*0.676 (3)
C41.0018 (2)0.7972 (2)0.32176 (16)0.0276 (6)0.676 (3)
H4A1.1038680.8627540.3382420.033*0.676 (3)
H4B0.9931960.7334650.2714900.033*0.676 (3)
C2A0.9477 (5)0.7944 (5)0.2254 (3)0.0269 (11)0.324 (3)
H2AA1.0561670.8405780.2368320.032*0.324 (3)
H2AB0.9283890.7076580.2275360.032*0.324 (3)
C3A0.8789 (5)0.9696 (5)0.2877 (3)0.0263 (11)0.324 (3)
H3AA0.8124780.9524680.2312160.032*0.324 (3)
H3AB0.9776081.0318310.2897580.032*0.324 (3)
C4A0.9682 (6)0.8531 (5)0.3825 (3)0.0292 (12)0.324 (3)
H4AA1.0705490.9181120.3987680.035*0.324 (3)
H4AB0.9168610.8787350.4233470.035*0.324 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01846 (17)0.02538 (19)0.01788 (19)0.00752 (15)0.00438 (14)0.00221 (14)
P20.01955 (18)0.02467 (19)0.01902 (18)0.00989 (14)0.00611 (13)0.00554 (14)
P30.02313 (19)0.02747 (19)0.01929 (19)0.01144 (15)0.00539 (14)0.00510 (14)
O10.0275 (6)0.0315 (6)0.0313 (6)0.0127 (5)0.0109 (5)0.0142 (5)
O20.0338 (6)0.0328 (6)0.0204 (6)0.0105 (5)0.0035 (5)0.0005 (5)
O30.0279 (6)0.0382 (7)0.0339 (7)0.0157 (5)0.0088 (5)0.0023 (5)
O40.0263 (5)0.0411 (7)0.0188 (6)0.0095 (5)0.0052 (4)0.0013 (5)
O50.0339 (6)0.0344 (6)0.0303 (6)0.0201 (5)0.0119 (5)0.0095 (5)
O60.0278 (5)0.0287 (6)0.0236 (6)0.0116 (4)0.0083 (4)0.0098 (4)
O70.0268 (5)0.0222 (5)0.0293 (6)0.0099 (4)0.0001 (4)0.0014 (4)
O80.0227 (5)0.0292 (6)0.0307 (6)0.0088 (4)0.0128 (5)0.0056 (5)
O90.0212 (5)0.0406 (6)0.0191 (5)0.0114 (5)0.0051 (4)0.0074 (5)
O100.0274 (6)0.0306 (6)0.0272 (6)0.0084 (5)0.0021 (5)0.0092 (5)
O110.0248 (5)0.0267 (5)0.0265 (6)0.0124 (4)0.0106 (4)0.0072 (4)
O120.0210 (5)0.0334 (6)0.0258 (6)0.0122 (4)0.0069 (4)0.0046 (5)
N10.0208 (6)0.0309 (7)0.0218 (6)0.0101 (5)0.0067 (5)0.0090 (5)
N20.0257 (6)0.0264 (7)0.0185 (6)0.0089 (5)0.0036 (5)0.0026 (5)
N30.0223 (6)0.0299 (7)0.0205 (6)0.0094 (5)0.0056 (5)0.0043 (5)
C10.0221 (7)0.0363 (9)0.0229 (8)0.0120 (7)0.0064 (6)0.0082 (6)
C50.0193 (7)0.0441 (9)0.0247 (8)0.0098 (7)0.0094 (6)0.0102 (7)
C60.0287 (8)0.0259 (8)0.0253 (8)0.0074 (6)0.0054 (6)0.0050 (6)
C70.0219 (7)0.0327 (8)0.0254 (8)0.0080 (6)0.0002 (6)0.0063 (6)
C80.0217 (7)0.0294 (7)0.0168 (7)0.0107 (6)0.0076 (5)0.0058 (6)
C90.0284 (7)0.0246 (7)0.0214 (7)0.0140 (6)0.0057 (6)0.0040 (6)
C100.0250 (7)0.0307 (8)0.0188 (7)0.0116 (6)0.0046 (6)0.0068 (6)
C110.0208 (7)0.0262 (7)0.0198 (7)0.0097 (6)0.0056 (5)0.0050 (6)
C120.0273 (7)0.0291 (8)0.0202 (7)0.0143 (6)0.0066 (6)0.0047 (6)
C130.0269 (7)0.0293 (8)0.0196 (7)0.0090 (6)0.0083 (6)0.0058 (6)
C140.0298 (8)0.0217 (7)0.0369 (9)0.0092 (6)0.0091 (7)0.0008 (6)
C150.0374 (10)0.0335 (9)0.0681 (14)0.0189 (8)0.0184 (9)0.0191 (9)
C160.0316 (9)0.0430 (10)0.0327 (9)0.0110 (8)0.0190 (7)0.0078 (8)
C170.0273 (9)0.0609 (13)0.0509 (13)0.0022 (9)0.0211 (9)0.0080 (10)
C180.0213 (7)0.0405 (9)0.0211 (8)0.0107 (7)0.0019 (6)0.0082 (7)
C190.0344 (9)0.0334 (9)0.0278 (9)0.0085 (7)0.0051 (7)0.0051 (7)
C200.0384 (10)0.0418 (11)0.0491 (12)0.0078 (8)0.0002 (9)0.0229 (9)
C210.0462 (12)0.0369 (11)0.0729 (17)0.0088 (9)0.0149 (11)0.0139 (11)
C220.0301 (8)0.0363 (9)0.0292 (8)0.0201 (7)0.0137 (7)0.0086 (7)
C230.0276 (8)0.0367 (9)0.0468 (11)0.0175 (7)0.0056 (7)0.0101 (8)
C240.0239 (7)0.0346 (8)0.0293 (8)0.0143 (7)0.0017 (6)0.0047 (7)
C250.0233 (9)0.094 (2)0.0500 (14)0.0012 (11)0.0086 (9)0.0044 (13)
C20.0212 (11)0.0321 (12)0.0270 (12)0.0070 (9)0.0073 (9)0.0113 (10)
C30.0223 (11)0.0332 (12)0.0235 (12)0.0072 (9)0.0019 (9)0.0038 (10)
C40.0183 (10)0.0355 (13)0.0273 (12)0.0089 (9)0.0056 (9)0.0091 (10)
C2A0.019 (2)0.030 (2)0.027 (3)0.0078 (19)0.0054 (18)0.0021 (19)
C3A0.025 (2)0.025 (2)0.025 (2)0.0073 (19)0.0072 (19)0.0052 (19)
C4A0.026 (2)0.029 (2)0.024 (3)0.007 (2)0.0009 (19)0.0017 (19)
Geometric parameters (Å, º) top
P1—O41.4696 (12)C9—C121.519 (2)
P1—O71.5811 (12)C10—C131.519 (2)
P1—O81.5681 (11)C11—H11A0.9900
P1—C111.7881 (16)C11—H11B0.9900
P2—O61.4722 (12)C12—H12A0.9900
P2—O111.5761 (12)C12—H12B0.9900
P2—O121.5759 (11)C13—H13A0.9900
P2—C131.7936 (16)C13—H13B0.9900
P3—O51.4729 (12)C14—H14A0.9900
P3—O91.5803 (12)C14—H14B0.9900
P3—O101.5697 (12)C14—C151.495 (3)
P3—C121.7899 (17)C15—H15A0.9800
O1—C81.231 (2)C15—H15B0.9800
O2—C91.231 (2)C15—H15C0.9800
O3—C101.230 (2)C16—H16A0.9900
O7—C141.457 (2)C16—H16B0.9900
O8—C161.4612 (19)C16—C171.490 (3)
O9—C181.4571 (18)C17—H17A0.9800
O10—C201.448 (2)C17—H17B0.9800
O11—C221.4515 (19)C17—H17C0.9800
O12—C241.455 (2)C18—H18A0.9900
N1—H10.86 (2)C18—H18B0.9900
N1—C51.457 (2)C18—C191.502 (3)
N1—C81.344 (2)C19—H19A0.9800
N2—H20.79 (2)C19—H19B0.9800
N2—C61.455 (2)C19—H19C0.9800
N2—C91.336 (2)C20—H20A0.9900
N3—H30.82 (2)C20—H20B0.9900
N3—C71.460 (2)C20—C211.463 (3)
N3—C101.335 (2)C21—H21A0.9800
C1—H1A0.97 (2)C21—H21B0.9800
C1—C21.550 (3)C21—H21C0.9800
C1—C31.587 (3)C22—H22A0.9900
C1—C41.532 (3)C22—H22B0.9900
C1—C2A1.564 (5)C22—C231.501 (2)
C1—C3A1.447 (5)C23—H23A0.9800
C1—C4A1.503 (5)C23—H23B0.9800
C5—H5AA0.9900C23—H23C0.9800
C5—H5AB0.9900C24—H24A0.9900
C5—H5BC0.9900C24—H24B0.9900
C5—H5BD0.9900C24—C251.491 (3)
C5—C21.577 (3)C25—H25A0.9800
C5—C2A1.540 (5)C25—H25B0.9800
C6—H6AA0.9900C25—H25C0.9800
C6—H6AB0.9900C2—H2A0.9900
C6—H6BC0.9900C2—H2B0.9900
C6—H6BD0.9900C3—H3A0.9900
C6—C31.497 (3)C3—H3B0.9900
C6—C3A1.619 (5)C4—H4A0.9900
C7—H7AA0.9900C4—H4B0.9900
C7—H7AB0.9900C2A—H2AA0.9900
C7—H7BC0.9900C2A—H2AB0.9900
C7—H7BD0.9900C3A—H3AA0.9900
C7—C41.546 (3)C3A—H3AB0.9900
C7—C4A1.490 (6)C4A—H4AA0.9900
C8—C111.521 (2)C4A—H4AB0.9900
O4—P1—O7112.90 (7)O7—C14—H14A110.2
O4—P1—O8116.05 (7)O7—C14—H14B110.2
O4—P1—C11114.00 (7)O7—C14—C15107.68 (14)
O7—P1—C11108.90 (7)H14A—C14—H14B108.5
O8—P1—O7102.52 (6)C15—C14—H14A110.2
O8—P1—C11101.26 (7)C15—C14—H14B110.2
O6—P2—O11113.64 (6)C14—C15—H15A109.5
O6—P2—O12115.95 (7)C14—C15—H15B109.5
O6—P2—C13114.70 (7)C14—C15—H15C109.5
O11—P2—C13108.50 (7)H15A—C15—H15B109.5
O12—P2—O11101.94 (6)H15A—C15—H15C109.5
O12—P2—C13100.62 (7)H15B—C15—H15C109.5
O5—P3—O9112.76 (7)O8—C16—H16A110.0
O5—P3—O10116.32 (7)O8—C16—H16B110.0
O5—P3—C12114.34 (7)O8—C16—C17108.68 (15)
O9—P3—C12108.77 (7)H16A—C16—H16B108.3
O10—P3—O9102.72 (6)C17—C16—H16A110.0
O10—P3—C12100.66 (7)C17—C16—H16B110.0
C14—O7—P1119.89 (10)C16—C17—H17A109.5
C16—O8—P1119.61 (11)C16—C17—H17B109.5
C18—O9—P3120.98 (10)C16—C17—H17C109.5
C20—O10—P3121.18 (11)H17A—C17—H17B109.5
C22—O11—P2123.56 (10)H17A—C17—H17C109.5
C24—O12—P2119.46 (10)H17B—C17—H17C109.5
C5—N1—H1121.2 (14)O9—C18—H18A110.2
C8—N1—H1117.1 (14)O9—C18—H18B110.2
C8—N1—C5121.51 (15)O9—C18—C19107.77 (14)
C6—N2—H2119.9 (16)H18A—C18—H18B108.5
C9—N2—H2117.7 (16)C19—C18—H18A110.2
C9—N2—C6122.08 (14)C19—C18—H18B110.2
C7—N3—H3119.5 (15)C18—C19—H19A109.5
C10—N3—H3117.9 (15)C18—C19—H19B109.5
C10—N3—C7122.40 (15)C18—C19—H19C109.5
C2—C1—H1A109.5 (12)H19A—C19—H19B109.5
C2—C1—C3107.39 (17)H19A—C19—H19C109.5
C3—C1—H1A108.6 (12)H19B—C19—H19C109.5
C4—C1—H1A111.6 (12)O10—C20—H20A109.7
C4—C1—C2110.97 (17)O10—C20—H20B109.7
C4—C1—C3108.61 (16)O10—C20—C21109.73 (18)
C2A—C1—H1A103.4 (12)H20A—C20—H20B108.2
C3A—C1—H1A103.2 (12)C21—C20—H20A109.7
C3A—C1—C2A114.5 (3)C21—C20—H20B109.7
C3A—C1—C4A118.3 (3)C20—C21—H21A109.5
C4A—C1—H1A104.2 (12)C20—C21—H21B109.5
C4A—C1—C2A111.1 (3)C20—C21—H21C109.5
N1—C5—H5AA109.0H21A—C21—H21B109.5
N1—C5—H5AB109.0H21A—C21—H21C109.5
N1—C5—H5BC110.0H21B—C21—H21C109.5
N1—C5—H5BD110.0O11—C22—H22A109.9
N1—C5—C2113.05 (14)O11—C22—H22B109.9
N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)
H5AA—C5—H5AB107.8H22A—C22—H22B108.3
H5BC—C5—H5BD108.4C23—C22—H22A109.9
C2—C5—H5AA109.0C23—C22—H22B109.9
C2—C5—H5AB109.0C22—C23—H23A109.5
C2A—C5—H5BC110.0C22—C23—H23B109.5
C2A—C5—H5BD110.0C22—C23—H23C109.5
N2—C6—H6AA109.2H23A—C23—H23B109.5
N2—C6—H6AB109.2H23A—C23—H23C109.5
N2—C6—H6BC109.5H23B—C23—H23C109.5
N2—C6—H6BD109.5O12—C24—H24A110.2
N2—C6—C3111.97 (16)O12—C24—H24B110.2
N2—C6—C3A110.5 (2)O12—C24—C25107.54 (16)
H6AA—C6—H6AB107.9H24A—C24—H24B108.5
H6BC—C6—H6BD108.1C25—C24—H24A110.2
C3—C6—H6AA109.2C25—C24—H24B110.2
C3—C6—H6AB109.2C24—C25—H25A109.5
C3A—C6—H6BC109.5C24—C25—H25B109.5
C3A—C6—H6BD109.5C24—C25—H25C109.5
N3—C7—H7AA109.1H25A—C25—H25B109.5
N3—C7—H7AB109.1H25A—C25—H25C109.5
N3—C7—H7BC110.1H25B—C25—H25C109.5
N3—C7—H7BD110.1C1—C2—C5112.41 (18)
N3—C7—C4112.46 (15)C1—C2—H2A109.1
N3—C7—C4A107.8 (2)C1—C2—H2B109.1
H7AA—C7—H7AB107.8C5—C2—H2A109.1
H7BC—C7—H7BD108.5C5—C2—H2B109.1
C4—C7—H7AA109.1H2A—C2—H2B107.9
C4—C7—H7AB109.1C1—C3—H3A108.8
C4A—C7—H7BC110.1C1—C3—H3B108.8
C4A—C7—H7BD110.1C6—C3—C1113.63 (17)
O1—C8—N1123.86 (14)C6—C3—H3A108.8
O1—C8—C11121.44 (14)C6—C3—H3B108.8
N1—C8—C11114.70 (14)H3A—C3—H3B107.7
O2—C9—N2123.68 (15)C1—C4—C7114.59 (17)
O2—C9—C12121.02 (15)C1—C4—H4A108.6
N2—C9—C12115.30 (14)C1—C4—H4B108.6
O3—C10—N3124.25 (15)C7—C4—H4A108.6
O3—C10—C13120.97 (15)C7—C4—H4B108.6
N3—C10—C13114.78 (14)H4A—C4—H4B107.6
P1—C11—H11A109.7C1—C2A—H2AA108.8
P1—C11—H11B109.7C1—C2A—H2AB108.8
C8—C11—P1109.70 (10)C5—C2A—C1113.6 (3)
C8—C11—H11A109.7C5—C2A—H2AA108.8
C8—C11—H11B109.7C5—C2A—H2AB108.8
H11A—C11—H11B108.2H2AA—C2A—H2AB107.7
P3—C12—H12A109.5C1—C3A—C6114.5 (3)
P3—C12—H12B109.5C1—C3A—H3AA108.6
C9—C12—P3110.80 (11)C1—C3A—H3AB108.6
C9—C12—H12A109.5C6—C3A—H3AA108.6
C9—C12—H12B109.5C6—C3A—H3AB108.6
H12A—C12—H12B108.1H3AA—C3A—H3AB107.6
P2—C13—H13A109.6C1—C4A—H4AA107.4
P2—C13—H13B109.6C1—C4A—H4AB107.4
C10—C13—P2110.07 (11)C7—C4A—C1119.9 (3)
C10—C13—H13A109.6C7—C4A—H4AA107.4
C10—C13—H13B109.6C7—C4A—H4AB107.4
H13A—C13—H13B108.2H4AA—C4A—H4AB106.9
P1—O7—C14—C15169.31 (13)N2—C9—C12—P3114.58 (14)
P1—O8—C16—C17131.70 (16)N3—C7—C4—C155.4 (2)
P2—O11—C22—C23119.26 (14)N3—C7—C4A—C162.0 (4)
P2—O12—C24—C25151.86 (17)N3—C10—C13—P2126.59 (13)
P3—O9—C18—C19142.53 (12)C5—N1—C8—O13.3 (2)
P3—O10—C20—C21145.69 (17)C5—N1—C8—C11176.51 (13)
O1—C8—C11—P170.88 (17)C6—N2—C9—O22.7 (3)
O2—C9—C12—P365.17 (18)C6—N2—C9—C12177.08 (14)
O3—C10—C13—P253.21 (19)C7—N3—C10—O33.7 (3)
O4—P1—O7—C1431.54 (14)C7—N3—C10—C13176.07 (14)
O4—P1—O8—C1652.59 (15)C8—N1—C5—C278.0 (2)
O4—P1—C11—C841.31 (13)C8—N1—C5—C2A138.4 (2)
O5—P3—O9—C1833.23 (14)C9—N2—C6—C387.1 (2)
O5—P3—O10—C2062.32 (17)C9—N2—C6—C3A143.7 (2)
O5—P3—C12—C945.33 (13)C10—N3—C7—C479.6 (2)
O6—P2—O11—C2227.99 (14)C10—N3—C7—C4A132.3 (3)
O6—P2—O12—C2456.73 (14)C11—P1—O7—C1496.14 (13)
O6—P2—C13—C1034.53 (14)C11—P1—O8—C16176.58 (13)
O7—P1—O8—C1670.93 (14)C12—P3—O9—C1894.69 (13)
O7—P1—C11—C885.75 (12)C12—P3—O10—C20173.55 (16)
O8—P1—O7—C14157.15 (12)C13—P2—O11—C22100.87 (13)
O8—P1—C11—C8166.67 (11)C13—P2—O12—C24178.94 (12)
O9—P3—O10—C2061.33 (16)C2—C1—C3—C666.6 (2)
O9—P3—C12—C981.70 (12)C2—C1—C4—C7174.01 (17)
O10—P3—O9—C18159.22 (12)C3—C1—C2—C5175.92 (16)
O10—P3—C12—C9170.81 (11)C3—C1—C4—C768.2 (2)
O11—P2—O12—C2467.24 (13)C4—C1—C2—C565.5 (2)
O11—P2—C13—C1093.74 (12)C4—C1—C3—C6173.29 (18)
O12—P2—O11—C22153.50 (12)C2A—C1—C3A—C6177.4 (3)
O12—P2—C13—C10159.72 (12)C2A—C1—C4A—C747.4 (5)
N1—C5—C2—C161.5 (2)C3A—C1—C2A—C543.5 (4)
N1—C5—C2A—C169.9 (3)C3A—C1—C4A—C7177.1 (3)
N1—C8—C11—P1108.97 (13)C4A—C1—C2A—C5179.2 (3)
N2—C6—C3—C162.7 (2)C4A—C1—C3A—C648.6 (5)
N2—C6—C3A—C160.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.86 (2)2.07 (2)2.9138 (18)168.8 (19)
N2—H2···O40.79 (2)2.06 (2)2.8465 (18)170 (2)
N3—H3···O50.82 (2)2.10 (2)2.8975 (19)167 (2)
C11—H11A···O60.992.363.2433 (19)148
C11—H11B···O6i0.992.483.3235 (19)143
C12—H12A···O40.992.373.2476 (19)148
C12—H12B···O2ii0.992.353.321 (2)168
C13—H13A···O50.992.373.259 (2)149
C14—H14A···O10.992.563.326 (2)135
C17—H17B···O3iii0.982.653.427 (3)137
C18—H18A···O20.992.573.215 (2)122
C22—H22B···O1i0.992.803.472 (2)126
C23—H23C···O30.982.693.460 (2)135
C24—H24A···O1i0.992.553.480 (2)156
C24—H24B···O80.992.573.444 (2)147
C4A—H4AA···O2iv0.992.393.241 (5)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

We are grateful to GVSU (Chemistry department Weldon Fund, CSCE) for financial support of this research, as well as Dr Randy Winchester (GVSU) for helpful conversations. We also thank GVSU's Office of Undergraduate Research for a Student Supplies Grant to B. Wackerle.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant Nos. CHE-2102576, CHE-2102381, CHE-1919565 and CHE-1559886).

References

First citationArcher, C. M., Wadsworth, H. J. & Engell, T. (2004). US Patent Application US 2004/0258619 A1.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCoburn, K. M., Hardy, D. A., Patterson, M. G., McGraw, S. N., Peruzzi, M. T., Boucher, F., Beelen, B., Sartain, H. T., Neils, T., Lawrence, C. L., Staples, R. J., Werner, E. J. & Biros, S. M. (2016). Inorg. Chim. Acta, 449, 96–106.  CrossRef CAS Google Scholar
First citationDam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev. 36, 367–377.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorwitz, E. P., Diamond, H., Martin, K. A. & Chiarizia, R. (1987). Solvent Extr. Ion Exch. 5, 419–446.  CAS Google Scholar
First citationHorwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75–109.  CAS Google Scholar
First citationLeoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev. 46, 7229–7273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatloka, K., Sah, A. K., Peters, M. W., Srinivasan, P., Gelis, A. V., Regalbuto, M. & Scott, M. J. (2007). Inorg. Chem. 46, 10549–10563.  CrossRef PubMed CAS Google Scholar
First citationOuizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). Dalton Trans. 43, 8368–8386.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPeters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem. 41, 1707–1716.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRudzevich, V., Kasyan, O., Drapailo, A., Bolte, M., Schollmeyer, D. & Böhmer, V. (2010). Chem. Asian J. 5, 1347–1355.  CrossRef CAS PubMed Google Scholar
First citationSchmidt, C., Saadioui, M., Böhmer, V., Host, V., Spirlet, M.-R., Desreux, J. F., Brisach, F., Arnaud-Neu, F. & Dozol, J.-F. (2003). Org. Biomol. Chem. 1, 4089–4096.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVanderWeide, A. I., Staples, R. J. & Biros, S. M. (2019). Acta Cryst. E75, 991–996.  CrossRef IUCr Journals Google Scholar
First citationWerner, E. J. & Biros, S. M. (2019). Org. Chem. Front. 6, 2067–2094.  Web of Science CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds