research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mercury(II) halide complex of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]

crossmark logo

aDepartment of Chemistry and Biochemistry, Lamar University, 4400 MLK Blvd., Beaumont, Texas, 77710, USA, and bDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
*Correspondence e-mail: kuppuswamy.arumugam@wright.edu, chandru@lamar.edu

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 23 July 2024; accepted 23 September 2024; online 8 October 2024)

The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2λ5,4λ5-di­aza­diphosphetidine-2,4-diselone-κ2Se,Se′]di­iodido­mercury(II) N,N-di­methyl­formamide monosolvate, [HgI2(C16H38N4P2Se2)]·C3H7NO or (1)HgI2, 2, containing cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1) was synthesized and structurally characterized. The crystal structure of 2 confirms the chelation of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2)°. The coordination geometry around mercury is distorted tetra­hedral as indicated by the τ4 geometry index parameter (τ4 = 0.90). In the mercury complex, the exocyclic tert-butyl­amido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N—H⋯O hydrogen-bonding inter­actions with the solvent N,N-di­methyl­formamide. These inter­actions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr2 analogue containing cis-[(tBuNH)(S)P(μ-NtBu)2P(S)(NHtBu)] was also synthesized and structurally characterized, CIF data for the compound being presented as supporting information.

1. Chemical context

Stable four-membered rings containing phospho­rus and nitro­gen with the general formula, [(R)P(μ-NtBu)2P(R)] (R = alkyl or ar­yl), are commonly referred to as cyclo­diphosphaza­nes. They have been used as building blocks to construct inter­esting macrocycles and polymers (Balakrishna, 2016[Balakrishna, M. S. (2016). Dalton Trans. 45, 12252-12282.]). These macrocycles are formed by taking advantage of the cis orientation of the substituents and the lone pair available on the phospho­rus atom (Balakrishna, 2016[Balakrishna, M. S. (2016). Dalton Trans. 45, 12252-12282.]; Bashall et al., 2002[Bashall, A., Bond, A. D., Doyle, E. L., García, F., Kidd, S., Lawson, G. T., Parry, M. C., McPartlin, M., Woods, A. D. & Wright, D. S. (2002). Chem. Eur. J. 8, 3377-3385.]). The bis­(amido)­cyclo­diphosphazane and its PV analogue have been used as a versatile framework to stabilize main-group elements and transition metals (Stahl, 2000[Stahl, L. (2000). Coord. Chem. Rev. 210, 203-250.]; Briand et al., 2002[Briand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233-234, 237-254.]). The bis­(amido)­cyclo­diphosph(V)azane, cis-{[(R)NH](E)P(μ-NtBu)2P(E)[NH(R)]} [E = O, S, Se, N(R); R = alkyl or ar­yl] and its di-anionic derivatives exhibit three unique coordination modes as shown in Fig. 1[link]. These ligands are capable of bonding to metals and non-metals via (N,N), (E,E) or (N,E) chelation modes. The (N,E) chelation mode is the most frequently observed because of the rigidity and planarity of the four-membered P2N2 ring. More importantly, the (N,N) and (E,E) chelation modes demand large bite angles, and large-size metal ions are well suited for these coordination modes. In 2001, Chivers et al. (2001[Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936-1942.]) reported (S,S) chelation of cis-[(tBuN)(S)P(μ-NtBu)2P(S)(NtBu)] to the PtII center with a bite angle of 99.57 (13)°. Recently, we have reported (Se,Se) chelation of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] by a PdII complex with a bite angle of 110.54 (1)° (Bonnette et al., 2018[Bonnette, A., Mague, J. T. & Chandrasekaran, P. (2018). Acta Cryst. E74, 180-183.]). It is evident from these examples that the (E,E) coordination mode prefers large metal cations. Mercury ions have been well documented to have an affinity towards sulfur and selenium atoms, and accounting for its larger size, we set out to explore the coord­ination chemistry of bis­(amido)­cyclo­diphosph(V)azane ligands with mercury(II) halide. Herein, we report the synthesis and solid-state structure of an HgI2 coordination complex with cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1), and the results are presented below. An isostructural HgBr2 analogue was also synthesized and structurally characterized. The CIF data for the compound are presented as supporting information.

[Scheme 1]
[Figure 1]
Figure 1
Possible coordination modes of bis­(amido)­cyclo­diphosph(V)aza­nes.

2. Structural commentary

Compound 2 crystallizes in the monoclinic crystal system in space group P21/n. The mol­ecular structure of 2 is illustrated in Fig. 2[link]. The crystal structure confirms the chelation of 1 through selenium donors to stabilize the HgI2 moiety, with an Se1—Hg1—Se2 natural bite angle of 112.95 (2)°. The coordination geometry around the mercury atom is distorted tetra­hedral, as indicated by the parameter τ4 = 0.90. The geometry index τ4 was developed by Okuniewski and co-workers to distinguish various four-coordinate geometries (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) with τ4 = 0 for a square-planar geometry, 0.24 for seesaw, and 1 for a tetra­hedral geometry. The Hg—Se [Hg1—Se1 = 2.7508 (5) Å; Hg1–Se2 = 2.7835 (6) Å], and Hg—I [Hg1—I1 = 2.7290 (4) Å; Hg1–I2 = 2.7409 (4) Å] bond distances are within the typical ranges reported for the HgI2 complexes with selenium ligands (Palmer & Parkin, 2015[Palmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503-4516.]). In complex 2, the P1—Se1 and P2—Se2 bonds [2.1260 (13) and 2.1302 (12) Å, respectively] are slightly elongated compared to the P—Se bond [2.078 (1) Å] in the uncoordinated ligand 1. The four-membered P2N2 ring in complex 2 is slightly puckered, as indicated by the angle subtended by the planes N1/P1/N2 and N1/P2/N2 [8.7 (3)°]. The corresponding dihedral angle for the uncoordinated ligand is 3.73 (2)° (Hill et al., 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]).

[Figure 2]
Figure 2
Displacement ellipsoid plot for 2 (50% probability level). The DMF solvent mol­ecule and all the hydrogen atoms are omitted for clarity, except for those at N3 and N4.

3. Supra­molecular features

In the crystal of 2, the N—H functional groups present in bis­(tert-butyl­amido)­cyclo­diphosph(V)azane and oxygen from the DMF solvent mol­ecule are involved in N—H⋯O hydrogen-bonding inter­actions (Fig. 3[link], Table 1[link]). Three different conformational isomers are feasible for the cis-bis­(amido)­cyclo­diphosph(V)azane with respect to the relative orientations of the exocyclic nitro­gen substituents (Fig. 4[link]). In 2, the exocyclic substituents are arranged in a (endo, endo) fashion, whereas in ligand 1 they are arranged in an (exo, endo) orientation (Hill et al., 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]; Chivers et al., 2002[Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348-4354.]). The conformational change in the coordination sphere of 2 may result from the formation of inter­molecular inter­actions. A similar conformational change influenced by hydrogen-bonding inter­actions has been previously reported (Chandrasekaran et al., 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264-2272.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.82 (6) 2.18 (6) 2.986 (6) 165 (4)
N4—H4⋯O1 0.79 (5) 2.27 (5) 3.051 (5) 169 (6)
[Figure 3]
Figure 3
Hydrogen-bonding inter­actions (Table 1[link]) between the complex and the DMF solvent mol­ecule in the crystal.
[Figure 4]
Figure 4
Possible conformational isomers for cis-bis­(amido)­cyclo­diphosph(V)aza­nes.

4. Database survey

A search of the Cambridge Structural Database (CSD Data, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave the following hits for cis-{[(R)nCN](Se)P[(R)nN]2P(Se)[NC(R)n]}: di­chlorido­[1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2,4-di­aza­diphosphet­id­ine-2,4-diselone-Se,Se']palladium(II)} (Bonnette et al., 2018[Bonnette, A., Mague, J. T. & Chandrasekaran, P. (2018). Acta Cryst. E74, 180-183.]; CCDC No. 1549758), bis­[μ-(2,4-bis­(tert-butyl­amido)-1,3-bis­(tert-but­yl)-2,4-di­seleno-2,4-diphosphetidine)]hexa­kis­(tetra­hydro­furan)­tetra­potassium, (Chivers et al., 2001[Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936-1942.]; CCDC No. 142628), bis-N,N′,1,3-tetra-tert-butyl-1,3,2,4-di­aza­diphosphet­id­ine-2,4-di­amine 2,4-bis­(selenide)]silver(I) tri­fluoro­meth­ane­sulfonate (Knight & Woollins, 2016[Knight, F. R. & Woollins, J. D. (2016). CSD Communication (No. 1042705). CCDC, Cambridge, England.]; CCDC No. 1042705) and [1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2,4-di­aza­diphosphetidine-2,4-diselone]bis­(tri­phenyl­phosphine)palladium bis­(tetra­fluoro­borate) di­chloro­methane solvate (Plajer et al., 2020[Plajer, A. J., Lee, S., Bond, A. D., Goodman, J. M. & Wright, D. S. (2020). Dalton Trans. 49, 3403-3407.]; CCDC No. 1890520). The P=Se and P—N bond distances for 2 are in agreement with those in the above compounds.

5. Synthesis and crystallization

Synthesis of cis-[HgI2(1)] (2):

A di­chloro­methane (10 mL) solution of cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)] (1) (100 mg, 0.197 mmol) was added dropwise over an aceto­nitrile (5 mL) solution of HgI2 (88 mg; 0.197 mmol) under an N2 atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 91% (172 mg). X-ray quality crystals are obtained by slow evaporation from a DMF solution at room temperature, m.p. 465–467 K. 1H NMR (400 MHz, DMSO-d6): 1.44 (s, 18H, tBu), 1.58 (s, 18H, tBu), 2.58 (br s, 2H, NH). IR (cm−1): 3200 (br w), 2975 (w), 1462 (w), 1388 (w), 1366 (m), 1222 (w), 1183 (m), 1030 (vs), 899 (s), 851 (w), 731 (m), 678 (m). Absorption spectrum [DMSO; λmax, nm (ɛM, M−1 cm−1)]: 270 (13947). Analysis calculated for C16H38N4P2Se2HgI2: C, 20.00; H, 3.99; N, 5.83. Found: C, 20.26; H, 4.47; N, 5.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Methyl (CH3) hydrogen atoms were treated as a rotating group and added using the riding-model approximation to the carbon atom to which they are attached [C—H = 0.98 Å with Uiso(H) = 1.5Ueq(CH3).

Table 2
Experimental details

Crystal data
Chemical formula [HgI2(C16H38N4P2Se2)]·C3H7NO
Mr 1033.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 300
a, b, c (Å) 9.1747 (8), 17.3698 (13), 20.841 (2)
β (°) 101.049 (3)
V3) 3259.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.97
Crystal size (mm) 0.53 × 0.28 × 0.26
 
Data collection
Diffractometer Bruker SMART X2S
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]
Tmin, Tmax 0.309, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45600, 9576, 6956
Rint 0.077
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 1.00
No. of reflections 9576
No. of parameters 310
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.91, −1.92
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

7. Data for isostructural HgBr2 complex

Synthesis and spectroscopic data for an isostructural HgBr2 with cis-[(tBuHN)(S)P(μ-tBuN)2P(S)(NHtBu)] are presented below. Spectroscopic analysis and single-crystal structure determination strongly support these are isostructural complexes. For more information regarding solid-state structure determination, please refer to CCDC: 2380829. The CIF data for this compound is available in the supporting information

A di­chloro­methane (10 mL) solution of cis-[(tBuHN)(S)P(μ-tBuN)2P(S)(NHtBu)] (1) (100 mg, 0.24 mmol) was added dropwise over an aceto­nitrile (5 mL) solution of HgBr2 (87.4 mg; 0.24 mmol) under an N2 atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 83% (156 mg). X-ray quality crystals were obtained by slow evaporation from DMF solution at room temperature, m.p. 483–485 K. 1H NMR (400 MHz, DMSO-d6): 1.45 (s, 18H, tBu), 1.59 (s, 18H, tBu), 2.54 (br s, 2H, NH). IR (cm−1): 3194 (br m; N-H), 2977 (w), 1471 (w), 1391 (w), 1369 (m), 1225 (w), 1185 (s), 1046 (vs), 907 (m), 852 (m), 745 (s), 705 (m). Absorption spectrum [DMSO; λmax, nm (ɛM, M−1 cm−1)]: 282 (17054). Analysis calculated for C16H38N4P2S2HgBr2: C, 24.86; H, 4.95; N, 7.25; S, 8.30. Found: C, 25.03; H, 5.08; N, 7.75; S, 8.22.

Supporting information


Computing details top

[1,3-Di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-diselone-κ2Se,Se']diiodidomercury(II) N,N-dimethylformamide monosolvate top
Crystal data top
[HgI2(C16H38N4P2Se2)]·C3H7NOF(000) = 1944
Mr = 1033.85Dx = 2.107 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1747 (8) ÅCell parameters from 8829 reflections
b = 17.3698 (13) Åθ = 2.3–26.8°
c = 20.841 (2) ŵ = 8.97 mm1
β = 101.049 (3)°T = 300 K
V = 3259.7 (5) Å3Prism, colorless
Z = 40.53 × 0.28 × 0.26 mm
Data collection top
Bruker SMART X2S
diffractometer
6956 reflections with I > 2σ(I)
ω scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 31.0°, θmin = 2.6°
Tmin = 0.309, Tmax = 0.746h = 1213
45600 measured reflectionsk = 2419
9576 independent reflectionsl = 2829
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0325P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.004
S = 1.00Δρmax = 1.91 e Å3
9576 reflectionsΔρmin = 1.91 e Å3
310 parametersExtinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00052 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.70533 (2)0.77295 (2)0.58150 (2)0.02178 (6)
I10.60217 (4)0.91950 (2)0.55729 (2)0.02891 (9)
I20.90720 (4)0.72186 (2)0.50978 (2)0.02938 (9)
Se10.49422 (5)0.65923 (3)0.55275 (2)0.01821 (11)
Se20.81087 (5)0.79005 (3)0.71512 (2)0.01874 (11)
P10.51042 (12)0.62623 (6)0.65210 (6)0.0119 (2)
P20.67826 (12)0.69810 (6)0.73987 (6)0.0120 (2)
N20.6846 (4)0.61881 (19)0.69491 (18)0.0131 (8)
N10.4974 (4)0.6991 (2)0.70322 (19)0.0127 (7)
O10.4763 (4)0.5489 (2)0.80940 (19)0.0317 (9)
N30.4072 (4)0.5541 (2)0.6635 (2)0.0164 (8)
H30.413 (5)0.547 (3)0.703 (3)0.020*
N40.7002 (4)0.6801 (2)0.81733 (19)0.0158 (8)
H40.649 (5)0.644 (3)0.820 (3)0.019*
N50.3773 (5)0.4941 (2)0.8902 (2)0.0274 (10)
C50.8046 (5)0.5593 (3)0.6959 (3)0.0193 (10)
C60.7986 (5)0.5287 (3)0.6268 (3)0.0243 (11)
H6A0.7040740.5047660.6113820.036*
H6B0.8762920.4916340.6271730.036*
H6C0.8116140.5705830.5983160.036*
C110.4061 (6)0.4524 (3)0.5785 (3)0.0333 (14)
H11A0.4504550.4880330.5527090.050*
H11B0.3434100.4172840.5501750.050*
H11C0.4827670.4240990.6066590.050*
C90.3141 (5)0.4963 (2)0.6196 (2)0.0181 (10)
C10.3696 (5)0.7508 (3)0.7113 (2)0.0163 (9)
C100.1830 (6)0.5362 (3)0.5759 (3)0.0323 (13)
H10A0.1242500.5624060.6025590.048*
H10B0.1229300.4985520.5492920.048*
H10C0.2194810.5728360.5482270.048*
C130.7805 (5)0.7175 (3)0.8783 (2)0.0187 (10)
C40.4225 (5)0.8335 (3)0.7189 (3)0.0261 (12)
H4A0.4935850.8388070.7589170.039*
H4B0.3394310.8667540.7198460.039*
H4C0.4680550.8472300.6826880.039*
C70.9542 (5)0.5971 (3)0.7207 (3)0.0355 (14)
H7A0.9697620.6374850.6913270.053*
H7B1.0315120.5593320.7230610.053*
H7C0.9558680.6182070.7633930.053*
C150.9469 (5)0.7146 (3)0.8823 (3)0.0311 (13)
H15A0.9780690.6620430.8806560.047*
H15B0.9959070.7375460.9226440.047*
H15C0.9721660.7425410.8462400.047*
C80.7780 (7)0.4949 (3)0.7420 (3)0.0422 (16)
H8A0.7831630.5153860.7851490.063*
H8B0.8525430.4558820.7430440.063*
H8C0.6816070.4728650.7268140.063*
C30.2467 (5)0.7432 (3)0.6512 (3)0.0314 (13)
H3A0.2823880.7608320.6133430.047*
H3B0.1630300.7738610.6569450.047*
H3C0.2171400.6902970.6453530.047*
C120.2550 (6)0.4405 (3)0.6658 (3)0.0279 (12)
H12A0.3369810.4168390.6945970.042*
H12B0.1957460.4014870.6406020.042*
H12C0.1953480.4683310.6911090.042*
C160.7383 (6)0.6705 (3)0.9345 (2)0.0261 (11)
H16A0.6325840.6718530.9313490.039*
H16B0.7859920.6921340.9755820.039*
H16C0.7700540.6181350.9317280.039*
C190.3824 (7)0.4343 (3)0.9396 (3)0.0422 (16)
H19A0.2918020.4051870.9309010.063*
H19B0.3937800.4576110.9820210.063*
H19C0.4648970.4007340.9383540.063*
C140.7257 (6)0.8005 (3)0.8827 (3)0.0302 (12)
H14A0.7481340.8299210.8468290.045*
H14B0.7743770.8230510.9231830.045*
H14C0.6203040.8002910.8807420.045*
C170.4744 (6)0.4989 (3)0.8515 (3)0.0310 (13)
H170.5481580.4615040.8562400.037*
C20.3118 (6)0.7242 (3)0.7719 (3)0.0269 (12)
H2A0.2815750.6712750.7666230.040*
H2B0.2283880.7553170.7770980.040*
H2C0.3890850.7292800.8098010.040*
C180.2577 (8)0.5492 (4)0.8855 (4)0.072 (3)
H18A0.1646000.5236850.8705970.108*
H18B0.2706310.5889820.8550950.108*
H18C0.2585550.5715600.9276970.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02744 (11)0.02015 (11)0.01887 (11)0.00093 (7)0.00728 (8)0.00364 (8)
I10.0387 (2)0.02087 (18)0.0257 (2)0.00404 (14)0.00268 (15)0.00612 (14)
I20.02607 (17)0.0364 (2)0.0285 (2)0.00545 (14)0.01224 (15)0.00543 (16)
Se10.0244 (2)0.0215 (2)0.0084 (2)0.00507 (19)0.00213 (18)0.00068 (19)
Se20.0234 (2)0.0186 (2)0.0138 (2)0.00661 (18)0.00253 (19)0.00001 (19)
P10.0155 (5)0.0115 (5)0.0088 (6)0.0001 (4)0.0026 (4)0.0007 (4)
P20.0137 (5)0.0134 (6)0.0084 (6)0.0007 (4)0.0011 (4)0.0003 (5)
N20.0138 (17)0.0145 (19)0.0106 (19)0.0040 (14)0.0015 (15)0.0008 (15)
N10.0149 (17)0.0106 (17)0.012 (2)0.0012 (14)0.0005 (15)0.0037 (15)
O10.040 (2)0.033 (2)0.025 (2)0.0009 (17)0.0146 (18)0.0076 (17)
N30.025 (2)0.016 (2)0.009 (2)0.0055 (16)0.0064 (17)0.0010 (16)
N40.023 (2)0.019 (2)0.0047 (19)0.0072 (16)0.0006 (15)0.0008 (16)
N50.039 (3)0.026 (2)0.018 (2)0.0017 (19)0.008 (2)0.0066 (19)
C50.020 (2)0.016 (2)0.023 (3)0.0082 (18)0.006 (2)0.001 (2)
C60.019 (2)0.025 (3)0.031 (3)0.003 (2)0.010 (2)0.013 (2)
C110.036 (3)0.027 (3)0.041 (4)0.010 (2)0.018 (3)0.014 (3)
C90.021 (2)0.014 (2)0.021 (3)0.0110 (18)0.010 (2)0.006 (2)
C10.017 (2)0.015 (2)0.018 (3)0.0061 (18)0.0039 (19)0.0005 (19)
C100.029 (3)0.038 (3)0.029 (3)0.013 (2)0.000 (2)0.006 (3)
C130.024 (2)0.028 (3)0.004 (2)0.001 (2)0.0003 (18)0.0053 (19)
C40.026 (3)0.016 (2)0.039 (4)0.005 (2)0.012 (2)0.001 (2)
C70.023 (3)0.044 (3)0.037 (4)0.007 (2)0.001 (2)0.017 (3)
C150.028 (3)0.050 (3)0.015 (3)0.003 (2)0.002 (2)0.001 (2)
C80.052 (4)0.031 (3)0.049 (4)0.028 (3)0.023 (3)0.023 (3)
C30.023 (3)0.036 (3)0.032 (3)0.013 (2)0.003 (2)0.010 (3)
C120.037 (3)0.019 (3)0.032 (3)0.008 (2)0.017 (3)0.002 (2)
C160.037 (3)0.031 (3)0.010 (3)0.001 (2)0.005 (2)0.003 (2)
C190.068 (4)0.036 (3)0.022 (3)0.008 (3)0.007 (3)0.012 (3)
C140.043 (3)0.029 (3)0.017 (3)0.000 (2)0.001 (2)0.004 (2)
C170.027 (3)0.034 (3)0.032 (3)0.007 (2)0.007 (2)0.006 (3)
C20.028 (3)0.029 (3)0.027 (3)0.009 (2)0.013 (2)0.005 (2)
C180.077 (5)0.085 (6)0.069 (6)0.043 (4)0.050 (5)0.041 (5)
Geometric parameters (Å, º) top
Hg1—I12.7290 (4)C10—H10B0.9600
Hg1—I22.7409 (4)C10—H10C0.9600
Hg1—Se12.7508 (5)C13—C151.514 (6)
Hg1—Se22.7835 (6)C13—C161.536 (7)
Se1—P12.1260 (13)C13—C141.535 (7)
Se2—P22.1302 (12)C4—H4A0.9600
P1—P22.4893 (16)C4—H4B0.9600
P1—N21.679 (4)C4—H4C0.9600
P1—N11.674 (4)C7—H7A0.9600
P1—N31.615 (4)C7—H7B0.9600
P2—N21.673 (4)C7—H7C0.9600
P2—N11.689 (4)C15—H15A0.9600
P2—N41.619 (4)C15—H15B0.9600
N2—C51.507 (5)C15—H15C0.9600
N1—C11.511 (5)C8—H8A0.9600
O1—C171.237 (6)C8—H8B0.9600
N3—H30.83 (5)C8—H8C0.9600
N3—C91.508 (6)C3—H3A0.9600
N4—H40.79 (5)C3—H3B0.9600
N4—C131.491 (6)C3—H3C0.9600
N5—C191.457 (6)C12—H12A0.9600
N5—C171.314 (7)C12—H12B0.9600
N5—C181.444 (7)C12—H12C0.9600
C5—C61.526 (7)C16—H16A0.9600
C5—C71.520 (7)C16—H16B0.9600
C5—C81.525 (7)C16—H16C0.9600
C6—H6A0.9600C19—H19A0.9600
C6—H6B0.9600C19—H19B0.9600
C6—H6C0.9600C19—H19C0.9600
C11—H11A0.9600C14—H14A0.9600
C11—H11B0.9600C14—H14B0.9600
C11—H11C0.9600C14—H14C0.9600
C11—C91.519 (6)C17—H170.9300
C9—C101.530 (7)C2—H2A0.9600
C9—C121.536 (6)C2—H2B0.9600
C1—C41.515 (6)C2—H2C0.9600
C1—C31.522 (7)C18—H18A0.9600
C1—C21.531 (7)C18—H18B0.9600
C10—H10A0.9600C18—H18C0.9600
I1—Hg1—I2116.603 (13)H10A—C10—H10C109.5
I1—Hg1—Se1115.134 (15)H10B—C10—H10C109.5
I1—Hg1—Se297.310 (14)N4—C13—C15111.2 (4)
I2—Hg1—Se199.784 (14)N4—C13—C16105.3 (4)
I2—Hg1—Se2115.997 (16)N4—C13—C14110.2 (4)
Se1—Hg1—Se2112.950 (15)C15—C13—C16109.9 (4)
P1—Se1—Hg193.82 (3)C15—C13—C14111.4 (4)
P2—Se2—Hg193.27 (4)C14—C13—C16108.7 (4)
Se1—P1—P2119.89 (6)C1—C4—H4A109.5
N2—P1—Se1114.83 (14)C1—C4—H4B109.5
N2—P1—P241.95 (12)C1—C4—H4C109.5
N1—P1—Se1114.57 (14)H4A—C4—H4B109.5
N1—P1—P242.48 (12)H4A—C4—H4C109.5
N1—P1—N284.07 (18)H4B—C4—H4C109.5
N3—P1—Se1114.75 (16)C5—C7—H7A109.5
N3—P1—P2125.36 (16)C5—C7—H7B109.5
N3—P1—N2112.8 (2)C5—C7—H7C109.5
N3—P1—N1112.2 (2)H7A—C7—H7B109.5
Se2—P2—P1119.98 (6)H7A—C7—H7C109.5
N2—P2—Se2113.51 (14)H7B—C7—H7C109.5
N2—P2—P142.15 (12)C13—C15—H15A109.5
N2—P2—N183.79 (17)C13—C15—H15B109.5
N1—P2—Se2116.10 (14)C13—C15—H15C109.5
N1—P2—P142.01 (12)H15A—C15—H15B109.5
N4—P2—Se2114.77 (15)H15A—C15—H15C109.5
N4—P2—P1125.25 (15)H15B—C15—H15C109.5
N4—P2—N2112.8 (2)C5—C8—H8A109.5
N4—P2—N1112.1 (2)C5—C8—H8B109.5
P2—N2—P195.90 (17)C5—C8—H8C109.5
C5—N2—P1132.7 (3)H8A—C8—H8B109.5
C5—N2—P2131.3 (3)H8A—C8—H8C109.5
P1—N1—P295.51 (18)H8B—C8—H8C109.5
C1—N1—P1132.2 (3)C1—C3—H3A109.5
C1—N1—P2132.2 (3)C1—C3—H3B109.5
P1—N3—H3110 (3)C1—C3—H3C109.5
C9—N3—P1135.0 (3)H3A—C3—H3B109.5
C9—N3—H3115 (3)H3A—C3—H3C109.5
P2—N4—H4105 (4)H3B—C3—H3C109.5
C13—N4—P2135.5 (3)C9—C12—H12A109.5
C13—N4—H4119 (4)C9—C12—H12B109.5
C17—N5—C19123.0 (5)C9—C12—H12C109.5
C17—N5—C18120.8 (5)H12A—C12—H12B109.5
C18—N5—C19116.2 (5)H12A—C12—H12C109.5
N2—C5—C6109.4 (4)H12B—C12—H12C109.5
N2—C5—C7108.6 (4)C13—C16—H16A109.5
N2—C5—C8107.9 (4)C13—C16—H16B109.5
C7—C5—C6109.8 (4)C13—C16—H16C109.5
C7—C5—C8110.2 (5)H16A—C16—H16B109.5
C8—C5—C6111.0 (4)H16A—C16—H16C109.5
C5—C6—H6A109.5H16B—C16—H16C109.5
C5—C6—H6B109.5N5—C19—H19A109.5
C5—C6—H6C109.5N5—C19—H19B109.5
H6A—C6—H6B109.5N5—C19—H19C109.5
H6A—C6—H6C109.5H19A—C19—H19B109.5
H6B—C6—H6C109.5H19A—C19—H19C109.5
H11A—C11—H11B109.5H19B—C19—H19C109.5
H11A—C11—H11C109.5C13—C14—H14A109.5
H11B—C11—H11C109.5C13—C14—H14B109.5
C9—C11—H11A109.5C13—C14—H14C109.5
C9—C11—H11B109.5H14A—C14—H14B109.5
C9—C11—H11C109.5H14A—C14—H14C109.5
N3—C9—C11111.4 (4)H14B—C14—H14C109.5
N3—C9—C10110.4 (4)O1—C17—N5125.7 (5)
N3—C9—C12105.5 (4)O1—C17—H17117.2
C11—C9—C10110.5 (5)N5—C17—H17117.2
C11—C9—C12109.8 (4)C1—C2—H2A109.5
C10—C9—C12109.2 (4)C1—C2—H2B109.5
N1—C1—C4109.5 (4)C1—C2—H2C109.5
N1—C1—C3109.0 (4)H2A—C2—H2B109.5
N1—C1—C2108.1 (4)H2A—C2—H2C109.5
C4—C1—C3109.9 (4)H2B—C2—H2C109.5
C4—C1—C2110.8 (4)N5—C18—H18A109.5
C3—C1—C2109.5 (4)N5—C18—H18B109.5
C9—C10—H10A109.5N5—C18—H18C109.5
C9—C10—H10B109.5H18A—C18—H18B109.5
C9—C10—H10C109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
Se1—P1—N2—P2107.86 (15)P2—N1—C1—C440.6 (6)
Se1—P1—N2—C575.0 (4)P2—N1—C1—C3160.8 (4)
Se1—P1—N1—P2108.19 (15)P2—N1—C1—C280.2 (5)
Se1—P1—N1—C169.0 (4)P2—N4—C13—C1566.1 (6)
Se1—P1—N3—C99.6 (5)P2—N4—C13—C16175.0 (4)
Se2—P2—N2—P1109.36 (14)P2—N4—C13—C1458.0 (6)
Se2—P2—N2—C573.5 (4)N2—P1—N1—P26.44 (18)
Se2—P2—N1—P1106.70 (14)N2—P1—N1—C1176.4 (4)
Se2—P2—N1—C170.4 (4)N2—P1—N3—C9124.4 (4)
Se2—P2—N4—C137.9 (5)N2—P2—N1—P16.47 (19)
P1—P2—N2—C5177.2 (5)N2—P2—N1—C1176.4 (4)
P1—P2—N1—C1177.1 (5)N2—P2—N4—C13140.0 (4)
P1—P2—N4—C13173.4 (4)N1—P1—N2—P26.51 (19)
P1—N2—C5—C636.4 (6)N1—P1—N2—C5170.6 (4)
P1—N2—C5—C7156.1 (4)N1—P1—N3—C9142.7 (4)
P1—N2—C5—C884.5 (5)N1—P2—N2—P16.45 (19)
P1—N1—C1—C4135.6 (4)N1—P2—N2—C5170.7 (4)
P1—N1—C1—C315.3 (6)N1—P2—N4—C13127.4 (4)
P1—N1—C1—C2103.6 (5)N3—P1—N2—P2118.1 (2)
P1—N3—C9—C1157.2 (6)N3—P1—N2—C559.0 (5)
P1—N3—C9—C1065.9 (6)N3—P1—N1—P2118.7 (2)
P1—N3—C9—C12176.3 (4)N3—P1—N1—C164.2 (5)
P2—P1—N2—C5177.1 (5)N4—P2—N2—P1117.9 (2)
P2—P1—N1—C1177.1 (5)N4—P2—N2—C559.3 (4)
P2—P1—N3—C9170.7 (4)N4—P2—N1—P1118.6 (2)
P2—N2—C5—C6147.5 (4)N4—P2—N1—C164.2 (5)
P2—N2—C5—C727.7 (6)C19—N5—C17—O1179.1 (6)
P2—N2—C5—C891.7 (5)C18—N5—C17—O10.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.82 (6)2.18 (6)2.986 (6)165 (4)
N4—H4···O10.79 (5)2.27 (5)3.051 (5)169 (6)
 

Acknowledgements

The authors would like to acknowledge support by funds from the Chemistry Department, Wright State University, College of Science and Mathematics. The authors would also like to acknowledge Dr Grossie, Wright State University, for help with low-temperature data X-ray diffraction collection.

Funding information

This work is funded in part by the Welch Foundation (V-0004; Chandrasekaran). Funding for this research was provided by: National Institutes of Health, National Cancer Institute (grant No. CA232765 to Kuppuswamy Arumugam); American Chemical Society Petroleum Research Fund (grant No. 59893UR7 to Kuppuswamy Arumugam).

References

First citationBalakrishna, M. S. (2016). Dalton Trans. 45, 12252–12282.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBashall, A., Bond, A. D., Doyle, E. L., García, F., Kidd, S., Lawson, G. T., Parry, M. C., McPartlin, M., Woods, A. D. & Wright, D. S. (2002). Chem. Eur. J. 8, 3377–3385.  CrossRef PubMed Google Scholar
First citationBonnette, A., Mague, J. T. & Chandrasekaran, P. (2018). Acta Cryst. E74, 180–183.  CSD CrossRef IUCr Journals Google Scholar
First citationBriand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233–234, 237–254.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationChandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264–2272.  Web of Science CSD CrossRef Google Scholar
First citationChivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936–1942.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348–4354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770–1777.  CSD CrossRef CAS Web of Science Google Scholar
First citationKnight, F. R. & Woollins, J. D. (2016). CSD Communication (No. 1042705). CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503–4516.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPlajer, A. J., Lee, S., Bond, A. D., Goodman, J. M. & Wright, D. S. (2020). Dalton Trans. 49, 3403–3407.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStahl, L. (2000). Coord. Chem. Rev. 210, 203–250.  Web of Science CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds