research communications
Mercury(II) halide complex of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]
aDepartment of Chemistry and Biochemistry, Lamar University, 4400 MLK Blvd., Beaumont, Texas, 77710, USA, and bDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
*Correspondence e-mail: kuppuswamy.arumugam@wright.edu, chandru@lamar.edu
The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-diselone-κ2Se,Se′]diiodidomercury(II) N,N-dimethylformamide monosolvate, [HgI2(C16H38N4P2Se2)]·C3H7NO or (1)HgI2, 2, containing cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1) was synthesized and structurally characterized. The of 2 confirms the of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2)°. The coordination geometry around mercury is distorted tetrahedral as indicated by the τ4 geometry index parameter (τ4 = 0.90). In the mercury complex, the exocyclic tert-butylamido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N—H⋯O hydrogen-bonding interactions with the solvent N,N-dimethylformamide. These interactions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr2 analogue containing cis-[(tBuNH)(S)P(μ-NtBu)2P(S)(NHtBu)] was also synthesized and structurally characterized, data for the compound being presented as supporting information.
CCDC reference: 2386028
1. Chemical context
Stable four-membered rings containing phosphorus and nitrogen with the general formula, [(R)P(μ-NtBu)2P(R)] (R = alkyl or aryl), are commonly referred to as cyclodiphosphazanes. They have been used as building blocks to construct interesting macrocycles and polymers (Balakrishna, 2016). These macrocycles are formed by taking advantage of the cis orientation of the substituents and the lone pair available on the phosphorus atom (Balakrishna, 2016; Bashall et al., 2002). The bis(amido)cyclodiphosphazane and its PV analogue have been used as a versatile framework to stabilize main-group elements and transition metals (Stahl, 2000; Briand et al., 2002). The bis(amido)cyclodiphosph(V)azane, cis-{[(R)NH](E)P(μ-NtBu)2P(E)[NH(R)]} [E = O, S, Se, N(R); R = alkyl or aryl] and its di-anionic derivatives exhibit three unique coordination modes as shown in Fig. 1. These ligands are capable of bonding to metals and non-metals via (N,N), (E,E) or (N,E) modes. The (N,E) mode is the most frequently observed because of the rigidity and planarity of the four-membered P2N2 ring. More importantly, the (N,N) and (E,E) modes demand large bite angles, and large-size metal ions are well suited for these coordination modes. In 2001, Chivers et al. (2001) reported (S,S) of cis-[(tBuN)(S)P(μ-NtBu)2P(S)(NtBu)] to the PtII center with a bite angle of 99.57 (13)°. Recently, we have reported (Se,Se) of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] by a PdII complex with a bite angle of 110.54 (1)° (Bonnette et al., 2018). It is evident from these examples that the (E,E) coordination mode prefers large metal cations. Mercury ions have been well documented to have an affinity towards sulfur and selenium atoms, and accounting for its larger size, we set out to explore the coordination chemistry of bis(amido)cyclodiphosph(V)azane ligands with mercury(II) halide. Herein, we report the synthesis and solid-state structure of an HgI2 coordination complex with cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1), and the results are presented below. An isostructural HgBr2 analogue was also synthesized and structurally characterized. The data for the compound are presented as supporting information.
2. Structural commentary
Compound 2 crystallizes in the monoclinic in P21/n. The molecular structure of 2 is illustrated in Fig. 2. The confirms the of 1 through selenium donors to stabilize the HgI2 moiety, with an Se1—Hg1—Se2 natural bite angle of 112.95 (2)°. The coordination geometry around the mercury atom is distorted tetrahedral, as indicated by the parameter τ4 = 0.90. The geometry index τ4 was developed by Okuniewski and co-workers to distinguish various four-coordinate geometries (Okuniewski et al., 2015; Yang et al., 2007) with τ4 = 0 for a square-planar geometry, 0.24 for seesaw, and 1 for a tetrahedral geometry. The Hg—Se [Hg1—Se1 = 2.7508 (5) Å; Hg1–Se2 = 2.7835 (6) Å], and Hg—I [Hg1—I1 = 2.7290 (4) Å; Hg1–I2 = 2.7409 (4) Å] bond distances are within the typical ranges reported for the HgI2 complexes with selenium ligands (Palmer & Parkin, 2015). In complex 2, the P1—Se1 and P2—Se2 bonds [2.1260 (13) and 2.1302 (12) Å, respectively] are slightly elongated compared to the P—Se bond [2.078 (1) Å] in the uncoordinated ligand 1. The four-membered P2N2 ring in complex 2 is slightly puckered, as indicated by the angle subtended by the planes N1/P1/N2 and N1/P2/N2 [8.7 (3)°]. The corresponding dihedral angle for the uncoordinated ligand is 3.73 (2)° (Hill et al., 1994).
3. Supramolecular features
In the crystal of 2, the N—H functional groups present in bis(tert-butylamido)cyclodiphosph(V)azane and oxygen from the DMF solvent molecule are involved in N—H⋯O hydrogen-bonding interactions (Fig. 3, Table 1). Three different conformational isomers are feasible for the cis-bis(amido)cyclodiphosph(V)azane with respect to the relative orientations of the exocyclic nitrogen substituents (Fig. 4). In 2, the exocyclic substituents are arranged in a (endo, endo) fashion, whereas in ligand 1 they are arranged in an (exo, endo) orientation (Hill et al., 1994; Chivers et al., 2002). The conformational change in the coordination sphere of 2 may result from the formation of intermolecular interactions. A similar conformational change influenced by hydrogen-bonding interactions has been previously reported (Chandrasekaran et al., 2011).
|
4. Database survey
A search of the Cambridge Structural Database (CSD Data, March 2024; Groom et al., 2016) gave the following hits for cis-{[(R)nCN](Se)P[(R)nN]2P(Se)[NC(R)n]}: dichlorido[1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2,4-diazadiphosphetidine-2,4-diselone-Se,Se']palladium(II)} (Bonnette et al., 2018; CCDC No. 1549758), bis[μ-(2,4-bis(tert-butylamido)-1,3-bis(tert-butyl)-2,4-diseleno-2,4-diphosphetidine)]hexakis(tetrahydrofuran)tetrapotassium, (Chivers et al., 2001; CCDC No. 142628), bis-N,N′,1,3-tetra-tert-butyl-1,3,2,4-diazadiphosphetidine-2,4-diamine 2,4-bis(selenide)]silver(I) trifluoromethanesulfonate (Knight & Woollins, 2016; CCDC No. 1042705) and [1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2,4-diazadiphosphetidine-2,4-diselone]bis(triphenylphosphine)palladium bis(tetrafluoroborate) dichloromethane solvate (Plajer et al., 2020; CCDC No. 1890520). The P=Se and P—N bond distances for 2 are in agreement with those in the above compounds.
5. Synthesis and crystallization
Synthesis of cis-[HgI2(1)] (2):
A dichloromethane (10 mL) solution of cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)] (1) (100 mg, 0.197 mmol) was added dropwise over an acetonitrile (5 mL) solution of HgI2 (88 mg; 0.197 mmol) under an N2 atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 91% (172 mg). X-ray quality crystals are obtained by slow evaporation from a DMF solution at room temperature, m.p. 465–467 K. 1H NMR (400 MHz, DMSO-d6): 1.44 (s, 18H, tBu), 1.58 (s, 18H, tBu), 2.58 (br s, 2H, NH). IR (cm−1): 3200 (br w), 2975 (w), 1462 (w), 1388 (w), 1366 (m), 1222 (w), 1183 (m), 1030 (vs), 899 (s), 851 (w), 731 (m), 678 (m). [DMSO; λmax, nm (ɛM, M−1 cm−1)]: 270 (13947). Analysis calculated for C16H38N4P2Se2HgI2: C, 20.00; H, 3.99; N, 5.83. Found: C, 20.26; H, 4.47; N, 5.98.
6. Refinement
Crystal data, data collection and structure . Methyl (CH3) hydrogen atoms were treated as a rotating group and added using the riding-model approximation to the carbon atom to which they are attached [C—H = 0.98 Å with Uiso(H) = 1.5Ueq(CH3).
details are summarized in Table 27. Data for isostructural HgBr2 complex
Synthesis and spectroscopic data for an isostructural HgBr2 with cis-[(tBuHN)(S)P(μ-tBuN)2P(S)(NHtBu)] are presented below. Spectroscopic analysis and single-crystal strongly support these are isostructural complexes. For more information regarding solid-state please refer to CCDC: 2380829. The data for this compound is available in the supporting information
A dichloromethane (10 mL) solution of cis-[(tBuHN)(S)P(μ-tBuN)2P(S)(NHtBu)] (1) (100 mg, 0.24 mmol) was added dropwise over an acetonitrile (5 mL) solution of HgBr2 (87.4 mg; 0.24 mmol) under an N2 atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 83% (156 mg). X-ray quality crystals were obtained by slow evaporation from DMF solution at room temperature, m.p. 483–485 K. 1H NMR (400 MHz, DMSO-d6): 1.45 (s, 18H, tBu), 1.59 (s, 18H, tBu), 2.54 (br s, 2H, NH). IR (cm−1): 3194 (br m; N-H), 2977 (w), 1471 (w), 1391 (w), 1369 (m), 1225 (w), 1185 (s), 1046 (vs), 907 (m), 852 (m), 745 (s), 705 (m). [DMSO; λmax, nm (ɛM, M−1 cm−1)]: 282 (17054). Analysis calculated for C16H38N4P2S2HgBr2: C, 24.86; H, 4.95; N, 7.25; S, 8.30. Found: C, 25.03; H, 5.08; N, 7.75; S, 8.22.
Supporting information
CCDC reference: 2386028
https://doi.org/10.1107/S205698902400937X/ev2009sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400937X/ev2009Isup2.hkl
Data for isomorphous HgBr2 complex. DOI:[HgI2(C16H38N4P2Se2)]·C3H7NO | F(000) = 1944 |
Mr = 1033.85 | Dx = 2.107 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1747 (8) Å | Cell parameters from 8829 reflections |
b = 17.3698 (13) Å | θ = 2.3–26.8° |
c = 20.841 (2) Å | µ = 8.97 mm−1 |
β = 101.049 (3)° | T = 300 K |
V = 3259.7 (5) Å3 | Prism, colorless |
Z = 4 | 0.53 × 0.28 × 0.26 mm |
Bruker SMART X2S diffractometer | 6956 reflections with I > 2σ(I) |
ω scans | Rint = 0.077 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 31.0°, θmin = 2.6° |
Tmin = 0.309, Tmax = 0.746 | h = −12→13 |
45600 measured reflections | k = −24→19 |
9576 independent reflections | l = −28→29 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0325P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max = 0.004 |
S = 1.00 | Δρmax = 1.91 e Å−3 |
9576 reflections | Δρmin = −1.91 e Å−3 |
310 parameters | Extinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00052 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.70533 (2) | 0.77295 (2) | 0.58150 (2) | 0.02178 (6) | |
I1 | 0.60217 (4) | 0.91950 (2) | 0.55729 (2) | 0.02891 (9) | |
I2 | 0.90720 (4) | 0.72186 (2) | 0.50978 (2) | 0.02938 (9) | |
Se1 | 0.49422 (5) | 0.65923 (3) | 0.55275 (2) | 0.01821 (11) | |
Se2 | 0.81087 (5) | 0.79005 (3) | 0.71512 (2) | 0.01874 (11) | |
P1 | 0.51042 (12) | 0.62623 (6) | 0.65210 (6) | 0.0119 (2) | |
P2 | 0.67826 (12) | 0.69810 (6) | 0.73987 (6) | 0.0120 (2) | |
N2 | 0.6846 (4) | 0.61881 (19) | 0.69491 (18) | 0.0131 (8) | |
N1 | 0.4974 (4) | 0.6991 (2) | 0.70322 (19) | 0.0127 (7) | |
O1 | 0.4763 (4) | 0.5489 (2) | 0.80940 (19) | 0.0317 (9) | |
N3 | 0.4072 (4) | 0.5541 (2) | 0.6635 (2) | 0.0164 (8) | |
H3 | 0.413 (5) | 0.547 (3) | 0.703 (3) | 0.020* | |
N4 | 0.7002 (4) | 0.6801 (2) | 0.81733 (19) | 0.0158 (8) | |
H4 | 0.649 (5) | 0.644 (3) | 0.820 (3) | 0.019* | |
N5 | 0.3773 (5) | 0.4941 (2) | 0.8902 (2) | 0.0274 (10) | |
C5 | 0.8046 (5) | 0.5593 (3) | 0.6959 (3) | 0.0193 (10) | |
C6 | 0.7986 (5) | 0.5287 (3) | 0.6268 (3) | 0.0243 (11) | |
H6A | 0.704074 | 0.504766 | 0.611382 | 0.036* | |
H6B | 0.876292 | 0.491634 | 0.627173 | 0.036* | |
H6C | 0.811614 | 0.570583 | 0.598316 | 0.036* | |
C11 | 0.4061 (6) | 0.4524 (3) | 0.5785 (3) | 0.0333 (14) | |
H11A | 0.450455 | 0.488033 | 0.552709 | 0.050* | |
H11B | 0.343410 | 0.417284 | 0.550175 | 0.050* | |
H11C | 0.482767 | 0.424099 | 0.606659 | 0.050* | |
C9 | 0.3141 (5) | 0.4963 (2) | 0.6196 (2) | 0.0181 (10) | |
C1 | 0.3696 (5) | 0.7508 (3) | 0.7113 (2) | 0.0163 (9) | |
C10 | 0.1830 (6) | 0.5362 (3) | 0.5759 (3) | 0.0323 (13) | |
H10A | 0.124250 | 0.562406 | 0.602559 | 0.048* | |
H10B | 0.122930 | 0.498552 | 0.549292 | 0.048* | |
H10C | 0.219481 | 0.572836 | 0.548227 | 0.048* | |
C13 | 0.7805 (5) | 0.7175 (3) | 0.8783 (2) | 0.0187 (10) | |
C4 | 0.4225 (5) | 0.8335 (3) | 0.7189 (3) | 0.0261 (12) | |
H4A | 0.493585 | 0.838807 | 0.758917 | 0.039* | |
H4B | 0.339431 | 0.866754 | 0.719846 | 0.039* | |
H4C | 0.468055 | 0.847230 | 0.682688 | 0.039* | |
C7 | 0.9542 (5) | 0.5971 (3) | 0.7207 (3) | 0.0355 (14) | |
H7A | 0.969762 | 0.637485 | 0.691327 | 0.053* | |
H7B | 1.031512 | 0.559332 | 0.723061 | 0.053* | |
H7C | 0.955868 | 0.618207 | 0.763393 | 0.053* | |
C15 | 0.9469 (5) | 0.7146 (3) | 0.8823 (3) | 0.0311 (13) | |
H15A | 0.978069 | 0.662043 | 0.880656 | 0.047* | |
H15B | 0.995907 | 0.737546 | 0.922644 | 0.047* | |
H15C | 0.972166 | 0.742541 | 0.846240 | 0.047* | |
C8 | 0.7780 (7) | 0.4949 (3) | 0.7420 (3) | 0.0422 (16) | |
H8A | 0.783163 | 0.515386 | 0.785149 | 0.063* | |
H8B | 0.852543 | 0.455882 | 0.743044 | 0.063* | |
H8C | 0.681607 | 0.472865 | 0.726814 | 0.063* | |
C3 | 0.2467 (5) | 0.7432 (3) | 0.6512 (3) | 0.0314 (13) | |
H3A | 0.282388 | 0.760832 | 0.613343 | 0.047* | |
H3B | 0.163030 | 0.773861 | 0.656945 | 0.047* | |
H3C | 0.217140 | 0.690297 | 0.645353 | 0.047* | |
C12 | 0.2550 (6) | 0.4405 (3) | 0.6658 (3) | 0.0279 (12) | |
H12A | 0.336981 | 0.416839 | 0.694597 | 0.042* | |
H12B | 0.195746 | 0.401487 | 0.640602 | 0.042* | |
H12C | 0.195348 | 0.468331 | 0.691109 | 0.042* | |
C16 | 0.7383 (6) | 0.6705 (3) | 0.9345 (2) | 0.0261 (11) | |
H16A | 0.632584 | 0.671853 | 0.931349 | 0.039* | |
H16B | 0.785992 | 0.692134 | 0.975582 | 0.039* | |
H16C | 0.770054 | 0.618135 | 0.931728 | 0.039* | |
C19 | 0.3824 (7) | 0.4343 (3) | 0.9396 (3) | 0.0422 (16) | |
H19A | 0.291802 | 0.405187 | 0.930901 | 0.063* | |
H19B | 0.393780 | 0.457611 | 0.982021 | 0.063* | |
H19C | 0.464897 | 0.400734 | 0.938354 | 0.063* | |
C14 | 0.7257 (6) | 0.8005 (3) | 0.8827 (3) | 0.0302 (12) | |
H14A | 0.748134 | 0.829921 | 0.846829 | 0.045* | |
H14B | 0.774377 | 0.823051 | 0.923183 | 0.045* | |
H14C | 0.620304 | 0.800291 | 0.880742 | 0.045* | |
C17 | 0.4744 (6) | 0.4989 (3) | 0.8515 (3) | 0.0310 (13) | |
H17 | 0.548158 | 0.461504 | 0.856240 | 0.037* | |
C2 | 0.3118 (6) | 0.7242 (3) | 0.7719 (3) | 0.0269 (12) | |
H2A | 0.281575 | 0.671275 | 0.766623 | 0.040* | |
H2B | 0.228388 | 0.755317 | 0.777098 | 0.040* | |
H2C | 0.389085 | 0.729280 | 0.809801 | 0.040* | |
C18 | 0.2577 (8) | 0.5492 (4) | 0.8855 (4) | 0.072 (3) | |
H18A | 0.164600 | 0.523685 | 0.870597 | 0.108* | |
H18B | 0.270631 | 0.588982 | 0.855095 | 0.108* | |
H18C | 0.258555 | 0.571560 | 0.927697 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.02744 (11) | 0.02015 (11) | 0.01887 (11) | −0.00093 (7) | 0.00728 (8) | 0.00364 (8) |
I1 | 0.0387 (2) | 0.02087 (18) | 0.0257 (2) | 0.00404 (14) | 0.00268 (15) | 0.00612 (14) |
I2 | 0.02607 (17) | 0.0364 (2) | 0.0285 (2) | −0.00545 (14) | 0.01224 (15) | −0.00543 (16) |
Se1 | 0.0244 (2) | 0.0215 (2) | 0.0084 (2) | −0.00507 (19) | 0.00213 (18) | 0.00068 (19) |
Se2 | 0.0234 (2) | 0.0186 (2) | 0.0138 (2) | −0.00661 (18) | 0.00253 (19) | 0.00001 (19) |
P1 | 0.0155 (5) | 0.0115 (5) | 0.0088 (6) | −0.0001 (4) | 0.0026 (4) | −0.0007 (4) |
P2 | 0.0137 (5) | 0.0134 (6) | 0.0084 (6) | 0.0007 (4) | 0.0011 (4) | −0.0003 (5) |
N2 | 0.0138 (17) | 0.0145 (19) | 0.0106 (19) | 0.0040 (14) | 0.0015 (15) | −0.0008 (15) |
N1 | 0.0149 (17) | 0.0106 (17) | 0.012 (2) | 0.0012 (14) | 0.0005 (15) | −0.0037 (15) |
O1 | 0.040 (2) | 0.033 (2) | 0.025 (2) | −0.0009 (17) | 0.0146 (18) | 0.0076 (17) |
N3 | 0.025 (2) | 0.016 (2) | 0.009 (2) | −0.0055 (16) | 0.0064 (17) | −0.0010 (16) |
N4 | 0.023 (2) | 0.019 (2) | 0.0047 (19) | −0.0072 (16) | 0.0006 (15) | 0.0008 (16) |
N5 | 0.039 (3) | 0.026 (2) | 0.018 (2) | −0.0017 (19) | 0.008 (2) | 0.0066 (19) |
C5 | 0.020 (2) | 0.016 (2) | 0.023 (3) | 0.0082 (18) | 0.006 (2) | −0.001 (2) |
C6 | 0.019 (2) | 0.025 (3) | 0.031 (3) | 0.003 (2) | 0.010 (2) | −0.013 (2) |
C11 | 0.036 (3) | 0.027 (3) | 0.041 (4) | −0.010 (2) | 0.018 (3) | −0.014 (3) |
C9 | 0.021 (2) | 0.014 (2) | 0.021 (3) | −0.0110 (18) | 0.010 (2) | −0.006 (2) |
C1 | 0.017 (2) | 0.015 (2) | 0.018 (3) | 0.0061 (18) | 0.0039 (19) | −0.0005 (19) |
C10 | 0.029 (3) | 0.038 (3) | 0.029 (3) | −0.013 (2) | 0.000 (2) | −0.006 (3) |
C13 | 0.024 (2) | 0.028 (3) | 0.004 (2) | −0.001 (2) | 0.0003 (18) | −0.0053 (19) |
C4 | 0.026 (3) | 0.016 (2) | 0.039 (4) | 0.005 (2) | 0.012 (2) | −0.001 (2) |
C7 | 0.023 (3) | 0.044 (3) | 0.037 (4) | 0.007 (2) | −0.001 (2) | −0.017 (3) |
C15 | 0.028 (3) | 0.050 (3) | 0.015 (3) | −0.003 (2) | 0.002 (2) | −0.001 (2) |
C8 | 0.052 (4) | 0.031 (3) | 0.049 (4) | 0.028 (3) | 0.023 (3) | 0.023 (3) |
C3 | 0.023 (3) | 0.036 (3) | 0.032 (3) | 0.013 (2) | −0.003 (2) | −0.010 (3) |
C12 | 0.037 (3) | 0.019 (3) | 0.032 (3) | −0.008 (2) | 0.017 (3) | 0.002 (2) |
C16 | 0.037 (3) | 0.031 (3) | 0.010 (3) | −0.001 (2) | 0.005 (2) | 0.003 (2) |
C19 | 0.068 (4) | 0.036 (3) | 0.022 (3) | −0.008 (3) | 0.007 (3) | 0.012 (3) |
C14 | 0.043 (3) | 0.029 (3) | 0.017 (3) | 0.000 (2) | 0.001 (2) | −0.004 (2) |
C17 | 0.027 (3) | 0.034 (3) | 0.032 (3) | 0.007 (2) | 0.007 (2) | 0.006 (3) |
C2 | 0.028 (3) | 0.029 (3) | 0.027 (3) | 0.009 (2) | 0.013 (2) | 0.005 (2) |
C18 | 0.077 (5) | 0.085 (6) | 0.069 (6) | 0.043 (4) | 0.050 (5) | 0.041 (5) |
Hg1—I1 | 2.7290 (4) | C10—H10B | 0.9600 |
Hg1—I2 | 2.7409 (4) | C10—H10C | 0.9600 |
Hg1—Se1 | 2.7508 (5) | C13—C15 | 1.514 (6) |
Hg1—Se2 | 2.7835 (6) | C13—C16 | 1.536 (7) |
Se1—P1 | 2.1260 (13) | C13—C14 | 1.535 (7) |
Se2—P2 | 2.1302 (12) | C4—H4A | 0.9600 |
P1—P2 | 2.4893 (16) | C4—H4B | 0.9600 |
P1—N2 | 1.679 (4) | C4—H4C | 0.9600 |
P1—N1 | 1.674 (4) | C7—H7A | 0.9600 |
P1—N3 | 1.615 (4) | C7—H7B | 0.9600 |
P2—N2 | 1.673 (4) | C7—H7C | 0.9600 |
P2—N1 | 1.689 (4) | C15—H15A | 0.9600 |
P2—N4 | 1.619 (4) | C15—H15B | 0.9600 |
N2—C5 | 1.507 (5) | C15—H15C | 0.9600 |
N1—C1 | 1.511 (5) | C8—H8A | 0.9600 |
O1—C17 | 1.237 (6) | C8—H8B | 0.9600 |
N3—H3 | 0.83 (5) | C8—H8C | 0.9600 |
N3—C9 | 1.508 (6) | C3—H3A | 0.9600 |
N4—H4 | 0.79 (5) | C3—H3B | 0.9600 |
N4—C13 | 1.491 (6) | C3—H3C | 0.9600 |
N5—C19 | 1.457 (6) | C12—H12A | 0.9600 |
N5—C17 | 1.314 (7) | C12—H12B | 0.9600 |
N5—C18 | 1.444 (7) | C12—H12C | 0.9600 |
C5—C6 | 1.526 (7) | C16—H16A | 0.9600 |
C5—C7 | 1.520 (7) | C16—H16B | 0.9600 |
C5—C8 | 1.525 (7) | C16—H16C | 0.9600 |
C6—H6A | 0.9600 | C19—H19A | 0.9600 |
C6—H6B | 0.9600 | C19—H19B | 0.9600 |
C6—H6C | 0.9600 | C19—H19C | 0.9600 |
C11—H11A | 0.9600 | C14—H14A | 0.9600 |
C11—H11B | 0.9600 | C14—H14B | 0.9600 |
C11—H11C | 0.9600 | C14—H14C | 0.9600 |
C11—C9 | 1.519 (6) | C17—H17 | 0.9300 |
C9—C10 | 1.530 (7) | C2—H2A | 0.9600 |
C9—C12 | 1.536 (6) | C2—H2B | 0.9600 |
C1—C4 | 1.515 (6) | C2—H2C | 0.9600 |
C1—C3 | 1.522 (7) | C18—H18A | 0.9600 |
C1—C2 | 1.531 (7) | C18—H18B | 0.9600 |
C10—H10A | 0.9600 | C18—H18C | 0.9600 |
I1—Hg1—I2 | 116.603 (13) | H10A—C10—H10C | 109.5 |
I1—Hg1—Se1 | 115.134 (15) | H10B—C10—H10C | 109.5 |
I1—Hg1—Se2 | 97.310 (14) | N4—C13—C15 | 111.2 (4) |
I2—Hg1—Se1 | 99.784 (14) | N4—C13—C16 | 105.3 (4) |
I2—Hg1—Se2 | 115.997 (16) | N4—C13—C14 | 110.2 (4) |
Se1—Hg1—Se2 | 112.950 (15) | C15—C13—C16 | 109.9 (4) |
P1—Se1—Hg1 | 93.82 (3) | C15—C13—C14 | 111.4 (4) |
P2—Se2—Hg1 | 93.27 (4) | C14—C13—C16 | 108.7 (4) |
Se1—P1—P2 | 119.89 (6) | C1—C4—H4A | 109.5 |
N2—P1—Se1 | 114.83 (14) | C1—C4—H4B | 109.5 |
N2—P1—P2 | 41.95 (12) | C1—C4—H4C | 109.5 |
N1—P1—Se1 | 114.57 (14) | H4A—C4—H4B | 109.5 |
N1—P1—P2 | 42.48 (12) | H4A—C4—H4C | 109.5 |
N1—P1—N2 | 84.07 (18) | H4B—C4—H4C | 109.5 |
N3—P1—Se1 | 114.75 (16) | C5—C7—H7A | 109.5 |
N3—P1—P2 | 125.36 (16) | C5—C7—H7B | 109.5 |
N3—P1—N2 | 112.8 (2) | C5—C7—H7C | 109.5 |
N3—P1—N1 | 112.2 (2) | H7A—C7—H7B | 109.5 |
Se2—P2—P1 | 119.98 (6) | H7A—C7—H7C | 109.5 |
N2—P2—Se2 | 113.51 (14) | H7B—C7—H7C | 109.5 |
N2—P2—P1 | 42.15 (12) | C13—C15—H15A | 109.5 |
N2—P2—N1 | 83.79 (17) | C13—C15—H15B | 109.5 |
N1—P2—Se2 | 116.10 (14) | C13—C15—H15C | 109.5 |
N1—P2—P1 | 42.01 (12) | H15A—C15—H15B | 109.5 |
N4—P2—Se2 | 114.77 (15) | H15A—C15—H15C | 109.5 |
N4—P2—P1 | 125.25 (15) | H15B—C15—H15C | 109.5 |
N4—P2—N2 | 112.8 (2) | C5—C8—H8A | 109.5 |
N4—P2—N1 | 112.1 (2) | C5—C8—H8B | 109.5 |
P2—N2—P1 | 95.90 (17) | C5—C8—H8C | 109.5 |
C5—N2—P1 | 132.7 (3) | H8A—C8—H8B | 109.5 |
C5—N2—P2 | 131.3 (3) | H8A—C8—H8C | 109.5 |
P1—N1—P2 | 95.51 (18) | H8B—C8—H8C | 109.5 |
C1—N1—P1 | 132.2 (3) | C1—C3—H3A | 109.5 |
C1—N1—P2 | 132.2 (3) | C1—C3—H3B | 109.5 |
P1—N3—H3 | 110 (3) | C1—C3—H3C | 109.5 |
C9—N3—P1 | 135.0 (3) | H3A—C3—H3B | 109.5 |
C9—N3—H3 | 115 (3) | H3A—C3—H3C | 109.5 |
P2—N4—H4 | 105 (4) | H3B—C3—H3C | 109.5 |
C13—N4—P2 | 135.5 (3) | C9—C12—H12A | 109.5 |
C13—N4—H4 | 119 (4) | C9—C12—H12B | 109.5 |
C17—N5—C19 | 123.0 (5) | C9—C12—H12C | 109.5 |
C17—N5—C18 | 120.8 (5) | H12A—C12—H12B | 109.5 |
C18—N5—C19 | 116.2 (5) | H12A—C12—H12C | 109.5 |
N2—C5—C6 | 109.4 (4) | H12B—C12—H12C | 109.5 |
N2—C5—C7 | 108.6 (4) | C13—C16—H16A | 109.5 |
N2—C5—C8 | 107.9 (4) | C13—C16—H16B | 109.5 |
C7—C5—C6 | 109.8 (4) | C13—C16—H16C | 109.5 |
C7—C5—C8 | 110.2 (5) | H16A—C16—H16B | 109.5 |
C8—C5—C6 | 111.0 (4) | H16A—C16—H16C | 109.5 |
C5—C6—H6A | 109.5 | H16B—C16—H16C | 109.5 |
C5—C6—H6B | 109.5 | N5—C19—H19A | 109.5 |
C5—C6—H6C | 109.5 | N5—C19—H19B | 109.5 |
H6A—C6—H6B | 109.5 | N5—C19—H19C | 109.5 |
H6A—C6—H6C | 109.5 | H19A—C19—H19B | 109.5 |
H6B—C6—H6C | 109.5 | H19A—C19—H19C | 109.5 |
H11A—C11—H11B | 109.5 | H19B—C19—H19C | 109.5 |
H11A—C11—H11C | 109.5 | C13—C14—H14A | 109.5 |
H11B—C11—H11C | 109.5 | C13—C14—H14B | 109.5 |
C9—C11—H11A | 109.5 | C13—C14—H14C | 109.5 |
C9—C11—H11B | 109.5 | H14A—C14—H14B | 109.5 |
C9—C11—H11C | 109.5 | H14A—C14—H14C | 109.5 |
N3—C9—C11 | 111.4 (4) | H14B—C14—H14C | 109.5 |
N3—C9—C10 | 110.4 (4) | O1—C17—N5 | 125.7 (5) |
N3—C9—C12 | 105.5 (4) | O1—C17—H17 | 117.2 |
C11—C9—C10 | 110.5 (5) | N5—C17—H17 | 117.2 |
C11—C9—C12 | 109.8 (4) | C1—C2—H2A | 109.5 |
C10—C9—C12 | 109.2 (4) | C1—C2—H2B | 109.5 |
N1—C1—C4 | 109.5 (4) | C1—C2—H2C | 109.5 |
N1—C1—C3 | 109.0 (4) | H2A—C2—H2B | 109.5 |
N1—C1—C2 | 108.1 (4) | H2A—C2—H2C | 109.5 |
C4—C1—C3 | 109.9 (4) | H2B—C2—H2C | 109.5 |
C4—C1—C2 | 110.8 (4) | N5—C18—H18A | 109.5 |
C3—C1—C2 | 109.5 (4) | N5—C18—H18B | 109.5 |
C9—C10—H10A | 109.5 | N5—C18—H18C | 109.5 |
C9—C10—H10B | 109.5 | H18A—C18—H18B | 109.5 |
C9—C10—H10C | 109.5 | H18A—C18—H18C | 109.5 |
H10A—C10—H10B | 109.5 | H18B—C18—H18C | 109.5 |
Se1—P1—N2—P2 | 107.86 (15) | P2—N1—C1—C4 | 40.6 (6) |
Se1—P1—N2—C5 | −75.0 (4) | P2—N1—C1—C3 | 160.8 (4) |
Se1—P1—N1—P2 | −108.19 (15) | P2—N1—C1—C2 | −80.2 (5) |
Se1—P1—N1—C1 | 69.0 (4) | P2—N4—C13—C15 | −66.1 (6) |
Se1—P1—N3—C9 | 9.6 (5) | P2—N4—C13—C16 | 175.0 (4) |
Se2—P2—N2—P1 | −109.36 (14) | P2—N4—C13—C14 | 58.0 (6) |
Se2—P2—N2—C5 | 73.5 (4) | N2—P1—N1—P2 | 6.44 (18) |
Se2—P2—N1—P1 | 106.70 (14) | N2—P1—N1—C1 | −176.4 (4) |
Se2—P2—N1—C1 | −70.4 (4) | N2—P1—N3—C9 | −124.4 (4) |
Se2—P2—N4—C13 | 7.9 (5) | N2—P2—N1—P1 | −6.47 (19) |
P1—P2—N2—C5 | −177.2 (5) | N2—P2—N1—C1 | 176.4 (4) |
P1—P2—N1—C1 | −177.1 (5) | N2—P2—N4—C13 | 140.0 (4) |
P1—P2—N4—C13 | −173.4 (4) | N1—P1—N2—P2 | −6.51 (19) |
P1—N2—C5—C6 | 36.4 (6) | N1—P1—N2—C5 | 170.6 (4) |
P1—N2—C5—C7 | 156.1 (4) | N1—P1—N3—C9 | 142.7 (4) |
P1—N2—C5—C8 | −84.5 (5) | N1—P2—N2—P1 | 6.45 (19) |
P1—N1—C1—C4 | −135.6 (4) | N1—P2—N2—C5 | −170.7 (4) |
P1—N1—C1—C3 | −15.3 (6) | N1—P2—N4—C13 | −127.4 (4) |
P1—N1—C1—C2 | 103.6 (5) | N3—P1—N2—P2 | −118.1 (2) |
P1—N3—C9—C11 | 57.2 (6) | N3—P1—N2—C5 | 59.0 (5) |
P1—N3—C9—C10 | −65.9 (6) | N3—P1—N1—P2 | 118.7 (2) |
P1—N3—C9—C12 | 176.3 (4) | N3—P1—N1—C1 | −64.2 (5) |
P2—P1—N2—C5 | 177.1 (5) | N4—P2—N2—P1 | 117.9 (2) |
P2—P1—N1—C1 | 177.1 (5) | N4—P2—N2—C5 | −59.3 (4) |
P2—P1—N3—C9 | −170.7 (4) | N4—P2—N1—P1 | −118.6 (2) |
P2—N2—C5—C6 | −147.5 (4) | N4—P2—N1—C1 | 64.2 (5) |
P2—N2—C5—C7 | −27.7 (6) | C19—N5—C17—O1 | −179.1 (6) |
P2—N2—C5—C8 | 91.7 (5) | C18—N5—C17—O1 | 0.9 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.82 (6) | 2.18 (6) | 2.986 (6) | 165 (4) |
N4—H4···O1 | 0.79 (5) | 2.27 (5) | 3.051 (5) | 169 (6) |
Acknowledgements
The authors would like to acknowledge support by funds from the Chemistry Department, Wright State University, College of Science and Mathematics. The authors would also like to acknowledge Dr Grossie, Wright State University, for help with low-temperature data X-ray diffraction collection.
Funding information
This work is funded in part by the Welch Foundation (V-0004; Chandrasekaran). Funding for this research was provided by: National Institutes of Health, National Cancer Institute (grant No. CA232765 to Kuppuswamy Arumugam); American Chemical Society Petroleum Research Fund (grant No. 59893UR7 to Kuppuswamy Arumugam).
References
Balakrishna, M. S. (2016). Dalton Trans. 45, 12252–12282. Web of Science CrossRef CAS PubMed Google Scholar
Bashall, A., Bond, A. D., Doyle, E. L., García, F., Kidd, S., Lawson, G. T., Parry, M. C., McPartlin, M., Woods, A. D. & Wright, D. S. (2002). Chem. Eur. J. 8, 3377–3385. CrossRef PubMed Google Scholar
Bonnette, A., Mague, J. T. & Chandrasekaran, P. (2018). Acta Cryst. E74, 180–183. CSD CrossRef IUCr Journals Google Scholar
Briand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233–234, 237–254. Web of Science CrossRef CAS Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA. Google Scholar
Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264–2272. Web of Science CSD CrossRef Google Scholar
Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936–1942. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348–4354. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770–1777. CSD CrossRef CAS Web of Science Google Scholar
Knight, F. R. & Woollins, J. D. (2016). CSD Communication (No. 1042705). CCDC, Cambridge, England. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CSD CrossRef CAS Google Scholar
Palmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503–4516. Web of Science CSD CrossRef CAS PubMed Google Scholar
Plajer, A. J., Lee, S., Bond, A. D., Goodman, J. M. & Wright, D. S. (2020). Dalton Trans. 49, 3403–3407. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stahl, L. (2000). Coord. Chem. Rev. 210, 203–250. Web of Science CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.