research communications
H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one
Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research, Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bUniversity of Zurich, Department of Chemistry B, Winterthurerstrasse 190, 8057 Zurich, Switzerland, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: z.benzekri@um5r.ac.ma
The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.
CCDC reference: 2381865
1. Chemical context
Research into the properties of et al., 2022), antibacterial (Al-Ghulikah et al., 2023; Saber et al., 2020; Ibrahim et al., 2021), anticancer (Dimov et al., 2021), antiviral (Ferro et al., 2017) and antidepressant (Clayton et al., 2020) properties, and activities related to Alzheimer's disease (Mo et al., 2020). Our research group recently made significant advances in synthesizing compounds that combine the 1,2,3-triazole moiety with benzimidazol-2-one derivatives.
in particular benzimidazolones, has become increasingly important. These compounds possess unique structural features and have shown a wide range of biological activities, including antiproliferative (GuillonHere we provide details of the synthesis and the molecular and crystal structures of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)benzimidazol-2-one, C19H25N5O. We have synthesized this compound using click chemistry, in particular by applying copper-catalysed azide–alkyne cycloaddition (CuAAC). This approach not only ensures efficiency in the synthesis process but also facilitates the formation of complex molecular structures (Fig. 1). We also carried out Hirshfeld surface analysis and calculations of the intermolecular interaction energies and energy frameworks.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 2. The benzimidazole moiety is almost planar, the planar A (C1–C6) and B (N1/N2/C1/C2/C7) rings being oriented at a dihedral angle of 0.86 (5)°. Atoms O1 and C8 are 0.370 (10) Å and −0.0404 (16) Å, respectively, away from the least-squares plane of ring B. The planar triazole ring, C (N3–N5/C12/C13), is oriented almost perpendicular with respect to the benzimidazole moiety at a dihedral angle of 87.57 (4)°, with atoms C11 and C14 lying 0.0044 (14) and 0.0463 (18) Å, respectively, from the least-squares plane of ring C. Bond lengths and angles in the whole molecule are in characteristic ranges.
3. Supramolecular features
In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure (Table 1, Fig. 3). There are no significant π–π interactions present, but two weak C—H⋯π(ring) interactions (Table 1) are observed.
4. Hirshfeld surface analysis
In order to quantify the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021). It is noted that only the major occupancy component of the disordered atoms at the terminal propyl moiety of the hexyl chain were taken into account for the analysis. In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). Possible π–π stacking and C—H⋯π interactions can also be visualized using the shape-index surface, which can be used to identify characteristic packing modes, in particular, planar stacking arrangements and the presence of aromatic stacking interactions. The shape-index surface represents the C—H⋯π interactions as red p-holes, which are related to the electron ring interactions between the CH groups with the centroid of the aromatic rings of neighbouring molecules. Fig. 6 clearly shows that there are C—H⋯π interactions present in the crystal packing of the title compound. On the other hand, the shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles. If there are no adjacent red and/or blue triangles, then there are no π–π interactions, as Fig. 6 clearly suggests. The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯N/N⋯C, C⋯C and C⋯O/O⋯C (McKinnon et al., 2007) are illustrated in Fig. 7b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2) contributing 62.0% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule. As a result of the presence of C—H⋯π interactions (Table 1, Fig. 6), the H⋯C/C⋯H contacts (Table 2) contribute 16.1% to the overall crystal packing. H⋯N/N⋯H contacts (Fig. 7d) make a 13.7% contribution to the HS, and the H⋯O/O⋯H contacts (Table 3 and Fig. 7e) amount to 7.5% of the overall crystal packing. Finally, the C⋯N/N⋯C (Fig. 7f), C⋯C (Fig. 7g) and C⋯O/O⋯C (Fig. 7h) contacts with 0.4%, 0.3% and 0.1% contributions, respectively, to the HS play a minor role.
|
The nearest neighbour environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H interactions in Fig. 8a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the crystal packing, as shown by the large number of H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H interactions (Hathwar et al., 2015).
5. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −32.5 (Eele), −9.2 (Epol), −60.5 (Edis), 54.9(Erep) and 59.9 (Etot) for the C10—H10B⋯O1, and −19.8 (Eele), −7.5 (Epol), −72.3 (Edis), 50.3 (Erep) and −58.3 (Etot) for the C11—H11A⋯O1 hydrogen-bonding interactions. Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 9a–c). The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the of the title compound.
6. Database survey
A survey of the Cambridge Structural Database (CSD, updated July 2024; Groom et al., 2016) found several molecules that are similar to the title compound. These include: formula I in Fig. 10 (CSD refcode YIVWUZ; Zouhair et al., 2023), formula II with R1 = –C(CH3)=CH2, R2 = –C6H9, and R3 = –H (CSD refcode ROPKOA; El Atrassi et al., 2024), formula III with R1 = –C(CH3)=CH2, R2 = –C10H22, and R3 = –H (CSD refcode ETAJOB; Saber et al., 2021), formula IV with R1 = –CH2C6H5, R2 = –C12H26, and R3 = –H (CSD refcode ETAKAO; Saber et al., 2021) and formula V with R1 = –C6H9, R2 = –C6H5, and R3 = –H (CSD refcode PAZFOO; Adardour et al., 2017). Most of the identified compounds exhibit an almost planar benzimidazol-2-one ring system, with the dihedral angle between the constituent rings being less than 1°, or the nitrogen atom bearing the exocyclic substituent being less than 0.03 Å from the mean plane of the remaining nine atoms.
7. Synthesis and crystallization
2.87 mmol of compound 1 (Fig. 1) and 0.45 mmol of 1-azidohexane were dissolved in 10 ml of ethanol. This solution was added into 1.64 mmol of CuSO4 and 3.73 mmol of sodium ascorbate, dissolved in 10 ml of distilled water. The reaction mixture was stirred for 10 h at room temperature. After filtration and concentration of the solution under reduced pressure, the obtained residue was chromatographed on a silica gel column using ethyl acetate/hexane (3/1 v/v) as the The resulting solid was filtered, washed with water, dried, and recrystallized from ethanol. The title compound 2 was obtained in a yield of 87%.
8. Refinement
Crystal data, data collection and structure . The H10A and H10B hydrogen atoms were located in a difference-Fourier map, and were refined isotropically. The other C-bound hydrogen-atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH), 0.99 Å (for CH2) and 0.98 Å (for CH3) and refined using a riding model by applying the constraints Uiso(H) = k×Ueq(C), where k = 1.2 for CH and CH2 and k = 1.5 for CH3. The terminal propyl moiety of the hexyl chain is disordered over two positions (H17A, H17B, C18A, H18A, H18B, C19A, H19A, H19B, H19C, H17C, H17D, C18B, H18C, H18D, C19B, H19D, H19E, H19F) with a refined occupancy ratio of 0.821 (5):0.179 (5).
details are summarized in Table 3Supporting information
CCDC reference: 2381865
https://doi.org/10.1107/S2056989024008703/wm5732sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008703/wm5732Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024008703/wm5732Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024008703/wm5732Isup4.cml
C19H25N5O | F(000) = 728 |
Mr = 339.44 | Dx = 1.250 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 5.7820 (3) Å | Cell parameters from 8532 reflections |
b = 26.5057 (14) Å | θ = 3.3–76.2° |
c = 11.7704 (5) Å | µ = 0.64 mm−1 |
β = 90.407 (4)° | T = 160 K |
V = 1803.84 (15) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.14 × 0.09 mm |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3808 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 3160 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.052 |
Detector resolution: 10.3801 pixels mm-1 | θmax = 77.0°, θmin = 3.3° |
ω scans | h = −7→7 |
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2023) based on expressions derived by Clark & Reid (1995)] | k = −33→29 |
Tmin = 0.901, Tmax = 0.951 | l = −14→10 |
21177 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0636P)2 + 0.5249P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.127 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.25 e Å−3 |
3808 reflections | Δρmin = −0.26 e Å−3 |
257 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
42 restraints | Extinction coefficient: 0.0036 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All C(H,H,H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances C18B-C19B ~ C19A-C18A ~ C18B-C17 ~ C18A-C17 with sigma of 0.005 3. Uiso/Uaniso restraints and constraints C18A ~ C19A ~ C18B ~ C19B: within 3A with sigma of 0.01 and sigma for terminal atoms of 0.02 within 3A 4. Others Sof(H17C)=Sof(H17D)=Sof(C18B)=Sof(H18C)=Sof(H18D)=Sof(C19B)=Sof(H19D)= Sof(H19E)=Sof(H19F)=1-FVAR(1) Sof(H17A)=Sof(H17B)=Sof(C18A)=Sof(H18A)=Sof(H18B)=Sof(C19A)=Sof(H19A)= Sof(H19B)=Sof(H19C)=FVAR(1) 5.a Secondary CH2 refined with riding coordinates: C11(H11A,H11B), C14(H14A,H14B), C15(H15A,H15B), C16(H16A,H16B), C17(H17A, H17B), C17(H17C,H17D), C18A(H18A,H18B), C18B(H18C,H18D) 5.b Aromatic/amide H refined with riding coordinates: C3(H3), C4(H4), C5(H5), C6(H6), C13(H13) 5.c Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C19A(H19A,H19B,H19C), C19B(H19D,H19E,H19F) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7940 (2) | 0.17577 (5) | 0.68604 (12) | 0.0308 (3) | |
O1 | 0.33103 (18) | 0.21779 (4) | 0.52367 (8) | 0.0364 (3) | |
N1 | 0.6614 (2) | 0.17482 (5) | 0.58607 (10) | 0.0326 (3) | |
N2 | 0.4944 (2) | 0.22890 (5) | 0.70261 (9) | 0.0296 (3) | |
C2 | 0.6863 (2) | 0.20966 (5) | 0.75975 (11) | 0.0291 (3) | |
N3 | 0.2200 (2) | 0.35163 (5) | 0.66222 (11) | 0.0374 (3) | |
C3 | 0.7721 (3) | 0.21852 (6) | 0.86806 (12) | 0.0352 (3) | |
H3 | 0.698298 | 0.241366 | 0.918318 | 0.042* | |
N4 | 0.3129 (2) | 0.39205 (5) | 0.61517 (13) | 0.0424 (3) | |
C4 | 0.9712 (3) | 0.19248 (7) | 0.90008 (13) | 0.0393 (4) | |
H4 | 1.035084 | 0.197730 | 0.973712 | 0.047* | |
C5 | 1.0783 (3) | 0.15899 (6) | 0.82652 (14) | 0.0399 (4) | |
H5 | 1.213610 | 0.141701 | 0.851127 | 0.048* | |
N5 | 0.5415 (2) | 0.38392 (5) | 0.60927 (11) | 0.0357 (3) | |
C6 | 0.9922 (3) | 0.15015 (6) | 0.71767 (13) | 0.0356 (3) | |
H6 | 1.066630 | 0.127466 | 0.667251 | 0.043* | |
C7 | 0.4775 (2) | 0.20804 (6) | 0.59617 (12) | 0.0303 (3) | |
C8 | 0.7004 (3) | 0.14433 (6) | 0.48692 (12) | 0.0352 (3) | |
C9 | 0.5113 (3) | 0.10808 (7) | 0.45822 (17) | 0.0492 (4) | |
H9A | 0.493585 | 0.083842 | 0.520422 | 0.074* | |
H9B | 0.550058 | 0.090019 | 0.388245 | 0.074* | |
H9C | 0.366145 | 0.126581 | 0.447146 | 0.074* | |
C10 | 0.8948 (3) | 0.14965 (7) | 0.43056 (15) | 0.0442 (4) | |
H10A | 0.931 (4) | 0.1277 (8) | 0.3654 (18) | 0.056 (6)* | |
H10B | 1.012 (4) | 0.1741 (9) | 0.4565 (18) | 0.058 (6)* | |
C11 | 0.3375 (3) | 0.26838 (6) | 0.74017 (12) | 0.0323 (3) | |
H11A | 0.349085 | 0.271778 | 0.823779 | 0.039* | |
H11B | 0.176646 | 0.258618 | 0.720965 | 0.039* | |
C12 | 0.3908 (2) | 0.31811 (6) | 0.68620 (11) | 0.0301 (3) | |
C13 | 0.5969 (3) | 0.33859 (6) | 0.65264 (13) | 0.0340 (3) | |
H13 | 0.746367 | 0.323922 | 0.658726 | 0.041* | |
C14 | 0.6934 (3) | 0.42141 (6) | 0.55722 (15) | 0.0424 (4) | |
H14A | 0.855524 | 0.409626 | 0.563088 | 0.051* | |
H14B | 0.681253 | 0.453526 | 0.599697 | 0.051* | |
C15 | 0.6340 (3) | 0.43082 (6) | 0.43358 (15) | 0.0421 (4) | |
H15A | 0.475025 | 0.444526 | 0.427921 | 0.051* | |
H15B | 0.637541 | 0.398416 | 0.391783 | 0.051* | |
C16 | 0.8018 (3) | 0.46769 (7) | 0.37858 (17) | 0.0480 (4) | |
H16A | 0.807003 | 0.499065 | 0.424150 | 0.058* | |
H16B | 0.958743 | 0.452764 | 0.379478 | 0.058* | |
C17 | 0.7356 (4) | 0.48077 (8) | 0.25675 (17) | 0.0586 (5) | |
H17A | 0.581533 | 0.497062 | 0.257699 | 0.070* | 0.821 (5) |
H17B | 0.719383 | 0.448852 | 0.213761 | 0.070* | 0.821 (5) |
H17C | 0.613356 | 0.506877 | 0.252606 | 0.070* | 0.179 (5) |
H17D | 0.688090 | 0.450729 | 0.212404 | 0.070* | 0.179 (5) |
C18A | 0.9007 (5) | 0.51525 (10) | 0.1912 (3) | 0.0583 (8) | 0.821 (5) |
H18A | 0.819476 | 0.529284 | 0.123958 | 0.070* | 0.821 (5) |
H18B | 0.948434 | 0.543763 | 0.240390 | 0.070* | 0.821 (5) |
C19A | 1.1136 (5) | 0.48654 (11) | 0.1530 (3) | 0.0744 (10) | 0.821 (5) |
H19A | 1.195578 | 0.473157 | 0.219640 | 0.112* | 0.821 (5) |
H19B | 1.215944 | 0.509327 | 0.111307 | 0.112* | 0.821 (5) |
H19C | 1.066583 | 0.458600 | 0.103448 | 0.112* | 0.821 (5) |
C18B | 0.9733 (13) | 0.5011 (6) | 0.2206 (8) | 0.058 (3) | 0.179 (5) |
H18C | 1.005039 | 0.534040 | 0.257090 | 0.070* | 0.179 (5) |
H18D | 1.097440 | 0.477164 | 0.242305 | 0.070* | 0.179 (5) |
C19B | 0.960 (2) | 0.5068 (5) | 0.0915 (8) | 0.061 (3) | 0.179 (5) |
H19D | 0.966338 | 0.473423 | 0.055916 | 0.092* | 0.179 (5) |
H19E | 1.090519 | 0.527234 | 0.065372 | 0.092* | 0.179 (5) |
H19F | 0.814545 | 0.523467 | 0.070434 | 0.092* | 0.179 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0308 (7) | 0.0297 (7) | 0.0318 (7) | −0.0014 (5) | 0.0010 (5) | 0.0029 (5) |
O1 | 0.0368 (6) | 0.0420 (6) | 0.0302 (5) | 0.0042 (5) | −0.0033 (4) | 0.0014 (4) |
N1 | 0.0334 (6) | 0.0346 (7) | 0.0297 (6) | 0.0030 (5) | 0.0000 (5) | −0.0028 (5) |
N2 | 0.0316 (6) | 0.0307 (6) | 0.0266 (5) | 0.0029 (5) | 0.0013 (4) | 0.0008 (5) |
C2 | 0.0296 (7) | 0.0292 (7) | 0.0285 (6) | −0.0014 (5) | 0.0013 (5) | 0.0035 (5) |
N3 | 0.0307 (6) | 0.0369 (7) | 0.0446 (7) | 0.0047 (5) | 0.0007 (5) | 0.0037 (5) |
C3 | 0.0370 (8) | 0.0387 (8) | 0.0300 (7) | −0.0022 (6) | 0.0002 (6) | 0.0017 (6) |
N4 | 0.0321 (7) | 0.0360 (7) | 0.0590 (8) | 0.0054 (5) | 0.0015 (6) | 0.0074 (6) |
C4 | 0.0387 (8) | 0.0443 (9) | 0.0347 (7) | −0.0047 (7) | −0.0056 (6) | 0.0082 (6) |
C5 | 0.0324 (7) | 0.0404 (9) | 0.0468 (9) | 0.0000 (6) | −0.0054 (6) | 0.0115 (7) |
N5 | 0.0300 (6) | 0.0326 (7) | 0.0445 (7) | 0.0013 (5) | −0.0004 (5) | 0.0008 (5) |
C6 | 0.0330 (7) | 0.0318 (8) | 0.0420 (8) | 0.0015 (6) | 0.0005 (6) | 0.0024 (6) |
C7 | 0.0316 (7) | 0.0314 (7) | 0.0280 (6) | −0.0004 (6) | 0.0021 (5) | 0.0029 (5) |
C8 | 0.0366 (8) | 0.0344 (8) | 0.0346 (7) | 0.0044 (6) | −0.0017 (6) | −0.0050 (6) |
C9 | 0.0455 (9) | 0.0438 (10) | 0.0582 (10) | −0.0026 (8) | −0.0012 (8) | −0.0141 (8) |
C10 | 0.0405 (9) | 0.0512 (10) | 0.0411 (8) | 0.0039 (7) | 0.0032 (7) | −0.0106 (7) |
C11 | 0.0324 (7) | 0.0350 (8) | 0.0296 (6) | 0.0050 (6) | 0.0052 (5) | 0.0008 (6) |
C12 | 0.0304 (7) | 0.0326 (7) | 0.0275 (6) | 0.0039 (5) | −0.0004 (5) | −0.0026 (5) |
C13 | 0.0290 (7) | 0.0346 (8) | 0.0385 (7) | 0.0045 (6) | −0.0012 (6) | 0.0013 (6) |
C14 | 0.0358 (8) | 0.0348 (8) | 0.0567 (10) | −0.0045 (6) | −0.0001 (7) | 0.0035 (7) |
C15 | 0.0354 (8) | 0.0372 (8) | 0.0538 (9) | 0.0006 (6) | 0.0048 (7) | 0.0046 (7) |
C16 | 0.0436 (9) | 0.0369 (9) | 0.0636 (11) | −0.0008 (7) | 0.0124 (8) | 0.0025 (8) |
C17 | 0.0648 (12) | 0.0539 (12) | 0.0574 (11) | −0.0017 (10) | 0.0196 (9) | 0.0042 (9) |
C18A | 0.0807 (19) | 0.0386 (15) | 0.0561 (17) | 0.0058 (12) | 0.0190 (14) | 0.0133 (11) |
C19A | 0.0639 (17) | 0.0589 (17) | 0.101 (2) | −0.0032 (13) | 0.0307 (16) | 0.0218 (15) |
C18B | 0.093 (7) | 0.039 (6) | 0.042 (5) | −0.009 (5) | 0.012 (5) | 0.009 (4) |
C19B | 0.077 (7) | 0.059 (6) | 0.047 (5) | −0.002 (5) | 0.011 (5) | 0.012 (5) |
C1—N1 | 1.4000 (18) | C11—C12 | 1.496 (2) |
C1—C2 | 1.398 (2) | C12—C13 | 1.370 (2) |
C1—C6 | 1.381 (2) | C13—H13 | 0.9500 |
O1—C7 | 1.2257 (18) | C14—H14A | 0.9900 |
N1—C7 | 1.3862 (18) | C14—H14B | 0.9900 |
N1—C8 | 1.4386 (18) | C14—C15 | 1.514 (2) |
N2—C2 | 1.3901 (18) | C15—H15A | 0.9900 |
N2—C7 | 1.3723 (18) | C15—H15B | 0.9900 |
N2—C11 | 1.4560 (18) | C15—C16 | 1.525 (2) |
C2—C3 | 1.385 (2) | C16—H16A | 0.9900 |
N3—N4 | 1.3219 (19) | C16—H16B | 0.9900 |
N3—C12 | 1.3567 (18) | C16—C17 | 1.522 (3) |
C3—H3 | 0.9500 | C17—H17A | 0.9900 |
C3—C4 | 1.392 (2) | C17—H17B | 0.9900 |
N4—N5 | 1.3414 (18) | C17—H17C | 0.9900 |
C4—H4 | 0.9500 | C17—H17D | 0.9900 |
C4—C5 | 1.389 (2) | C17—C18A | 1.534 (3) |
C5—H5 | 0.9500 | C17—C18B | 1.539 (5) |
C5—C6 | 1.391 (2) | C18A—H18A | 0.9900 |
N5—C13 | 1.343 (2) | C18A—H18B | 0.9900 |
N5—C14 | 1.464 (2) | C18A—C19A | 1.518 (3) |
C6—H6 | 0.9500 | C19A—H19A | 0.9800 |
C8—C9 | 1.492 (2) | C19A—H19B | 0.9800 |
C8—C10 | 1.317 (2) | C19A—H19C | 0.9800 |
C9—H9A | 0.9800 | C18B—H18C | 0.9900 |
C9—H9B | 0.9800 | C18B—H18D | 0.9900 |
C9—H9C | 0.9800 | C18B—C19B | 1.528 (5) |
C10—H10A | 0.99 (2) | C19B—H19D | 0.9800 |
C10—H10B | 0.99 (2) | C19B—H19E | 0.9800 |
C11—H11A | 0.9900 | C19B—H19F | 0.9800 |
C11—H11B | 0.9900 | ||
O1···C9 | 3.185 (2) | C7···H9C | 2.85 |
O1···H10Bi | 2.31 (2) | H3···C7ii | 2.80 |
O1···H11B | 2.72 | C10···H9Ciii | 2.80 |
O1···H9C | 2.60 | H16B···H19A | 2.41 |
H3···O1ii | 2.69 | H17A···H19Ai | 2.36 |
H11A···O1ii | 2.37 | H17B···H19C | 2.41 |
C3···H11A | 2.87 | ||
C2—C1—N1 | 106.82 (12) | C12—C13—H13 | 127.5 |
C6—C1—N1 | 131.78 (14) | N5—C14—H14A | 109.1 |
C6—C1—C2 | 121.40 (14) | N5—C14—H14B | 109.1 |
C1—N1—C8 | 127.15 (12) | N5—C14—C15 | 112.42 (14) |
C7—N1—C1 | 109.41 (12) | H14A—C14—H14B | 107.9 |
C7—N1—C8 | 123.43 (12) | C15—C14—H14A | 109.1 |
C2—N2—C11 | 127.86 (12) | C15—C14—H14B | 109.1 |
C7—N2—C2 | 110.20 (12) | C14—C15—H15A | 109.2 |
C7—N2—C11 | 121.76 (12) | C14—C15—H15B | 109.2 |
N2—C2—C1 | 107.03 (12) | C14—C15—C16 | 111.90 (15) |
C3—C2—C1 | 121.46 (14) | H15A—C15—H15B | 107.9 |
C3—C2—N2 | 131.51 (14) | C16—C15—H15A | 109.2 |
N4—N3—C12 | 108.69 (12) | C16—C15—H15B | 109.2 |
C2—C3—H3 | 121.5 | C15—C16—H16A | 109.0 |
C2—C3—C4 | 117.09 (14) | C15—C16—H16B | 109.0 |
C4—C3—H3 | 121.5 | H16A—C16—H16B | 107.8 |
N3—N4—N5 | 107.16 (12) | C17—C16—C15 | 112.93 (16) |
C3—C4—H4 | 119.3 | C17—C16—H16A | 109.0 |
C5—C4—C3 | 121.32 (14) | C17—C16—H16B | 109.0 |
C5—C4—H4 | 119.3 | C16—C17—H17A | 108.0 |
C4—C5—H5 | 119.2 | C16—C17—H17B | 108.0 |
C4—C5—C6 | 121.57 (15) | C16—C17—H17C | 112.4 |
C6—C5—H5 | 119.2 | C16—C17—H17D | 112.4 |
N4—N5—C13 | 110.89 (13) | C16—C17—C18A | 117.2 (2) |
N4—N5—C14 | 120.47 (13) | C16—C17—C18B | 97.0 (4) |
C13—N5—C14 | 128.61 (13) | H17A—C17—H17B | 107.2 |
C1—C6—C5 | 117.16 (14) | H17C—C17—H17D | 109.9 |
C1—C6—H6 | 121.4 | C18A—C17—H17A | 108.0 |
C5—C6—H6 | 121.4 | C18A—C17—H17B | 108.0 |
O1—C7—N1 | 126.94 (13) | C18B—C17—H17C | 112.4 |
O1—C7—N2 | 126.51 (14) | C18B—C17—H17D | 112.4 |
N2—C7—N1 | 106.53 (12) | C17—C18A—H18A | 109.4 |
N1—C8—C9 | 115.25 (13) | C17—C18A—H18B | 109.4 |
C10—C8—N1 | 119.20 (15) | H18A—C18A—H18B | 108.0 |
C10—C8—C9 | 125.55 (15) | C19A—C18A—C17 | 111.0 (2) |
C8—C9—H9A | 109.5 | C19A—C18A—H18A | 109.4 |
C8—C9—H9B | 109.5 | C19A—C18A—H18B | 109.4 |
C8—C9—H9C | 109.5 | C18A—C19A—H19A | 109.5 |
H9A—C9—H9B | 109.5 | C18A—C19A—H19B | 109.5 |
H9A—C9—H9C | 109.5 | C18A—C19A—H19C | 109.5 |
H9B—C9—H9C | 109.5 | H19A—C19A—H19B | 109.5 |
C8—C10—H10A | 120.9 (13) | H19A—C19A—H19C | 109.5 |
C8—C10—H10B | 120.1 (13) | H19B—C19A—H19C | 109.5 |
H10A—C10—H10B | 118.8 (17) | C17—C18B—H18C | 110.6 |
N2—C11—H11A | 109.2 | C17—C18B—H18D | 110.6 |
N2—C11—H11B | 109.2 | H18C—C18B—H18D | 108.7 |
N2—C11—C12 | 111.94 (11) | C19B—C18B—C17 | 105.7 (7) |
H11A—C11—H11B | 107.9 | C19B—C18B—H18C | 110.6 |
C12—C11—H11A | 109.2 | C19B—C18B—H18D | 110.6 |
C12—C11—H11B | 109.2 | C18B—C19B—H19D | 109.5 |
N3—C12—C11 | 120.90 (13) | C18B—C19B—H19E | 109.5 |
N3—C12—C13 | 108.30 (13) | C18B—C19B—H19F | 109.5 |
C13—C12—C11 | 130.80 (13) | H19D—C19B—H19E | 109.5 |
N5—C13—C12 | 104.97 (13) | H19D—C19B—H19F | 109.5 |
N5—C13—H13 | 127.5 | H19E—C19B—H19F | 109.5 |
C1—N1—C7—O1 | 177.74 (14) | C4—C5—C6—C1 | −0.6 (2) |
C1—N1—C7—N2 | −0.87 (16) | N5—C14—C15—C16 | −176.78 (13) |
C1—N1—C8—C9 | 118.16 (17) | C6—C1—N1—C7 | −179.65 (15) |
C1—N1—C8—C10 | −61.0 (2) | C6—C1—N1—C8 | 1.2 (3) |
C1—C2—C3—C4 | 0.4 (2) | C6—C1—C2—N2 | 179.77 (13) |
N1—C1—C2—N2 | −0.88 (15) | C6—C1—C2—C3 | −0.8 (2) |
N1—C1—C2—C3 | 178.54 (13) | C7—N1—C8—C9 | −60.8 (2) |
N1—C1—C6—C5 | −178.31 (15) | C7—N1—C8—C10 | 120.01 (18) |
N2—C2—C3—C4 | 179.71 (15) | C7—N2—C2—C1 | 0.37 (16) |
N2—C11—C12—N3 | 147.34 (13) | C7—N2—C2—C3 | −178.97 (15) |
N2—C11—C12—C13 | −32.5 (2) | C7—N2—C11—C12 | −74.12 (17) |
C2—C1—N1—C7 | 1.10 (16) | C8—N1—C7—O1 | −3.1 (2) |
C2—C1—N1—C8 | −178.02 (14) | C8—N1—C7—N2 | 178.29 (13) |
C2—C1—C6—C5 | 0.9 (2) | C11—N2—C2—C1 | −174.74 (13) |
C2—N2—C7—O1 | −178.31 (14) | C11—N2—C2—C3 | 5.9 (2) |
C2—N2—C7—N1 | 0.30 (16) | C11—N2—C7—O1 | −2.8 (2) |
C2—N2—C11—C12 | 100.48 (16) | C11—N2—C7—N1 | 175.77 (12) |
C2—C3—C4—C5 | −0.2 (2) | C11—C12—C13—N5 | 179.73 (14) |
N3—N4—N5—C13 | −0.26 (18) | C12—N3—N4—N5 | 0.17 (17) |
N3—N4—N5—C14 | 177.91 (14) | C13—N5—C14—C15 | 116.89 (18) |
N3—C12—C13—N5 | −0.12 (16) | C14—N5—C13—C12 | −177.75 (15) |
C3—C4—C5—C6 | 0.3 (2) | C14—C15—C16—C17 | −175.78 (15) |
N4—N3—C12—C11 | −179.90 (13) | C15—C16—C17—C18A | −176.58 (17) |
N4—N3—C12—C13 | −0.03 (17) | C15—C16—C17—C18B | −161.5 (6) |
N4—N5—C13—C12 | 0.23 (17) | C16—C17—C18A—C19A | 76.2 (3) |
N4—N5—C14—C15 | −60.9 (2) | C16—C17—C18B—C19B | 168.8 (9) |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+1/2, z+1/2; (iii) x+1, y, z. |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O1iii | 0.99 (2) | 2.31 (2) | 3.284 (2) | 168.8 (18) |
C11—H11A···O1ii | 0.99 | 2.37 | 3.3577 (17) | 173 |
C11—H11B···Cg1i | 0.99 | 2.76 | 3.5082 (18) | 135 |
C15—H15B···Cg1ii | 0.99 | 2.88 | 3.7599 (19) | 152 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+1/2, z+1/2; (iii) x+1, y, z. |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Adardour, M., Loughzail, M., Dahaoui, S., Baouid, A. & Berraho, M. (2017). IUCrData, 2, x170907. Google Scholar
Al-Ghulikah, H., Ghabi, A., Mtiraoui, H., Jeanneau, E. & Msaddek, M. (2023). Arab. J. Chem. 104566. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clayton, A. H., Brown, L. & Kim, N. N. (2020). Opinion d'expert sur l'innocuité des Médicaments, 1–8. Google Scholar
Dimov, S., Mavrova, A. T., Yancheva, D., Nikolova, B. & Tsoneva, I. (2021). Anticancer Agents Med. Chem. 21, 1441–1450. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Atrassi, Z., Zouhair, M., Blacque, O., Hökelek, T., Haoudi, A., Mazzah, A., Cherkaoui, H. & Sebbar, N. K. (2024). Acta Cryst. E80, 601–606. CrossRef IUCr Journals Google Scholar
Ferro, S., Buemi, M. R., De Luca, L., Agharbaoui, F. E., Pannecouque, C. & Monforte, A. M. (2017). Bioorg. Med. Chem. 25, 3861–3870. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillon, J., Savrimoutou, S., Albenque-Rubio, S., Pinaud, N., Moreau, S. & Desplat, V. (2022). Molbank, 2022, M1333. CrossRef Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Ibrahim, S., Ghabi, A., Amiri, N., Mtiraoui, H., Hajji, M., Bel-Hadj-Tahar, R. & Msaddek, M. (2021). Monatsh. Chem. 152, 523–535. Web of Science CrossRef CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mo, J., Chen, T., Yang, H., Guo, Y., Li, Q., Qiao, Y., Lin, H., Feng, F., Liu, W., Chen, Y., Liu, Z. & Sun, H. (2020). J. Enzyme Inhib. Med. Chem. 35, 330–343. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saber, A., Anouar, E. H., Sebbar, G., Ibrahimi, B. E., Srhir, M., Hökelek, T., Mague, J. T., Ghayati, L. E., Sebbar, N. K. & Essassi, E. M. (2021). J. Mol. Struct. 1242, 130719. Web of Science CSD CrossRef Google Scholar
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zouhair, M., El Ghayati, L., El Monfalouti, H., Abchihi, H., Hökelek, T., Ahmed, M., Mague, J. T. & Sebbar, N. K. (2023). Acta Cryst. E79, 1179–1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.