research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4] (R = tert-butyl or iso­propyl, E = S or Se, and X = Cl or Br)

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 September 2024; accepted 17 September 2024; online 30 September 2024)

Phosphane chalcogenides and their metal complexes, Part 9. Part 8: Upmann et al. (2024c).

During our studies of the oxidation of gold(I) complexes of tri­alkyl­phosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis­(tri­alkyl­phosphane chalcogenido)gold(I) tetra­halogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]. These corres­pond to the addition of one halogen atom per gold atom of the AuI precursor. Com­pound 1, bis­(triiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aur­ate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­bromi­doaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis­(tert-butyl­diiso­propyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis­(tri-tert-butyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors. There are several short intra­molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl inter­actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.

1. Chemical context

In the three previous publications in this series, we have presented structures of tri­alkyl­phosphane chalcogenido complexes of gold(I), general formula [(R1R2R3PE)AuX] (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]), the corresponding trihalogenido-gold(III) complexes [(R1R2R3PE)AuX3] (Upmann et al., 2024b[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.]) and the further oxidized phospho­nium gold(III) deriv­atives (R1R2R3PEX)+[AuX4] (Upmann et al., 2024c[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.]), where the R groups are tert-butyl or isopropyl, the chalcogen atoms E are S or Se, and the halogen atoms X are Cl or Br [the iodido­gold(I) derivatives however cannot be oxidized to gold(III)]. The majority of the gold(III) derivatives were synthesized successfully by the oxidation of the AuI series with PhICl2 or elemental bromine, whereby the two oxidation steps each correspond to the addition of two atom equivalents of halogen per atom equivalent of gold. However, some failed syntheses and several syntheses with low yields led us to suspect that the systems in solution were in some cases complex mixtures. One further set of isolated products were the mixed-valence bis(trialkylphosphane chalcogenido)gold(I) tetrahalogenidoaurates(III) of the form [(R1R2R3PE)2Au]+[AuX4], and the structures of seven such compounds (Scheme, Table 1[link]) are presented here; they correspond to the addition of one halogen atom per gold atom of the AuI precursor, rather than the two or four halogen atoms added to produce [(R1R2R3PE)AuX3] or (R1R2R3PEX)+[AuX4] respectively.

[Scheme 1]

Table 1
Compositions of the [(R1R2R3PE)2Au]+[AuX4] structures presented in this paper (see Scheme)

Compound R1 R2 R3 E X
1 iPr iPr iPr S Cl
2 iPr iPr tBu S Cl
3 tBu tBu tBu S Cl
4a iPr iPr tBu S Br
4b iPr iPr iBu Se Br
5a iBu iBu tBu S Br
5b iBu tBu tBu Se Br

Much introductory material is given in Part 6 of this series (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]) and is not repeated here. It is however worth repeating that writing a formal double bond P=E in the formulae of phosphane chalcogenides is an old-fashioned convention that probably does not represent the true nature of the bond. A considerable admixture of the resonance form +P—E is likely to be involved, especially for metal complexes.

2. Structural commentary

The mol­ecular structures of compounds 15b are shown in Figs. 1[link]–7[link][link][link][link][link][link]; some short inter­ionic contacts are included in these Figures and are discussed in section 3, Supra­molecular features. Ellipsoid plots correspond to 50% probability levels except for 4a (30%). All the structures are solvent-free. Because some alkyl groups are overlapped, not all carbon atoms are labelled. Selected bond lengths and angles are presented in Tables 2[link]–8[link][link][link][link][link][link]. All AuI atoms are linearly coordin­ated and all AuIII atoms are in a square-planar coordination environment (the anions have the ideal 4/mmm symmetry to a close approximation). For each phosphane chalcogenido ligand, there is a carbon atom that has an absolute torsion angle C—P—S—Au close to 180°; this is given the lowest number (C1 or C4) of the three carbon atoms bonded to the phospho­rus atom. This position is always occupied by a tert-butyl group, if present.

Table 2
Selected geometric parameters (Å, °) for 1[link]

Au1—S1 2.2918 (10) Au3—Cl2 2.2833 (10)
P1—S1 2.0369 (14) Au3—Cl1 2.2865 (10)
Au2—S2 2.2970 (9) Au4—Cl3 2.2811 (10)
P2—S2 2.0310 (13) Au4—Cl4 2.2849 (9)
       
S1—Au1—S1i 179.97 (5) Cl2—Au3—Cl1 89.99 (4)
C1—P1—S1 107.31 (15) Cl2—Au3—Cl1iii 90.01 (4)
P1—S1—Au1 102.05 (5) Cl1—Au3—Cl1iii 180.0
S2ii—Au2—S2 177.70 (5) Cl3iv—Au4—Cl3 180.0
C4—P2—S2 107.67 (13) Cl3—Au4—Cl4iv 89.63 (4)
P2—S2—Au2 102.69 (5) Cl3—Au4—Cl4 90.37 (4)
Cl2—Au3—Cl2iii 180.0 Cl4iv—Au4—Cl4 180.0
       
C1—P1—S1—Au1 171.60 (15) C4—P2—S2—Au2 162.32 (12)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y, -z+1].

Table 3
Selected geometric parameters (Å, °) for 2[link]

Au1—S1 2.2869 (9) Au3—Cl4 2.2746 (10)
Au1—S2 2.2910 (9) Au3—Cl1 2.2754 (11)
P1—S1 2.0283 (14) Au3—Cl2 2.2805 (10)
P2—S2 2.0263 (13) Au3—Cl3 2.2852 (11)
Au2—S4 2.2935 (9) Au4—Cl5 2.2780 (10)
Au2—S3 2.2953 (9) Au4—Cl6 2.2825 (11)
P3—S3 2.0360 (14) Au4—Cl7 2.2828 (10)
P4—S4 2.0312 (13) Au4—Cl8 2.2839 (10)
       
S1—Au1—S2 179.28 (4) Cl4—Au3—Cl2 179.22 (4)
C1—P1—S1 105.10 (13) Cl1—Au3—Cl2 89.46 (4)
C4—P2—S2 105.95 (12) Cl4—Au3—Cl3 90.14 (4)
P1—S1—Au1 101.88 (5) Cl1—Au3—Cl3 179.77 (4)
P2—S2—Au1 102.91 (5) Cl2—Au3—Cl3 90.64 (4)
S4—Au2—S3 177.24 (4) Cl5—Au4—Cl6 89.61 (4)
C1′—P3—S3 106.48 (15) Cl5—Au4—Cl7 179.44 (4)
C4′—P4—S4 106.46 (13) Cl6—Au4—Cl7 90.15 (4)
P3—S3—Au2 103.22 (5) Cl5—Au4—Cl8 90.54 (4)
P4—S4—Au2 106.42 (5) Cl6—Au4—Cl8 179.58 (4)
Cl4—Au3—Cl1 89.76 (4) Cl7—Au4—Cl8 89.70 (4)
       
C1—P1—S1—Au1 176.99 (13) C1′—P3—S3—Au2 −179.04 (18)
C4—P2—S2—Au1 166.51 (12) C4′—P4—S4—Au2 −162.56 (13)

Table 4
Selected geometric parameters (Å, °) for 3[link]

Au1—S1 2.2889 (5) Au2—Cl1 2.2802 (5)
P1—S1 2.0374 (6) Au2—Cl2 2.2836 (5)
       
S1—Au1—S1i 180.0 Cl1—Au2—Cl2 89.664 (18)
C1—P1—S1 101.57 (6) Cl1—Au2—Cl2ii 90.336 (18)
P1—S1—Au1 107.87 (2) Cl2—Au2—Cl2ii 180.0
Cl1ii—Au2—Cl1 180.0    
       
C1—P1—S1—Au1 −172.57 (6)    
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+2].

Table 5
Selected geometric parameters (Å, °) for 4a[link]

Au1—S1 2.291 (2) Au2—Br2 2.4196 (10)
Au1—S2 2.299 (2) Au2—Br1 2.4421 (11)
S1—P1 2.028 (3) Au3—Br3 2.4238 (9)
S2—P2 2.028 (3) Au3—Br4 2.4294 (8)
       
S1—Au1—S2 178.28 (8) Br2—Au2—Br1i 89.52 (4)
P1—S1—Au1 102.39 (11) Br1—Au2—Br1i 180.0
P2—S2—Au1 103.89 (11) Br3ii—Au3—Br3 180.0
C1—P1—S1 106.3 (3) Br3—Au3—Br4 90.52 (3)
C4—P2—S2 105.9 (3) Br3—Au3—Br4ii 89.48 (3)
Br2i—Au2—Br2 180.0 Br4—Au3—Br4ii 180.0
Br2—Au2—Br1 90.48 (4)    
       
Au1—S1—P1—C1 175.0 (4) Au1—S2—P2—C4 −164.7 (3)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+2, -y+1, -z+1].

Table 6
Selected geometric parameters (Å, °) for 4b[link]

Au1—Se1 2.4017 (4) Au2—Br2 2.4254 (4)
Au1—Se2 2.4057 (4) Au2—Br1 2.4337 (4)
Se1—P1 2.1929 (10) Au3—Br3 2.4285 (4)
Se2—P2 2.1864 (10) Au3—Br4 2.4320 (4)
       
Se1—Au1—Se2 176.734 (16) Br2—Au2—Br1i 89.419 (15)
P1—Se1—Au1 98.27 (3) Br1—Au2—Br1i 180.0
P2—Se2—Au1 100.69 (3) Br3ii—Au3—Br3 180.0
C1—P1—Se1 106.65 (14) Br3—Au3—Br4ii 89.190 (14)
C4—P2—Se2 106.60 (13) Br3—Au3—Br4 90.809 (14)
Br2—Au2—Br2i 180.0 Br4ii—Au3—Br4 180.0
Br2—Au2—Br1 90.581 (15)    
       
Au1—Se1—P1—C1 173.20 (15) Au1—Se2—P2—C4 −163.72 (13)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+2, -y+1, -z+1].

Table 7
Selected geometric parameters (Å, °) for 5a[link]

Au1—S1 2.2891 (5) Au2—Br1 2.4245 (2)
P1—S1 2.0384 (7) Au2—Br2 2.4260 (2)
       
S1i—Au1—S1 180.0 Br1—Au2—Br2ii 89.687 (9)
C1—P1—S1 101.58 (7) Br1—Au2—Br2 90.312 (9)
P1—S1—Au1 107.15 (3) Br2ii—Au2—Br2 180.0
Br1—Au2—Br1ii 180.0    
       
C1—P1—S1—Au1 −171.01 (7)    
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+2].

Table 8
Selected geometric parameters (Å, °) for 5b[link]

Au1—Se1 2.4036 (3) Au2—Br1 2.4265 (3)
P1—Se1 2.2009 (6) Au2—Br2 2.4295 (3)
       
C1—P1—Se1 102.74 (8) Br1—Au2—Br2 90.899 (10)
P1—Se1—Au1 101.806 (19) Br1—Au2—Br2i 89.102 (10)
Br1i—Au2—Br1 180.0 Br2—Au2—Br2i 180.0
       
C1—P1—Se1—Au1 −169.62 (8)    
Symmetry code: (i) [-x+1, -y+2, -z+2].
[Figure 1]
Figure 1
The structure of compound 1 in the crystal. Only the asymmetric unit is labelled.
[Figure 2]
Figure 2
The structure of compound 2 in the crystal. Carbon atoms of the second independent cation are labelled with primes. The contact S3⋯Cl2 is indicated by a dashed bond.
[Figure 3]
Figure 3
The structure of compound 3 in the crystal. Only the asymmetric unit is labelled. The contact S1⋯Cl1 is indicated by a dashed bond.
[Figure 4]
Figure 4
The structure of compound 4a in the crystal. Only the asymmetric unit is labelled. The contacts S1⋯Br2 and Br1⋯Br4 are indicated by dashed bonds.
[Figure 5]
Figure 5
The structure of compound 4b in the crystal. Only the asymmetric unit is labelled. The contacts Se1⋯Br2 and Br1⋯Br4 are indicated by dashed bonds.
[Figure 6]
Figure 6
The structure of compound 5a in the crystal. Only the asymmetric unit is labelled. The contact S1⋯Br1 is indicated by a dashed bond.
[Figure 7]
Figure 7
The structure of compound 5b in the crystal. Only the asymmetric unit is labelled. The contact Se1⋯Br1 is indicated by a dashed bond.

The asymmetric unit of compound 1, [(iPr3PS)2Au][AuCl4], contains two half cations, with the gold(I) atoms on twofold rotation axes 0.25, y, 0.75 (Au1) or 0.25, y, 0.25 (Au2) and two half anions, with the gold(III) atoms on inversion centres 0.5, 0.5, 0.5 (Au3) and 0, 0, 0.5 (Au4); the complete cations and anions are shown in Fig. 1[link]. The three Au—S—P—C torsion angles of the first cation are all roughly 10° larger than those of the second cation. The asymmetric unit of compound 2, [(tBuiPr2PS)2Au][AuCl4], contains two cations and two anions with no imposed symmetry (Fig. 2[link]); the carbon atoms of the second cation are designated with primes. The cations are quite similar, with an r.m.s. deviation of all non-H atoms of 0.193 Å, or 0.117 Å if the carbon atoms are not fitted (Fig. 8[link]); the numbering of the second cation was chosen carefully to give the best fit for all corresponding atom pairs such as C21/C21′. The asymmetric unit of compound 3, [(tBu3PS)2Au][AuCl4], contains half a cation, with the gold(I) atom (Au1) on the inversion centre 0.5, 0, 0.5 and half an anion, with the gold(III) atom (Au2) on the inversion centre 0.5, 0.5, 1; the complete cation and anion are shown in Fig. 3[link]. The asymmetric unit of compound 4a, [(tBuiPr2PS)2Au][AuBr4], contains a complete cation on a general position and two half anions with the gold(III) atoms on inversion centres (Au2 on 0.5, 0, 0.5 and Au3 on 1, 0.5, 0.5); the cation and both complete anions are shown in Fig. 4[link]. Compound 4b, [(tBuiPr2PSe)2Au][AuBr4] (Fig. 5[link]), is isotypic with 4a. The asymmetric unit of compound 5a, [(tBu3PS)2Au][AuBr4], contains half a cation, with the gold(I) atom Au1 on the inversion centre 0.5, 0.5, 0.5, and half an anion, with the gold(III) atom Au2 on the inversion centre 0.5, 1, 1; Fig. 6[link] shows a complete cation and anion. Compound 5b, [(tBu3PSe)2Au][AuBr4] (Fig. 7[link]), is effectively isotypic with 5a, although there are some appreciable differences in unit cell parameters and in some aspects of the structures (e.g. P—E—Au and E⋯Br—Au angles, see below).

[Figure 8]
Figure 8
Least-squares fit of the two independent cations of compound 2. Cation 1 has the dotted bonds; cation 2 (inverted) is labelled.

The crowding effect of the bulky alkyl groups is seen in the short intra­molecular H⋯Au and H⋯E contacts, such as H32C⋯Au1 2.70 Å and H12B⋯S1 2.75 Å for compound 1. The angles C—H⋯Au and (especially) C—H⋯E are necessarily narrow. These contacts are included for convenience in Tables 10[link]–16[link][link][link][link][link][link]. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors, with P—S⋯S—P torsion angles of exactly 180° (by symmetry) for 3, 5a and 5b. Other values are 150.01 (8) (the largest deviation from 180°) and 173.16 (8)° for 1, 169.90 (8) and −163.51 (9)° for 2, 169.04 (14)° for 4a and 170.12 (4)° for 4b.

Table 10
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.70 3.480 (5) 137
C62—H62C⋯Au2 0.98 2.92 3.641 (4) 131
C12—H12B⋯S1 0.98 2.75 3.180 (5) 107
C42—H42B⋯S2 0.98 2.74 3.240 (4) 112
C21—H21A⋯Cl1iii 0.98 2.88 3.840 (5) 167
C5—H5⋯Cl1 1.00 2.75 3.670 (4) 153
C3—H3⋯Cl2v 1.00 2.79 3.682 (4) 149
C52—H52A⋯Cl2 0.98 2.81 3.770 (4) 167
C32—H32B⋯Cl3iv 0.98 2.94 3.649 (5) 130
C4—H4⋯Cl4vi 1.00 2.93 3.726 (4) 137
C6—H6⋯Au4 1.00 3.24 4.022 (4) 136
Symmetry codes: (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y, -z+1]; (v) [x, y-1, z]; (vi) [-x, -y+1, -z+1].

Table 11
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.73 3.538 (4) 140
C32′—H32D⋯Au2 0.98 2.73 3.503 (5) 136
C13—H13B⋯S1 0.98 2.62 3.220 (5) 120
C43—H43B⋯S2 0.98 2.75 3.219 (4) 110
C43′—H43D⋯S4 0.98 2.73 3.219 (4) 112
C13′—H13E⋯S3 0.98 2.75 3.227 (5) 111
C52′—H52F⋯Cl1 0.98 2.82 3.733 (4) 155
C5′—H5′⋯Cl2 1.00 2.87 3.839 (4) 163
C3′—H3′⋯Cl3i 1.00 2.88 3.585 (4) 128
C5—H5⋯Cl4ii 1.00 2.79 3.713 (4) 154
C62—H62B⋯Cl4ii 0.98 2.83 3.692 (4) 147
C42—H42C⋯Cl5i 0.98 2.91 3.754 (4) 145
C11—H11C⋯Cl7iii 0.98 2.80 3.736 (5) 161
C6′—H6′⋯Cl7 1.00 2.91 3.903 (4) 170
C6′—H6′⋯Au4 1.00 3.28 4.009 (4) 132
C62—H62A⋯Cl8iv 0.98 2.93 3.853 (4) 157
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+2, -y, -z+1]; (iv) [x-1, y, z-1].

Table 12
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯Au1 0.98 2.81 3.421 (2) 121
C33—H33C⋯Au1 0.98 2.69 3.5832 (19) 151
C13—H13A⋯S1 0.98 2.66 3.164 (2) 112
C32—H32A⋯S1 0.98 2.87 3.353 (2) 111
C12—H12A⋯Cl1iii 0.98 2.91 3.786 (2) 150
C22—H22A⋯Cl1iv 0.98 2.83 3.607 (2) 136
C23—H23B⋯Cl1i 0.98 2.94 3.782 (2) 145
Symmetry codes: (i) [-x+1, -y, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y, -z+1].

Table 13
Hydrogen-bond geometry (Å, °) for 4a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.75 3.514 (11) 135
C13—H13C⋯S1 0.98 2.76 3.212 (11) 109
C43—H43B⋯S2 0.98 2.77 3.201 (9) 107
C3—H3⋯Br1iii 1.00 3.14 3.809 (9) 126
C52—H52C⋯Br1i 0.98 3.11 4.055 (9) 161
C5—H5⋯Br2 1.00 3.05 3.997 (9) 158
C62—H62B⋯Br2 0.98 3.04 3.883 (12) 145
C2—H2⋯Br3iii 1.00 3.12 3.927 (9) 139
C6—H6⋯Br3iv 1.00 3.03 3.898 (8) 146
C32—H32B⋯Br3iii 0.98 3.11 4.023 (11) 156
C42—H42A⋯Br3v 0.98 2.97 3.848 (10) 149
C62—H62C⋯Br4iv 0.98 3.08 4.007 (10) 158
Symmetry codes: (i) [-x+1, -y, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [x-1, y-1, z].

Table 14
Hydrogen-bond geometry (Å, °) for 4b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.73 3.505 (4) 136
C13—H13C⋯Se1 0.98 2.80 3.305 (4) 113
C43—H43B⋯Se2 0.98 2.84 3.304 (4) 110
C3—H3⋯Br1iii 1.00 3.13 3.788 (4) 125
C52—H52C⋯Br1i 0.98 3.13 4.086 (4) 165
C5—H5⋯Br2 1.00 3.02 3.964 (4) 158
C62—H62B⋯Br2 0.98 3.04 3.802 (4) 136
C2—H2⋯Br3iii 1.00 3.20 3.990 (4) 137
C6—H6⋯Br3iv 1.00 3.02 3.870 (4) 144
C32—H32B⋯Br3iii 0.98 3.06 3.985 (4) 158
C42—H42A⋯Br3v 0.98 3.03 3.897 (4) 148
C62—H62C⋯Br4iv 0.98 3.10 4.018 (4) 158
Symmetry codes: (i) [-x+1, -y, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [x-1, y-1, z].

Table 15
Hydrogen-bond geometry (Å, °) for 5a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33C⋯Au1 0.98 2.69 3.567 (2) 150
C23—H23A⋯Au1 0.98 2.86 3.421 (2) 118
C22—H22C⋯Br1iii 0.98 2.88 3.756 (2) 150
C12—H12A⋯Br1iv 0.98 3.05 3.890 (2) 145
C32—H32A⋯S1 0.98 2.86 3.338 (2) 111
C23—H23A⋯S1 0.98 2.98 3.456 (2) 111
C13—H13A⋯S1 0.98 2.67 3.160 (2) 112
Symmetry codes: (iii) [-x, -y+1, -z+1]; (iv) [-x+1, -y+2, -z+1].

Table 16
Hydrogen-bond geometry (Å, °) for 5b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33C⋯Au1 0.98 2.64 3.540 (3) 152
C23—H23A⋯Au1 0.98 2.86 3.449 (3) 120
C22—H22C⋯Br1ii 0.98 2.88 3.851 (3) 173
C12—H12A⋯Br1iii 0.98 3.02 3.793 (3) 137
C32—H32A⋯Se1 0.98 2.95 3.442 (3) 112
C23—H23A⋯Se1 0.98 3.03 3.556 (3) 115
C13—H13A⋯Se1 0.98 2.70 3.263 (3) 117
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+2, -z+1].

The ten P—S bond lengths lie in the narrow range 2.0263 (13)–2.0384 (7), av. 2.0322 Å; the three P—Se bond lengths are 2.1864 (10)–2.2009 (6) Å, av. 2.1933 Å. These are closely similar to the averages of 2.0368 and 2.1938 Å observed for the gold(I) halide derivatives (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]). The ten S—Au bond lengths are 2.2869 (9)–2.299 (2) Å, av. 2.2915 Å, and the three Se—Au bond lengths are 2.4017 (4)–2.4057 (4) Å, av. 2.4037 Å. These compare best to the corresponding bond lengths trans to iodine, 2.2959 Å (one value only) for E = S and 2.4017 Å (av. of three values) for E = Se in the complexes with gold(I) halides.

The P—S—Au angles are 101.88 (5)–107.87 (2)°, av. 104.05°, but the three largest values (for 3, 5a and one of four values for 2) might be considered outliers. One possible explanation for this might be the steric effects of tBu3P groups, and another might be the additional short S⋯X contacts (see next section), but neither of these possible causes applies to 2, nor is 5b affected in the same way despite being isotypic with 5a. The P—Se—Au angles are 98.27 (3)–101.806 (19)°, av. 100.26°; corresponding average values for the gold(I) halide derivatives were somewhat larger, at 106.17 and 103.86°, respectively. The E—P—C angles tend to be narrower for the atoms C1/C4.

3. Supra­molecular features

The exterior surface of the [(R1R2R3PE)2Au]+ cations consists, to a considerable extent, of hydrogen atoms. In the absence of classical hydrogen-bond donors, the packing energy is thus likely to be determined by a large number of weakly attractive C—H⋯X hydrogen bonds or H⋯H van der Waals inter­actions rather than a small number of short contacts between heavier atoms, a principle that has been expounded convincingly by Dance (2003[Dance, I. (2003). New J. Chem. 27, 22-27.]). Nonetheless, packing diagrams need to be as simple as possible to be readily inter­preted. Accordingly, the following discussion attempts to show only the main features of the crystal packing, at the risk of oversimplification. Not all H⋯X hydrogen bonds are discussed, but are given in Tables 10[link][link]–16[link][link][link][link][link][link] for completeness. Numerical details for contacts of the form EX for all compounds are summarized in Table 9[link]. In all packing diagrams, the atom labels indicate the asymmetric unit; hydrogen atoms not involved in H⋯X contacts (and some methyl groups, see individual captions for details) have been omitted for clarity.

Table 9
Geometric details (Å, °) of EX contacts

Compound Contact P—EX—Au EX P—EX EX—Au
1 none      
2 P3—S3⋯Cl2—Au3 3.6623 (15) 166.47 (15) 138.96 (4)
2a P1—S1⋯Cl4—Au3 3.8505 (15) 174.74 (5) 137.71 (4)
3 P1—S1⋯Cl1—Au1 3.5617 (7) 157.52 (2) 165.36 (2)
4a P1—S1⋯Br2—Au1 3.746 (3) 166.39 (13) 146.20 (5)
4b P1—Se1⋯Br2—Au1 3.6251 (6) 173.35 (3) 140.09 (2)
5a P1—S1⋯Br1—Au2 3.5260 (6) 154.01 (3) 173.46 (1)
5b P1—Se1⋯Br1—Au2 3.6563 (4) 154.96 (2) 160.33 (1)
Note: (a) Operator for X—Au: −1 + x, y, z.

The strongest hydrogen-bond donors are likely to be the methine hydrogen atoms of the isopropyl groups. In compound 1, the shortest such contacts are H3⋯Cl2(x, −1 + y, z) = 2.79 Å and H5⋯Cl1 = 2.75 Å. Even for these two contacts, the crystallographic symmetry of cations and anions leads to a complex three-dimensional packing. A section of this is shown in Fig. 9[link], but has the obvious fault that the second anion (centred on Au4) seems to exist in a packing vacuum. The inclusion of the longer contacts H4⋯Cl4(−x, 1 − y, 1 − z) = 2.93 Å and H6⋯Au4 = 3.24 Å provides further information (Fig. 10[link]); the latter might be regarded as a borderline case of a C—H⋯Au hydrogen bond (Schmidbaur, 2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]; Schmidbaur et al., 2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]).

[Figure 9]
Figure 9
Packing diagram of compound 1 viewed perpendicular to the bc plane. Methyl groups are omitted for clarity. Dashed lines indicate the two short H⋯Cl contacts.
[Figure 10]
Figure 10
Packing diagram of compound 1; the view from Fig. 9[link] has been extended to include two significantly longer contacts (see text).

For compound 2, the methine hydrogen atoms again play an important role. Four C—H⋯Cl inter­actions (Table 11[link]) combine to produce zigzag chains of residues parallel to the c axis (Fig. 11[link]). The atom H6′ also has a short contact to Au4 and may thus be part of a three-centre inter­action. Additionally, the contact S3⋯Cl2, 3.6623 (15) Å, may be regarded as a significant inter­action; it would qualify as a ‘chalcogen bond’ (Aakeroy et al., 2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]; Vogel et al., 2019[Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880-1891.]), equivalent to the better known halogen bonds (see e.g. Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]). For all the EX contacts in this paper, the P—EX angles are reasonably close to linear [range 154.01 (3)–174.74 (5)°], as would be expected for a chalcogen bond, where the positive hole at the donor atom E should lie in the extension of the PE vector beyond the atom E. The EX—Au angles are also roughly linear [range 140.09 (2)–173.46 (1)°]. Initially, we subjectively judged the corres­ponding distance S1⋯Cl4(−1 + x, y, z] = 3.8505 (15) Å to be too long to be significant, and thus excluded it from the packing diagram. Closer inspection shows, however, that it plays an equivalent role to S3⋯Cl2, thereby linking the chains to form a layer structure parallel to the ac plane; this can be seen (implicitly) in Fig. 11[link]. This shows the pitfalls in judging the importance of weak inter­actions based solely on inter­atomic distances. The contact H3′⋯Cl3 links the parent layer at y ≃ 0.25 with its inverted counterpart at y ≃ 0.75.

[Figure 11]
Figure 11
Packing diagram of compound 2 viewed perpendicular to the ac plane in the region y ≃ 0.25. Dashed lines indicate H⋯Cl or H⋯Au contacts (thin) or S⋯Cl contacts (thick).

The tert-butyl derivative 3 contains only methyl hydrogens. The atom Cl1 is involved in the two shortest H⋯Cl contacts and in the contact S1⋯Cl1. The combination of S1⋯Cl1 and the H22A⋯Cl1 inter­action leads to a layer structure parallel to the ac plane (Fig. 12[link]). Alternatively, the combination of S1⋯Cl1 and H12A⋯Cl1 leads to a layer structure parallel to the bc plane (not shown).

[Figure 12]
Figure 12
Packing diagram of compound 3 viewed perpendicular to the ac plane in the region y ≃ 0. Dashed lines indicate H⋯Cl contacts (thin) or S⋯Cl contacts (thick).

For the bromido derivatives, associations of the anions form a readily recognizable part of the packing patterns; we have presented several structures involving loosely connected [AuX4] networks in a previous paper (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]).

For compound 4a, there are no strikingly short contacts. An acceptable view of the packing as a layer parallel to the ab plane in the region z ≃ 0.5 can, however, be assembled as shown in Fig. 13[link], based on the heavy-atom distances Br1⋯Br4 = 3.9737 (14) and S1⋯Br2 = 3.746 (3) Å. Contact angles are Au2—Br1⋯Br4 = 158.85 (4) and Au3—Br4⋯Br1 = 153.36 (4). The Br⋯Br contacts link the anions to form a chain parallel to [110], and the S⋯Br contacts link one set of anions to the cations. Two of the four borderline H⋯Br hydrogen bonds (from H5 and H6) are also involved in this layer. In the corresponding layer at z ≃ 0, the anion chains run parallel to [1[\overline{1}]0]. The isotypic compound 4b necessarily has the same general packing features. The Br1⋯Br4 distance is still very long at 4.0054 (6) Å, but the Se1⋯Br2 contact is shorter than S1⋯Br2 in 4a. Inter­anionic contact angles are Au2—Br1⋯Br4 = 159.76 (2) and Au3—Br4⋯Br1 = 153.43 (2).

[Figure 13]
Figure 13
Packing diagram of compound 4a. The layer structure is parallel to the ab plane, but for clarity has been rotated significantly from the ideal view direction perpendicular to this plane. The region z ≃ 0 is shown. Methyl groups are omitted. Dashed lines indicate H⋯Br contacts (thin) or Br⋯Br and S⋯Br contacts (thick).

The packing of 5a (Fig. 14[link]) is similar to that of 4a, but with chains of anions parallel to the a axis linked by the contact Br2⋯Br2(2 − x, 2 − y, 2 − z) = 3.7582 (5) Å. The chains are crosslinked via the contacts S1⋯Br2 and H22C⋯Br1(−x, 1 − y, 1 − z) = 2.88 Å, the shortest H⋯Br contact, to form a layer structure parallel to the ab plane. The inter­anionic contact angle is Au2—Br2⋯Br2′ = 160.34 (1). The corres­ponding values for the isotypic compound 5b are: Br2⋯Br2′ = 3.7404 (5), H22C⋯Br1′ = 2.88 Å and Au2—Br2⋯Br2′ = 157.73 (1). Despite the isotypy, the EX—Au angles for 5a and 5b differ by more than 13° (Table 9[link]).

[Figure 14]
Figure 14
Packing diagram of compound 5a. The layer structure is parallel to the ab plane, but for clarity is viewed approximately perpendicular to [01[\overline{1}]]. Dashed lines indicate H⋯Br contacts (thin) or Br⋯Br and S⋯Br contacts (thick).

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of version 2024.1.0 of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Only four structures with a bis­(phosphane chalcogenido)gold(I) cation were found in the Database, and all of these involved tri­phenyl­phosphane: bis­(tri­phenyl­phosphane sulf­ido)gold(I) di­fluoro­phosphate (refcode RIVZUR; LeBlanc et al., 1997[LeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204-1206.]) and three structures from our own work, namely bis­(tri­phenyl­phosphane selenido)gold(I) hexa­fluor­ido­anti­monate (SOHCIB; Jones & Thöne, 1991[Jones, P. G. & Thöne, C. (1991). Inorg. Chim. Acta, 181, 291-294.]), and the as yet unpublished (but deposited) structures bis­(tri­phenyl­phosphane sulfido)­gold(I) nitrate and bis­(tri­phenyl­phosphane sulfido)­gold(I) bis­(methane­sulfon­yl)amide bis­(methane­sulf­on­yl)amine di­chloro­methane solvate (UREBOK and UREBUQ; Jones & Geissler, 2016a[Jones, P. G. & Geissler, N. (2016a). Experimental Crystal Structure Determination (refcode UREBOK, CCDC 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n.],b[Jones, P. G. & Geissler, N. (2016b). Experimental Crystal Structure Determination (refcode UREBUQ, CCDC 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p.]). The five Au—S bond lengths lie in the range 2.277 (2)–2.2963 (3), av. 2.2893 Å and the two Au—Se bond lengths are 2.390 (1) and 2.395 (1) Å, cf. the average values in this paper of Au—S = 2.2915 and Au—Se = 2.4037 Å.

5. Synthesis and crystallization

Compound 1: The gold(I) precursor iPr3PSAuCl (212 mg, 0.5 mmol) was dissolved in 10 ml of di­chloro­methane, and a solution of di­chloro­(phen­yl)-λ3-iodane (‘iodo­phenyl dichloride’, PhICl2; 344 mg, 1.25 mmol) was added dropwise. The solution initially turned red [presumably because of the formation of a gold(III) inter­mediate] but became yellow after 20 min stirring. The solvent was removed in vacuo and the residue redissolved in di­chloro­methane. The solution was overlayered with n-pentane and left to stand for 3 d in a refrigerator (276 K), after which yellow crystals had formed. 31P NMR: δ 78.86 ppm (s). Compounds 2 and 3 were synthesized from the appropriate gold(I) precursors in the same way as 1. Unfortunately, details were lost when my (PGJ) research group disbanded in 2018.

Compound 4a: iPr2tBuPSAuBr (327 mg, 0.677 mmol) was dissolved in 3 ml of di­chloro­methane and 6.7 ml of a stock bromine solution (0.1 M in di­chloro­methane) was added. After stirring, the solution was overlayered with n-pentane and stored in the refrigerator for 5 d. The red crystals thus obtained were suitable for X-ray diffraction analysis. Yield: 324 mg, 0.287 mmol, 85%. 31P{1H}-NMR (81.01 MHz, CDCl3, 300 K): δ = 81.6 ppm (s). Elemental analysis [%]: calc.: C 21.33, H 4.12, S 5.69; found: C19.94, H 3.82, S 6.08.

Compound 4b: iPr2tBuPSeAuBr (369 mg, 0.696 mmol) was dissolved in 3 ml of di­chloro­methane and 6.9 ml of the stock bromine solution was added. After stirring, the solution was overlayered with n-pentane and stored in the refrigerator for 4 d. Since no formation of crystals or precipitation of the desired product was observed, the solvents were removed under reduced pressure and the red product was recrystallized from di­chloro­methane by overlayering with n-pentane. Yield: 316 mg, 0.259 mmol, 75%. 31P{1H}-NMR: δ = 80.2 ppm (s with P—Se satellites, 1JP–Se = 528 Hz). Elemental analysis [%]: calc.: C 19.69, H 3.80; found: C18.14, H 3.45. Single crystals suitable for X-ray diffraction analysis were obtained from a solution in CDCl3 overlayered with n-pentane.

Compound 5a: tBu3PSAuBr (134 mg, 0.263 mmol) was dissolved in 3 ml of di­chloro­methane and 2.6 ml of the stock bromine solution was added. After stirring, the solution was overlayered with n-pentane and stored in the refrigerator for 7 d. Instead of the formation of crystals or precipitation of the desired product, an oily residue was obtained. The solvents were removed under reduced pressure, the product was redissolved in a very small amount of di­chloro­methane, and the product was precipitated by overlayering with n-pentane. No crystallization was observed after 4 d; the solvents were again removed under reduced pressure. A third crystallization attempt, from a solution in di­chloro­methane overlayered with n-pentane, was then successful; red crystals suitable for X-ray diffraction analysis were obtained. Yield: 91 mg, 0.077 mmol, 59%. 31P{1H}-NMR: δ = 89.2 ppm (s). Elemental analysis [%]: calc.: C 24.38, H 4.60, S 5.42; found: C23.02, H 4.30, S 5.47.

Compound 5b: tBu3PSeAuBr (154 mg, 0.276 mmol) was dissolved in 3 ml of di­chloro­methane and 3.3 ml of the stock bromine solution was added. After stirring, the solution was overlayered with n-pentane and stored in the refrigerator for 7 d. An oily residue was obtained. The solvents were removed under reduced pressure, the product was redissolved in a very small amount of di­chloro­methane, and the product precipitated by overlayering with n-pentane. Red crystals suitable for X-ray diffraction analysis were obtained after several recrystallizations from di­chloro­methane solutions overlayered with n-pentane. Additional crystals were found in this sample and were identified as [(tBu2POSe)2H]+[AuBr4] by X-ray diffraction (structure to be reported in Part 10 of this series). Yield: 68 mg, 0.053 mmol, 38% (but this includes the impur­ities). 31P{1H}-NMR: δ = 87.0 ppm (s with P—Se satellites, 1JP–Se = 549 Hz). Elemental analysis [%]: calc.: C 22.59, H 4.27; found: C19.71, H 3.74.

6. Refinement

Details of the measurements and refinements are given in Table 17[link]. Methine hydrogen atoms were included at calculated positions and refined using a riding model with C—H 1.00 Å and Uiso(H) = 1.2×Ueq(C). Methyl groups were refined, using the command ‘AFIX 137’, as idealized rigid groups allowed to rotate (from a starting position determined from difference peaks) but not to tip, with C—H = 0.98 Å, H—C—H = 109.5° and Uiso(H) = 1.5×Ueq(C). This procedure is less reliable for heavy-atom structures, so that any postulated hydrogen bonds involving methyl hydrogen atoms should be inter­preted with caution.

Table 17
Experimental details

  1 2 3 4a
Crystal data
Chemical formula [Au(C9H21PS)2][AuCl4] [C20H46AuP2S2][;AuCl4] [Au(C12H27PS)2][AuCl4] [C20H46AuP2S2][AuBr4]
Mr 920.31 948.36 1004.46 1126.20
Crystal system, space group Monoclinic, P2/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 14.2552 (4), 9.0574 (2), 23.0043 (7) 11.7607 (3), 16.4174 (4), 17.2173 (4) 8.5541 (2), 9.1550 (3), 12.0421 (4) 13.7871 (4), 10.4042 (3), 22.7240 (6)
α, β, γ (°) 90, 96.703 (3), 90 79.931 (2), 76.467 (2), 78.015 (2) 107.427 (3), 97.511 (3), 102.841 (3) 90, 93.035 (3), 90
V3) 2949.89 (14) 3133.57 (14) 857.30 (5) 3255.05 (16)
Z 4 4 1 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.55 9.94 9.09 14.15
Crystal size (mm) 0.2 × 0.1 × 0.01 0.2 × 0.1 × 0.03 0.2 × 0.15 × 0.15 0.25 × 0.15 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.352, 1.000 0.439, 1.000 0.623, 1.000 0.179, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 79388, 8561, 6768 179513, 18142, 14554 166022, 5209, 4622 169756, 6651, 5373
Rint 0.067 0.062 0.043 0.086
θ values (°) θmax = 30.0, θmin = 2.3 θmax = 30.0, θmin = 2.4 θmax = 31.1, θmin = 2.4 θmax = 26.4, θmin = 2.2
(sin θ/λ)max−1) 0.704 0.704 0.726 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.049, 1.05 0.030, 0.055, 1.05 0.016, 0.038, 1.09 0.046, 0.112, 1.02
No. of reflections 8561 18142 5209 6651
No. of parameters 269 569 167 288
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.88, −1.42 1.76, −1.51 1.02, −1.38 4.29, −2.02
Extinction method None None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001 × Fc2λ3/sin(2θ)]-1/4 None
Extinction coefficient 0.00495 (18)
  4b 5a 5b
Crystal data
Chemical formula [Au(C10H23PSe)2][AuBr4] [Au(C12H27PS)2][AuBr4] [Au(C12H27PSe)2][AuBr4]
Mr 1220.00 1182.30 1276.10
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 13.7265 (3), 10.5615 (3), 22.7782 (5) 8.4858 (4), 9.3738 (4), 11.9910 (5) 8.4403 (4), 9.2135 (4), 12.6496 (5)
α, β, γ (°) 90, 94.096 (2), 90 105.533 (4), 97.476 (4), 99.318 (4) 106.172 (4), 101.100 (4), 97.485 (4)
V3) 3293.78 (14) 891.63 (7) 909.28 (7)
Z 4 1 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 16.07 12.92 14.56
Crystal size (mm) 0.15 × 0.10 × 0.05 0.12 × 0.12 × 0.08 0.12 × 0.12 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.589, 1.000 0.765, 1.000 0.468, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 106256, 9556, 7328 47038, 5273, 4754 48315, 5398, 4704
Rint 0.068 0.035 0.039
θ values (°) θmax = 30.0, θmin = 2.1 θmax = 30.7, θmin = 2.3 θmax = 30.9, θmin = 2.4
(sin θ/λ)max−1) 0.704 0.719 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.049, 1.03 0.017, 0.033, 1.06 0.020, 0.036, 1.06
No. of reflections 9556 5273 5398
No. of parameters 288 167 166
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.57, −1.09 0.73, −0.71 0.83, −0.88
Extinction method None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001 × Fc2λ3/sin(2θ)]-1/4 None
Extinction coefficient 0.00106 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Special features: For compounds 3 and 5a, an extinction correction (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was applied. The data for 4a, measured using a thin and weakly diffracting crystal plate, are appreciably worse than for the other structures, with a maximum electron density peak of 4.2 e Å−3 at 0.95 Å from Br1. Residual absorption errors are thus a likely cause of the large difference peak(s). However, the presence of the largest peak near a bromine rather than a gold atom means that some slight disorder of the anions cannot be ruled out; the components would have to be very close to each other. The data for the isotypic selenium derivative 4b are of much better quality.

Supporting information


Computing details top

Bis[tris(propan-2-yl)-λ5-phosphanethione-κS]gold(I) tetrachloridoaurate(III) (1) top
Crystal data top
[Au(C9H21PS)2][AuCl4]F(000) = 1752
Mr = 920.31Dx = 2.072 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 14.2552 (4) ÅCell parameters from 13693 reflections
b = 9.0574 (2) Åθ = 2.2–30.9°
c = 23.0043 (7) ŵ = 10.55 mm1
β = 96.703 (3)°T = 100 K
V = 2949.89 (14) Å3Plate, yellow
Z = 40.2 × 0.1 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
8561 independent reflections
Radiation source: fine-focus sealed tube6768 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.067
ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 2019
Tmin = 0.352, Tmax = 1.000k = 1212
79388 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0115P)2 + 3.8854P]
where P = (Fo2 + 2Fc2)/3
8561 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 1.88 e Å3
0 restraintsΔρmin = 1.42 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.2500000.16205 (2)0.7500000.01848 (5)
P10.40748 (7)0.10509 (10)0.65390 (4)0.0155 (2)
S10.40795 (7)0.16199 (11)0.73960 (4)0.0205 (2)
C10.5290 (3)0.1275 (5)0.6355 (2)0.0308 (10)
H10.5321190.2284220.6182030.037*
C20.3309 (3)0.2305 (5)0.60681 (19)0.0316 (10)
H20.2647650.2050700.6135600.038*
C30.3638 (3)0.0800 (4)0.63756 (17)0.0231 (9)
H30.3758770.1020800.5964820.028*
C110.5527 (3)0.0174 (5)0.58739 (19)0.0306 (10)
H11A0.6139110.0432130.5747370.046*
H11B0.5035970.0228320.5538790.046*
H11C0.5554600.0831090.6032460.046*
C120.6032 (3)0.1233 (6)0.6871 (2)0.0399 (12)
H12A0.6021980.0267480.7062030.060*
H12B0.5906230.2008460.7148570.060*
H12C0.6653360.1396080.6739580.060*
C210.3437 (3)0.3888 (5)0.6232 (2)0.0361 (12)
H21A0.4087570.4187120.6194530.054*
H21B0.3306920.4026950.6637220.054*
H21C0.2999320.4492420.5971130.054*
C220.3374 (3)0.1980 (5)0.54151 (17)0.0290 (10)
H22A0.2923930.2605210.5172770.044*
H22B0.3224610.0938940.5333450.044*
H22C0.4016100.2189230.5324750.044*
C310.4205 (4)0.1933 (5)0.67700 (19)0.0393 (12)
H31A0.4102460.1761050.7178430.059*
H31B0.4878410.1829850.6729410.059*
H31C0.3995130.2932020.6653920.059*
C320.2585 (3)0.0991 (5)0.6398 (2)0.0382 (12)
H32A0.2405260.2014370.6300850.057*
H32B0.2236740.0324120.6114560.057*
H32C0.2432620.0759100.6792110.057*
Au20.2500000.42020 (2)0.2500000.01671 (5)
P20.08159 (7)0.41223 (10)0.34215 (4)0.01334 (18)
S20.08998 (7)0.42528 (11)0.25477 (4)0.01859 (19)
C40.0376 (3)0.4736 (4)0.35505 (16)0.0171 (8)
H40.0334560.5832580.3598690.020*
C50.1682 (3)0.5331 (4)0.38310 (16)0.0172 (8)
H50.2319860.4950790.3764830.021*
C60.1028 (3)0.2246 (4)0.37055 (16)0.0182 (8)
H60.0902650.2253720.4124140.022*
C410.0681 (3)0.4139 (4)0.41232 (17)0.0214 (8)
H41A0.1267480.4624890.4201710.032*
H41B0.0185200.4337370.4445780.032*
H41C0.0786080.3071320.4088120.032*
C420.1140 (3)0.4461 (4)0.30340 (17)0.0215 (8)
H42A0.1226330.3395540.2975320.032*
H42B0.0944170.4905380.2678860.032*
H42C0.1735780.4905300.3118180.032*
C510.1621 (3)0.6919 (4)0.35998 (18)0.0257 (9)
H51A0.1002510.7335400.3653310.038*
H51B0.1702460.6921070.3182620.038*
H51C0.2119150.7515770.3815550.038*
C520.1636 (3)0.5282 (4)0.44935 (16)0.0201 (8)
H52A0.2184370.5797000.4695770.030*
H52B0.1638460.4252000.4624150.030*
H52C0.1055260.5765540.4583900.030*
C610.0345 (3)0.1131 (4)0.33827 (18)0.0224 (9)
H61A0.0450510.1091880.2969550.034*
H61B0.0306490.1436600.3413270.034*
H61C0.0455690.0152280.3559070.034*
C620.2058 (3)0.1760 (4)0.36953 (19)0.0273 (9)
H62A0.2141900.0762850.3858460.041*
H62B0.2477460.2445780.3930130.041*
H62C0.2210560.1760910.3290940.041*
Au30.5000000.5000000.5000000.01729 (5)
Cl10.42083 (7)0.44491 (11)0.41040 (4)0.0263 (2)
Cl20.39843 (7)0.69109 (11)0.50949 (5)0.0276 (2)
Au40.0000000.0000000.5000000.01674 (5)
Cl30.14756 (7)0.08430 (11)0.51132 (5)0.0264 (2)
Cl40.06567 (7)0.19959 (11)0.55010 (5)0.0282 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01698 (11)0.02131 (11)0.01830 (11)0.0000.00687 (8)0.000
P10.0137 (5)0.0176 (5)0.0158 (5)0.0032 (4)0.0039 (4)0.0001 (4)
S10.0168 (5)0.0270 (5)0.0183 (5)0.0012 (4)0.0044 (4)0.0043 (4)
C10.024 (2)0.037 (3)0.033 (3)0.0023 (18)0.008 (2)0.0043 (19)
C20.028 (2)0.031 (2)0.035 (3)0.0010 (19)0.003 (2)0.010 (2)
C30.031 (2)0.020 (2)0.018 (2)0.0065 (18)0.0019 (17)0.0022 (17)
C110.020 (2)0.044 (3)0.029 (2)0.0002 (19)0.0101 (18)0.011 (2)
C120.018 (2)0.065 (3)0.036 (3)0.001 (2)0.003 (2)0.011 (2)
C210.037 (3)0.032 (2)0.040 (3)0.017 (2)0.010 (2)0.012 (2)
C220.025 (2)0.035 (2)0.025 (2)0.0068 (19)0.0020 (18)0.0120 (19)
C310.071 (4)0.019 (2)0.028 (3)0.005 (2)0.007 (2)0.0081 (19)
C320.039 (3)0.047 (3)0.029 (3)0.027 (2)0.005 (2)0.005 (2)
Au20.01542 (11)0.02050 (10)0.01564 (11)0.0000.00788 (8)0.000
P20.0125 (5)0.0151 (4)0.0130 (5)0.0004 (4)0.0039 (4)0.0005 (4)
S20.0157 (5)0.0266 (5)0.0143 (5)0.0014 (4)0.0051 (4)0.0008 (4)
C40.0147 (19)0.0197 (19)0.018 (2)0.0010 (14)0.0084 (15)0.0035 (15)
C50.0127 (19)0.0198 (19)0.019 (2)0.0028 (14)0.0022 (15)0.0022 (14)
C60.019 (2)0.0180 (19)0.018 (2)0.0008 (15)0.0025 (15)0.0017 (15)
C410.015 (2)0.030 (2)0.020 (2)0.0040 (17)0.0068 (16)0.0021 (17)
C420.0113 (19)0.029 (2)0.025 (2)0.0030 (15)0.0047 (16)0.0020 (17)
C510.031 (2)0.019 (2)0.028 (2)0.0097 (17)0.0075 (18)0.0045 (17)
C520.021 (2)0.022 (2)0.017 (2)0.0046 (15)0.0008 (16)0.0006 (15)
C610.026 (2)0.0153 (19)0.025 (2)0.0034 (15)0.0019 (18)0.0020 (15)
C620.023 (2)0.022 (2)0.037 (3)0.0063 (17)0.0039 (18)0.0067 (18)
Au30.01436 (10)0.01801 (10)0.01919 (11)0.00544 (8)0.00067 (8)0.00143 (9)
Cl10.0208 (5)0.0341 (5)0.0228 (5)0.0042 (4)0.0026 (4)0.0027 (4)
Cl20.0228 (5)0.0242 (5)0.0349 (6)0.0010 (4)0.0006 (4)0.0031 (4)
Au40.02179 (11)0.01332 (9)0.01512 (10)0.00296 (8)0.00222 (8)0.00090 (8)
Cl30.0234 (5)0.0247 (5)0.0311 (6)0.0012 (4)0.0033 (4)0.0080 (4)
Cl40.0264 (6)0.0216 (5)0.0362 (6)0.0042 (4)0.0016 (4)0.0121 (4)
Geometric parameters (Å, º) top
Au1—S12.2918 (10)P2—C41.844 (4)
Au1—S1i2.2919 (10)P2—S22.0310 (13)
P1—C31.812 (4)C4—C411.534 (5)
P1—C21.838 (4)C4—C421.536 (5)
P1—C11.842 (4)C4—H41.0000
P1—S12.0369 (14)C5—C511.532 (5)
C1—C121.494 (6)C5—C521.534 (5)
C1—C111.556 (6)C5—H51.0000
C1—H11.0000C6—C611.533 (5)
C2—C211.488 (6)C6—C621.534 (5)
C2—C221.544 (6)C6—H61.0000
C2—H21.0000C41—H41A0.9800
C3—C321.519 (6)C41—H41B0.9800
C3—C311.535 (6)C41—H41C0.9800
C3—H31.0000C42—H42A0.9800
C11—H11A0.9800C42—H42B0.9800
C11—H11B0.9800C42—H42C0.9800
C11—H11C0.9800C51—H51A0.9800
C12—H12A0.9800C51—H51B0.9800
C12—H12B0.9800C51—H51C0.9800
C12—H12C0.9800C52—H52A0.9800
C21—H21A0.9800C52—H52B0.9800
C21—H21B0.9800C52—H52C0.9800
C21—H21C0.9800C61—H61A0.9800
C22—H22A0.9800C61—H61B0.9800
C22—H22B0.9800C61—H61C0.9800
C22—H22C0.9800C62—H62A0.9800
C31—H31A0.9800C62—H62B0.9800
C31—H31B0.9800C62—H62C0.9800
C31—H31C0.9800Au3—Cl22.2833 (10)
C32—H32A0.9800Au3—Cl2iii2.2833 (10)
C32—H32B0.9800Au3—Cl12.2865 (10)
C32—H32C0.9800Au3—Cl1iii2.2865 (10)
Au2—S2ii2.2970 (9)Au4—Cl3iv2.2811 (10)
Au2—S22.2970 (9)Au4—Cl32.2811 (10)
P2—C51.828 (4)Au4—Cl4iv2.2849 (9)
P2—C61.833 (4)Au4—Cl42.2849 (9)
S1—Au1—S1i179.97 (5)C4—P2—S2107.67 (13)
C3—P1—C2106.5 (2)P2—S2—Au2102.69 (5)
C3—P1—C1111.3 (2)C41—C4—C42111.1 (3)
C2—P1—C1107.8 (2)C41—C4—P2113.0 (3)
C3—P1—S1113.40 (14)C42—C4—P2114.2 (2)
C2—P1—S1110.41 (15)C41—C4—H4105.9
C1—P1—S1107.31 (15)C42—C4—H4105.9
P1—S1—Au1102.05 (5)P2—C4—H4105.9
C12—C1—C11110.9 (4)C51—C5—C52111.4 (3)
C12—C1—P1114.3 (3)C51—C5—P2112.1 (3)
C11—C1—P1112.4 (3)C52—C5—P2112.9 (3)
C12—C1—H1106.2C51—C5—H5106.7
C11—C1—H1106.2C52—C5—H5106.7
P1—C1—H1106.2P2—C5—H5106.7
C21—C2—C22114.2 (4)C61—C6—C62111.0 (3)
C21—C2—P1113.6 (3)C61—C6—P2111.6 (3)
C22—C2—P1110.9 (3)C62—C6—P2112.3 (3)
C21—C2—H2105.8C61—C6—H6107.2
C22—C2—H2105.8C62—C6—H6107.2
P1—C2—H2105.8P2—C6—H6107.2
C32—C3—C31111.0 (4)C4—C41—H41A109.5
C32—C3—P1114.5 (3)C4—C41—H41B109.5
C31—C3—P1110.6 (3)H41A—C41—H41B109.5
C32—C3—H3106.8C4—C41—H41C109.5
C31—C3—H3106.8H41A—C41—H41C109.5
P1—C3—H3106.8H41B—C41—H41C109.5
C1—C11—H11A109.5C4—C42—H42A109.5
C1—C11—H11B109.5C4—C42—H42B109.5
H11A—C11—H11B109.5H42A—C42—H42B109.5
C1—C11—H11C109.5C4—C42—H42C109.5
H11A—C11—H11C109.5H42A—C42—H42C109.5
H11B—C11—H11C109.5H42B—C42—H42C109.5
C1—C12—H12A109.5C5—C51—H51A109.5
C1—C12—H12B109.5C5—C51—H51B109.5
H12A—C12—H12B109.5H51A—C51—H51B109.5
C1—C12—H12C109.5C5—C51—H51C109.5
H12A—C12—H12C109.5H51A—C51—H51C109.5
H12B—C12—H12C109.5H51B—C51—H51C109.5
C2—C21—H21A109.5C5—C52—H52A109.5
C2—C21—H21B109.5C5—C52—H52B109.5
H21A—C21—H21B109.5H52A—C52—H52B109.5
C2—C21—H21C109.5C5—C52—H52C109.5
H21A—C21—H21C109.5H52A—C52—H52C109.5
H21B—C21—H21C109.5H52B—C52—H52C109.5
C2—C22—H22A109.5C6—C61—H61A109.5
C2—C22—H22B109.5C6—C61—H61B109.5
H22A—C22—H22B109.5H61A—C61—H61B109.5
C2—C22—H22C109.5C6—C61—H61C109.5
H22A—C22—H22C109.5H61A—C61—H61C109.5
H22B—C22—H22C109.5H61B—C61—H61C109.5
C3—C31—H31A109.5C6—C62—H62A109.5
C3—C31—H31B109.5C6—C62—H62B109.5
H31A—C31—H31B109.5H62A—C62—H62B109.5
C3—C31—H31C109.5C6—C62—H62C109.5
H31A—C31—H31C109.5H62A—C62—H62C109.5
H31B—C31—H31C109.5H62B—C62—H62C109.5
C3—C32—H32A109.5Cl2—Au3—Cl2iii180.0
C3—C32—H32B109.5Cl2—Au3—Cl189.99 (4)
H32A—C32—H32B109.5Cl2iii—Au3—Cl190.01 (4)
C3—C32—H32C109.5Cl2—Au3—Cl1iii90.01 (4)
H32A—C32—H32C109.5Cl2iii—Au3—Cl1iii89.99 (4)
H32B—C32—H32C109.5Cl1—Au3—Cl1iii180.0
S2ii—Au2—S2177.70 (5)Cl3iv—Au4—Cl3180.0
C5—P2—C6107.35 (17)Cl3iv—Au4—Cl4iv90.37 (4)
C5—P2—C4108.43 (17)Cl3—Au4—Cl4iv89.63 (4)
C6—P2—C4109.83 (17)Cl3iv—Au4—Cl489.63 (4)
C5—P2—S2111.16 (13)Cl3—Au4—Cl490.37 (4)
C6—P2—S2112.35 (13)Cl4iv—Au4—Cl4180.0
C3—P1—S1—Au165.05 (16)C5—P2—S2—Au243.70 (14)
C2—P1—S1—Au154.33 (16)C6—P2—S2—Au276.62 (14)
C1—P1—S1—Au1171.60 (15)C4—P2—S2—Au2162.32 (12)
C3—P1—C1—C12102.6 (4)C5—P2—C4—C4182.6 (3)
C2—P1—C1—C12141.0 (3)C6—P2—C4—C4134.4 (3)
S1—P1—C1—C1222.0 (4)S2—P2—C4—C41157.0 (2)
C3—P1—C1—C1124.9 (4)C5—P2—C4—C42149.1 (3)
C2—P1—C1—C1191.5 (3)C6—P2—C4—C4293.9 (3)
S1—P1—C1—C11149.5 (3)S2—P2—C4—C4228.7 (3)
C3—P1—C2—C21167.8 (3)C6—P2—C5—C51175.7 (3)
C1—P1—C2—C2172.6 (4)C4—P2—C5—C5165.7 (3)
S1—P1—C2—C2144.4 (4)S2—P2—C5—C5152.5 (3)
C3—P1—C2—C2262.0 (3)C6—P2—C5—C5257.5 (3)
C1—P1—C2—C2257.6 (3)C4—P2—C5—C5261.1 (3)
S1—P1—C2—C22174.5 (2)S2—P2—C5—C52179.3 (2)
C2—P1—C3—C3251.0 (4)C5—P2—C6—C61179.0 (3)
C1—P1—C3—C32168.3 (3)C4—P2—C6—C6163.3 (3)
S1—P1—C3—C3270.6 (3)S2—P2—C6—C6156.5 (3)
C2—P1—C3—C31177.3 (3)C5—P2—C6—C6253.7 (3)
C1—P1—C3—C3165.5 (4)C4—P2—C6—C62171.4 (3)
S1—P1—C3—C3155.7 (3)S2—P2—C6—C6268.8 (3)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.703.480 (5)137
C62—H62C···Au20.982.923.641 (4)131
C12—H12B···S10.982.753.180 (5)107
C42—H42B···S20.982.743.240 (4)112
C21—H21A···Cl1iii0.982.883.840 (5)167
C5—H5···Cl11.002.753.670 (4)153
C3—H3···Cl2v1.002.793.682 (4)149
C52—H52A···Cl20.982.813.770 (4)167
C32—H32B···Cl3iv0.982.943.649 (5)130
C4—H4···Cl4vi1.002.933.726 (4)137
C6—H6···Au41.003.244.022 (4)136
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z; (vi) x, y+1, z+1.
(2) top
Crystal data top
[C20H46AuP2S2][AuCl4]Z = 4
Mr = 948.36F(000) = 1816
Triclinic, P1Dx = 2.010 Mg m3
a = 11.7607 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.4174 (4) ÅCell parameters from 29113 reflections
c = 17.2173 (4) Åθ = 2.6–29.3°
α = 79.931 (2)°µ = 9.94 mm1
β = 76.467 (2)°T = 100 K
γ = 78.015 (2)°Irregular, yellow
V = 3133.57 (14) Å30.2 × 0.1 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
18142 independent reflections
Radiation source: fine-focus sealed tube14554 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.062
ω scanθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1616
Tmin = 0.439, Tmax = 1.000k = 2323
179513 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0131P)2 + 6.8476P]
where P = (Fo2 + 2Fc2)/3
18142 reflections(Δ/σ)max = 0.003
569 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.51 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.48897 (2)0.25766 (2)0.11667 (2)0.01904 (3)
P10.65776 (9)0.12888 (6)0.23566 (5)0.01599 (19)
P20.32324 (8)0.37600 (6)0.01205 (5)0.01458 (18)
S10.48357 (9)0.17782 (6)0.24001 (6)0.0223 (2)
S20.49694 (8)0.33712 (6)0.00728 (5)0.02008 (19)
C10.6636 (4)0.0667 (2)0.3368 (2)0.0218 (8)
C20.7470 (4)0.2132 (2)0.2107 (2)0.0249 (9)
H20.7392980.2382020.1544500.030*
C30.7205 (3)0.0595 (2)0.1565 (2)0.0218 (8)
H30.7969100.0259710.1690020.026*
C40.3193 (3)0.4617 (2)0.0990 (2)0.0173 (7)
C50.2373 (3)0.4086 (2)0.0843 (2)0.0185 (8)
H50.2384630.3556300.1231840.022*
C60.2555 (3)0.2910 (2)0.0287 (2)0.0189 (8)
H60.1737620.3165670.0373940.023*
C110.7849 (4)0.0125 (3)0.3374 (3)0.0330 (10)
H11A0.7882230.0152140.3923120.050*
H11B0.8463610.0477270.3190280.050*
H11C0.7984600.0301740.3013590.050*
C120.6438 (5)0.1290 (3)0.3984 (3)0.0513 (16)
H12A0.5766860.1738690.3900430.077*
H12B0.7154990.1533500.3909920.077*
H12C0.6265000.0992080.4531760.077*
C130.5653 (6)0.0158 (4)0.3624 (3)0.0647 (19)
H13A0.5808820.0287210.3281290.097*
H13B0.4894820.0523180.3570700.097*
H13C0.5615480.0094540.4187180.097*
C210.6999 (5)0.2869 (3)0.2602 (3)0.0394 (12)
H21A0.7197340.2705300.3135690.059*
H21B0.6134610.3016650.2660130.059*
H21C0.7364080.3354050.2324700.059*
C220.8809 (4)0.1820 (3)0.2047 (3)0.0354 (11)
H22A0.9241100.2278280.1785350.053*
H22B0.9069180.1350430.1727860.053*
H22C0.8971010.1631970.2588710.053*
C310.6414 (5)0.0025 (3)0.1573 (3)0.0557 (17)
H31A0.5623350.0279420.1511440.084*
H31B0.6348820.0400470.2084610.084*
H31C0.6757270.0357450.1126180.084*
C320.7499 (4)0.1072 (3)0.0722 (2)0.0281 (9)
H32A0.7862500.0672200.0335650.042*
H32B0.8055690.1444780.0713520.042*
H32C0.6769380.1407310.0575360.042*
C410.2004 (3)0.4758 (2)0.1253 (2)0.0212 (8)
H41A0.1354870.4888330.0794460.032*
H41B0.1920920.4248330.1441790.032*
H41C0.1975170.5227620.1689820.032*
C420.3353 (4)0.5421 (2)0.0718 (2)0.0255 (9)
H42A0.3469310.5852960.1186280.038*
H42B0.4048370.5300130.0468190.038*
H42C0.2644020.5622610.0326390.038*
C430.4226 (4)0.4404 (3)0.1701 (2)0.0245 (9)
H43A0.4180380.3868650.1859880.037*
H43B0.4983380.4357040.1536610.037*
H43C0.4171560.4849220.2157140.037*
C510.2904 (4)0.4669 (3)0.1212 (2)0.0235 (8)
H51A0.2822090.5230540.0900750.035*
H51B0.3746580.4444460.1200560.035*
H51C0.2481570.4705460.1771380.035*
C520.1062 (3)0.4419 (3)0.0846 (2)0.0234 (8)
H52A0.0622180.4444250.1402350.035*
H52B0.0749020.4043780.0596480.035*
H52C0.0972700.4983080.0540370.035*
C610.3222 (4)0.2510 (3)0.1042 (2)0.0257 (9)
H61A0.4062120.2328690.1016710.039*
H61B0.3150430.2921690.1521960.039*
H61C0.2880250.2022560.1071210.039*
C620.2419 (4)0.2228 (3)0.0441 (2)0.0301 (10)
H62A0.2052660.1792000.0321660.045*
H62B0.1914090.2476930.0909760.045*
H62C0.3202210.1977240.0559400.045*
Au20.52570 (2)0.24364 (2)0.61149 (2)0.01930 (4)
P30.31820 (9)0.36332 (6)0.51182 (5)0.01685 (19)
P40.72218 (8)0.13621 (6)0.73190 (5)0.01544 (18)
S30.49682 (9)0.32173 (6)0.49120 (6)0.0211 (2)
S40.54537 (8)0.16443 (6)0.73283 (6)0.0218 (2)
C1'0.2853 (4)0.4263 (3)0.4163 (3)0.0373 (12)
C2'0.2378 (4)0.2751 (3)0.5450 (3)0.0380 (11)
H2'0.2528650.2539360.6004460.046*
C3'0.2684 (4)0.4293 (3)0.5933 (2)0.0275 (9)
H3'0.1860420.4591270.5900950.033*
C4'0.7427 (3)0.0464 (2)0.8131 (2)0.0184 (8)
C5'0.8066 (3)0.1136 (2)0.6315 (2)0.0183 (7)
H5'0.7982930.1686620.5960190.022*
C6'0.7780 (3)0.2252 (2)0.7523 (2)0.0202 (8)
H6'0.8631750.2054040.7558150.024*
C11'0.1651 (4)0.4848 (3)0.4305 (3)0.0367 (11)
H11D0.1704370.5304590.4585970.055*
H11E0.1046960.4530380.4634510.055*
H11F0.1432510.5083200.3785940.055*
C12'0.2781 (5)0.3620 (4)0.3605 (3)0.0544 (16)
H12D0.2607040.3926020.3092600.082*
H12E0.2149530.3298390.3872070.082*
H12F0.3541980.3235990.3504160.082*
C13'0.3812 (5)0.4729 (4)0.3710 (3)0.0614 (18)
H13D0.3590830.5044050.3212980.092*
H13E0.4551810.4330990.3574910.092*
H13F0.3927880.5120790.4042450.092*
C21'0.2811 (6)0.1994 (3)0.5013 (4)0.0657 (18)
H21D0.2387450.1538770.5300060.099*
H21E0.3665060.1810380.4990160.099*
H21F0.2663610.2137570.4464470.099*
C22'0.1015 (4)0.3025 (3)0.5589 (3)0.0416 (12)
H22D0.0779410.3222260.5069170.062*
H22E0.0768390.3479230.5926040.062*
H22F0.0631270.2545380.5860410.062*
C31'0.3458 (5)0.4967 (4)0.5815 (4)0.068 (2)
H31D0.3120630.5349380.6220570.102*
H31E0.3482680.5284320.5274920.102*
H31F0.4264410.4697930.5872960.102*
C32'0.2630 (5)0.3813 (4)0.6767 (3)0.0496 (15)
H32D0.3435960.3558740.6839180.074*
H32E0.2155790.3370050.6835860.074*
H32F0.2263390.4196590.7168070.074*
C41'0.8615 (4)0.0404 (3)0.8388 (2)0.0261 (9)
H41D0.8727390.0088140.8793850.039*
H41E0.8604620.0912810.8616790.039*
H41F0.9268050.0350450.7917390.039*
C42'0.7419 (4)0.0354 (2)0.7816 (2)0.0276 (9)
H42D0.7389430.0814230.8264050.041*
H42E0.8141440.0483620.7407420.041*
H42F0.6720940.0286580.7577190.041*
C43'0.6410 (4)0.0571 (3)0.8871 (2)0.0252 (9)
H43D0.5652660.0587350.8718400.038*
H43E0.6393690.1097080.9072380.038*
H43F0.6535350.0097980.9293760.038*
C51'0.7593 (4)0.0546 (3)0.5922 (2)0.0247 (9)
H51D0.7971560.0574980.5349310.037*
H51E0.6731560.0716090.5978150.037*
H51F0.7773080.0030630.6187110.037*
C52'0.9404 (3)0.0867 (3)0.6284 (2)0.0231 (8)
H52D0.9561310.0291250.6557230.035*
H52E0.9675100.1246470.6554060.035*
H52F0.9829580.0890050.5720790.035*
C61'0.7120 (4)0.2560 (3)0.8327 (2)0.0294 (9)
H61D0.7368210.3081210.8372760.044*
H61E0.7307280.2131100.8773410.044*
H61F0.6261970.2665810.8349930.044*
C62'0.7733 (4)0.2993 (3)0.6845 (3)0.0313 (10)
H62D0.6906350.3200980.6793680.047*
H62E0.8199060.2806390.6335830.047*
H62F0.8062640.3443450.6970380.047*
Au30.98348 (2)0.27544 (2)0.35919 (2)0.02001 (4)
Cl11.00561 (11)0.13536 (7)0.40405 (6)0.0336 (2)
Cl20.82031 (10)0.29765 (8)0.46001 (6)0.0347 (3)
Cl30.96111 (10)0.41602 (7)0.31367 (7)0.0354 (3)
Cl41.14644 (10)0.25137 (7)0.25917 (6)0.0316 (2)
Au41.01677 (2)0.23730 (2)0.88035 (2)0.02243 (4)
Cl50.92275 (10)0.29549 (7)0.99435 (6)0.0339 (2)
Cl60.97628 (10)0.36488 (6)0.80532 (7)0.0334 (2)
Cl71.11237 (10)0.17979 (7)0.76589 (6)0.0331 (2)
Cl81.05632 (10)0.10927 (6)0.95503 (6)0.0294 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01852 (7)0.02126 (7)0.01813 (7)0.00208 (6)0.00925 (5)0.00392 (5)
P10.0160 (5)0.0185 (5)0.0137 (4)0.0016 (4)0.0052 (4)0.0017 (3)
P20.0141 (4)0.0175 (4)0.0121 (4)0.0018 (4)0.0037 (3)0.0017 (3)
S10.0183 (5)0.0268 (5)0.0196 (5)0.0018 (4)0.0056 (4)0.0016 (4)
S20.0157 (5)0.0271 (5)0.0174 (4)0.0005 (4)0.0057 (3)0.0035 (4)
C10.022 (2)0.025 (2)0.0187 (18)0.0033 (16)0.0065 (15)0.0000 (15)
C20.035 (2)0.026 (2)0.0187 (19)0.0108 (18)0.0114 (17)0.0017 (16)
C30.0177 (19)0.026 (2)0.0218 (19)0.0018 (16)0.0014 (15)0.0080 (16)
C40.0187 (19)0.0213 (18)0.0123 (16)0.0034 (15)0.0057 (14)0.0006 (14)
C50.0188 (19)0.0214 (18)0.0138 (17)0.0004 (15)0.0030 (14)0.0031 (14)
C60.0170 (19)0.0211 (18)0.0199 (18)0.0044 (15)0.0034 (15)0.0049 (15)
C110.032 (2)0.031 (2)0.029 (2)0.0069 (19)0.0100 (19)0.0055 (18)
C120.079 (4)0.046 (3)0.019 (2)0.025 (3)0.017 (2)0.009 (2)
C130.070 (4)0.083 (4)0.050 (3)0.048 (4)0.036 (3)0.042 (3)
C210.059 (3)0.032 (2)0.035 (3)0.016 (2)0.016 (2)0.007 (2)
C220.033 (3)0.047 (3)0.032 (2)0.021 (2)0.017 (2)0.008 (2)
C310.051 (3)0.052 (3)0.069 (4)0.034 (3)0.023 (3)0.042 (3)
C320.033 (2)0.034 (2)0.0164 (19)0.0012 (19)0.0044 (17)0.0073 (17)
C410.020 (2)0.027 (2)0.0159 (18)0.0025 (16)0.0070 (15)0.0006 (15)
C420.033 (2)0.022 (2)0.022 (2)0.0082 (17)0.0083 (17)0.0010 (16)
C430.025 (2)0.033 (2)0.0160 (18)0.0084 (18)0.0043 (16)0.0004 (16)
C510.026 (2)0.030 (2)0.0157 (18)0.0036 (17)0.0057 (16)0.0082 (16)
C520.021 (2)0.031 (2)0.0171 (18)0.0020 (17)0.0019 (15)0.0066 (16)
C610.029 (2)0.028 (2)0.023 (2)0.0073 (18)0.0023 (17)0.0107 (17)
C620.042 (3)0.030 (2)0.023 (2)0.017 (2)0.0086 (19)0.0006 (17)
Au20.01677 (7)0.01970 (7)0.02024 (7)0.00131 (5)0.00621 (5)0.00155 (5)
P30.0174 (5)0.0165 (4)0.0150 (4)0.0009 (4)0.0037 (4)0.0003 (4)
P40.0159 (5)0.0156 (4)0.0146 (4)0.0020 (4)0.0045 (4)0.0004 (3)
S30.0177 (5)0.0217 (5)0.0192 (4)0.0031 (4)0.0020 (4)0.0004 (4)
S40.0154 (5)0.0291 (5)0.0191 (5)0.0022 (4)0.0044 (4)0.0009 (4)
C1'0.031 (3)0.039 (3)0.029 (2)0.010 (2)0.0075 (19)0.013 (2)
C2'0.039 (3)0.026 (2)0.054 (3)0.015 (2)0.014 (2)0.000 (2)
C3'0.018 (2)0.034 (2)0.033 (2)0.0010 (17)0.0034 (17)0.0173 (19)
C4'0.023 (2)0.0165 (17)0.0158 (17)0.0067 (15)0.0071 (15)0.0044 (14)
C5'0.0180 (19)0.0230 (19)0.0122 (16)0.0020 (15)0.0010 (14)0.0024 (14)
C6'0.020 (2)0.0201 (19)0.0197 (18)0.0052 (16)0.0015 (15)0.0033 (15)
C11'0.025 (2)0.035 (2)0.041 (3)0.0050 (19)0.011 (2)0.011 (2)
C12'0.070 (4)0.065 (4)0.026 (3)0.011 (3)0.020 (3)0.012 (2)
C13'0.038 (3)0.065 (4)0.056 (3)0.004 (3)0.002 (3)0.039 (3)
C21'0.073 (5)0.026 (3)0.103 (5)0.010 (3)0.027 (4)0.010 (3)
C22'0.031 (3)0.047 (3)0.051 (3)0.017 (2)0.016 (2)0.006 (2)
C31'0.038 (3)0.060 (4)0.118 (6)0.013 (3)0.001 (3)0.062 (4)
C32'0.040 (3)0.077 (4)0.028 (2)0.017 (3)0.012 (2)0.024 (3)
C41'0.025 (2)0.031 (2)0.023 (2)0.0039 (17)0.0111 (16)0.0039 (17)
C42'0.039 (3)0.0195 (19)0.025 (2)0.0094 (18)0.0082 (18)0.0031 (16)
C43'0.027 (2)0.033 (2)0.0171 (19)0.0104 (18)0.0053 (16)0.0018 (16)
C51'0.026 (2)0.033 (2)0.0173 (19)0.0022 (18)0.0087 (16)0.0062 (16)
C52'0.019 (2)0.032 (2)0.0187 (19)0.0032 (16)0.0026 (15)0.0062 (16)
C61'0.029 (2)0.030 (2)0.030 (2)0.0056 (19)0.0004 (18)0.0160 (18)
C62'0.043 (3)0.019 (2)0.034 (2)0.0115 (19)0.012 (2)0.0027 (17)
Au30.02045 (8)0.02755 (8)0.01329 (7)0.00675 (6)0.00314 (5)0.00348 (5)
Cl10.0455 (7)0.0283 (5)0.0255 (5)0.0100 (5)0.0038 (5)0.0001 (4)
Cl20.0279 (6)0.0493 (7)0.0205 (5)0.0034 (5)0.0021 (4)0.0010 (4)
Cl30.0357 (6)0.0284 (5)0.0331 (6)0.0003 (5)0.0036 (5)0.0008 (4)
Cl40.0334 (6)0.0332 (5)0.0252 (5)0.0097 (5)0.0078 (4)0.0099 (4)
Au40.02084 (8)0.02208 (7)0.02728 (8)0.00589 (6)0.00502 (6)0.00837 (6)
Cl50.0346 (6)0.0333 (6)0.0330 (6)0.0063 (5)0.0015 (5)0.0132 (5)
Cl60.0352 (6)0.0232 (5)0.0406 (6)0.0051 (4)0.0055 (5)0.0039 (4)
Cl70.0418 (7)0.0307 (5)0.0279 (5)0.0042 (5)0.0055 (5)0.0118 (4)
Cl80.0304 (6)0.0267 (5)0.0319 (5)0.0052 (4)0.0084 (4)0.0035 (4)
Geometric parameters (Å, º) top
Au1—S12.2869 (9)P3—C1'1.860 (4)
Au1—S22.2910 (9)P3—S32.0360 (14)
P1—C21.840 (4)P4—C6'1.837 (4)
P1—C31.850 (4)P4—C5'1.838 (4)
P1—C11.867 (4)P4—C4'1.865 (3)
P1—S12.0283 (14)P4—S42.0312 (13)
P2—C51.834 (4)C1'—C13'1.485 (7)
P2—C61.837 (4)C1'—C11'1.527 (6)
P2—C41.869 (3)C1'—C12'1.573 (7)
P2—S22.0263 (13)C2'—C21'1.503 (7)
C1—C131.505 (6)C2'—C22'1.546 (7)
C1—C111.519 (5)C2'—H2'1.0000
C1—C121.545 (6)C3'—C32'1.507 (6)
C2—C211.535 (6)C3'—C31'1.531 (7)
C2—C221.537 (6)C3'—H3'1.0000
C2—H21.0000C4'—C42'1.536 (5)
C3—C311.512 (6)C4'—C43'1.537 (5)
C3—C321.523 (5)C4'—C41'1.541 (5)
C3—H31.0000C5'—C51'1.527 (5)
C4—C411.529 (5)C5'—C52'1.534 (5)
C4—C421.534 (5)C5'—H5'1.0000
C4—C431.540 (5)C6'—C62'1.533 (5)
C5—C521.524 (5)C6'—C61'1.535 (5)
C5—C511.535 (5)C6'—H6'1.0000
C5—H51.0000C11'—H11D0.9800
C6—C621.531 (5)C11'—H11E0.9800
C6—C611.531 (5)C11'—H11F0.9800
C6—H61.0000C12'—H12D0.9800
C11—H11A0.9800C12'—H12E0.9800
C11—H11B0.9800C12'—H12F0.9800
C11—H11C0.9800C13'—H13D0.9800
C12—H12A0.9800C13'—H13E0.9800
C12—H12B0.9800C13'—H13F0.9800
C12—H12C0.9800C21'—H21D0.9800
C13—H13A0.9800C21'—H21E0.9800
C13—H13B0.9800C21'—H21F0.9800
C13—H13C0.9800C22'—H22D0.9800
C21—H21A0.9800C22'—H22E0.9800
C21—H21B0.9800C22'—H22F0.9800
C21—H21C0.9800C31'—H31D0.9800
C22—H22A0.9800C31'—H31E0.9800
C22—H22B0.9800C31'—H31F0.9800
C22—H22C0.9800C32'—H32D0.9800
C31—H31A0.9800C32'—H32E0.9800
C31—H31B0.9800C32'—H32F0.9800
C31—H31C0.9800C41'—H41D0.9800
C32—H32A0.9800C41'—H41E0.9800
C32—H32B0.9800C41'—H41F0.9800
C32—H32C0.9800C42'—H42D0.9800
C41—H41A0.9800C42'—H42E0.9800
C41—H41B0.9800C42'—H42F0.9800
C41—H41C0.9800C43'—H43D0.9800
C42—H42A0.9800C43'—H43E0.9800
C42—H42B0.9800C43'—H43F0.9800
C42—H42C0.9800C51'—H51D0.9800
C43—H43A0.9800C51'—H51E0.9800
C43—H43B0.9800C51'—H51F0.9800
C43—H43C0.9800C52'—H52D0.9800
C51—H51A0.9800C52'—H52E0.9800
C51—H51B0.9800C52'—H52F0.9800
C51—H51C0.9800C61'—H61D0.9800
C52—H52A0.9800C61'—H61E0.9800
C52—H52B0.9800C61'—H61F0.9800
C52—H52C0.9800C62'—H62D0.9800
C61—H61A0.9800C62'—H62E0.9800
C61—H61B0.9800C62'—H62F0.9800
C61—H61C0.9800Au3—Cl42.2746 (10)
C62—H62A0.9800Au3—Cl12.2754 (11)
C62—H62B0.9800Au3—Cl22.2805 (10)
C62—H62C0.9800Au3—Cl32.2852 (11)
Au2—S42.2935 (9)Au4—Cl52.2780 (10)
Au2—S32.2953 (9)Au4—Cl62.2825 (11)
P3—C2'1.828 (4)Au4—Cl72.2828 (10)
P3—C3'1.835 (4)Au4—Cl82.2839 (10)
S1—Au1—S2179.28 (4)C1'—P3—S3106.48 (15)
C2—P1—C3105.43 (18)C6'—P4—C5'105.38 (17)
C2—P1—C1113.57 (18)C6'—P4—C4'109.30 (17)
C3—P1—C1109.59 (18)C5'—P4—C4'113.54 (17)
C2—P1—S1110.40 (14)C6'—P4—S4111.80 (13)
C3—P1—S1112.92 (13)C5'—P4—S4110.47 (13)
C1—P1—S1105.10 (13)C4'—P4—S4106.46 (13)
C5—P2—C6105.27 (17)P3—S3—Au2103.22 (5)
C5—P2—C4113.74 (17)P4—S4—Au2106.42 (5)
C6—P2—C4109.42 (17)C13'—C1'—C11'111.4 (4)
C5—P2—S2110.69 (12)C13'—C1'—C12'105.8 (4)
C6—P2—S2111.89 (13)C11'—C1'—C12'107.7 (4)
C4—P2—S2105.95 (12)C13'—C1'—P3113.3 (4)
P1—S1—Au1101.88 (5)C11'—C1'—P3111.6 (3)
P2—S2—Au1102.91 (5)C12'—C1'—P3106.6 (3)
C13—C1—C11112.1 (4)C21'—C2'—C22'112.6 (4)
C13—C1—C12107.8 (4)C21'—C2'—P3117.8 (4)
C11—C1—C12107.3 (4)C22'—C2'—P3113.2 (3)
C13—C1—P1110.4 (3)C21'—C2'—H2'103.7
C11—C1—P1111.1 (3)C22'—C2'—H2'103.7
C12—C1—P1108.1 (3)P3—C2'—H2'103.7
C21—C2—C22112.3 (4)C32'—C3'—C31'109.5 (4)
C21—C2—P1115.4 (3)C32'—C3'—P3114.3 (3)
C22—C2—P1114.2 (3)C31'—C3'—P3111.1 (3)
C21—C2—H2104.5C32'—C3'—H3'107.2
C22—C2—H2104.5C31'—C3'—H3'107.2
P1—C2—H2104.5P3—C3'—H3'107.2
C31—C3—C32110.0 (4)C42'—C4'—C43'108.5 (3)
C31—C3—P1112.3 (3)C42'—C4'—C41'109.3 (3)
C32—C3—P1113.4 (3)C43'—C4'—C41'108.8 (3)
C31—C3—H3106.9C42'—C4'—P4109.0 (2)
C32—C3—H3106.9C43'—C4'—P4110.5 (3)
P1—C3—H3106.9C41'—C4'—P4110.6 (3)
C41—C4—C42110.0 (3)C51'—C5'—C52'111.5 (3)
C41—C4—C43110.3 (3)C51'—C5'—P4115.9 (3)
C42—C4—C43107.7 (3)C52'—C5'—P4112.9 (2)
C41—C4—P2110.0 (3)C51'—C5'—H5'105.2
C42—C4—P2108.1 (2)C52'—C5'—H5'105.2
C43—C4—P2110.7 (3)P4—C5'—H5'105.2
C52—C5—C51111.0 (3)C62'—C6'—C61'109.3 (3)
C52—C5—P2113.9 (2)C62'—C6'—P4112.4 (3)
C51—C5—P2116.0 (3)C61'—C6'—P4112.6 (3)
C52—C5—H5104.9C62'—C6'—H6'107.5
C51—C5—H5104.9C61'—C6'—H6'107.5
P2—C5—H5104.9P4—C6'—H6'107.5
C62—C6—C61109.7 (3)C1'—C11'—H11D109.5
C62—C6—P2112.8 (3)C1'—C11'—H11E109.5
C61—C6—P2112.7 (3)H11D—C11'—H11E109.5
C62—C6—H6107.1C1'—C11'—H11F109.5
C61—C6—H6107.1H11D—C11'—H11F109.5
P2—C6—H6107.1H11E—C11'—H11F109.5
C1—C11—H11A109.5C1'—C12'—H12D109.5
C1—C11—H11B109.5C1'—C12'—H12E109.5
H11A—C11—H11B109.5H12D—C12'—H12E109.5
C1—C11—H11C109.5C1'—C12'—H12F109.5
H11A—C11—H11C109.5H12D—C12'—H12F109.5
H11B—C11—H11C109.5H12E—C12'—H12F109.5
C1—C12—H12A109.5C1'—C13'—H13D109.5
C1—C12—H12B109.5C1'—C13'—H13E109.5
H12A—C12—H12B109.5H13D—C13'—H13E109.5
C1—C12—H12C109.5C1'—C13'—H13F109.5
H12A—C12—H12C109.5H13D—C13'—H13F109.5
H12B—C12—H12C109.5H13E—C13'—H13F109.5
C1—C13—H13A109.5C2'—C21'—H21D109.5
C1—C13—H13B109.5C2'—C21'—H21E109.5
H13A—C13—H13B109.5H21D—C21'—H21E109.5
C1—C13—H13C109.5C2'—C21'—H21F109.5
H13A—C13—H13C109.5H21D—C21'—H21F109.5
H13B—C13—H13C109.5H21E—C21'—H21F109.5
C2—C21—H21A109.5C2'—C22'—H22D109.5
C2—C21—H21B109.5C2'—C22'—H22E109.5
H21A—C21—H21B109.5H22D—C22'—H22E109.5
C2—C21—H21C109.5C2'—C22'—H22F109.5
H21A—C21—H21C109.5H22D—C22'—H22F109.5
H21B—C21—H21C109.5H22E—C22'—H22F109.5
C2—C22—H22A109.5C3'—C31'—H31D109.5
C2—C22—H22B109.5C3'—C31'—H31E109.5
H22A—C22—H22B109.5H31D—C31'—H31E109.5
C2—C22—H22C109.5C3'—C31'—H31F109.5
H22A—C22—H22C109.5H31D—C31'—H31F109.5
H22B—C22—H22C109.5H31E—C31'—H31F109.5
C3—C31—H31A109.5C3'—C32'—H32D109.5
C3—C31—H31B109.5C3'—C32'—H32E109.5
H31A—C31—H31B109.5H32D—C32'—H32E109.5
C3—C31—H31C109.5C3'—C32'—H32F109.5
H31A—C31—H31C109.5H32D—C32'—H32F109.5
H31B—C31—H31C109.5H32E—C32'—H32F109.5
C3—C32—H32A109.5C4'—C41'—H41D109.5
C3—C32—H32B109.5C4'—C41'—H41E109.5
H32A—C32—H32B109.5H41D—C41'—H41E109.5
C3—C32—H32C109.5C4'—C41'—H41F109.5
H32A—C32—H32C109.5H41D—C41'—H41F109.5
H32B—C32—H32C109.5H41E—C41'—H41F109.5
C4—C41—H41A109.5C4'—C42'—H42D109.5
C4—C41—H41B109.5C4'—C42'—H42E109.5
H41A—C41—H41B109.5H42D—C42'—H42E109.5
C4—C41—H41C109.5C4'—C42'—H42F109.5
H41A—C41—H41C109.5H42D—C42'—H42F109.5
H41B—C41—H41C109.5H42E—C42'—H42F109.5
C4—C42—H42A109.5C4'—C43'—H43D109.5
C4—C42—H42B109.5C4'—C43'—H43E109.5
H42A—C42—H42B109.5H43D—C43'—H43E109.5
C4—C42—H42C109.5C4'—C43'—H43F109.5
H42A—C42—H42C109.5H43D—C43'—H43F109.5
H42B—C42—H42C109.5H43E—C43'—H43F109.5
C4—C43—H43A109.5C5'—C51'—H51D109.5
C4—C43—H43B109.5C5'—C51'—H51E109.5
H43A—C43—H43B109.5H51D—C51'—H51E109.5
C4—C43—H43C109.5C5'—C51'—H51F109.5
H43A—C43—H43C109.5H51D—C51'—H51F109.5
H43B—C43—H43C109.5H51E—C51'—H51F109.5
C5—C51—H51A109.5C5'—C52'—H52D109.5
C5—C51—H51B109.5C5'—C52'—H52E109.5
H51A—C51—H51B109.5H52D—C52'—H52E109.5
C5—C51—H51C109.5C5'—C52'—H52F109.5
H51A—C51—H51C109.5H52D—C52'—H52F109.5
H51B—C51—H51C109.5H52E—C52'—H52F109.5
C5—C52—H52A109.5C6'—C61'—H61D109.5
C5—C52—H52B109.5C6'—C61'—H61E109.5
H52A—C52—H52B109.5H61D—C61'—H61E109.5
C5—C52—H52C109.5C6'—C61'—H61F109.5
H52A—C52—H52C109.5H61D—C61'—H61F109.5
H52B—C52—H52C109.5H61E—C61'—H61F109.5
C6—C61—H61A109.5C6'—C62'—H62D109.5
C6—C61—H61B109.5C6'—C62'—H62E109.5
H61A—C61—H61B109.5H62D—C62'—H62E109.5
C6—C61—H61C109.5C6'—C62'—H62F109.5
H61A—C61—H61C109.5H62D—C62'—H62F109.5
H61B—C61—H61C109.5H62E—C62'—H62F109.5
C6—C62—H62A109.5Cl4—Au3—Cl189.76 (4)
C6—C62—H62B109.5Cl4—Au3—Cl2179.22 (4)
H62A—C62—H62B109.5Cl1—Au3—Cl289.46 (4)
C6—C62—H62C109.5Cl4—Au3—Cl390.14 (4)
H62A—C62—H62C109.5Cl1—Au3—Cl3179.77 (4)
H62B—C62—H62C109.5Cl2—Au3—Cl390.64 (4)
S4—Au2—S3177.24 (4)Cl5—Au4—Cl689.61 (4)
C2'—P3—C3'105.3 (2)Cl5—Au4—Cl7179.44 (4)
C2'—P3—C1'113.0 (2)Cl6—Au4—Cl790.15 (4)
C3'—P3—C1'109.3 (2)Cl5—Au4—Cl890.54 (4)
C2'—P3—S3110.71 (16)Cl6—Au4—Cl8179.58 (4)
C3'—P3—S3112.14 (14)Cl7—Au4—Cl889.70 (4)
C2—P1—S1—Au154.15 (14)C2'—P3—S3—Au255.89 (18)
C3—P1—S1—Au163.59 (14)C3'—P3—S3—Au261.40 (16)
C1—P1—S1—Au1176.99 (13)C1'—P3—S3—Au2179.04 (18)
C5—P2—S2—Au142.76 (14)C6'—P4—S4—Au278.15 (13)
C6—P2—S2—Au174.31 (13)C5'—P4—S4—Au238.86 (14)
C4—P2—S2—Au1166.51 (12)C4'—P4—S4—Au2162.56 (13)
C2—P1—C1—C13164.8 (4)C2'—P3—C1'—C13'155.7 (4)
C3—P1—C1—C1377.6 (4)C3'—P3—C1'—C13'87.4 (4)
S1—P1—C1—C1344.0 (4)S3—P3—C1'—C13'34.0 (4)
C2—P1—C1—C1170.3 (3)C2'—P3—C1'—C11'77.6 (4)
C3—P1—C1—C1147.3 (3)C3'—P3—C1'—C11'39.4 (4)
S1—P1—C1—C11168.9 (3)S3—P3—C1'—C11'160.7 (3)
C2—P1—C1—C1247.1 (4)C2'—P3—C1'—C12'39.8 (4)
C3—P1—C1—C12164.7 (3)C3'—P3—C1'—C12'156.7 (3)
S1—P1—C1—C1273.7 (3)S3—P3—C1'—C12'82.0 (3)
C3—P1—C2—C21170.8 (3)C3'—P3—C2'—C21'165.1 (4)
C1—P1—C2—C2169.2 (4)C1'—P3—C2'—C21'75.6 (5)
S1—P1—C2—C2148.5 (3)S3—P3—C2'—C21'43.7 (5)
C3—P1—C2—C2256.8 (3)C3'—P3—C2'—C22'60.6 (4)
C1—P1—C2—C2263.2 (3)C1'—P3—C2'—C22'58.7 (4)
S1—P1—C2—C22179.1 (3)S3—P3—C2'—C22'178.0 (3)
C2—P1—C3—C31167.5 (4)C2'—P3—C3'—C32'44.4 (4)
C1—P1—C3—C3169.9 (4)C1'—P3—C3'—C32'166.1 (3)
S1—P1—C3—C3146.9 (4)S3—P3—C3'—C32'76.0 (3)
C2—P1—C3—C3242.2 (3)C2'—P3—C3'—C31'169.0 (4)
C1—P1—C3—C32164.7 (3)C1'—P3—C3'—C31'69.3 (4)
S1—P1—C3—C3278.5 (3)S3—P3—C3'—C31'48.6 (4)
C5—P2—C4—C4176.6 (3)C6'—P4—C4'—C42'158.7 (3)
C6—P2—C4—C4140.8 (3)C5'—P4—C4'—C42'41.4 (3)
S2—P2—C4—C41161.5 (2)S4—P4—C4'—C42'80.4 (3)
C5—P2—C4—C4243.5 (3)C6'—P4—C4'—C43'82.1 (3)
C6—P2—C4—C42160.9 (3)C5'—P4—C4'—C43'160.5 (3)
S2—P2—C4—C4278.3 (3)S4—P4—C4'—C43'38.8 (3)
C5—P2—C4—C43161.2 (3)C6'—P4—C4'—C41'38.4 (3)
C6—P2—C4—C4381.4 (3)C5'—P4—C4'—C41'78.9 (3)
S2—P2—C4—C4339.4 (3)S4—P4—C4'—C41'159.3 (2)
C6—P2—C5—C5261.1 (3)C6'—P4—C5'—C51'167.3 (3)
C4—P2—C5—C5258.7 (3)C4'—P4—C5'—C51'73.1 (3)
S2—P2—C5—C52177.8 (2)S4—P4—C5'—C51'46.4 (3)
C6—P2—C5—C51168.2 (3)C6'—P4—C5'—C52'62.5 (3)
C4—P2—C5—C5172.0 (3)C4'—P4—C5'—C52'57.1 (3)
S2—P2—C5—C5147.1 (3)S4—P4—C5'—C52'176.6 (2)
C5—P2—C6—C6250.7 (3)C5'—P4—C6'—C62'53.1 (3)
C4—P2—C6—C62173.3 (3)C4'—P4—C6'—C62'175.4 (3)
S2—P2—C6—C6269.6 (3)S4—P4—C6'—C62'67.0 (3)
C5—P2—C6—C61175.7 (3)C5'—P4—C6'—C61'176.9 (3)
C4—P2—C6—C6161.7 (3)C4'—P4—C6'—C61'60.7 (3)
S2—P2—C6—C6155.4 (3)S4—P4—C6'—C61'56.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.733.538 (4)140
C32—H32D···Au20.982.733.503 (5)136
C13—H13B···S10.982.623.220 (5)120
C43—H43B···S20.982.753.219 (4)110
C43—H43D···S40.982.733.219 (4)112
C13—H13E···S30.982.753.227 (5)111
C52—H52F···Cl10.982.823.733 (4)155
C5—H5···Cl21.002.873.839 (4)163
C3—H3···Cl3i1.002.883.585 (4)128
C5—H5···Cl4ii1.002.793.713 (4)154
C62—H62B···Cl4ii0.982.833.692 (4)147
C42—H42C···Cl5i0.982.913.754 (4)145
C11—H11C···Cl7iii0.982.803.736 (5)161
C6—H6···Cl71.002.913.903 (4)170
C6—H6···Au41.003.284.009 (4)132
C62—H62A···Cl8iv0.982.933.853 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x1, y, z1.
Bis(tri-tert-butylphosphane sulfide-κS)gold(I) tetrachloridoaurate(III) (3) top
Crystal data top
[Au(C12H27PS)2][AuCl4]Z = 1
Mr = 1004.46F(000) = 486
Triclinic, P1Dx = 1.946 Mg m3
a = 8.5541 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1550 (3) ÅCell parameters from 64231 reflections
c = 12.0421 (4) Åθ = 2.4–30.8°
α = 107.427 (3)°µ = 9.09 mm1
β = 97.511 (3)°T = 100 K
γ = 102.841 (3)°Block, yellow
V = 857.30 (5) Å30.2 × 0.15 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5209 independent reflections
Radiation source: fine-focus sealed X-ray tube4622 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.043
ω–scanθmax = 31.1°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1212
Tmin = 0.623, Tmax = 1.000k = 1313
166022 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0185P)2 + 0.7041P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5209 reflectionsΔρmax = 1.02 e Å3
167 parametersΔρmin = 1.38 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1+0.001×Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00495 (18)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.0000000.5000000.01381 (4)
P10.23333 (6)0.11351 (5)0.31699 (4)0.01003 (9)
S10.32514 (6)0.15468 (6)0.49180 (4)0.01576 (9)
C10.1171 (2)0.2704 (2)0.32846 (16)0.0142 (3)
C20.0891 (2)0.0945 (2)0.24486 (16)0.0132 (3)
C30.4057 (2)0.1460 (2)0.23434 (15)0.0129 (3)
C110.0022 (3)0.2404 (2)0.21169 (18)0.0187 (4)
H11A0.0480720.3310550.2194830.028*
H11B0.0911560.1433340.1947250.028*
H11C0.0567340.2275280.1463910.028*
C120.2395 (3)0.4356 (2)0.36375 (18)0.0192 (4)
H12A0.2949500.4414020.2982850.029*
H12B0.3210440.4532910.4350830.029*
H12C0.1807280.5176070.3803780.029*
C130.0194 (3)0.2785 (2)0.42887 (18)0.0200 (4)
H13A0.0958970.3107020.5055470.030*
H13B0.0558940.1733950.4133000.030*
H13C0.0433870.3563520.4312610.030*
C210.0403 (2)0.1412 (2)0.10879 (16)0.0168 (4)
H21A0.0446600.2433120.0763090.025*
H21B0.1367110.1510250.0742830.025*
H21C0.0020690.0589820.0890490.025*
C220.0668 (3)0.1054 (2)0.29582 (19)0.0202 (4)
H22A0.1340250.2163950.2667770.030*
H22B0.1294980.0393800.2702050.030*
H22C0.0364340.0674010.3829940.030*
C230.1666 (3)0.2184 (2)0.27418 (17)0.0169 (4)
H23A0.1917860.1934940.3606620.025*
H23B0.2679390.2158560.2441470.025*
H23C0.0895730.3247140.2364010.025*
C310.3485 (3)0.1787 (2)0.11975 (16)0.0163 (4)
H31A0.4391440.1906460.0781530.024*
H31B0.3139060.2768780.1402000.024*
H31C0.2561040.0894920.0679270.024*
C320.5508 (2)0.2864 (2)0.31569 (18)0.0174 (4)
H32A0.5909220.2632610.3868090.026*
H32B0.5145610.3834410.3394130.026*
H32C0.6392400.3018380.2726170.026*
C330.4723 (2)0.0006 (2)0.20037 (17)0.0156 (4)
H33A0.5675290.0223870.1648070.023*
H33B0.3866750.0915060.1428020.023*
H33C0.5050820.0260620.2718570.023*
Au20.5000000.5000001.0000000.01173 (3)
Cl10.47385 (6)0.37675 (5)0.80089 (4)0.01857 (9)
Cl20.26132 (6)0.56585 (6)0.96144 (5)0.02260 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01493 (6)0.01813 (5)0.01024 (5)0.00713 (4)0.00002 (3)0.00674 (4)
P10.0118 (2)0.01147 (18)0.00798 (18)0.00499 (16)0.00147 (15)0.00387 (15)
S10.0196 (3)0.0211 (2)0.00863 (18)0.01049 (18)0.00142 (16)0.00501 (16)
C10.0176 (10)0.0159 (8)0.0132 (8)0.0105 (7)0.0041 (7)0.0063 (6)
C20.0130 (10)0.0138 (7)0.0131 (8)0.0037 (6)0.0016 (6)0.0053 (6)
C30.0146 (10)0.0129 (7)0.0118 (7)0.0043 (7)0.0038 (6)0.0043 (6)
C110.0186 (11)0.0247 (9)0.0178 (9)0.0128 (8)0.0013 (7)0.0103 (7)
C120.0254 (12)0.0135 (8)0.0195 (9)0.0086 (7)0.0043 (8)0.0045 (7)
C130.0245 (12)0.0253 (9)0.0179 (9)0.0165 (8)0.0097 (8)0.0091 (7)
C210.0178 (11)0.0161 (8)0.0129 (8)0.0020 (7)0.0006 (7)0.0033 (6)
C220.0156 (11)0.0232 (9)0.0237 (10)0.0048 (8)0.0068 (8)0.0104 (8)
C230.0201 (11)0.0130 (8)0.0186 (9)0.0042 (7)0.0029 (7)0.0078 (7)
C310.0198 (11)0.0169 (8)0.0138 (8)0.0048 (7)0.0048 (7)0.0074 (7)
C320.0133 (10)0.0163 (8)0.0192 (9)0.0012 (7)0.0010 (7)0.0043 (7)
C330.0145 (10)0.0170 (8)0.0170 (8)0.0071 (7)0.0049 (7)0.0057 (7)
Au20.01168 (6)0.00828 (5)0.01555 (5)0.00233 (3)0.00367 (3)0.00448 (3)
Cl10.0220 (3)0.01572 (19)0.0169 (2)0.00531 (17)0.00461 (17)0.00374 (15)
Cl20.0178 (3)0.0207 (2)0.0266 (2)0.00959 (18)0.00110 (18)0.00259 (18)
Geometric parameters (Å, º) top
Au1—S12.2889 (5)C13—H13C0.9800
Au1—S1i2.2889 (5)C21—H21A0.9800
P1—C21.8939 (19)C21—H21B0.9800
P1—C31.9024 (19)C21—H21C0.9800
P1—C11.9036 (18)C22—H22A0.9800
P1—S12.0374 (6)C22—H22B0.9800
C1—C121.536 (3)C22—H22C0.9800
C1—C111.537 (3)C23—H23A0.9800
C1—C131.550 (3)C23—H23B0.9800
C2—C221.535 (3)C23—H23C0.9800
C2—C211.538 (2)C31—H31A0.9800
C2—C231.538 (2)C31—H31B0.9800
C3—C331.538 (2)C31—H31C0.9800
C3—C311.539 (2)C32—H32A0.9800
C3—C321.540 (3)C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800C33—H33A0.9800
C11—H11C0.9800C33—H33B0.9800
C12—H12A0.9800C33—H33C0.9800
C12—H12B0.9800Au2—Cl1ii2.2802 (5)
C12—H12C0.9800Au2—Cl12.2802 (5)
C13—H13A0.9800Au2—Cl22.2836 (5)
C13—H13B0.9800Au2—Cl2ii2.2836 (5)
S1—Au1—S1i180.0H13B—C13—H13C109.5
C2—P1—C3111.14 (8)C2—C21—H21A109.5
C2—P1—C1111.01 (9)C2—C21—H21B109.5
C3—P1—C1111.40 (8)H21A—C21—H21B109.5
C2—P1—S1110.51 (6)C2—C21—H21C109.5
C3—P1—S1110.85 (6)H21A—C21—H21C109.5
C1—P1—S1101.57 (6)H21B—C21—H21C109.5
P1—S1—Au1107.87 (2)C2—C22—H22A109.5
C12—C1—C11108.62 (15)C2—C22—H22B109.5
C12—C1—C13106.15 (15)H22A—C22—H22B109.5
C11—C1—C13108.74 (16)C2—C22—H22C109.5
C12—C1—P1109.58 (13)H22A—C22—H22C109.5
C11—C1—P1112.97 (12)H22B—C22—H22C109.5
C13—C1—P1110.54 (12)C2—C23—H23A109.5
C22—C2—C21108.92 (16)C2—C23—H23B109.5
C22—C2—C23105.94 (15)H23A—C23—H23B109.5
C21—C2—C23108.80 (15)C2—C23—H23C109.5
C22—C2—P1109.76 (13)H23A—C23—H23C109.5
C21—C2—P1112.22 (12)H23B—C23—H23C109.5
C23—C2—P1110.98 (13)C3—C31—H31A109.5
C33—C3—C31108.25 (14)C3—C31—H31B109.5
C33—C3—C32106.34 (16)H31A—C31—H31B109.5
C31—C3—C32109.41 (15)C3—C31—H31C109.5
C33—C3—P1110.79 (12)H31A—C31—H31C109.5
C31—C3—P1111.87 (13)H31B—C31—H31C109.5
C32—C3—P1110.02 (12)C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5C3—C33—H33A109.5
C1—C12—H12A109.5C3—C33—H33B109.5
C1—C12—H12B109.5H33A—C33—H33B109.5
H12A—C12—H12B109.5C3—C33—H33C109.5
C1—C12—H12C109.5H33A—C33—H33C109.5
H12A—C12—H12C109.5H33B—C33—H33C109.5
H12B—C12—H12C109.5Cl1ii—Au2—Cl1180.0
C1—C13—H13A109.5Cl1ii—Au2—Cl290.336 (18)
C1—C13—H13B109.5Cl1—Au2—Cl289.664 (18)
H13A—C13—H13B109.5Cl1ii—Au2—Cl2ii89.664 (18)
C1—C13—H13C109.5Cl1—Au2—Cl2ii90.336 (18)
H13A—C13—H13C109.5Cl2—Au2—Cl2ii180.0
C2—P1—S1—Au169.57 (7)C3—P1—C2—C2146.59 (15)
C3—P1—S1—Au154.11 (6)C1—P1—C2—C2177.99 (15)
C1—P1—S1—Au1172.57 (6)S1—P1—C2—C21170.10 (11)
C2—P1—C1—C12168.83 (12)C3—P1—C2—C2375.38 (14)
C3—P1—C1—C1244.40 (15)C1—P1—C2—C23160.04 (12)
S1—P1—C1—C1273.67 (13)S1—P1—C2—C2348.13 (14)
C2—P1—C1—C1147.57 (16)C2—P1—C3—C3342.58 (15)
C3—P1—C1—C1176.86 (15)C1—P1—C3—C33166.94 (12)
S1—P1—C1—C11165.08 (13)S1—P1—C3—C3380.74 (13)
C2—P1—C1—C1374.52 (15)C2—P1—C3—C3178.30 (14)
C3—P1—C1—C13161.04 (13)C1—P1—C3—C3146.06 (14)
S1—P1—C1—C1342.98 (14)S1—P1—C3—C31158.38 (11)
C3—P1—C2—C22167.85 (12)C2—P1—C3—C32159.88 (12)
C1—P1—C2—C2243.27 (15)C1—P1—C3—C3275.76 (14)
S1—P1—C2—C2268.64 (13)S1—P1—C3—C3236.56 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Au10.982.813.421 (2)121
C33—H33C···Au10.982.693.5832 (19)151
C13—H13A···S10.982.663.164 (2)112
C32—H32A···S10.982.873.353 (2)111
C12—H12A···Cl1iii0.982.913.786 (2)150
C22—H22A···Cl1iv0.982.833.607 (2)136
C23—H23B···Cl1i0.982.943.782 (2)145
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
(4a) top
Crystal data top
[C20H46AuP2S2][AuBr4]F(000) = 2104
Mr = 1126.20Dx = 2.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.7871 (4) ÅCell parameters from 21928 reflections
b = 10.4042 (3) Åθ = 2.2–30.8°
c = 22.7240 (6) ŵ = 14.15 mm1
β = 93.035 (3)°T = 100 K
V = 3255.05 (16) Å3Plate, red
Z = 40.25 × 0.15 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6651 independent reflections
Radiation source: fine-focus sealed tube5373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 16.1419 pixels mm-1θmax = 26.4°, θmin = 2.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1313
Tmin = 0.179, Tmax = 1.000l = 2828
169756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0456P)2 + 52.5404P]
where P = (Fo2 + 2Fc2)/3
6651 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 4.29 e Å3
0 restraintsΔρmin = 2.01 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.24485 (2)0.11240 (3)0.25008 (2)0.02621 (10)
S10.41029 (16)0.0981 (2)0.24669 (10)0.0324 (5)
S20.07841 (15)0.1215 (2)0.25162 (9)0.0244 (4)
P10.42826 (15)0.0729 (2)0.15946 (10)0.0263 (5)
P20.05250 (14)0.1109 (2)0.33849 (9)0.0185 (4)
C10.5617 (7)0.0747 (12)0.1503 (5)0.042 (3)
C20.3598 (6)0.1931 (9)0.1152 (4)0.035 (2)
H20.2901310.1713520.1203560.042*
C30.3793 (7)0.0843 (9)0.1331 (4)0.034 (2)
H30.4034080.0986180.0929190.041*
C40.0785 (6)0.0723 (8)0.3419 (4)0.0253 (18)
C50.1320 (6)0.0082 (8)0.3757 (4)0.0265 (19)
H50.1987590.0290530.3745400.032*
C60.0793 (6)0.2636 (8)0.3766 (4)0.0258 (18)
H60.0572900.2536130.4175570.031*
C110.5854 (8)0.0056 (14)0.0919 (5)0.058 (3)
H11A0.5492490.0467730.0586690.086*
H11B0.5665700.0850130.0939930.086*
H11C0.6552000.0117510.0861950.086*
C120.5926 (8)0.2149 (14)0.1483 (6)0.066 (4)
H12A0.5733510.2588150.1840250.098*
H12B0.5610600.2563580.1136090.098*
H12C0.6632620.2198930.1459910.098*
C130.6164 (7)0.0072 (13)0.2019 (5)0.053 (3)
H13A0.6859560.0050150.1949010.080*
H13B0.5921120.0808520.2053500.080*
H13C0.6063260.0541340.2384550.080*
C210.3703 (8)0.3304 (10)0.1368 (5)0.051 (3)
H21A0.4347970.3628920.1283620.076*
H21B0.3624060.3331170.1794230.076*
H21C0.3204260.3840620.1166840.076*
C220.3721 (7)0.1803 (12)0.0489 (5)0.047 (3)
H22A0.3275950.2396150.0275420.070*
H22B0.3573540.0919420.0364430.070*
H22C0.4391500.2012010.0401910.070*
C310.4160 (9)0.1961 (10)0.1715 (6)0.056 (3)
H31A0.4039050.1780720.2127890.084*
H31B0.4859410.2071420.1673400.084*
H31C0.3819210.2749220.1590170.084*
C320.2687 (7)0.0875 (10)0.1270 (5)0.044 (3)
H32A0.2473380.1697140.1097310.067*
H32B0.2453450.0169760.1014340.067*
H32C0.2422710.0778740.1659780.067*
C410.1141 (6)0.1065 (10)0.4030 (4)0.035 (2)
H41A0.1827940.0832750.4047240.052*
H41B0.1063470.1989890.4099270.052*
H41C0.0758460.0589250.4333940.052*
C420.0943 (7)0.0724 (9)0.3307 (5)0.037 (2)
H42A0.0681240.1212100.3648930.056*
H42B0.0608530.0982730.2956280.056*
H42C0.1639460.0898820.3246190.056*
C430.1389 (6)0.1458 (10)0.2934 (4)0.035 (2)
H43A0.2082060.1317010.2985560.053*
H43B0.1222290.1143950.2545910.053*
H43C0.1244680.2378740.2964910.053*
C510.1386 (8)0.1385 (9)0.3453 (5)0.040 (2)
H51A0.1930240.1874750.3635240.060*
H51B0.1490210.1255840.3034080.060*
H51C0.0780430.1861170.3495240.060*
C520.1148 (7)0.0230 (10)0.4419 (4)0.035 (2)
H52A0.0525430.0662560.4465790.053*
H52B0.1135860.0620930.4603110.053*
H52C0.1673200.0742740.4607720.053*
C610.0213 (8)0.3770 (9)0.3487 (4)0.039 (2)
H61A0.0478810.4581030.3644700.058*
H61B0.0470030.3695360.3581680.058*
H61C0.0261890.3753740.3058750.058*
C620.1868 (7)0.2922 (11)0.3823 (5)0.049 (3)
H62A0.2111430.3063660.3430950.074*
H62B0.2210400.2193640.4011790.074*
H62C0.1978590.3695310.4063740.074*
Au20.5000000.0000000.5000000.03200 (14)
Br10.62987 (7)0.15379 (12)0.48418 (5)0.0454 (3)
Br20.41237 (7)0.07330 (12)0.41121 (5)0.0455 (3)
Au31.0000000.5000000.5000000.02361 (12)
Br30.90685 (7)0.67401 (9)0.45406 (4)0.0342 (2)
Br40.85112 (6)0.38951 (8)0.52231 (4)0.0311 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02586 (17)0.03220 (19)0.02182 (17)0.00487 (14)0.01293 (13)0.00523 (14)
S10.0265 (11)0.0505 (14)0.0207 (11)0.0065 (10)0.0061 (8)0.0088 (10)
S20.0254 (10)0.0293 (11)0.0193 (10)0.0019 (8)0.0091 (8)0.0014 (8)
P10.0190 (10)0.0409 (13)0.0195 (11)0.0044 (9)0.0062 (8)0.0019 (10)
P20.0187 (9)0.0209 (10)0.0166 (10)0.0025 (8)0.0063 (7)0.0001 (8)
C10.022 (4)0.068 (7)0.038 (6)0.005 (5)0.009 (4)0.006 (5)
C20.021 (4)0.041 (6)0.044 (6)0.003 (4)0.011 (4)0.007 (4)
C30.037 (5)0.040 (5)0.026 (5)0.002 (4)0.005 (4)0.010 (4)
C40.026 (4)0.029 (4)0.022 (4)0.002 (3)0.006 (3)0.002 (3)
C50.030 (4)0.027 (4)0.023 (5)0.009 (4)0.010 (4)0.001 (3)
C60.030 (4)0.029 (5)0.019 (4)0.003 (4)0.003 (3)0.002 (3)
C110.032 (6)0.096 (10)0.046 (7)0.015 (6)0.016 (5)0.003 (6)
C120.034 (6)0.087 (10)0.077 (9)0.024 (6)0.012 (6)0.011 (8)
C130.025 (5)0.092 (10)0.043 (7)0.008 (5)0.000 (4)0.006 (6)
C210.056 (7)0.035 (6)0.063 (8)0.001 (5)0.024 (6)0.006 (5)
C220.035 (5)0.069 (8)0.037 (6)0.001 (5)0.003 (4)0.016 (5)
C310.071 (8)0.032 (6)0.064 (8)0.007 (5)0.009 (6)0.003 (5)
C320.046 (6)0.037 (6)0.051 (7)0.011 (5)0.004 (5)0.006 (5)
C410.021 (4)0.051 (6)0.033 (5)0.005 (4)0.011 (4)0.006 (4)
C420.037 (5)0.032 (5)0.044 (6)0.004 (4)0.018 (4)0.000 (4)
C430.026 (4)0.049 (6)0.031 (5)0.008 (4)0.003 (4)0.002 (4)
C510.051 (6)0.035 (5)0.036 (6)0.018 (5)0.012 (5)0.002 (4)
C520.036 (5)0.041 (5)0.029 (5)0.010 (4)0.006 (4)0.010 (4)
C610.059 (6)0.029 (5)0.029 (5)0.007 (4)0.010 (4)0.000 (4)
C620.041 (6)0.046 (6)0.062 (7)0.010 (5)0.012 (5)0.025 (6)
Au20.0213 (2)0.0516 (3)0.0233 (3)0.0109 (2)0.00309 (18)0.0048 (2)
Br10.0338 (5)0.0646 (7)0.0379 (6)0.0013 (5)0.0037 (4)0.0039 (5)
Br20.0384 (5)0.0619 (7)0.0356 (6)0.0105 (5)0.0036 (4)0.0010 (5)
Au30.0247 (2)0.0193 (2)0.0267 (3)0.00104 (17)0.00136 (18)0.00288 (17)
Br30.0332 (5)0.0257 (4)0.0435 (6)0.0025 (4)0.0003 (4)0.0066 (4)
Br40.0286 (4)0.0278 (4)0.0370 (5)0.0054 (3)0.0040 (4)0.0032 (4)
Geometric parameters (Å, º) top
Au1—S12.291 (2)C21—H21C0.9800
Au1—S22.299 (2)C22—H22A0.9800
S1—P12.028 (3)C22—H22B0.9800
S2—P22.028 (3)C22—H22C0.9800
P1—C21.834 (10)C31—H31A0.9800
P1—C31.857 (10)C31—H31B0.9800
P1—C11.862 (9)C31—H31C0.9800
P2—C51.831 (9)C32—H32A0.9800
P2—C61.838 (9)C32—H32B0.9800
P2—C41.856 (8)C32—H32C0.9800
C1—C121.521 (17)C41—H41A0.9800
C1—C131.531 (14)C41—H41B0.9800
C1—C111.561 (15)C41—H41C0.9800
C2—C211.515 (15)C42—H42A0.9800
C2—C221.532 (14)C42—H42B0.9800
C2—H21.0000C42—H42C0.9800
C3—C311.524 (14)C43—H43A0.9800
C3—C321.524 (13)C43—H43B0.9800
C3—H31.0000C43—H43C0.9800
C4—C411.540 (12)C51—H51A0.9800
C4—C421.541 (13)C51—H51B0.9800
C4—C431.546 (12)C51—H51C0.9800
C5—C511.527 (12)C52—H52A0.9800
C5—C521.542 (12)C52—H52B0.9800
C5—H51.0000C52—H52C0.9800
C6—C621.510 (13)C61—H61A0.9800
C6—C611.542 (12)C61—H61B0.9800
C6—H61.0000C61—H61C0.9800
C11—H11A0.9800C62—H62A0.9800
C11—H11B0.9800C62—H62B0.9800
C11—H11C0.9800C62—H62C0.9800
C12—H12A0.9800Au2—Br2i2.4195 (10)
C12—H12B0.9800Au2—Br22.4196 (10)
C12—H12C0.9800Au2—Br12.4421 (11)
C13—H13A0.9800Au2—Br1i2.4421 (11)
C13—H13B0.9800Au3—Br3ii2.4238 (9)
C13—H13C0.9800Au3—Br32.4238 (9)
C21—H21A0.9800Au3—Br42.4294 (8)
C21—H21B0.9800Au3—Br4ii2.4294 (8)
S1—Au1—S2178.28 (8)H21B—C21—H21C109.5
P1—S1—Au1102.39 (11)C2—C22—H22A109.5
P2—S2—Au1103.89 (11)C2—C22—H22B109.5
C2—P1—C3104.9 (5)H22A—C22—H22B109.5
C2—P1—C1114.5 (5)C2—C22—H22C109.5
C3—P1—C1108.5 (5)H22A—C22—H22C109.5
C2—P1—S1111.2 (3)H22B—C22—H22C109.5
C3—P1—S1111.6 (3)C3—C31—H31A109.5
C1—P1—S1106.3 (3)C3—C31—H31B109.5
C5—P2—C6105.5 (4)H31A—C31—H31B109.5
C5—P2—C4113.3 (4)C3—C31—H31C109.5
C6—P2—C4109.8 (4)H31A—C31—H31C109.5
C5—P2—S2110.8 (3)H31B—C31—H31C109.5
C6—P2—S2111.7 (3)C3—C32—H32A109.5
C4—P2—S2105.9 (3)C3—C32—H32B109.5
C12—C1—C13109.6 (10)H32A—C32—H32B109.5
C12—C1—C11110.1 (10)C3—C32—H32C109.5
C13—C1—C11108.9 (9)H32A—C32—H32C109.5
C12—C1—P1107.0 (7)H32B—C32—H32C109.5
C13—C1—P1111.1 (7)C4—C41—H41A109.5
C11—C1—P1110.0 (7)C4—C41—H41B109.5
C21—C2—C22112.8 (9)H41A—C41—H41B109.5
C21—C2—P1115.3 (8)C4—C41—H41C109.5
C22—C2—P1113.6 (7)H41A—C41—H41C109.5
C21—C2—H2104.6H41B—C41—H41C109.5
C22—C2—H2104.6C4—C42—H42A109.5
P1—C2—H2104.6C4—C42—H42B109.5
C31—C3—C32109.6 (9)H42A—C42—H42B109.5
C31—C3—P1112.6 (7)C4—C42—H42C109.5
C32—C3—P1113.2 (7)H42A—C42—H42C109.5
C31—C3—H3107.0H42B—C42—H42C109.5
C32—C3—H3107.0C4—C43—H43A109.5
P1—C3—H3107.0C4—C43—H43B109.5
C41—C4—C42108.9 (7)H43A—C43—H43B109.5
C41—C4—C43110.1 (7)C4—C43—H43C109.5
C42—C4—C43107.5 (8)H43A—C43—H43C109.5
C41—C4—P2110.2 (6)H43B—C43—H43C109.5
C42—C4—P2109.5 (6)C5—C51—H51A109.5
C43—C4—P2110.6 (6)C5—C51—H51B109.5
C51—C5—C52111.6 (8)H51A—C51—H51B109.5
C51—C5—P2116.1 (7)C5—C51—H51C109.5
C52—C5—P2113.5 (6)H51A—C51—H51C109.5
C51—C5—H5104.8H51B—C51—H51C109.5
C52—C5—H5104.8C5—C52—H52A109.5
P2—C5—H5104.8C5—C52—H52B109.5
C62—C6—C61111.7 (8)H52A—C52—H52B109.5
C62—C6—P2112.5 (6)C5—C52—H52C109.5
C61—C6—P2112.4 (6)H52A—C52—H52C109.5
C62—C6—H6106.6H52B—C52—H52C109.5
C61—C6—H6106.6C6—C61—H61A109.5
P2—C6—H6106.6C6—C61—H61B109.5
C1—C11—H11A109.5H61A—C61—H61B109.5
C1—C11—H11B109.5C6—C61—H61C109.5
H11A—C11—H11B109.5H61A—C61—H61C109.5
C1—C11—H11C109.5H61B—C61—H61C109.5
H11A—C11—H11C109.5C6—C62—H62A109.5
H11B—C11—H11C109.5C6—C62—H62B109.5
C1—C12—H12A109.5H62A—C62—H62B109.5
C1—C12—H12B109.5C6—C62—H62C109.5
H12A—C12—H12B109.5H62A—C62—H62C109.5
C1—C12—H12C109.5H62B—C62—H62C109.5
H12A—C12—H12C109.5Br2i—Au2—Br2180.0
H12B—C12—H12C109.5Br2i—Au2—Br189.52 (4)
C1—C13—H13A109.5Br2—Au2—Br190.48 (4)
C1—C13—H13B109.5Br2i—Au2—Br1i90.48 (4)
H13A—C13—H13B109.5Br2—Au2—Br1i89.52 (4)
C1—C13—H13C109.5Br1—Au2—Br1i180.0
H13A—C13—H13C109.5Br3ii—Au3—Br3180.0
H13B—C13—H13C109.5Br3ii—Au3—Br489.48 (3)
C2—C21—H21A109.5Br3—Au3—Br490.52 (3)
C2—C21—H21B109.5Br3ii—Au3—Br4ii90.52 (3)
H21A—C21—H21B109.5Br3—Au3—Br4ii89.48 (3)
C2—C21—H21C109.5Br4—Au3—Br4ii180.0
H21A—C21—H21C109.5
Au1—S1—P1—C249.8 (3)C2—P1—C3—C3245.8 (8)
Au1—S1—P1—C366.9 (3)C1—P1—C3—C32168.6 (7)
Au1—S1—P1—C1175.0 (4)S1—P1—C3—C3274.7 (8)
Au1—S2—P2—C541.5 (3)C5—P2—C4—C4177.6 (7)
Au1—S2—P2—C675.8 (3)C6—P2—C4—C4140.0 (7)
Au1—S2—P2—C4164.7 (3)S2—P2—C4—C41160.8 (6)
C2—P1—C1—C1241.1 (9)C5—P2—C4—C4242.2 (7)
C3—P1—C1—C12157.9 (8)C6—P2—C4—C42159.9 (6)
S1—P1—C1—C1282.0 (8)S2—P2—C4—C4279.4 (6)
C2—P1—C1—C13160.8 (8)C5—P2—C4—C43160.5 (6)
C3—P1—C1—C1382.4 (9)C6—P2—C4—C4381.9 (7)
S1—P1—C1—C1337.6 (9)S2—P2—C4—C4338.9 (6)
C2—P1—C1—C1178.5 (9)C6—P2—C5—C51168.6 (7)
C3—P1—C1—C1138.2 (9)C4—P2—C5—C5171.2 (8)
S1—P1—C1—C11158.3 (7)S2—P2—C5—C5147.6 (7)
C3—P1—C2—C21167.3 (7)C6—P2—C5—C5260.0 (8)
C1—P1—C2—C2173.9 (8)C4—P2—C5—C5260.1 (8)
S1—P1—C2—C2146.6 (8)S2—P2—C5—C52178.9 (6)
C3—P1—C2—C2260.3 (8)C5—P2—C6—C6250.3 (8)
C1—P1—C2—C2258.5 (9)C4—P2—C6—C62172.6 (7)
S1—P1—C2—C22179.0 (6)S2—P2—C6—C6270.2 (8)
C2—P1—C3—C31170.9 (8)C5—P2—C6—C61177.4 (6)
C1—P1—C3—C3166.4 (9)C4—P2—C6—C6160.2 (7)
S1—P1—C3—C3150.4 (8)S2—P2—C6—C6157.0 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.753.514 (11)135
C13—H13C···S10.982.763.212 (11)109
C43—H43B···S20.982.773.201 (9)107
C3—H3···Br1iii1.003.143.809 (9)126
C52—H52C···Br1i0.983.114.055 (9)161
C5—H5···Br21.003.053.997 (9)158
C62—H62B···Br20.983.043.883 (12)145
C2—H2···Br3iii1.003.123.927 (9)139
C6—H6···Br3iv1.003.033.898 (8)146
C32—H32B···Br3iii0.983.114.023 (11)156
C42—H42A···Br3v0.982.973.848 (10)149
C62—H62C···Br4iv0.983.084.007 (10)158
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y1, z.
Bis[tert-butylbis(propan-2-yl)-λ5-phosphaneselanone-κSe]gold(I) tetrabromidoaurate(III) (4b) top
Crystal data top
[Au(C10H23PSe)2][AuBr4]F(000) = 2248
Mr = 1220.00Dx = 2.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.7265 (3) ÅCell parameters from 14834 reflections
b = 10.5615 (3) Åθ = 2.1–30.9°
c = 22.7782 (5) ŵ = 16.07 mm1
β = 94.096 (2)°T = 100 K
V = 3293.78 (14) Å3Block, red
Z = 40.15 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
9556 independent reflections
Radiation source: fine-focus sealed tube7328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω–scanh = 1918
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1414
Tmin = 0.589, Tmax = 1.000l = 3132
106256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.012P)2 + 5.9573P]
where P = (Fo2 + 2Fc2)/3
9556 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 1.57 e Å3
0 restraintsΔρmin = 1.09 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.24873 (2)0.10808 (2)0.25292 (2)0.01848 (4)
Se10.42270 (3)0.08281 (4)0.25371 (2)0.02074 (9)
Se20.07358 (3)0.12570 (4)0.24726 (2)0.01833 (9)
P10.43426 (7)0.06549 (10)0.15853 (4)0.0141 (2)
P20.04571 (7)0.10969 (9)0.34028 (4)0.0134 (2)
C10.5678 (3)0.0643 (4)0.14645 (19)0.0236 (10)
C20.3652 (3)0.1931 (4)0.11898 (18)0.0194 (9)
H20.2950740.1758060.1252400.023*
C30.3795 (3)0.0832 (4)0.12957 (17)0.0153 (8)
H30.3978800.0929430.0881190.018*
C40.0870 (3)0.0738 (4)0.34291 (17)0.0172 (8)
C50.1267 (3)0.0098 (4)0.37674 (17)0.0165 (8)
H50.1940620.0256620.3752210.020*
C60.0740 (3)0.2594 (4)0.37980 (17)0.0171 (8)
H60.0508480.2500600.4202220.021*
C110.5845 (3)0.0012 (5)0.08645 (19)0.0308 (11)
H11A0.5443120.0439020.0551130.046*
H11B0.5661300.0883360.0877490.046*
H11C0.6535430.0083350.0786130.046*
C120.6047 (3)0.2010 (5)0.1463 (2)0.0331 (12)
H12A0.5876630.2437400.1823320.050*
H12B0.5742900.2456240.1119660.050*
H12C0.6758140.2012220.1444130.050*
C130.6256 (3)0.0082 (5)0.19610 (19)0.0314 (11)
H13A0.6948320.0102630.1882730.047*
H13B0.6006270.0949360.1979440.047*
H13C0.6180660.0344510.2337250.047*
C210.3847 (3)0.3265 (4)0.1430 (2)0.0311 (11)
H21A0.4480240.3562360.1312400.047*
H21B0.3853870.3250420.1860710.047*
H21C0.3330860.3837130.1271830.047*
C220.3722 (3)0.1874 (4)0.05189 (18)0.0251 (10)
H22A0.3261320.2480840.0327130.038*
H22B0.3560100.1018160.0377590.038*
H22C0.4387340.2088370.0424650.038*
C310.4188 (3)0.1992 (4)0.16431 (19)0.0274 (10)
H31A0.4090010.1874870.2061610.041*
H31B0.4886180.2090480.1591310.041*
H31C0.3837290.2751040.1498020.041*
C320.2679 (3)0.0823 (4)0.12822 (19)0.0240 (10)
H32A0.2421840.1608630.1102740.036*
H32B0.2424960.0097610.1050430.036*
H32C0.2475730.0755480.1684770.036*
C410.1208 (3)0.1055 (4)0.40416 (18)0.0231 (9)
H41A0.1893970.0811300.4059430.035*
H41B0.1138900.1967040.4113310.035*
H41C0.0806270.0590080.4342140.035*
C420.1041 (3)0.0681 (4)0.3305 (2)0.0267 (10)
H42A0.0733810.1180900.3629760.040*
H42B0.0754860.0911570.2937590.040*
H42C0.1744600.0853600.3267760.040*
C430.1477 (3)0.1481 (4)0.29472 (18)0.0215 (9)
H43A0.2173980.1353080.2994430.032*
H43B0.1319900.1176560.2558590.032*
H43C0.1321700.2384730.2982530.032*
C510.1300 (3)0.1379 (4)0.3458 (2)0.0262 (10)
H51A0.1880110.1847480.3610370.039*
H51B0.1327540.1247010.3033620.039*
H51C0.0712310.1864700.3531380.039*
C520.1124 (3)0.0258 (4)0.44255 (17)0.0233 (9)
H52A0.0516630.0721570.4473510.035*
H52B0.1088840.0577490.4610020.035*
H52C0.1675900.0731910.4613090.035*
C610.0203 (3)0.3717 (4)0.35124 (19)0.0237 (10)
H61A0.0434590.4499910.3706870.035*
H61B0.0499920.3624280.3551540.035*
H61C0.0327260.3753050.3094360.035*
C620.1842 (3)0.2847 (4)0.3870 (2)0.0271 (10)
H62A0.2108060.2853790.3481490.041*
H62B0.2162220.2179690.4112200.041*
H62C0.1961180.3669490.4060640.041*
Au20.5000000.0000000.5000000.01658 (5)
Br10.62575 (3)0.15694 (4)0.48524 (2)0.02692 (10)
Br20.40674 (3)0.07184 (4)0.41181 (2)0.02478 (10)
Au31.0000000.5000000.5000000.01530 (5)
Br30.90816 (3)0.67316 (4)0.45277 (2)0.02375 (9)
Br40.84937 (3)0.39442 (4)0.52190 (2)0.02172 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02021 (8)0.02011 (8)0.01628 (8)0.00264 (7)0.00940 (6)0.00332 (7)
Se10.0194 (2)0.0312 (2)0.0120 (2)0.00504 (18)0.00327 (15)0.00602 (17)
Se20.0206 (2)0.0221 (2)0.0129 (2)0.00093 (16)0.00597 (15)0.00077 (16)
P10.0118 (5)0.0191 (5)0.0115 (5)0.0008 (4)0.0023 (4)0.0010 (4)
P20.0134 (5)0.0143 (5)0.0126 (5)0.0022 (4)0.0032 (4)0.0002 (4)
C10.0097 (19)0.037 (3)0.024 (2)0.0010 (18)0.0065 (16)0.001 (2)
C20.016 (2)0.018 (2)0.025 (2)0.0017 (16)0.0048 (17)0.0036 (17)
C30.018 (2)0.0153 (19)0.013 (2)0.0002 (15)0.0000 (15)0.0025 (16)
C40.0156 (19)0.019 (2)0.018 (2)0.0035 (16)0.0041 (16)0.0003 (17)
C50.0136 (19)0.017 (2)0.019 (2)0.0050 (16)0.0030 (15)0.0027 (16)
C60.019 (2)0.019 (2)0.014 (2)0.0014 (16)0.0010 (15)0.0017 (16)
C110.023 (2)0.046 (3)0.025 (3)0.005 (2)0.0104 (19)0.000 (2)
C120.018 (2)0.046 (3)0.035 (3)0.014 (2)0.005 (2)0.001 (2)
C130.016 (2)0.054 (3)0.024 (3)0.004 (2)0.0021 (18)0.005 (2)
C210.035 (3)0.020 (2)0.040 (3)0.000 (2)0.013 (2)0.004 (2)
C220.022 (2)0.030 (3)0.024 (2)0.0022 (19)0.0028 (18)0.0088 (19)
C310.038 (3)0.020 (2)0.024 (2)0.005 (2)0.000 (2)0.0015 (19)
C320.022 (2)0.021 (2)0.029 (3)0.0071 (18)0.0001 (18)0.0045 (19)
C410.018 (2)0.034 (3)0.018 (2)0.0044 (18)0.0076 (17)0.0010 (19)
C420.021 (2)0.026 (2)0.034 (3)0.0043 (19)0.0071 (19)0.000 (2)
C430.015 (2)0.029 (2)0.020 (2)0.0030 (17)0.0015 (16)0.0008 (18)
C510.028 (2)0.018 (2)0.032 (3)0.0104 (18)0.0026 (19)0.0014 (19)
C520.028 (2)0.023 (2)0.019 (2)0.0035 (18)0.0031 (18)0.0076 (18)
C610.036 (3)0.014 (2)0.020 (2)0.0036 (18)0.0020 (19)0.0031 (17)
C620.024 (2)0.022 (2)0.036 (3)0.0046 (18)0.003 (2)0.009 (2)
Au20.01443 (11)0.02328 (12)0.01210 (11)0.00557 (9)0.00144 (8)0.00054 (9)
Br10.0228 (2)0.0343 (2)0.0235 (2)0.00354 (19)0.00076 (17)0.00478 (19)
Br20.0216 (2)0.0346 (2)0.0176 (2)0.00501 (18)0.00265 (16)0.00469 (18)
Au30.01867 (11)0.01204 (10)0.01515 (11)0.00082 (8)0.00087 (8)0.00027 (8)
Br30.0242 (2)0.0172 (2)0.0293 (2)0.00082 (17)0.00192 (17)0.00480 (18)
Br40.0218 (2)0.0187 (2)0.0248 (2)0.00377 (16)0.00270 (16)0.00122 (17)
Geometric parameters (Å, º) top
Au1—Se12.4017 (4)C21—H21C0.9800
Au1—Se22.4057 (4)C22—H22A0.9800
Se1—P12.1929 (10)C22—H22B0.9800
Se2—P22.1864 (10)C22—H22C0.9800
P1—C31.843 (4)C31—H31A0.9800
P1—C21.845 (4)C31—H31B0.9800
P1—C11.873 (4)C31—H31C0.9800
P2—C51.840 (4)C32—H32A0.9800
P2—C61.847 (4)C32—H32B0.9800
P2—C41.866 (4)C32—H32C0.9800
C1—C121.530 (6)C41—H41A0.9800
C1—C131.538 (6)C41—H41B0.9800
C1—C111.552 (6)C41—H41C0.9800
C2—C211.528 (6)C42—H42A0.9800
C2—C221.539 (6)C42—H42B0.9800
C2—H21.0000C42—H42C0.9800
C3—C321.530 (5)C43—H43A0.9800
C3—C311.535 (5)C43—H43B0.9800
C3—H31.0000C43—H43C0.9800
C4—C411.538 (5)C51—H51A0.9800
C4—C421.541 (6)C51—H51B0.9800
C4—C431.544 (5)C51—H51C0.9800
C5—C511.528 (5)C52—H52A0.9800
C5—C521.535 (5)C52—H52B0.9800
C5—H51.0000C52—H52C0.9800
C6—C611.519 (5)C61—H61A0.9800
C6—C621.534 (6)C61—H61B0.9800
C6—H61.0000C61—H61C0.9800
C11—H11A0.9800C62—H62A0.9800
C11—H11B0.9800C62—H62B0.9800
C11—H11C0.9800C62—H62C0.9800
C12—H12A0.9800Au2—Br22.4254 (4)
C12—H12B0.9800Au2—Br2i2.4254 (4)
C12—H12C0.9800Au2—Br12.4337 (4)
C13—H13A0.9800Au2—Br1i2.4337 (4)
C13—H13B0.9800Au3—Br3ii2.4285 (4)
C13—H13C0.9800Au3—Br32.4285 (4)
C21—H21A0.9800Au3—Br4ii2.4320 (4)
C21—H21B0.9800Au3—Br42.4320 (4)
Se1—Au1—Se2176.734 (16)H21B—C21—H21C109.5
P1—Se1—Au198.27 (3)C2—C22—H22A109.5
P2—Se2—Au1100.69 (3)C2—C22—H22B109.5
C3—P1—C2105.40 (18)H22A—C22—H22B109.5
C3—P1—C1108.68 (19)C2—C22—H22C109.5
C2—P1—C1114.03 (19)H22A—C22—H22C109.5
C3—P1—Se1111.62 (13)H22B—C22—H22C109.5
C2—P1—Se1110.54 (13)C3—C31—H31A109.5
C1—P1—Se1106.65 (14)C3—C31—H31B109.5
C5—P2—C6105.53 (18)H31A—C31—H31B109.5
C5—P2—C4113.97 (18)C3—C31—H31C109.5
C6—P2—C4109.25 (18)H31A—C31—H31C109.5
C5—P2—Se2110.39 (13)H31B—C31—H31C109.5
C6—P2—Se2111.16 (13)C3—C32—H32A109.5
C4—P2—Se2106.60 (13)C3—C32—H32B109.5
C12—C1—C13108.5 (4)H32A—C32—H32B109.5
C12—C1—C11109.4 (4)C3—C32—H32C109.5
C13—C1—C11109.5 (4)H32A—C32—H32C109.5
C12—C1—P1108.8 (3)H32B—C32—H32C109.5
C13—C1—P1110.7 (3)C4—C41—H41A109.5
C11—C1—P1109.9 (3)C4—C41—H41B109.5
C21—C2—C22111.7 (3)H41A—C41—H41B109.5
C21—C2—P1115.3 (3)C4—C41—H41C109.5
C22—C2—P1113.0 (3)H41A—C41—H41C109.5
C21—C2—H2105.2H41B—C41—H41C109.5
C22—C2—H2105.2C4—C42—H42A109.5
P1—C2—H2105.2C4—C42—H42B109.5
C32—C3—C31109.3 (3)H42A—C42—H42B109.5
C32—C3—P1112.6 (3)C4—C42—H42C109.5
C31—C3—P1112.1 (3)H42A—C42—H42C109.5
C32—C3—H3107.6H42B—C42—H42C109.5
C31—C3—H3107.6C4—C43—H43A109.5
P1—C3—H3107.6C4—C43—H43B109.5
C41—C4—C42109.1 (3)H43A—C43—H43B109.5
C41—C4—C43110.6 (3)C4—C43—H43C109.5
C42—C4—C43107.2 (3)H43A—C43—H43C109.5
C41—C4—P2110.1 (3)H43B—C43—H43C109.5
C42—C4—P2109.2 (3)C5—C51—H51A109.5
C43—C4—P2110.6 (3)C5—C51—H51B109.5
C51—C5—C52111.3 (3)H51A—C51—H51B109.5
C51—C5—P2115.8 (3)C5—C51—H51C109.5
C52—C5—P2113.6 (3)H51A—C51—H51C109.5
C51—C5—H5105.0H51B—C51—H51C109.5
C52—C5—H5105.0C5—C52—H52A109.5
P2—C5—H5105.0C5—C52—H52B109.5
C61—C6—C62110.7 (3)H52A—C52—H52B109.5
C61—C6—P2112.4 (3)C5—C52—H52C109.5
C62—C6—P2111.9 (3)H52A—C52—H52C109.5
C61—C6—H6107.2H52B—C52—H52C109.5
C62—C6—H6107.2C6—C61—H61A109.5
P2—C6—H6107.2C6—C61—H61B109.5
C1—C11—H11A109.5H61A—C61—H61B109.5
C1—C11—H11B109.5C6—C61—H61C109.5
H11A—C11—H11B109.5H61A—C61—H61C109.5
C1—C11—H11C109.5H61B—C61—H61C109.5
H11A—C11—H11C109.5C6—C62—H62A109.5
H11B—C11—H11C109.5C6—C62—H62B109.5
C1—C12—H12A109.5H62A—C62—H62B109.5
C1—C12—H12B109.5C6—C62—H62C109.5
H12A—C12—H12B109.5H62A—C62—H62C109.5
C1—C12—H12C109.5H62B—C62—H62C109.5
H12A—C12—H12C109.5Br2—Au2—Br2i180.0
H12B—C12—H12C109.5Br2—Au2—Br190.581 (15)
C1—C13—H13A109.5Br2i—Au2—Br189.419 (15)
C1—C13—H13B109.5Br2—Au2—Br1i89.419 (15)
H13A—C13—H13B109.5Br2i—Au2—Br1i90.581 (15)
C1—C13—H13C109.5Br1—Au2—Br1i180.0
H13A—C13—H13C109.5Br3ii—Au3—Br3180.0
H13B—C13—H13C109.5Br3ii—Au3—Br4ii90.810 (14)
C2—C21—H21A109.5Br3—Au3—Br4ii89.190 (14)
C2—C21—H21B109.5Br3ii—Au3—Br489.191 (14)
H21A—C21—H21B109.5Br3—Au3—Br490.809 (14)
C2—C21—H21C109.5Br4ii—Au3—Br4180.0
H21A—C21—H21C109.5
Au1—Se1—P1—C368.24 (14)C2—P1—C3—C31171.7 (3)
Au1—Se1—P1—C248.73 (14)C1—P1—C3—C3165.7 (3)
Au1—Se1—P1—C1173.20 (15)Se1—P1—C3—C3151.7 (3)
Au1—Se2—P2—C539.44 (14)C5—P2—C4—C4177.4 (3)
Au1—Se2—P2—C677.32 (14)C6—P2—C4—C4140.4 (3)
Au1—Se2—P2—C4163.72 (13)Se2—P2—C4—C41160.6 (2)
C3—P1—C1—C12157.2 (3)C5—P2—C4—C4242.3 (3)
C2—P1—C1—C1240.0 (4)C6—P2—C4—C42160.1 (3)
Se1—P1—C1—C1282.3 (3)Se2—P2—C4—C4279.7 (3)
C3—P1—C1—C1383.6 (3)C5—P2—C4—C43160.1 (3)
C2—P1—C1—C13159.2 (3)C6—P2—C4—C4382.2 (3)
Se1—P1—C1—C1336.9 (3)Se2—P2—C4—C4338.1 (3)
C3—P1—C1—C1137.4 (4)C6—P2—C5—C51170.1 (3)
C2—P1—C1—C1179.8 (3)C4—P2—C5—C5170.0 (3)
Se1—P1—C1—C11157.9 (3)Se2—P2—C5—C5149.9 (3)
C3—P1—C2—C21169.5 (3)C6—P2—C5—C5259.2 (3)
C1—P1—C2—C2171.4 (3)C4—P2—C5—C5260.7 (3)
Se1—P1—C2—C2148.7 (3)Se2—P2—C5—C52179.4 (3)
C3—P1—C2—C2260.3 (3)C5—P2—C6—C61174.2 (3)
C1—P1—C2—C2258.8 (3)C4—P2—C6—C6162.8 (3)
Se1—P1—C2—C22178.9 (2)Se2—P2—C6—C6154.5 (3)
C2—P1—C3—C3248.0 (3)C5—P2—C6—C6248.9 (3)
C1—P1—C3—C32170.6 (3)C4—P2—C6—C62171.8 (3)
Se1—P1—C3—C3272.0 (3)Se2—P2—C6—C6270.8 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.733.505 (4)136
C13—H13C···Se10.982.803.305 (4)113
C43—H43B···Se20.982.843.304 (4)110
C3—H3···Br1iii1.003.133.788 (4)125
C52—H52C···Br1i0.983.134.086 (4)165
C5—H5···Br21.003.023.964 (4)158
C62—H62B···Br20.983.043.802 (4)136
C2—H2···Br3iii1.003.203.990 (4)137
C6—H6···Br3iv1.003.023.870 (4)144
C32—H32B···Br3iii0.983.063.985 (4)158
C42—H42A···Br3v0.983.033.897 (4)148
C62—H62C···Br4iv0.983.104.018 (4)158
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y1, z.
Bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III) (5a) top
Crystal data top
[Au(C12H27PS)2][AuBr4]Z = 1
Mr = 1182.30F(000) = 558
Triclinic, P1Dx = 2.202 Mg m3
a = 8.4858 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3738 (4) ÅCell parameters from 18685 reflections
c = 11.9910 (5) Åθ = 2.3–30.7°
α = 105.533 (4)°µ = 12.92 mm1
β = 97.476 (4)°T = 100 K
γ = 99.318 (4)°Block, dichroic red / orange
V = 891.63 (7) Å30.12 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5273 independent reflections
Radiation source: fine-focus sealed tube4754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1419 pixels mm-1θmax = 30.7°, θmin = 2.3°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1313
Tmin = 0.765, Tmax = 1.000l = 1717
47038 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.0116P)2 + 0.584P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
5273 reflectionsΔρmax = 0.73 e Å3
167 parametersΔρmin = 0.71 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1+0.001×Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00106 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.5000000.5000000.01767 (3)
P10.23519 (6)0.62570 (6)0.31823 (4)0.01195 (9)
S10.32147 (7)0.65725 (6)0.49172 (4)0.01907 (11)
C10.1193 (3)0.7846 (2)0.32673 (19)0.0179 (4)
C20.0947 (2)0.4340 (2)0.25201 (18)0.0161 (4)
C30.4086 (2)0.6476 (2)0.23441 (18)0.0148 (4)
C110.0041 (3)0.7651 (3)0.2107 (2)0.0229 (5)
H11A0.0460510.8535180.2183910.034*
H11B0.0806840.6738220.1936500.034*
H11C0.0658760.7555530.1464410.034*
C120.2391 (3)0.9378 (2)0.3589 (2)0.0242 (5)
H12A0.2949870.9425820.2930340.036*
H12B0.3190850.9483690.4288930.036*
H12C0.1793961.0200620.3752820.036*
C130.0190 (3)0.7956 (3)0.4264 (2)0.0255 (5)
H13A0.0924980.8220980.5023090.038*
H13B0.0540570.6979860.4132480.038*
H13C0.0451010.8738040.4268100.038*
C210.0490 (3)0.3926 (3)0.11710 (18)0.0214 (4)
H21A0.0320590.2976660.0874330.032*
H21B0.1461810.3803170.0823850.032*
H21C0.0039490.4734600.0956050.032*
C220.0621 (3)0.4321 (3)0.3032 (2)0.0249 (5)
H22A0.1240080.4997290.2758280.037*
H22B0.0346970.4663490.3893300.037*
H22C0.1275720.3289180.2769800.037*
C230.1708 (3)0.3088 (2)0.2847 (2)0.0214 (4)
H23A0.1894780.3288890.3703580.032*
H23B0.2744370.3073730.2570670.032*
H23C0.0969410.2105790.2474100.032*
C310.3558 (3)0.6877 (3)0.12054 (19)0.0202 (4)
H31A0.4465620.6926990.0778890.030*
H31B0.3237280.7859570.1404720.030*
H31C0.2636190.6098260.0708760.030*
C320.5513 (3)0.7717 (3)0.3137 (2)0.0215 (4)
H32A0.5885700.7435130.3841940.032*
H32B0.5154390.8679100.3370200.032*
H32C0.6406510.7825090.2704400.032*
C330.4739 (3)0.5008 (2)0.20084 (19)0.0192 (4)
H33A0.5676170.5169600.1625260.029*
H33B0.3885450.4195730.1466350.029*
H33C0.5069450.4724780.2719850.029*
Au20.5000001.0000001.0000000.01376 (3)
Br10.43975 (3)0.87358 (2)0.78998 (2)0.02087 (5)
Br20.77780 (3)0.96487 (3)1.00751 (2)0.02657 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01701 (6)0.02443 (6)0.01215 (6)0.00535 (4)0.00136 (4)0.00762 (4)
P10.0115 (2)0.0145 (2)0.0100 (2)0.00275 (18)0.00132 (18)0.00408 (19)
S10.0214 (3)0.0257 (3)0.0100 (2)0.0085 (2)0.00031 (19)0.0041 (2)
C10.0179 (10)0.0197 (10)0.0175 (10)0.0086 (8)0.0036 (8)0.0050 (8)
C20.0157 (10)0.0168 (10)0.0142 (10)0.0010 (8)0.0002 (8)0.0061 (8)
C30.0147 (9)0.0164 (9)0.0151 (10)0.0037 (7)0.0056 (8)0.0059 (8)
C110.0208 (11)0.0294 (12)0.0233 (11)0.0117 (9)0.0026 (9)0.0124 (10)
C120.0279 (12)0.0161 (10)0.0292 (13)0.0080 (9)0.0060 (10)0.0053 (9)
C130.0259 (12)0.0316 (12)0.0233 (12)0.0148 (10)0.0114 (10)0.0069 (10)
C210.0235 (11)0.0210 (11)0.0153 (11)0.0003 (9)0.0047 (8)0.0046 (9)
C220.0175 (11)0.0293 (12)0.0269 (12)0.0025 (9)0.0050 (9)0.0103 (10)
C230.0250 (11)0.0170 (10)0.0220 (11)0.0009 (8)0.0011 (9)0.0087 (9)
C310.0222 (11)0.0235 (11)0.0197 (11)0.0066 (9)0.0082 (9)0.0111 (9)
C320.0137 (10)0.0237 (11)0.0265 (12)0.0013 (8)0.0027 (9)0.0086 (9)
C330.0190 (10)0.0234 (11)0.0182 (11)0.0089 (8)0.0060 (8)0.0070 (9)
Au20.01409 (5)0.00987 (5)0.01663 (6)0.00063 (4)0.00114 (4)0.00460 (4)
Br10.02326 (11)0.01784 (10)0.01773 (11)0.00018 (8)0.00122 (8)0.00270 (8)
Br20.01682 (10)0.02703 (12)0.03089 (13)0.00700 (9)0.00045 (9)0.00063 (10)
Geometric parameters (Å, º) top
Au1—S1i2.2891 (5)C13—H13C0.9800
Au1—S12.2891 (5)C21—H21A0.9800
P1—C21.892 (2)C21—H21B0.9800
P1—C31.901 (2)C21—H21C0.9800
P1—C11.901 (2)C22—H22A0.9800
P1—S12.0384 (7)C22—H22B0.9800
C1—C121.540 (3)C22—H22C0.9800
C1—C111.541 (3)C23—H23A0.9800
C1—C131.546 (3)C23—H23B0.9800
C2—C221.535 (3)C23—H23C0.9800
C2—C211.539 (3)C31—H31A0.9800
C2—C231.540 (3)C31—H31B0.9800
C3—C331.539 (3)C31—H31C0.9800
C3—C311.541 (3)C32—H32A0.9800
C3—C321.541 (3)C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800C33—H33A0.9800
C11—H11C0.9800C33—H33B0.9800
C12—H12A0.9800C33—H33C0.9800
C12—H12B0.9800Au2—Br12.4245 (2)
C12—H12C0.9800Au2—Br1ii2.4245 (2)
C13—H13A0.9800Au2—Br2ii2.4260 (2)
C13—H13B0.9800Au2—Br22.4260 (2)
S1i—Au1—S1180.0H13B—C13—H13C109.5
C2—P1—C3111.22 (9)C2—C21—H21A109.5
C2—P1—C1111.27 (10)C2—C21—H21B109.5
C3—P1—C1111.39 (9)H21A—C21—H21B109.5
C2—P1—S1110.08 (7)C2—C21—H21C109.5
C3—P1—S1110.94 (7)H21A—C21—H21C109.5
C1—P1—S1101.58 (7)H21B—C21—H21C109.5
P1—S1—Au1107.15 (3)C2—C22—H22A109.5
C12—C1—C11108.38 (18)C2—C22—H22B109.5
C12—C1—C13106.10 (18)H22A—C22—H22B109.5
C11—C1—C13108.66 (18)C2—C22—H22C109.5
C12—C1—P1110.09 (14)H22A—C22—H22C109.5
C11—C1—P1113.07 (15)H22B—C22—H22C109.5
C13—C1—P1110.28 (14)C2—C23—H23A109.5
C22—C2—C21108.46 (18)C2—C23—H23B109.5
C22—C2—C23105.66 (17)H23A—C23—H23B109.5
C21—C2—C23109.05 (17)C2—C23—H23C109.5
C22—C2—P1109.93 (15)H23A—C23—H23C109.5
C21—C2—P1112.27 (14)H23B—C23—H23C109.5
C23—C2—P1111.23 (14)C3—C31—H31A109.5
C33—C3—C31108.08 (17)C3—C31—H31B109.5
C33—C3—C32106.56 (17)H31A—C31—H31B109.5
C31—C3—C32109.51 (16)C3—C31—H31C109.5
C33—C3—P1110.98 (14)H31A—C31—H31C109.5
C31—C3—P1111.94 (14)H31B—C31—H31C109.5
C32—C3—P1109.63 (14)C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5C3—C33—H33A109.5
C1—C12—H12A109.5C3—C33—H33B109.5
C1—C12—H12B109.5H33A—C33—H33B109.5
H12A—C12—H12B109.5C3—C33—H33C109.5
C1—C12—H12C109.5H33A—C33—H33C109.5
H12A—C12—H12C109.5H33B—C33—H33C109.5
H12B—C12—H12C109.5Br1—Au2—Br1ii180.0
C1—C13—H13A109.5Br1—Au2—Br2ii89.687 (9)
C1—C13—H13B109.5Br1ii—Au2—Br2ii90.313 (9)
H13A—C13—H13B109.5Br1—Au2—Br290.312 (9)
C1—C13—H13C109.5Br1ii—Au2—Br289.687 (9)
H13A—C13—H13C109.5Br2ii—Au2—Br2180.0
C2—P1—S1—Au171.01 (7)C3—P1—C2—C2146.85 (17)
C3—P1—S1—Au152.53 (7)C1—P1—C2—C2177.96 (17)
C1—P1—S1—Au1171.01 (7)S1—P1—C2—C21170.22 (13)
C2—P1—C1—C12169.51 (14)C3—P1—C2—C2375.67 (16)
C3—P1—C1—C1244.79 (17)C1—P1—C2—C23159.52 (14)
S1—P1—C1—C1273.37 (15)S1—P1—C2—C2347.70 (16)
C2—P1—C1—C1148.13 (18)C2—P1—C3—C3340.99 (17)
C3—P1—C1—C1176.59 (17)C1—P1—C3—C33165.73 (14)
S1—P1—C1—C11165.24 (14)S1—P1—C3—C3381.89 (15)
C2—P1—C1—C1373.75 (17)C2—P1—C3—C3179.86 (16)
C3—P1—C1—C13161.53 (15)C1—P1—C3—C3144.89 (17)
S1—P1—C1—C1343.37 (16)S1—P1—C3—C31157.27 (13)
C3—P1—C2—C22167.67 (14)C2—P1—C3—C32158.42 (13)
C1—P1—C2—C2242.86 (17)C1—P1—C3—C3276.83 (15)
S1—P1—C2—C2268.96 (15)S1—P1—C3—C3235.55 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33C···Au10.982.693.567 (2)150
C23—H23A···Au10.982.863.421 (2)118
C22—H22C···Br1iii0.982.883.756 (2)150
C12—H12A···Br1iv0.983.053.890 (2)145
C32—H32A···S10.982.863.338 (2)111
C23—H23A···S10.982.983.456 (2)111
C13—H13A···S10.982.673.160 (2)112
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+2, z+1.
Bis(tri-tert-butylphosphane selenide-κSe)gold(I) tetrabromidoaurate(III) (5b) top
Crystal data top
[Au(C12H27PSe)2][AuBr4]Z = 1
Mr = 1276.10F(000) = 594
Triclinic, P1Dx = 2.330 Mg m3
a = 8.4403 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2135 (4) ÅCell parameters from 14356 reflections
c = 12.6496 (5) Åθ = 2.3–30.8°
α = 106.172 (4)°µ = 14.56 mm1
β = 101.100 (4)°T = 100 K
γ = 97.485 (4)°Block, dichroic red / orange
V = 909.28 (7) Å30.12 × 0.12 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5398 independent reflections
Radiation source: fine-focus sealed tube4704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.4°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1313
Tmin = 0.468, Tmax = 1.000l = 1818
48315 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.036H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.013P)2 + 0.5218P]
where P = (Fo2 + 2Fc2)/3
5398 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.87 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.5000000.5000000.01861 (4)
P10.23823 (7)0.64599 (7)0.31359 (5)0.01078 (12)
Se10.33995 (3)0.69690 (3)0.49665 (2)0.01875 (6)
C10.1452 (3)0.8210 (3)0.3065 (2)0.0149 (5)
C20.0740 (3)0.4642 (3)0.2605 (2)0.0157 (5)
C30.4077 (3)0.6294 (3)0.2335 (2)0.0149 (5)
C110.0226 (3)0.7960 (3)0.1928 (2)0.0187 (5)
H11A0.0122480.8931010.1916750.028*
H11B0.0737180.7178030.1839090.028*
H11C0.0757970.7613030.1303410.028*
C120.2828 (3)0.9601 (3)0.3281 (2)0.0211 (6)
H12A0.3350330.9434420.2640030.032*
H12B0.3652310.9722030.3976720.032*
H12C0.2360331.0534240.3363520.032*
C130.0553 (3)0.8691 (3)0.4026 (2)0.0236 (6)
H13A0.1336720.8942240.4761490.035*
H13B0.0332360.7839860.3948710.035*
H13C0.0086420.9596360.3975410.035*
C210.0156 (3)0.4067 (3)0.1300 (2)0.0240 (6)
H21A0.0777290.3200430.1066410.036*
H21B0.1059370.3730300.0972880.036*
H21C0.0184630.4905170.1031870.036*
C220.0744 (3)0.4956 (3)0.3114 (3)0.0247 (6)
H22A0.1258470.5702960.2818280.037*
H22B0.0371300.5373310.3941320.037*
H22C0.1545950.3992740.2905250.037*
C230.1345 (3)0.3327 (3)0.2995 (2)0.0213 (6)
H23A0.1655640.3646890.3824980.032*
H23B0.2302400.3086790.2697640.032*
H23C0.0462530.2411340.2709230.032*
C310.3563 (3)0.6577 (3)0.1182 (2)0.0222 (6)
H31A0.4451770.6459110.0786610.033*
H31B0.3344660.7623540.1306220.033*
H31C0.2564790.5829470.0720480.033*
C320.5661 (3)0.7457 (3)0.3056 (2)0.0218 (6)
H32A0.6038300.7223340.3761280.033*
H32B0.5433440.8503450.3233770.033*
H32C0.6517980.7384550.2629640.033*
C330.4516 (3)0.4686 (3)0.2097 (2)0.0196 (5)
H33A0.5431090.4655010.1723190.029*
H33B0.3556810.3912990.1603330.029*
H33C0.4839860.4464710.2814080.029*
Au20.5000001.0000001.0000000.01304 (3)
Br10.38051 (3)0.89229 (3)0.79758 (2)0.02139 (6)
Br20.77027 (3)0.96169 (3)0.97214 (2)0.02058 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01911 (7)0.02043 (7)0.01488 (7)0.00373 (5)0.00363 (5)0.00853 (6)
P10.0104 (3)0.0105 (3)0.0104 (3)0.0024 (2)0.0000 (2)0.0032 (2)
Se10.02330 (13)0.01952 (13)0.01099 (12)0.00578 (10)0.00139 (10)0.00389 (10)
C10.0162 (11)0.0135 (11)0.0157 (12)0.0049 (9)0.0032 (9)0.0049 (10)
C20.0134 (11)0.0126 (11)0.0178 (13)0.0007 (9)0.0017 (9)0.0047 (10)
C30.0126 (11)0.0191 (12)0.0160 (12)0.0058 (9)0.0051 (9)0.0079 (10)
C110.0156 (12)0.0219 (13)0.0206 (14)0.0086 (10)0.0020 (10)0.0093 (11)
C120.0228 (13)0.0122 (12)0.0286 (15)0.0037 (10)0.0052 (11)0.0075 (11)
C130.0267 (14)0.0236 (14)0.0235 (15)0.0123 (11)0.0106 (11)0.0054 (11)
C210.0220 (13)0.0189 (13)0.0215 (14)0.0001 (11)0.0079 (11)0.0021 (11)
C220.0144 (12)0.0246 (14)0.0383 (17)0.0014 (11)0.0058 (11)0.0160 (13)
C230.0212 (13)0.0141 (12)0.0279 (15)0.0015 (10)0.0005 (11)0.0099 (11)
C310.0244 (14)0.0291 (15)0.0197 (14)0.0122 (11)0.0097 (11)0.0118 (12)
C320.0121 (11)0.0244 (14)0.0314 (15)0.0038 (10)0.0044 (11)0.0129 (12)
C330.0209 (13)0.0219 (13)0.0192 (13)0.0118 (10)0.0072 (10)0.0065 (11)
Au20.01454 (6)0.00968 (6)0.01406 (7)0.00039 (5)0.00263 (5)0.00384 (5)
Br10.02170 (13)0.02263 (13)0.01498 (13)0.00268 (10)0.00182 (10)0.00310 (10)
Br20.01669 (12)0.02068 (13)0.02315 (14)0.00422 (10)0.00508 (10)0.00445 (10)
Geometric parameters (Å, º) top
Au1—Se12.4036 (3)C13—H13C0.9800
Au1—Se1i2.4036 (3)C21—H21A0.9800
P1—C21.895 (2)C21—H21B0.9800
P1—C11.900 (2)C21—H21C0.9800
P1—C31.904 (2)C22—H22A0.9800
P1—Se12.2009 (6)C22—H22B0.9800
C1—C121.537 (3)C22—H22C0.9800
C1—C111.541 (3)C23—H23A0.9800
C1—C131.547 (3)C23—H23B0.9800
C2—C221.538 (4)C23—H23C0.9800
C2—C231.538 (3)C31—H31A0.9800
C2—C211.543 (4)C31—H31B0.9800
C3—C331.537 (3)C31—H31C0.9800
C3—C321.543 (3)C32—H32A0.9800
C3—C311.543 (3)C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800C33—H33A0.9800
C11—H11C0.9800C33—H33B0.9800
C12—H12A0.9800C33—H33C0.9800
C12—H12B0.9800Au2—Br1ii2.4265 (3)
C12—H12C0.9800Au2—Br12.4265 (3)
C13—H13A0.9800Au2—Br22.4295 (3)
C13—H13B0.9800Au2—Br2ii2.4295 (3)
Se1—Au1—Se1i180.0H13B—C13—H13C109.5
C2—P1—C1111.15 (11)C2—C21—H21A109.5
C2—P1—C3111.98 (11)C2—C21—H21B109.5
C1—P1—C3110.57 (11)H21A—C21—H21B109.5
C2—P1—Se1109.06 (8)C2—C21—H21C109.5
C1—P1—Se1102.74 (8)H21A—C21—H21C109.5
C3—P1—Se1110.96 (8)H21B—C21—H21C109.5
P1—Se1—Au1101.806 (19)C2—C22—H22A109.5
C12—C1—C11109.1 (2)C2—C22—H22B109.5
C12—C1—C13105.1 (2)H22A—C22—H22B109.5
C11—C1—C13108.1 (2)C2—C22—H22C109.5
C12—C1—P1109.79 (17)H22A—C22—H22C109.5
C11—C1—P1113.56 (17)H22B—C22—H22C109.5
C13—C1—P1110.76 (17)C2—C23—H23A109.5
C22—C2—C23106.1 (2)C2—C23—H23B109.5
C22—C2—C21109.1 (2)H23A—C23—H23B109.5
C23—C2—C21108.2 (2)C2—C23—H23C109.5
C22—C2—P1109.27 (17)H23A—C23—H23C109.5
C23—C2—P1111.81 (16)H23B—C23—H23C109.5
C21—C2—P1112.14 (17)C3—C31—H31A109.5
C33—C3—C32106.7 (2)C3—C31—H31B109.5
C33—C3—C31107.3 (2)H31A—C31—H31B109.5
C32—C3—C31109.5 (2)C3—C31—H31C109.5
C33—C3—P1111.40 (17)H31A—C31—H31C109.5
C32—C3—P1109.97 (17)H31B—C31—H31C109.5
C31—C3—P1111.73 (17)C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5C3—C33—H33A109.5
C1—C12—H12A109.5C3—C33—H33B109.5
C1—C12—H12B109.5H33A—C33—H33B109.5
H12A—C12—H12B109.5C3—C33—H33C109.5
C1—C12—H12C109.5H33A—C33—H33C109.5
H12A—C12—H12C109.5H33B—C33—H33C109.5
H12B—C12—H12C109.5Br1ii—Au2—Br1180.0
C1—C13—H13A109.5Br1ii—Au2—Br289.101 (10)
C1—C13—H13B109.5Br1—Au2—Br290.899 (10)
H13A—C13—H13B109.5Br1ii—Au2—Br2ii90.898 (10)
C1—C13—H13C109.5Br1—Au2—Br2ii89.102 (10)
H13A—C13—H13C109.5Br2—Au2—Br2ii180.0
C2—P1—Se1—Au172.38 (9)C1—P1—C2—C23161.96 (18)
C1—P1—Se1—Au1169.62 (8)C3—P1—C2—C2373.8 (2)
C3—P1—Se1—Au151.43 (8)Se1—P1—C2—C2349.39 (19)
C2—P1—C1—C12169.27 (17)C1—P1—C2—C2176.3 (2)
C3—P1—C1—C1244.3 (2)C3—P1—C2—C2147.9 (2)
Se1—P1—C1—C1274.22 (17)Se1—P1—C2—C21171.13 (16)
C2—P1—C1—C1146.8 (2)C2—P1—C3—C3339.8 (2)
C3—P1—C1—C1178.21 (19)C1—P1—C3—C33164.31 (17)
Se1—P1—C1—C11163.33 (16)Se1—P1—C3—C3382.36 (17)
C2—P1—C1—C1375.1 (2)C2—P1—C3—C32157.89 (17)
C3—P1—C1—C13159.92 (17)C1—P1—C3—C3277.56 (19)
Se1—P1—C1—C1341.45 (18)Se1—P1—C3—C3235.76 (18)
C1—P1—C2—C2244.8 (2)C2—P1—C3—C3180.3 (2)
C3—P1—C2—C22168.98 (17)C1—P1—C3—C3144.3 (2)
Se1—P1—C2—C2267.81 (18)Se1—P1—C3—C31157.59 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33C···Au10.982.643.540 (3)152
C23—H23A···Au10.982.863.449 (3)120
C22—H22C···Br1iii0.982.883.851 (3)173
C12—H12A···Br1iv0.983.023.793 (3)137
C32—H32A···Se10.982.953.442 (3)112
C23—H23A···Se10.983.033.556 (3)115
C13—H13A···Se10.982.703.263 (3)117
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+2, z+1.
Compositions of the [(R1R2R3PE)2Au]+[AuX4]- structures presented in this paper (see Scheme) top
CompoundR1R2R3EX
1iPriPriPrSCl
2iPriPrtBuSCl
3tButButBuSCl
4aiPriPrtBuSBr
4biPriPriBuSeBr
5aiBuiButBuSBr
5biButButBuSeBr
Geometric details (Å, °) of E···X contacts top
CompoundContact P—E···X—AuE···XP—E···XE···X—Au
1none
2P3—S3···Cl2—Au33.6623 (15)166.47 (15)138.96 (4)
2aP1—S1···Cl4—Au33.8505 (15)174.74 (5)137.71 (4)
3P1—S1···Cl1—Au13.5617 (7)157.52 (2)165.36 (2)
4aP1—S1···Br2—Au13.746 (3)166.39 (13)146.20 (5)
4bP1—Se1···Br2—Au13.6251 (6)173.35 (3)140.09 (2)
5aP1—S1···Br1—Au23.5260 (6)154.01 (3)173.46 (1)
5bP1—Se1···Br1—Au23.6563 (4)154.96 (2)160.33 (1)
Note: (a) Operator for X—Au: -1 + x, y, z.
 

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

First citationAakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDance, I. (2003). New J. Chem. 27, 22–27.  Web of Science CrossRef CAS Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, P. G. & Geissler, N. (2016a). Experimental Crystal Structure Determination (refcode UREBOK, CCDC 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n.  Google Scholar
First citationJones, P. G. & Geissler, N. (2016b). Experimental Crystal Structure Determination (refcode UREBUQ, CCDC 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p.  Google Scholar
First citationJones, P. G. & Thöne, C. (1991). Inorg. Chim. Acta, 181, 291–294.  CrossRef CAS Google Scholar
First citationLeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204–1206.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34–49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355–369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506–521.  CrossRef IUCr Journals Google Scholar
First citationVogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds