research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 September 2024; accepted 23 September 2024; online 11 October 2024)

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S′)bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4] anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.

1. Chemical context

Thio­anti­monate(III) compounds show a large structural variability, which in part can be traced back to the free lone-electron pair of Sb3+. Their structural chemistry is characterized by SbSx anions that can condense into larger anions such as rings, chains or layers (Sheldrick & Wachhold, 1998[Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-233.]; Zhou, 2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]; Zhu & Dai, 2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]; Bensch et al., 1997[Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. 18, 1773-1774.]; Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.]; Puls et al., 2006[Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.]; Lichte et al., 2009[Lichte, J., Lühmann, H., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021-2026.]). Charge balance is frequently achieved by inorganic or organic cations. Some of such compounds also have potential for applications as, for example, photoconductive materials (Pienack et al., 2008a[Pienack, N., Puls, A., Näther, C. & Bensch, W. (2008a). Inorg. Chem. 47, 9606-9611.]) or in the field of superionic conductors (Zhou et al., 2019[Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002-19013.]) and this is one reason why we have been inter­ested in such compounds for many years (Schaefer et al., 2003[Schaefer, M., Näther, C. & Bensch, W. (2003). Solid State Sci. 5, 1135-1139.]; Schur et al., 1998[Schur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101-107.]; 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch.B, 56, 79-84.]; Stähler et al., 2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]; Kiebach et al., 2004[Kiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553-2556.]; Lühmann et al., 2008[Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687-1695.]; Pienack et al., 2008b[Pienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323-2329.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B, 59, 869-876.], 2008[Engelke, L., Näther, C., Leisner, P. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959-2965.]). In contrast to these compounds, the chemistry of thio­anti­monates(V) with Sb5+ is less developed, and in most cases the cations and [SbS4]3– anions are separated (Schur et al., 1998[Schur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101-107.]; Jia et al., 2004[Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.]; Kiebach et al., 2004[Kiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553-2556.]; Wang et al., 2013[Wang, M.-F., Yue, C.-Y., Yuan, Z.-D. & Lei, X.-W. (2013). Acta Cryst. C69, 855-858.]). In only a few structures are the [SbS4]3– anions and cations found to be connected (Jia et al., 2005[Jia, D. X., Zhu, Q. Y., Dai, J., Lu, W. & Guo, W. J. (2005). Inorg. Chem. 44, 819-821.]; Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]; Näther et al., 2022[Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270-274.]).

Concerning the synthesis of thio­anti­monate compounds, in the majority of examples solvothermal synthesis starting from the elements was used. Later we found that elemental anti­mony and sulfur can be replaced by NaSbS3 or by Schlippe's salt (Na3SbS4·9H2O; Anderer et al., 2014[Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.], 2016a[Anderer, C., Näther, C. & Bensch, W. (2016a). Cryst. Growth Des. B71, 395-401.]). Schlippe's salt is unstable and forms different reactive species and a variety of complex redox and condensation reactions can occur leading to the formation of thio­anti­moante(III) species (Rammelsberg, 1841[Rammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.]; Long et al., 1970[Long, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837-842.]; Mosselmanns et al., 2000[Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879-889.]; Planer-Friedrich & Scheinost, 2011[Planer-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855-6863.]; Planer-Friedrich & Wilson, 2012[Planer-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322-323, 1-10.]). Later we found that for the directed synthesis of thio­anti­monates(III) the reaction temperature must be reduced, which is accompanied by a slower decomposition of Schlippe's salt. This is an advantage, because such compounds can be prepared at room-temperature (Anderer et al., 2016b[Anderer, C., Näther, C. & Bensch, W. (2016b). Z. Naturforsch. 16, 3802-38109.]; Hilbert et al., 2017[Hilbert, J., Näther, C. & Bensch, W. (2017). Inorg. Chim. Acta, 459, 29-35.]).

However, as mentioned above, the synthesis of thio­anti­monate(V) compounds that are linked to transition metal cations is still not easy but can be achieved by using tetra­dentate ligands that, in an octa­hedral coordination of a transition-metal catio,n provide two coordination sites for bond formation to the thio­anti­monate(V) anions. In this context, cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) is a promising ligand. Following this consideration we reported on two new polymeric thio­anti­monates(V) with the compositions [(Cu-cyclam)3(SbS4)2]·20H2O and [(Zn-cyclam)3(SbS4)2]·8H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]), in which the metal cations are linked to the [SbS4]3– anions. Later we prepared a similar compound with cobalt that forms thio­anti­monate layers, as it was previously the case for the Cu compound (Näther et al., 2022[Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270-274.]). In contrast to the Cu and Co cyclam compounds, no layers were formed in [(Zn-cyclam)3(SbS4)2]·8H2O because the Zn cations are disordered over both N4 planes of the cyclam ligands (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). In the course of this project we obtained crystals of the new title compound with the composition [(Zn-cyclam)2(SbS4)]+[ClO4]·0.8H2O, (I)[link], which was characterized by single crystal X-ray diffraction and powder X-ray diffraction as well as by IR and Raman spectroscopy.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of four crystallographically independent Zn(cyclam)2+ cations as well as two crystallographically independent [SbS4]3– anions, two perchlorate anions and two water mol­ecules that are located in general positions (Figs. 1[link] and 2[link]). Each of the four crystallographically independent Zn2+ cations is coordinated by the four N atoms of the cyclam ligands and one S atom of the [SbS4]3– anions within a square-pyramidal coordination (Fig. 3[link]). All of the cyclam ligands adopt the trans-IV(R,S,S,R) configuration. One of the cyclam ligands and both perchlorate anions are disordered over two orientations and were refined using a split model (see Refinement). The Zn—N and Zn—S bond lengths (Table 1[link]) vary slightly between the four independent complex cations but correspond to values comparable to those in other Zn(cyclam)2+ cations. From the bond angles it can be seen that the square-pyramidal coordination geometry is slightly distorted (see supporting information). The Zn2+ cations are shifted out of the N4 plane of the cyclam ligands by 0.5068 (4) Å (Zn1), 0.4758 (4) Å (Zn11), 0.4685 (5) and 0.541 Å (Zn21) and 0.4879 (4) Å (Zn31), similar to what is usually observed in Zn compounds containing cyclam ligands. In this context, it is noted that the asymmetric coordination of the Zn2+ cations in compounds where Zn(cyclam)2+ cations are sixfold coordinated frequently leads to a disorder of the Zn2+ cation that is either located above and below the N4 plane, as is the case, for example, in [Zn(cyclam)]3[SbS4]2·8H2O (CSD refcode GALPUI; Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]), Zn(cyclam)(methyl­carbon­ato)(perchlorate) (CUZHUA; Kato & Ito, 1985[Kato, M. & Ito, T. (1985). Inorg. Chem. 24, 509-514.]), Zn(NCS)2(cyclam) (DITZIP; Ito et al., 1984[Ito, T., Kato, M. & Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 2634-2640.]) and ZnX2(cyclam) with X = Cl, Br, I (HEGNEM, HEGNOW and VUSDUI10; Porai-Koshits et al., 1994[Porai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. & Varava, F. B. (1994). Russ. J. Inorg. Chem. 39, 435-439.]).

Table 1
Selected bond lengths (Å)

Sb1—S1 2.3409 (7) Sb11—S13 2.3030 (7)
Sb1—S2 2.3593 (7) Sb11—S14 2.3100 (7)
Sb1—S3 2.3090 (7) S11—Zn21 2.3806 (7)
Sb1—S4 2.3168 (7) S12—Zn31 2.3870 (8)
S1—Zn1 2.4024 (7) Zn21—N21 2.166 (4)
S2—Zn11 2.3694 (8) Zn21—N22 2.115 (4)
Zn1—N1 2.137 (2) Zn21—N23 2.080 (4)
Zn1—N2 2.118 (2) Zn21—N24 2.133 (3)
Zn1—N3 2.144 (2) Zn21—N21′ 2.143 (9)
Zn1—N4 2.116 (2) Zn21—N22′ 2.239 (9)
Zn11—N11 2.107 (3) Zn21—N23′ 2.144 (8)
Zn11—N12 2.124 (3) Zn21—N24′ 2.054 (8)
Zn11—N13 2.135 (3) Zn31—N31 2.114 (3)
Zn11—N14 2.134 (3) Zn31—N32 2.141 (2)
Sb11—S11 2.3424 (7) Zn31—N33 2.121 (3)
Sb11—S12 2.3572 (8) Zn31—N34 2.137 (2)
[Figure 1]
Figure 1
The tetra­thio­anti­monate and perchlorate anions and water mol­ecules in (I)[link] with displacement ellipsoids drawn at the 50% probability level. The disorder of the perchlorate anions is shown with full and open bonds.
[Figure 2]
Figure 2
The Zn(cyclam) complexes in (I)[link] with labeling and displacement ellipsoids drawn at the 50% probability level. The disorder of the cyclam ligands is shown with full and open bonds.
[Figure 3]
Figure 3
View of the Zn(cyclam)2+–[SbS4]3––Zn(cyclam)2+ units in (I)[link].

Each pair of Zn(cyclam)2+ cations is linked via the S atoms of the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations (Fig. 3[link]) and charge balance is achieved by additional perchlorate anions, both of them disordered in two different orientations. The Sb—S bond lengths to the two S atoms that are involved in metal coordination are significantly longer than that to the other two S atoms (Table 1[link]). The S—Sb—S angles show that the tetra­hedra are slightly distorted (see supporting information).

3. Supra­molecular features

The crystal structure of the title compound is dominated by numerous N—H⋯O and N—H⋯S hydrogen bonds (Table 2[link]) but several of them show angles that are far from linearity and some of them are close to the sum of the van der Waals radii. Therefore, in Table 2[link] and Fig. 4[link] only those with angles smaller than 140° and, for example, S⋯H distances shorter than 2.6 Å are considered. In this case, the N—H hydrogen atoms of the cyclam ligands are connected via N—H⋯S hydrogen bonds to the [SbS4]3– anions. Some of them are close to linear with relatively short S⋯H distances, which indicates that these correspond to strong inter­actions (Fig. 4[link] and Table 2[link]). There is also N—H⋯O hydrogen bonding to the perchlorate anions and one of the water mol­ecules (Fig. 4[link] and Table 2[link]). The other water mol­ecule might also be involved in hydrogen bonding but the distances and angles indicate that these are only weak inter­actions. In this context, it is noted that the O—H hydrogen atoms were clearly located in difference maps (see Refinement). There is a very large number of contacts between the C—H hydrogen atoms of the cyclam ligands and the O and S atoms of the perchlorate and tetra­thio­anti­monate anions as well the water O atoms, but from the values of the distances and angles they should not correspond to strong inter­actions.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S2 1.00 2.30 3.289 (2) 172
N11—H11⋯O42 1.00 2.00 2.948 (5) 157
N12—H12⋯S4 1.00 2.40 3.404 (3) 178
N13—H13⋯S3 1.00 2.46 3.444 (3) 169
N14—H14⋯O24 1.00 2.17 3.135 (6) 163
N14—H14⋯O31 1.00 2.28 3.115 (19) 140
N14—H14⋯O33 1.00 2.47 3.41 (4) 156
N22—H22⋯O3 1.00 2.16 3.158 (6) 175
N23—H23⋯O41 1.00 2.35 3.235 (6) 147
N24—H24⋯S12 1.00 2.56 3.483 (3) 154
N22′—H22′⋯O12 1.00 2.29 3.27 (3) 166
N31—H31⋯S14 1.00 2.36 3.355 (3) 174
N33—H33⋯S3i 1.00 2.53 3.419 (3) 148
N34—H34⋯S13 1.00 2.58 3.532 (2) 159
O41—H41A⋯S14ii 0.82 2.48 3.256 (4) 158
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x+1, y, z].
[Figure 4]
Figure 4
The crystal structure of (I)[link] viewed along the crystallographic a-axis direction with N—H⋯S and N—H⋯O hydrogen bonds shown as dashed lines. The disorder is omitted for clarity.

4. Database survey

A search for structures of zinc–cylam complexes in the Cambridge Structural database (CSD version 5.42, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) leads to 37 hits, of which 34 correspond to a sixfold and three to a twofold coordination. In only two of them is the Zn(cyclam) cation coordinated to a sulfur atom and both of these show a square pyramidal coordination (ICUFES and ICUFIW; Notni et al., 2006[Notni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. pp. 1444-1455.]). None of these structures contains thio­anti­monate anions. However, as mentioned in the Chemical context, one compound with the composition [(Zn-cyclam)3(SbS4)2]·8H2O has been reported and in this structure the Zn cations are fivefold coordinated but disordered over both N4 planes of the cyclam ligand (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). Three Zn compounds with thio­anti­monate anions are also known, viz. Zn(tri­ethyl­eneteramine)Sb4S7 (CODQOC; Lühmann, et al., 2008[Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687-1695.]), Zn(tris­(2-amino­eth­yl)amineSb4S7 (JALZIG; Schaefer et al., 2004a[Schaefer, M., Stähler, R., Kiebach, W. R., Näther, C. & Bensch, W. (2004a). Z. Anorg. Allg. Chem. 630, 1816-1822.]) and Zn(tris­(2-amino­eth­yl)amine)2Sb4S8 (PANCUD; Schaefer et al., 2004b[Schaefer, M., Näther, C. & Bensch, W. (2004b). Monatsh. Chem. 135, 461-470.]).

5. Additional investigations

Comparison of the experimental powder pattern of (I)[link] with that calculated from single-crystal data proves that a pure phase was obtained (Fig. 5[link]). The IR spectrum (Fig. 6[link]) shows the O—H stretching modes at 3550 and 3400 cm−1 and the N—H related bands are at 3260, 3208 and 3103 cm−1. The bands of the CH2 groups are found at 2930, 2910, and 2862 cm−1. The absorptions at 1461 and 1430 cm−1 cannot be assigned unambiguously because C—C, C—N stretching and CH deformation modes are located in this region. The very strong absorptions at 1083 and 1060 cm−1 are related to the ClO4 anion (Zapata & García-Ruiz, 2018[Zapata, F. & García-Ruiz, C. (2018). Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 535-542.]; Hillebrecht et al., 1994[Hillebrecht, H., Thiele, G., Koppenhöfer, A. & Vahrenkamp, H. (1994). Z. Naturforsch. B, 49, 1163-1168.]). However, in this region C—N stretching and the CH2 deformation vibrations also occur, which overlap with the bands of the perchlorate ions. The trans and cis isomers of coordinated cyclam show different absorptions between 790 and 910 cm−1, i.e. only three bands occur for the trans isomer and six for the cis configuration (Poon, 1971[Poon, C. K. (1971). Inorg. Chim. Acta, 5, 322-324.]). As expected, the IR spectrum contains only three absorptions at 866, 835, and 794 cm−1. The band at 621 cm−1 is caused by the deformation vibration of the perchlorate anion. In the Raman spectrum (Fig. 7[link]) four resonances can be expected for the ideal [SbS4]3– anion, which are located at 388, 366, 178, and 156 cm−1 in Na3SbS4 (Mikenda & Preisinger, 1980[Mikenda, W. & Preisinger, A. (1980). Spectrochim. Acta A, 36, 365-370.]). Because the ideal Td symmetry of the two independent thio­anti­monate(V) anions is significantly reduced, a more complex Raman spectrum is observed. The intense resonance at 372 cm−1 has shoulders at higher energies at 398 and 406 cm−1. The occurrence of the three bands is most probably caused by the differing Sb—S bond lengths. The deformation resonances of the anions are located at 161 and 175 (shoulder) cm−1. The relatively weak band at 338 cm−1 is most probably caused by the cyclam ligand (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). According to this reference, the Zn—S related resonance is weak and occurs at 262 cm−1.

[Figure 5]
Figure 5
Experimental (top) and calculated (bottom) powder patterns for (I)[link].
[Figure 6]
Figure 6
IR spectrum of (I)[link].
[Figure 7]
Figure 7
Raman spectrum of (I)[link].

6. Synthesis and crystallization

Synthesis of Na3SbS4·9H2O

Na3SbS4·9H2O was synthesized by adding 16.6 g (0.213 mol) of Na2xH2O (technical grade, purchased from Acros Organics) to 58 ml of demineralized water. This solution was heated to 323 K for 1 h. Afterwards 19.6 g (0.058 mol) of Sb2S3 (98%, purchased from Alfa Aesar) and 3.69 g (0.115 mol) of sulfur (min. 99%, purchased from Alfa Aesar), were added and the reaction mixture was heated to 343 K for 6 h. The reaction mixture was filtered and the filtrate was stored overnight, leading to the formation of slightly yellow crystals, which were filtered off, washed with small amounts of water and dried under vacuum (yield about 30% based on Sb2S3).

Synthesis of the title compound

16 mg (0.044 mmol) of Zn(ClO4)2·6H2O (purchased from Alfa Aesar) and 16 mg (0.08 mmol) of cyclam (purchased from Strem Chemicals) were dissolved in 2 ml of aceto­nitrile (purchased from Merck). To this solution, a solution of 50 mg (0.14 mmol) of Na3SbS4·9H2O dissolved in 1 ml of H2O was added. Within 3 d, a few colorless crystals of the title compound were obtained.

Experimental details

The PXRD measurements were performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator. The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. The Raman spectra were recorded at room temperature on a Bruker RAM II FT-Raman spectrometer using a liquid nitro­gen cooled, highly sensitive Ge detector at 1064 nm radiation and with 3 cm−1 resolution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. The C- and N-bound H atoms were positioned with idealized geometry and were refined isotrop­ically with Uiso(H) = 1.2Ueq(C,N) using a riding model. The O-bound H atoms were located in difference maps, their bond lengths were set to ideal values and they were refined isotropically with Uiso(H) = 1.5Ueq(O) using a riding model. Both crystallographically independent perchlorate anions are disordered over two orientations and were refined using a split model with restraints for the geometry and the components of the anisotropic displacement parameters. Even in this case, relatively large displacement parameters are observed, indicating that more than two orientations are probably involved. Complete disorder is also observed for one of the four crystallographically independent cyclam ligands, which also was refined using a split model and restraints, but even in this case some of the atoms show relatively high components of their anisotropic displacement parameters. The Zn cation coordinated by this ligand exhibits anisotropic displacement parameters that are slightly higher than those of the other Zn cations and close to this cation the highest maximum in the difference map is observed, which indicates that the position of this cation is also influenced by the disorder. The possible Zn disorder cannot be resolved. It is noted that the ratio between the site occupation factors (sof) of the disordered perchlorate anions of 0.8:0.2 is slightly different from that observed in the cyclam ligand. However, they need not necessarily depend on each other and precise determination of the sof's is difficult to achieve. In the end we selected ratios where the best reliability factors were observed. It is also noted that the sof of the water mol­ecules is identical to the occupancy of the major disorder component of the perchlor­ate anions, but they do not necessarily depend on each other: it is possible that some amount of water was lost on storage and that the water positions were fully occupied in freshly prepared crystals. The structure was refined as a racemic twin, leading to a BASF parameter of 0.408 (5). It was also attempted to refine the structure in the centrosymmetric space group P21/c but in this case much disorder is observed and no reasonable structural model can be found. In this context it is noted that checkCIF does not suggest higher symmetry.

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O
Mr 895.25
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 9.11238 (7), 13.67434 (10), 27.49214 (18)
β (°) 92.9206 (6)
V3) 3421.23 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.54
Crystal size (mm) 0.2 × 0.2 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 112309, 24308, 23520
Rint 0.021
(sin θ/λ)max−1) 0.783
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.03
No. of reflections 24308
No. of parameters 956
No. of restraints 314
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.16, −0.58
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.408 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

(µ-Tetrathioantimonato-κ2S:S')bis[(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II)] perchlorate 0.8-hydrate top
Crystal data top
[Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2OF(000) = 1824
Mr = 895.25Dx = 1.738 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 9.11238 (7) ÅCell parameters from 77740 reflections
b = 13.67434 (10) Åθ = 2.7–33.8°
c = 27.49214 (18) ŵ = 2.54 mm1
β = 92.9206 (6)°T = 100 K
V = 3421.23 (4) Å3Block, colourless
Z = 40.2 × 0.2 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
24308 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source23520 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 33.8°, θmin = 2.1°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 2120
Tmin = 0.856, Tmax = 1.000l = 4241
112309 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.8205P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.002
S = 1.02Δρmax = 2.16 e Å3
24308 reflectionsΔρmin = 0.58 e Å3
956 parametersAbsolute structure: Refined as an inversion twin
314 restraintsAbsolute structure parameter: 0.408 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.48949 (2)0.00451 (2)0.35226 (2)0.01278 (3)
S10.64411 (8)0.08789 (5)0.30469 (3)0.01815 (12)
S20.39294 (8)0.10867 (5)0.40697 (2)0.01748 (12)
S30.61087 (8)0.12292 (5)0.39871 (3)0.01883 (12)
S40.31484 (8)0.07701 (5)0.29972 (3)0.01926 (12)
Zn10.49094 (3)0.21190 (2)0.26659 (2)0.01471 (6)
N10.3300 (3)0.13456 (18)0.22234 (9)0.0186 (4)
H10.3363180.0650020.2334810.022*
C10.3798 (4)0.1343 (2)0.17181 (11)0.0219 (6)
H1A0.3402480.1924940.1541800.026*
H1B0.3419490.0752700.1545270.026*
C20.5474 (4)0.1354 (2)0.17217 (11)0.0222 (6)
H2A0.5879430.0749940.1875330.027*
H2B0.5804740.1390930.1384730.027*
N20.5981 (3)0.22173 (17)0.20017 (9)0.0177 (4)
H20.5608070.2813650.1824920.021*
C30.7598 (3)0.2295 (2)0.20650 (11)0.0203 (5)
H3A0.8031140.2251230.1742830.024*
H3B0.7979980.1742310.2266360.024*
C40.8062 (3)0.3256 (2)0.23085 (11)0.0216 (5)
H4A0.7601250.3799030.2117750.026*
H4B0.9139620.3323920.2290690.026*
C50.7678 (3)0.3378 (2)0.28401 (11)0.0201 (5)
H5A0.8089340.2822770.3033540.024*
H5B0.8131730.3986960.2972150.024*
N30.6070 (3)0.34206 (18)0.28886 (8)0.0170 (4)
H30.5674940.3973970.2683440.020*
C60.5625 (4)0.3578 (2)0.33895 (10)0.0200 (5)
H6A0.6003290.4213810.3514180.024*
H6B0.6027190.3053290.3605760.024*
C70.3952 (4)0.3568 (2)0.33779 (11)0.0210 (6)
H7A0.3615380.3638310.3712820.025*
H7B0.3560630.4125530.3181590.025*
N40.3391 (3)0.26367 (17)0.31631 (9)0.0174 (4)
H40.3454310.2157900.3438280.021*
C80.1801 (3)0.2687 (2)0.30146 (11)0.0217 (5)
H8A0.1626170.3242870.2788110.026*
H8B0.1229030.2805430.3305620.026*
C90.1272 (3)0.1744 (2)0.27670 (12)0.0232 (6)
H9A0.0186150.1721320.2767870.028*
H9B0.1657110.1182920.2962140.028*
C100.1727 (3)0.1619 (3)0.22442 (12)0.0246 (6)
H10A0.1111480.1106240.2081840.030*
H10B0.1549700.2239050.2064590.030*
Zn110.22128 (4)0.01830 (3)0.45074 (2)0.01828 (6)
N110.0381 (3)0.1123 (2)0.44475 (11)0.0282 (5)
H110.0392490.0873720.4661000.034*
C110.0142 (4)0.1011 (4)0.39304 (15)0.0397 (9)
H11A0.0573430.1309450.3715610.048*
H11B0.1096480.1348590.3873640.048*
C120.0317 (5)0.0072 (4)0.3813 (2)0.0496 (13)
H12A0.1179860.0331230.3975110.060*
H12B0.0501470.0152290.3456780.060*
N120.0994 (4)0.0640 (2)0.39710 (12)0.0355 (7)
H120.1619170.0662230.3682670.043*
C130.0662 (6)0.1670 (4)0.4083 (2)0.0602 (16)
H13A0.0236300.1988380.3784360.072*
H13B0.0087480.1688350.4330690.072*
C140.1990 (6)0.2247 (3)0.4268 (2)0.0568 (15)
H14A0.2798110.2136450.4046920.068*
H14B0.1743750.2951700.4256610.068*
C150.2529 (6)0.1983 (3)0.4784 (2)0.0553 (14)
H15A0.1674960.1920750.4990670.066*
H15B0.3160650.2517080.4919260.066*
N130.3367 (4)0.1060 (2)0.48003 (11)0.0339 (7)
H130.4234410.1161320.4597560.041*
C160.3963 (5)0.0824 (3)0.53088 (13)0.0419 (10)
H16A0.3280960.1069030.5549860.050*
H16B0.4925500.1148700.5371230.050*
C170.4139 (5)0.0265 (4)0.53614 (13)0.0369 (9)
H17A0.4439250.0431500.5702540.044*
H17B0.4908220.0501430.5148520.044*
N140.2726 (3)0.0731 (2)0.52227 (10)0.0274 (5)
H140.1965650.0500940.5446200.033*
C180.2776 (4)0.1806 (3)0.52279 (13)0.0301 (7)
H18A0.3482610.2033400.4990490.036*
H18B0.3133280.2031110.5555140.036*
C190.1289 (4)0.2259 (2)0.51035 (13)0.0317 (7)
H19A0.1345680.2965250.5181800.038*
H19B0.0566380.1963180.5316670.038*
C200.0706 (4)0.2150 (2)0.45749 (14)0.0303 (7)
H20A0.0199210.2544490.4523450.036*
H20B0.1445270.2407250.4356060.036*
Sb110.45265 (2)0.50033 (2)0.65050 (2)0.01381 (4)
S110.58221 (8)0.61580 (5)0.60663 (2)0.01812 (12)
S120.62781 (8)0.40364 (5)0.69441 (3)0.02223 (13)
S130.31876 (8)0.58313 (5)0.70617 (2)0.01719 (12)
S140.32052 (9)0.40053 (5)0.59646 (3)0.02177 (13)
Zn210.72146 (4)0.52864 (2)0.54987 (2)0.01663 (6)
N210.5613 (4)0.4593 (3)0.50014 (13)0.0243 (7)0.72
H210.4680630.4564200.5177480.029*0.72
C210.5320 (8)0.5260 (5)0.45876 (19)0.0357 (13)0.72
H21A0.4283460.5189760.4466480.043*0.72
H21B0.5954770.5081490.4319680.043*0.72
C220.5609 (7)0.6309 (4)0.47346 (17)0.0365 (12)0.72
H22A0.5491140.6743270.4447160.044*0.72
H22B0.4908560.6518550.4977720.044*0.72
N220.7124 (5)0.6360 (3)0.49444 (14)0.0324 (9)0.72
H220.7809140.6165500.4688660.039*0.72
C230.7569 (11)0.7339 (5)0.5135 (3)0.0463 (19)0.72
H23A0.6925030.7527230.5398350.056*0.72
H23B0.7441350.7828190.4870620.056*0.72
C240.9149 (8)0.7342 (4)0.5328 (3)0.0482 (15)0.72
H24A0.9457310.8030270.5378830.058*0.72
H24B0.9760380.7064260.5074810.058*0.72
C250.9489 (8)0.6790 (5)0.5798 (3)0.0430 (14)0.72
H25A1.0507460.6937680.5917360.052*0.72
H25B0.8818190.7013820.6046930.052*0.72
N230.9325 (4)0.5717 (3)0.57311 (15)0.0307 (8)0.72
H231.0020060.5499720.5482570.037*0.72
C260.9615 (6)0.5130 (5)0.6177 (2)0.0346 (12)0.72
H26A0.8954880.5337730.6433200.042*0.72
H26B1.0644240.5221480.6302000.042*0.72
C270.9338 (12)0.4057 (8)0.6045 (4)0.035 (2)0.72
H27A1.0076880.3838420.5816410.042*0.72
H27B0.9450470.3651410.6342350.042*0.72
N240.7844 (4)0.3917 (3)0.58161 (12)0.0221 (6)0.72
H240.7173090.3794460.6086490.027*0.72
C280.7764 (6)0.3039 (3)0.5498 (2)0.0285 (9)0.72
H28A0.8026590.2454520.5696490.034*0.72
H28B0.8495630.3103890.5246090.034*0.72
C290.6259 (5)0.2887 (3)0.52506 (19)0.0282 (9)0.72
H29A0.5510040.2955810.5496950.034*0.72
H29B0.6198450.2209140.5124150.034*0.72
C300.5883 (6)0.3588 (4)0.48334 (19)0.0289 (9)0.72
H30A0.6701710.3596230.4610290.035*0.72
H30B0.4995410.3347800.4647660.035*0.72
N21'0.5879 (10)0.5630 (6)0.4857 (3)0.0196 (15)0.28
H21'0.4907070.5824830.4980300.023*0.28
C21'0.6444 (12)0.6524 (8)0.4632 (4)0.0238 (19)0.28
H21C0.5613630.6890600.4472740.029*0.28
H21D0.7122280.6339530.4376980.029*0.28
C22'0.7235 (17)0.7169 (11)0.4999 (6)0.025 (3)0.28
H22C0.7656210.7739900.4834030.029*0.28
H22D0.6539690.7411900.5236470.029*0.28
N22'0.8390 (9)0.6618 (6)0.5248 (3)0.0220 (16)0.28
H22'0.9098300.6408640.5001950.026*0.28
C23'0.9222 (16)0.7182 (10)0.5637 (5)0.029 (2)0.28
H23C0.8533600.7417640.5878480.035*0.28
H23D0.9684080.7760080.5490960.035*0.28
C24'1.0403 (14)0.6551 (10)0.5892 (5)0.035 (2)0.28
H24C1.0972570.6971230.6125960.042*0.28
H24D1.1084140.6335560.5643600.042*0.28
C25'0.9916 (12)0.5648 (11)0.6164 (4)0.030 (2)0.28
H25C1.0764720.5371890.6356900.037*0.28
H25D0.9158410.5835010.6392770.037*0.28
N23'0.9325 (9)0.4919 (7)0.5829 (3)0.0227 (17)0.28
H23'1.0031860.4810960.5567990.027*0.28
C26'0.900 (3)0.395 (2)0.6066 (10)0.034 (4)0.28
H26C0.9928220.3621830.6173920.040*0.28
H26D0.8415070.4056530.6355550.040*0.28
C27'0.8145 (13)0.3305 (9)0.5703 (5)0.029 (2)0.28
H27C0.8803320.3096030.5447270.035*0.28
H27D0.7814290.2710380.5871930.035*0.28
N24'0.6863 (9)0.3803 (6)0.5475 (3)0.0199 (15)0.28
H24'0.6034000.3676180.5690990.024*0.28
C28'0.6412 (14)0.3360 (8)0.4995 (4)0.024 (2)0.28
H28C0.6137800.2667630.5044690.028*0.28
H28D0.7259450.3370190.4783180.028*0.28
C29'0.5114 (13)0.3895 (9)0.4735 (4)0.025 (2)0.28
H29C0.4668440.3461480.4479860.030*0.28
H29D0.4359540.4024620.4973900.030*0.28
C30'0.5536 (15)0.4853 (9)0.4504 (4)0.025 (2)0.28
H30C0.6403240.4742870.4307720.030*0.28
H30D0.4717300.5071930.4279270.030*0.28
Zn310.48590 (4)0.28608 (2)0.73574 (2)0.01639 (6)
N310.3173 (3)0.23507 (18)0.68650 (9)0.0192 (4)
H310.3181860.2803930.6579760.023*
C310.3626 (4)0.1390 (2)0.66769 (12)0.0225 (6)
H31A0.3166310.1283090.6347090.027*
H31B0.3293650.0862520.6892340.027*
C320.5304 (4)0.1359 (2)0.66563 (11)0.0226 (6)
H32A0.5623090.0713320.6538220.027*
H32B0.5641760.1868960.6432050.027*
N320.5924 (3)0.15367 (18)0.71550 (9)0.0191 (4)
H320.5598520.0997440.7370380.023*
C330.7548 (3)0.1589 (2)0.71938 (12)0.0243 (6)
H33A0.7882640.2135190.6991050.029*
H33B0.7961390.0974850.7067580.029*
C340.8115 (4)0.1741 (2)0.77188 (12)0.0245 (6)
H34A0.9197350.1671830.7731900.029*
H34B0.7722010.1208070.7918640.029*
C350.7741 (3)0.2713 (2)0.79542 (12)0.0241 (6)
H35A0.8282080.2767460.8274510.029*
H35B0.8061420.3256510.7746540.029*
N330.6148 (3)0.28027 (18)0.80214 (9)0.0198 (4)
H330.5825280.2226780.8212980.024*
C360.5738 (4)0.3706 (2)0.82780 (12)0.0248 (6)
H36A0.6087450.4288470.8104270.030*
H36B0.6186660.3709490.8613630.030*
C370.4070 (4)0.3719 (2)0.82894 (11)0.0230 (6)
H37A0.3731450.3145600.8472610.028*
H37B0.3749450.4318150.8456390.028*
N340.3415 (3)0.36956 (17)0.77840 (9)0.0184 (4)
H340.3470130.4381940.7660640.022*
C380.1826 (3)0.3447 (2)0.77694 (12)0.0245 (6)
H38A0.1281240.3976010.7927130.029*
H38B0.1685740.2837300.7955940.029*
C390.1198 (3)0.3308 (2)0.72475 (12)0.0234 (6)
H39A0.1538920.3853960.7045520.028*
H39B0.0112820.3346170.7247390.028*
C400.1623 (3)0.2341 (2)0.70110 (12)0.0224 (5)
H40A0.1489700.1799240.7243530.027*
H40B0.0962240.2220710.6720050.027*
Cl10.9791 (2)0.48793 (15)0.42048 (6)0.0278 (3)0.8
O10.9439 (10)0.4621 (8)0.4702 (2)0.0422 (15)0.8
O21.1368 (6)0.4904 (4)0.4193 (2)0.0509 (12)0.8
O30.9212 (7)0.5846 (4)0.40984 (18)0.0536 (13)0.8
O40.9174 (5)0.4175 (3)0.38842 (15)0.0544 (11)0.8
Cl111.0220 (11)0.4954 (7)0.4308 (5)0.060 (3)0.2
O110.948 (3)0.564 (3)0.3972 (12)0.122 (11)0.2
O121.100 (3)0.574 (2)0.4601 (11)0.124 (9)0.2
O131.142 (3)0.447 (2)0.4147 (14)0.097 (8)0.2
O140.929 (4)0.456 (3)0.4636 (12)0.051 (7)0.2
Cl210.06938 (19)0.00124 (11)0.60601 (6)0.0325 (3)0.8
O210.2031 (6)0.0381 (5)0.58263 (18)0.0585 (13)0.8
O220.0737 (6)0.0285 (4)0.65718 (18)0.0675 (14)0.8
O230.0640 (8)0.1018 (3)0.6043 (2)0.0660 (15)0.8
O240.0563 (6)0.0424 (4)0.5862 (3)0.0750 (17)0.8
Cl310.0636 (10)0.0010 (5)0.5864 (3)0.047 (2)0.2
O310.025 (3)0.0276 (12)0.5420 (6)0.059 (5)0.2
O320.067 (4)0.0860 (16)0.6230 (8)0.105 (10)0.2
O330.036 (4)0.062 (3)0.6142 (10)0.131 (14)0.2
O340.205 (3)0.033 (3)0.5921 (13)0.135 (14)0.2
O411.2346 (6)0.5688 (3)0.51620 (14)0.0538 (11)0.8
H41A1.2316860.5221340.5348740.081*0.8
H41B1.2849360.5499540.4941840.081*0.8
O420.2372 (4)0.0396 (3)0.48350 (13)0.0469 (10)0.8
H42A0.2118200.0178020.4819610.070*0.8
H42B0.2607900.0566880.5105020.070*0.8
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.01826 (7)0.00984 (7)0.01032 (7)0.00212 (5)0.00135 (6)0.00076 (5)
S10.0178 (3)0.0173 (3)0.0196 (3)0.0048 (2)0.0041 (2)0.0079 (2)
S20.0275 (3)0.0110 (3)0.0144 (3)0.0004 (2)0.0057 (2)0.0003 (2)
S30.0244 (3)0.0135 (3)0.0182 (3)0.0028 (2)0.0022 (2)0.0040 (2)
S40.0219 (3)0.0176 (3)0.0179 (3)0.0010 (2)0.0022 (2)0.0038 (2)
Zn10.01847 (13)0.01275 (13)0.01295 (12)0.00237 (10)0.00118 (10)0.00002 (10)
N10.0250 (11)0.0147 (10)0.0158 (10)0.0012 (8)0.0021 (8)0.0003 (8)
C10.0326 (15)0.0180 (13)0.0147 (12)0.0001 (11)0.0042 (10)0.0004 (10)
C20.0352 (16)0.0162 (12)0.0154 (12)0.0021 (11)0.0028 (11)0.0032 (10)
N20.0244 (11)0.0128 (9)0.0161 (9)0.0029 (8)0.0025 (8)0.0017 (8)
C30.0220 (13)0.0212 (13)0.0182 (12)0.0051 (10)0.0065 (10)0.0041 (10)
C40.0201 (12)0.0224 (13)0.0226 (12)0.0013 (10)0.0031 (10)0.0069 (11)
C50.0208 (12)0.0193 (12)0.0201 (12)0.0009 (10)0.0015 (10)0.0014 (10)
N30.0212 (10)0.0146 (10)0.0152 (9)0.0014 (8)0.0008 (8)0.0004 (8)
C60.0311 (14)0.0159 (12)0.0128 (11)0.0004 (10)0.0005 (10)0.0017 (9)
C70.0317 (15)0.0151 (12)0.0166 (12)0.0054 (10)0.0045 (10)0.0011 (10)
N40.0204 (10)0.0141 (10)0.0179 (10)0.0050 (8)0.0033 (8)0.0019 (8)
C80.0203 (13)0.0197 (13)0.0256 (13)0.0076 (10)0.0065 (10)0.0063 (11)
C90.0169 (12)0.0224 (13)0.0302 (14)0.0028 (10)0.0011 (10)0.0081 (11)
C100.0205 (13)0.0263 (14)0.0262 (14)0.0004 (11)0.0074 (11)0.0037 (12)
Zn110.02547 (16)0.01244 (12)0.01717 (14)0.00326 (12)0.00334 (12)0.00120 (12)
N110.0261 (12)0.0296 (14)0.0294 (13)0.0015 (10)0.0052 (10)0.0042 (11)
C110.0244 (16)0.058 (3)0.0359 (18)0.0013 (16)0.0059 (13)0.0032 (18)
C120.031 (2)0.065 (3)0.052 (3)0.0160 (19)0.0003 (19)0.023 (2)
N120.0320 (14)0.0356 (16)0.0398 (16)0.0160 (12)0.0103 (12)0.0172 (13)
C130.054 (3)0.045 (3)0.085 (4)0.034 (2)0.037 (3)0.034 (3)
C140.074 (3)0.0203 (16)0.080 (3)0.0170 (18)0.043 (3)0.019 (2)
C150.081 (3)0.0159 (15)0.073 (3)0.0015 (18)0.045 (3)0.0103 (18)
N130.0554 (19)0.0177 (12)0.0303 (14)0.0067 (12)0.0206 (13)0.0048 (10)
C160.064 (3)0.042 (2)0.0206 (15)0.0260 (19)0.0149 (16)0.0119 (15)
C170.044 (2)0.049 (2)0.0175 (14)0.0166 (18)0.0005 (13)0.0032 (15)
N140.0425 (15)0.0224 (12)0.0176 (11)0.0062 (11)0.0043 (10)0.0004 (9)
C180.0399 (18)0.0243 (15)0.0263 (15)0.0012 (13)0.0026 (13)0.0120 (12)
C190.0458 (19)0.0201 (14)0.0300 (16)0.0074 (13)0.0093 (14)0.0047 (12)
C200.0348 (17)0.0219 (14)0.0352 (17)0.0071 (12)0.0104 (13)0.0032 (13)
Sb110.02072 (8)0.00981 (7)0.01124 (7)0.00171 (5)0.00407 (6)0.00001 (5)
S110.0307 (3)0.0108 (3)0.0136 (3)0.0038 (2)0.0085 (2)0.0006 (2)
S120.0189 (3)0.0186 (3)0.0294 (3)0.0020 (2)0.0029 (2)0.0104 (3)
S130.0217 (3)0.0155 (3)0.0148 (3)0.0025 (2)0.0045 (2)0.0039 (2)
S140.0350 (4)0.0149 (3)0.0156 (3)0.0073 (3)0.0039 (2)0.0043 (2)
Zn210.02385 (15)0.01317 (14)0.01295 (13)0.00130 (12)0.00185 (11)0.00026 (11)
N210.0318 (18)0.0231 (16)0.0174 (14)0.0042 (13)0.0040 (13)0.0040 (13)
C210.057 (4)0.034 (3)0.015 (2)0.013 (3)0.003 (2)0.001 (2)
C220.065 (4)0.026 (2)0.0192 (19)0.018 (2)0.005 (2)0.0080 (17)
N220.057 (3)0.0171 (16)0.0250 (18)0.0042 (16)0.0217 (17)0.0026 (13)
C230.082 (6)0.015 (2)0.046 (5)0.003 (3)0.037 (4)0.001 (3)
C240.073 (4)0.022 (2)0.053 (4)0.019 (2)0.037 (3)0.012 (2)
C250.039 (3)0.043 (3)0.048 (4)0.022 (3)0.021 (3)0.026 (3)
N230.0263 (18)0.039 (2)0.0278 (18)0.0090 (16)0.0112 (14)0.0160 (16)
C260.020 (2)0.053 (3)0.031 (3)0.004 (2)0.0014 (18)0.019 (2)
C270.037 (5)0.043 (4)0.023 (3)0.017 (3)0.003 (3)0.000 (3)
N240.0255 (16)0.0225 (17)0.0187 (14)0.0071 (13)0.0052 (12)0.0035 (12)
C280.039 (3)0.0149 (19)0.032 (2)0.0069 (17)0.011 (2)0.0015 (17)
C290.033 (2)0.0131 (17)0.039 (2)0.0038 (15)0.0124 (18)0.0070 (16)
C300.034 (3)0.026 (2)0.027 (2)0.001 (2)0.0020 (19)0.0112 (18)
N21'0.024 (4)0.019 (4)0.016 (4)0.000 (3)0.005 (3)0.001 (3)
C21'0.020 (4)0.026 (5)0.026 (5)0.001 (4)0.000 (4)0.014 (4)
C22'0.032 (6)0.015 (6)0.027 (7)0.002 (4)0.015 (4)0.010 (5)
N22'0.024 (4)0.019 (4)0.023 (4)0.000 (3)0.013 (3)0.000 (3)
C23'0.040 (7)0.022 (6)0.027 (6)0.014 (5)0.012 (4)0.006 (4)
C24'0.024 (5)0.049 (7)0.031 (6)0.000 (5)0.001 (4)0.017 (5)
C25'0.009 (4)0.057 (7)0.025 (5)0.001 (5)0.007 (4)0.006 (5)
N23'0.012 (3)0.040 (5)0.016 (4)0.007 (3)0.001 (3)0.005 (3)
C26'0.037 (12)0.047 (8)0.018 (6)0.018 (6)0.012 (6)0.010 (5)
C27'0.028 (5)0.016 (5)0.044 (7)0.016 (4)0.010 (5)0.011 (5)
N24'0.025 (4)0.015 (3)0.020 (3)0.005 (3)0.008 (3)0.002 (3)
C28'0.032 (6)0.010 (4)0.029 (5)0.003 (4)0.003 (4)0.010 (4)
C29'0.028 (5)0.029 (5)0.019 (4)0.006 (4)0.004 (4)0.003 (4)
C30'0.031 (6)0.026 (5)0.017 (5)0.005 (4)0.000 (4)0.003 (4)
Zn310.01959 (13)0.01265 (13)0.01706 (14)0.00204 (10)0.00198 (10)0.00103 (11)
N310.0248 (11)0.0142 (10)0.0187 (10)0.0026 (8)0.0019 (9)0.0020 (8)
C310.0336 (15)0.0152 (12)0.0185 (12)0.0028 (11)0.0007 (11)0.0004 (10)
C320.0347 (16)0.0168 (12)0.0166 (12)0.0021 (11)0.0055 (11)0.0008 (10)
N320.0245 (11)0.0163 (10)0.0168 (10)0.0001 (8)0.0040 (8)0.0026 (8)
C330.0216 (13)0.0235 (14)0.0286 (14)0.0031 (11)0.0083 (11)0.0059 (12)
C340.0218 (13)0.0230 (14)0.0290 (14)0.0020 (10)0.0030 (11)0.0092 (12)
C350.0197 (13)0.0240 (14)0.0280 (14)0.0041 (10)0.0036 (11)0.0069 (11)
N330.0224 (11)0.0153 (10)0.0215 (11)0.0034 (8)0.0004 (9)0.0013 (9)
C360.0345 (16)0.0180 (13)0.0216 (13)0.0035 (11)0.0010 (12)0.0035 (11)
C370.0349 (16)0.0170 (12)0.0174 (13)0.0003 (11)0.0045 (11)0.0002 (10)
N340.0231 (11)0.0139 (10)0.0185 (10)0.0005 (8)0.0044 (8)0.0019 (8)
C380.0248 (14)0.0222 (14)0.0272 (14)0.0001 (11)0.0085 (11)0.0037 (11)
C390.0196 (12)0.0214 (13)0.0294 (14)0.0013 (10)0.0020 (11)0.0071 (12)
C400.0224 (13)0.0182 (12)0.0262 (13)0.0067 (10)0.0018 (10)0.0053 (11)
Cl10.0324 (8)0.0256 (6)0.0256 (5)0.0035 (5)0.0025 (5)0.0043 (4)
O10.063 (4)0.040 (3)0.0241 (18)0.005 (2)0.0078 (18)0.0019 (17)
O20.036 (2)0.068 (4)0.049 (3)0.008 (2)0.0100 (18)0.009 (2)
O30.073 (4)0.039 (2)0.051 (2)0.024 (2)0.028 (2)0.0175 (19)
O40.070 (3)0.055 (3)0.036 (2)0.009 (2)0.0166 (19)0.0176 (18)
Cl110.053 (5)0.028 (3)0.104 (9)0.001 (3)0.050 (5)0.000 (4)
O110.075 (11)0.14 (2)0.157 (18)0.044 (12)0.082 (10)0.080 (17)
O120.117 (14)0.099 (13)0.163 (17)0.068 (12)0.084 (11)0.051 (12)
O130.069 (12)0.081 (14)0.15 (2)0.024 (9)0.067 (12)0.005 (11)
O140.034 (9)0.038 (11)0.083 (16)0.002 (7)0.027 (9)0.001 (10)
Cl210.0414 (7)0.0239 (5)0.0325 (7)0.0003 (4)0.0034 (6)0.0029 (5)
O210.053 (3)0.077 (4)0.046 (2)0.021 (3)0.007 (2)0.001 (2)
O220.082 (4)0.072 (3)0.049 (3)0.024 (3)0.005 (2)0.030 (2)
O230.109 (4)0.0220 (18)0.066 (3)0.001 (2)0.003 (3)0.0074 (19)
O240.065 (3)0.053 (3)0.111 (5)0.004 (2)0.045 (3)0.014 (3)
Cl310.057 (4)0.030 (3)0.059 (5)0.014 (2)0.038 (4)0.007 (3)
O310.107 (16)0.028 (7)0.046 (8)0.023 (8)0.033 (9)0.003 (6)
O320.21 (3)0.061 (13)0.049 (11)0.027 (14)0.034 (16)0.013 (9)
O330.17 (3)0.14 (3)0.078 (17)0.10 (3)0.025 (19)0.012 (17)
O340.073 (13)0.22 (4)0.12 (3)0.052 (19)0.011 (15)0.03 (3)
O410.095 (3)0.0326 (19)0.0330 (18)0.015 (2)0.007 (2)0.0099 (15)
O420.045 (2)0.067 (3)0.0295 (16)0.0248 (19)0.0082 (15)0.0105 (17)
Geometric parameters (Å, º) top
Sb1—S12.3409 (7)C25—H25A0.9900
Sb1—S22.3593 (7)C25—H25B0.9900
Sb1—S32.3090 (7)C25—N231.485 (8)
Sb1—S42.3168 (7)N23—H231.0000
S1—Zn12.4024 (7)N23—C261.478 (8)
S2—Zn112.3694 (8)C26—H26A0.9900
Zn1—N12.137 (2)C26—H26B0.9900
Zn1—N22.118 (2)C26—C271.530 (13)
Zn1—N32.144 (2)C27—H27A0.9900
Zn1—N42.116 (2)C27—H27B0.9900
N1—H11.0000C27—N241.483 (10)
N1—C11.484 (4)N24—H241.0000
N1—C101.485 (4)N24—C281.484 (6)
C1—H1A0.9900C28—H28A0.9900
C1—H1B0.9900C28—H28B0.9900
C1—C21.527 (5)C28—C291.514 (8)
C2—H2A0.9900C29—H29A0.9900
C2—H2B0.9900C29—H29B0.9900
C2—N21.471 (4)C29—C301.521 (8)
N2—H21.0000C30—H30A0.9900
N2—C31.478 (4)C30—H30B0.9900
C3—H3A0.9900N21'—H21'1.0000
C3—H3B0.9900N21'—C21'1.475 (12)
C3—C41.525 (5)N21'—C30'1.463 (13)
C4—H4A0.9900C21'—H21C0.9900
C4—H4B0.9900C21'—H21D0.9900
C4—C51.529 (4)C21'—C22'1.498 (16)
C5—H5A0.9900C22'—H22C0.9900
C5—H5B0.9900C22'—H22D0.9900
C5—N31.479 (4)C22'—N22'1.438 (16)
N3—H31.0000N22'—H22'1.0000
N3—C61.471 (4)N22'—C23'1.494 (14)
C6—H6A0.9900C23'—H23C0.9900
C6—H6B0.9900C23'—H23D0.9900
C6—C71.524 (5)C23'—C24'1.522 (18)
C7—H7A0.9900C24'—H24C0.9900
C7—H7B0.9900C24'—H24D0.9900
C7—N41.483 (4)C24'—C25'1.523 (18)
N4—H41.0000C25'—H25C0.9900
N4—C81.487 (4)C25'—H25D0.9900
C8—H8A0.9900C25'—N23'1.443 (15)
C8—H8B0.9900N23'—H23'1.0000
C8—C91.525 (5)N23'—C26'1.52 (2)
C9—H9A0.9900C26'—H26C0.9900
C9—H9B0.9900C26'—H26D0.9900
C9—C101.525 (5)C26'—C27'1.51 (3)
C10—H10A0.9900C27'—H27C0.9900
C10—H10B0.9900C27'—H27D0.9900
Zn11—N112.107 (3)C27'—N24'1.467 (13)
Zn11—N122.124 (3)N24'—H24'1.0000
Zn11—N132.135 (3)N24'—C28'1.491 (13)
Zn11—N142.134 (3)C28'—H28C0.9900
N11—H111.0000C28'—H28D0.9900
N11—C111.484 (5)C28'—C29'1.535 (16)
N11—C201.473 (5)C29'—H29C0.9900
C11—H11A0.9900C29'—H29D0.9900
C11—H11B0.9900C29'—C30'1.516 (15)
C11—C121.522 (7)C30'—H30C0.9900
C12—H12A0.9900C30'—H30D0.9900
C12—H12B0.9900Zn31—N312.114 (3)
C12—N121.472 (7)Zn31—N322.141 (2)
N12—H121.0000Zn31—N332.121 (3)
N12—C131.475 (6)Zn31—N342.137 (2)
C13—H13A0.9900N31—H311.0000
C13—H13B0.9900N31—C311.479 (4)
C13—C141.511 (9)N31—C401.488 (4)
C14—H14A0.9900C31—H31A0.9900
C14—H14B0.9900C31—H31B0.9900
C14—C151.521 (8)C31—C321.533 (5)
C15—H15A0.9900C32—H32A0.9900
C15—H15B0.9900C32—H32B0.9900
C15—N131.475 (5)C32—N321.476 (4)
N13—H131.0000N32—H321.0000
N13—C161.509 (5)N32—C331.480 (4)
C16—H16A0.9900C33—H33A0.9900
C16—H16B0.9900C33—H33B0.9900
C16—C171.503 (6)C33—C341.522 (5)
C17—H17A0.9900C34—H34A0.9900
C17—H17B0.9900C34—H34B0.9900
C17—N141.469 (5)C34—C351.525 (5)
N14—H141.0000C35—H35A0.9900
N14—C181.472 (4)C35—H35B0.9900
C18—H18A0.9900C35—N331.477 (4)
C18—H18B0.9900N33—H331.0000
C18—C191.513 (5)N33—C361.480 (4)
C19—H19A0.9900C36—H36A0.9900
C19—H19B0.9900C36—H36B0.9900
C19—C201.529 (5)C36—C371.522 (5)
C20—H20A0.9900C37—H37A0.9900
C20—H20B0.9900C37—H37B0.9900
Sb11—S112.3424 (7)C37—N341.485 (4)
Sb11—S122.3572 (8)N34—H341.0000
Sb11—S132.3030 (7)N34—C381.486 (4)
Sb11—S142.3100 (7)C38—H38A0.9900
S11—Zn212.3806 (7)C38—H38B0.9900
S12—Zn312.3870 (8)C38—C391.529 (5)
Zn21—N212.166 (4)C39—H39A0.9900
Zn21—N222.115 (4)C39—H39B0.9900
Zn21—N232.080 (4)C39—C401.532 (5)
Zn21—N242.133 (3)C40—H40A0.9900
Zn21—N21'2.143 (9)C40—H40B0.9900
Zn21—N22'2.239 (9)Cl1—O11.464 (6)
Zn21—N23'2.144 (8)Cl1—O21.439 (5)
Zn21—N24'2.054 (8)Cl1—O31.448 (5)
N21—H211.0000Cl1—O41.403 (4)
N21—C211.472 (6)Cl11—O111.46 (2)
N21—C301.475 (6)Cl11—O121.50 (2)
C21—H21A0.9900Cl11—O131.375 (18)
C21—H21B0.9900Cl11—O141.38 (2)
C21—C221.510 (8)Cl21—O211.440 (5)
C22—H22A0.9900Cl21—O221.458 (5)
C22—H22B0.9900Cl21—O231.411 (4)
C22—N221.470 (8)Cl21—O241.410 (5)
N22—H221.0000Cl31—O311.338 (15)
N22—C231.485 (8)Cl31—O321.539 (18)
C23—H23A0.9900Cl31—O331.437 (19)
C23—H23B0.9900Cl31—O341.39 (2)
C23—C241.509 (12)O41—H41A0.8206
C24—H24A0.9900O41—H41B0.8199
C24—H24B0.9900O42—H42A0.8197
C24—C251.513 (11)O42—H42B0.8174
S1—Sb1—S2104.87 (2)C23—C24—C25116.7 (6)
S3—Sb1—S1113.73 (3)H24A—C24—H24B107.3
S3—Sb1—S2106.93 (3)C25—C24—H24A108.1
S3—Sb1—S4109.83 (3)C25—C24—H24B108.1
S4—Sb1—S1107.25 (3)C24—C25—H25A109.2
S4—Sb1—S2114.30 (3)C24—C25—H25B109.2
Sb1—S1—Zn1105.77 (3)H25A—C25—H25B107.9
Sb1—S2—Zn11105.00 (3)N23—C25—C24111.9 (5)
N1—Zn1—S1105.40 (7)N23—C25—H25A109.2
N1—Zn1—N3152.59 (9)N23—C25—H25B109.2
N2—Zn1—S197.91 (7)Zn21—N23—H23108.3
N2—Zn1—N182.77 (10)C25—N23—Zn21113.7 (4)
N2—Zn1—N387.19 (9)C25—N23—H23108.3
N3—Zn1—S1101.20 (7)C26—N23—Zn21103.0 (3)
N4—Zn1—S1109.81 (7)C26—N23—C25114.9 (5)
N4—Zn1—N194.64 (10)C26—N23—H23108.3
N4—Zn1—N2151.76 (9)N23—C26—H26A110.2
N4—Zn1—N382.36 (9)N23—C26—H26B110.2
Zn1—N1—H1105.6N23—C26—C27107.6 (6)
C1—N1—Zn1107.45 (19)H26A—C26—H26B108.5
C1—N1—H1105.6C27—C26—H26A110.2
C1—N1—C10112.3 (2)C27—C26—H26B110.2
C10—N1—Zn1119.28 (19)C26—C27—H27A109.4
C10—N1—H1105.6C26—C27—H27B109.4
N1—C1—H1A109.6H27A—C27—H27B108.0
N1—C1—H1B109.6N24—C27—C26111.3 (8)
N1—C1—C2110.4 (2)N24—C27—H27A109.4
H1A—C1—H1B108.1N24—C27—H27B109.4
C2—C1—H1A109.6Zn21—N24—H24106.8
C2—C1—H1B109.6C27—N24—Zn21106.3 (5)
C1—C2—H2A110.2C27—N24—H24106.8
C1—C2—H2B110.2C27—N24—C28111.8 (6)
H2A—C2—H2B108.5C28—N24—Zn21117.7 (3)
N2—C2—C1107.4 (2)C28—N24—H24106.8
N2—C2—H2A110.2N24—C28—H28A109.0
N2—C2—H2B110.2N24—C28—H28B109.0
Zn1—N2—H2108.1N24—C28—C29113.1 (4)
C2—N2—Zn1104.70 (18)H28A—C28—H28B107.8
C2—N2—H2108.1C29—C28—H28A109.0
C2—N2—C3113.8 (2)C29—C28—H28B109.0
C3—N2—Zn1113.79 (17)C28—C29—H29A108.6
C3—N2—H2108.1C28—C29—H29B108.6
N2—C3—H3A109.3C28—C29—C30114.6 (4)
N2—C3—H3B109.3H29A—C29—H29B107.6
N2—C3—C4111.5 (2)C30—C29—H29A108.6
H3A—C3—H3B108.0C30—C29—H29B108.6
C4—C3—H3A109.3N21—C30—C29112.7 (4)
C4—C3—H3B109.3N21—C30—H30A109.0
C3—C4—H4A108.2N21—C30—H30B109.0
C3—C4—H4B108.2C29—C30—H30A109.0
C3—C4—C5116.2 (2)C29—C30—H30B109.0
H4A—C4—H4B107.4H30A—C30—H30B107.8
C5—C4—H4A108.2Zn21—N21'—H21'104.8
C5—C4—H4B108.2C21'—N21'—Zn21109.4 (6)
C4—C5—H5A109.3C21'—N21'—H21'104.8
C4—C5—H5B109.3C30'—N21'—Zn21118.7 (7)
H5A—C5—H5B108.0C30'—N21'—H21'104.8
N3—C5—C4111.5 (2)C30'—N21'—C21'112.9 (8)
N3—C5—H5A109.3N21'—C21'—H21C109.3
N3—C5—H5B109.3N21'—C21'—H21D109.3
Zn1—N3—H3108.0N21'—C21'—C22'111.7 (10)
C5—N3—Zn1114.74 (18)H21C—C21'—H21D107.9
C5—N3—H3108.0C22'—C21'—H21C109.3
C6—N3—Zn1103.49 (18)C22'—C21'—H21D109.3
C6—N3—C5114.3 (2)C21'—C22'—H22C109.9
C6—N3—H3108.0C21'—C22'—H22D109.9
N3—C6—H6A110.2H22C—C22'—H22D108.3
N3—C6—H6B110.2N22'—C22'—C21'109.1 (11)
N3—C6—C7107.6 (2)N22'—C22'—H22C109.9
H6A—C6—H6B108.5N22'—C22'—H22D109.9
C7—C6—H6A110.2Zn21—N22'—H22'108.1
C7—C6—H6B110.2C22'—N22'—Zn21102.9 (8)
C6—C7—H7A109.7C22'—N22'—H22'108.1
C6—C7—H7B109.7C22'—N22'—C23'113.7 (10)
H7A—C7—H7B108.2C23'—N22'—Zn21115.6 (7)
N4—C7—C6109.9 (2)C23'—N22'—H22'108.1
N4—C7—H7A109.7N22'—C23'—H23C109.4
N4—C7—H7B109.7N22'—C23'—H23D109.4
Zn1—N4—H4104.8N22'—C23'—C24'111.0 (10)
C7—N4—Zn1108.74 (18)H23C—C23'—H23D108.0
C7—N4—H4104.8C24'—C23'—H23C109.4
C7—N4—C8112.4 (2)C24'—C23'—H23D109.4
C8—N4—Zn1119.90 (18)C23'—C24'—H24C107.8
C8—N4—H4104.8C23'—C24'—H24D107.8
N4—C8—H8A109.4C23'—C24'—C25'118.0 (11)
N4—C8—H8B109.4H24C—C24'—H24D107.2
N4—C8—C9111.4 (2)C25'—C24'—H24C107.8
H8A—C8—H8B108.0C25'—C24'—H24D107.8
C9—C8—H8A109.4C24'—C25'—H25C109.5
C9—C8—H8B109.4C24'—C25'—H25D109.5
C8—C9—H9A108.6H25C—C25'—H25D108.1
C8—C9—H9B108.6N23'—C25'—C24'110.8 (10)
C8—C9—C10114.8 (3)N23'—C25'—H25C109.5
H9A—C9—H9B107.5N23'—C25'—H25D109.5
C10—C9—H9A108.6Zn21—N23'—H23'109.1
C10—C9—H9B108.6C25'—N23'—Zn21114.0 (7)
N1—C10—C9111.9 (2)C25'—N23'—H23'109.1
N1—C10—H10A109.2C25'—N23'—C26'114.0 (13)
N1—C10—H10B109.2C26'—N23'—Zn21101.3 (11)
C9—C10—H10A109.2C26'—N23'—H23'109.1
C9—C10—H10B109.2N23'—C26'—H26C109.8
H10A—C10—H10B107.9N23'—C26'—H26D109.8
N11—Zn11—S2100.54 (8)H26C—C26'—H26D108.2
N11—Zn11—N1283.40 (13)C27'—C26'—N23'109.4 (17)
N11—Zn11—N13152.68 (12)C27'—C26'—H26C109.8
N11—Zn11—N1489.63 (11)C27'—C26'—H26D109.8
N12—Zn11—S2105.03 (9)C26'—C27'—H27C109.1
N12—Zn11—N1393.99 (14)C26'—C27'—H27D109.1
N12—Zn11—N14155.29 (12)H27C—C27'—H27D107.8
N13—Zn11—S2106.37 (9)N24'—C27'—C26'112.5 (15)
N14—Zn11—S299.53 (9)N24'—C27'—H27C109.1
N14—Zn11—N1381.45 (12)N24'—C27'—H27D109.1
Zn11—N11—H11109.0Zn21—N24'—H24'105.9
C11—N11—Zn11103.1 (2)C27'—N24'—Zn21109.0 (7)
C11—N11—H11109.0C27'—N24'—H24'105.9
C20—N11—Zn11114.4 (2)C27'—N24'—C28'111.6 (9)
C20—N11—H11109.0C28'—N24'—Zn21117.8 (6)
C20—N11—C11112.2 (3)C28'—N24'—H24'105.9
N11—C11—H11A109.8N24'—C28'—H28C109.0
N11—C11—H11B109.8N24'—C28'—H28D109.0
N11—C11—C12109.3 (4)N24'—C28'—C29'112.8 (8)
H11A—C11—H11B108.3H28C—C28'—H28D107.8
C12—C11—H11A109.8C29'—C28'—H28C109.0
C12—C11—H11B109.8C29'—C28'—H28D109.0
C11—C12—H12A109.2C28'—C29'—H29C108.8
C11—C12—H12B109.2C28'—C29'—H29D108.8
H12A—C12—H12B107.9H29C—C29'—H29D107.7
N12—C12—C11112.1 (3)C30'—C29'—C28'113.6 (10)
N12—C12—H12A109.2C30'—C29'—H29C108.8
N12—C12—H12B109.2C30'—C29'—H29D108.8
Zn11—N12—H12105.5N21'—C30'—C29'113.5 (9)
C12—N12—Zn11108.3 (3)N21'—C30'—H30C108.9
C12—N12—H12105.5N21'—C30'—H30D108.9
C12—N12—C13113.2 (4)C29'—C30'—H30C108.9
C13—N12—Zn11117.8 (3)C29'—C30'—H30D108.9
C13—N12—H12105.5H30C—C30'—H30D107.7
N12—C13—H13A108.9N31—Zn31—S12108.13 (7)
N12—C13—H13B108.9N31—Zn31—N3283.03 (10)
N12—C13—C14113.5 (4)N31—Zn31—N33153.04 (9)
H13A—C13—H13B107.7N31—Zn31—N3494.57 (10)
C14—C13—H13A108.9N32—Zn31—S12100.50 (7)
C14—C13—H13B108.9N33—Zn31—S1298.35 (7)
C13—C14—H14A108.8N33—Zn31—N3287.34 (10)
C13—C14—H14B108.8N33—Zn31—N3482.96 (10)
C13—C14—C15114.0 (4)N34—Zn31—S12105.38 (7)
H14A—C14—H14B107.7N34—Zn31—N32153.40 (9)
C15—C14—H14A108.8Zn31—N31—H31105.2
C15—C14—H14B108.8C31—N31—Zn31108.09 (19)
C14—C15—H15A109.2C31—N31—H31105.2
C14—C15—H15B109.2C31—N31—C40111.9 (2)
H15A—C15—H15B107.9C40—N31—Zn31119.95 (19)
N13—C15—C14111.9 (3)C40—N31—H31105.2
N13—C15—H15A109.2N31—C31—H31A109.8
N13—C15—H15B109.2N31—C31—H31B109.8
Zn11—N13—H13106.7N31—C31—C32109.5 (3)
C15—N13—Zn11115.2 (3)H31A—C31—H31B108.2
C15—N13—H13106.7C32—C31—H31A109.8
C15—N13—C16111.9 (3)C32—C31—H31B109.8
C16—N13—Zn11109.0 (2)C31—C32—H32A110.3
C16—N13—H13106.7C31—C32—H32B110.3
N13—C16—H16A109.8H32A—C32—H32B108.5
N13—C16—H16B109.8N32—C32—C31107.2 (2)
H16A—C16—H16B108.2N32—C32—H32A110.3
C17—C16—N13109.4 (3)N32—C32—H32B110.3
C17—C16—H16A109.8Zn31—N32—H32108.5
C17—C16—H16B109.8C32—N32—Zn31102.91 (18)
C16—C17—H17A110.0C32—N32—H32108.5
C16—C17—H17B110.0C32—N32—C33114.1 (2)
H17A—C17—H17B108.4C33—N32—Zn31113.92 (19)
N14—C17—C16108.5 (4)C33—N32—H32108.5
N14—C17—H17A110.0N32—C33—H33A109.4
N14—C17—H17B110.0N32—C33—H33B109.4
Zn11—N14—H14109.3N32—C33—C34111.4 (2)
C17—N14—Zn11103.6 (2)H33A—C33—H33B108.0
C17—N14—H14109.3C34—C33—H33A109.4
C17—N14—C18113.9 (3)C34—C33—H33B109.4
C18—N14—Zn11111.4 (2)C33—C34—H34A108.1
C18—N14—H14109.3C33—C34—H34B108.1
N14—C18—H18A109.1C33—C34—C35116.7 (3)
N14—C18—H18B109.1H34A—C34—H34B107.3
N14—C18—C19112.3 (3)C35—C34—H34A108.1
H18A—C18—H18B107.9C35—C34—H34B108.1
C19—C18—H18A109.1C34—C35—H35A109.3
C19—C18—H18B109.1C34—C35—H35B109.3
C18—C19—H19A108.3H35A—C35—H35B108.0
C18—C19—H19B108.3N33—C35—C34111.5 (3)
C18—C19—C20116.0 (3)N33—C35—H35A109.3
H19A—C19—H19B107.4N33—C35—H35B109.3
C20—C19—H19A108.3Zn31—N33—H33108.5
C20—C19—H19B108.3C35—N33—Zn31113.57 (19)
N11—C20—C19112.0 (3)C35—N33—H33108.5
N11—C20—H20A109.2C35—N33—C36113.7 (2)
N11—C20—H20B109.2C36—N33—Zn31103.70 (19)
C19—C20—H20A109.2C36—N33—H33108.5
C19—C20—H20B109.2N33—C36—H36A110.3
H20A—C20—H20B107.9N33—C36—H36B110.3
S11—Sb11—S12107.21 (3)N33—C36—C37107.3 (3)
S13—Sb11—S11107.98 (3)H36A—C36—H36B108.5
S13—Sb11—S12107.65 (3)C37—C36—H36A110.3
S13—Sb11—S14116.20 (3)C37—C36—H36B110.3
S14—Sb11—S11109.08 (3)C36—C37—H37A109.8
S14—Sb11—S12108.37 (3)C36—C37—H37B109.8
Sb11—S11—Zn21107.43 (3)H37A—C37—H37B108.2
Sb11—S12—Zn31104.62 (3)N34—C37—C36109.6 (3)
N21—Zn21—S11105.56 (10)N34—C37—H37A109.8
N22—Zn21—S1197.01 (11)N34—C37—H37B109.8
N22—Zn21—N2181.30 (17)Zn31—N34—H34105.8
N22—Zn21—N24154.77 (14)C37—N34—Zn31107.20 (19)
N23—Zn21—S1199.93 (10)C37—N34—H34105.8
N23—Zn21—N21154.15 (14)C37—N34—C38112.0 (2)
N23—Zn21—N2291.52 (19)C38—N34—Zn31119.29 (19)
N23—Zn21—N2484.13 (17)C38—N34—H34105.8
N24—Zn21—S11108.22 (9)N34—C38—H38A109.3
N24—Zn21—N2191.85 (14)N34—C38—H38B109.3
N21'—Zn21—S1197.5 (2)N34—C38—C39111.8 (2)
N21'—Zn21—N22'80.1 (3)H38A—C38—H38B107.9
N21'—Zn21—N23'149.3 (3)C39—C38—H38A109.3
N22'—Zn21—S1194.2 (2)C39—C38—H38B109.3
N23'—Zn21—S11109.6 (2)C38—C39—H39A108.6
N23'—Zn21—N22'83.6 (3)C38—C39—H39B108.6
N24'—Zn21—S11115.3 (2)C38—C39—C40114.5 (3)
N24'—Zn21—N21'96.3 (3)H39A—C39—H39B107.6
N24'—Zn21—N22'150.4 (3)C40—C39—H39A108.6
N24'—Zn21—N23'85.3 (4)C40—C39—H39B108.6
Zn21—N21—H21105.9N31—C40—C39111.8 (2)
C21—N21—Zn21107.9 (3)N31—C40—H40A109.3
C21—N21—H21105.9N31—C40—H40B109.3
C21—N21—C30111.2 (4)C39—C40—H40A109.3
C30—N21—Zn21119.2 (3)C39—C40—H40B109.3
C30—N21—H21105.9H40A—C40—H40B107.9
N21—C21—H21A109.4O2—Cl1—O1107.0 (5)
N21—C21—H21B109.4O2—Cl1—O3109.2 (4)
N21—C21—C22111.1 (4)O3—Cl1—O1108.3 (5)
H21A—C21—H21B108.0O4—Cl1—O1108.7 (5)
C22—C21—H21A109.4O4—Cl1—O2111.8 (3)
C22—C21—H21B109.4O4—Cl1—O3111.6 (3)
C21—C22—H22A110.2O11—Cl11—O1294 (2)
C21—C22—H22B110.2O13—Cl11—O11117 (2)
H22A—C22—H22B108.5O13—Cl11—O1298.8 (19)
N22—C22—C21107.3 (4)O13—Cl11—O14123 (2)
N22—C22—H22A110.2O14—Cl11—O11113 (2)
N22—C22—H22B110.2O14—Cl11—O12103 (2)
Zn21—N22—H22108.6O21—Cl21—O22106.1 (3)
C22—N22—Zn21104.5 (3)O23—Cl21—O21111.4 (4)
C22—N22—H22108.6O23—Cl21—O22106.8 (4)
C22—N22—C23114.6 (5)O24—Cl21—O21111.9 (4)
C23—N22—Zn21111.8 (4)O24—Cl21—O22109.4 (4)
C23—N22—H22108.6O24—Cl21—O23110.9 (4)
N22—C23—H23A109.3O31—Cl31—O32114.0 (13)
N22—C23—H23B109.3O31—Cl31—O33117.4 (17)
N22—C23—C24111.4 (6)O31—Cl31—O34119 (2)
H23A—C23—H23B108.0O33—Cl31—O3298.0 (18)
C24—C23—H23A109.3O34—Cl31—O3297 (2)
C24—C23—H23B109.3O34—Cl31—O33108 (2)
C23—C24—H24A108.1H41A—O41—H41B104.7
C23—C24—H24B108.1H42A—O42—H42B114.1
Zn1—N1—C1—C230.6 (3)C21—N21—C30—C29177.4 (5)
Zn1—N1—C10—C945.9 (3)C21—C22—N22—Zn2154.1 (4)
Zn1—N2—C3—C466.3 (3)C21—C22—N22—C23176.8 (5)
Zn1—N3—C6—C752.6 (2)C22—N22—C23—C24178.1 (5)
Zn1—N4—C8—C947.0 (3)N22—C23—C24—C2570.8 (8)
N1—C1—C2—N256.6 (3)C23—C24—C25—N2368.6 (7)
C1—N1—C10—C9172.9 (3)C24—C25—N23—Zn2160.6 (5)
C1—C2—N2—Zn151.4 (3)C24—C25—N23—C26179.0 (5)
C1—C2—N2—C3176.3 (2)C25—N23—C26—C27177.8 (6)
C2—N2—C3—C4173.8 (2)N23—C26—C27—N2454.8 (9)
N2—C3—C4—C567.7 (3)C26—C27—N24—Zn2125.2 (8)
C3—C4—C5—N365.8 (3)C26—C27—N24—C28154.9 (6)
C4—C5—N3—Zn163.0 (3)C27—N24—C28—C29178.8 (5)
C4—C5—N3—C6177.6 (2)N24—C28—C29—C3074.3 (5)
C5—N3—C6—C7178.1 (2)C28—C29—C30—N2171.3 (5)
N3—C6—C7—N456.5 (3)C30—N21—C21—C22158.6 (5)
C6—C7—N4—Zn128.9 (3)N21'—C21'—C22'—N22'55.8 (15)
C6—C7—N4—C8164.1 (2)C21'—N21'—C30'—C29'173.7 (10)
C7—N4—C8—C9176.5 (2)C21'—C22'—N22'—Zn2152.1 (12)
N4—C8—C9—C1075.8 (3)C21'—C22'—N22'—C23'177.9 (11)
C8—C9—C10—N175.5 (3)C22'—N22'—C23'—C24'178.8 (11)
C10—N1—C1—C2163.6 (3)N22'—C23'—C24'—C25'62.2 (14)
Zn11—N11—C11—C1251.1 (3)C23'—C24'—C25'—N23'68.6 (14)
Zn11—N11—C20—C1961.3 (3)C24'—C25'—N23'—Zn2171.9 (10)
Zn11—N12—C13—C1449.6 (5)C24'—C25'—N23'—C26'172.5 (16)
Zn11—N13—C16—C1724.3 (4)C25'—N23'—C26'—C27'170.2 (15)
Zn11—N14—C18—C1965.6 (3)N23'—C26'—C27'—N24'51 (2)
N11—C11—C12—N1249.4 (5)C26'—C27'—N24'—Zn2124.7 (15)
C11—N11—C20—C19178.3 (3)C26'—C27'—N24'—C28'156.4 (14)
C11—C12—N12—Zn1120.0 (5)C27'—N24'—C28'—C29'177.4 (9)
C11—C12—N12—C13152.6 (4)N24'—C28'—C29'—C30'76.3 (12)
C12—N12—C13—C14177.3 (4)C28'—C29'—C30'—N21'72.3 (13)
N12—C13—C14—C1572.4 (5)C30'—N21'—C21'—C22'161.3 (11)
C13—C14—C15—N1377.5 (5)Zn31—N31—C31—C3231.4 (3)
C14—C15—N13—Zn1157.5 (4)Zn31—N31—C40—C3946.8 (3)
C14—C15—N13—C16177.3 (4)Zn31—N32—C33—C3464.0 (3)
C15—N13—C16—C17152.9 (4)Zn31—N33—C36—C3752.6 (3)
N13—C16—C17—N1454.2 (4)Zn31—N34—C38—C3947.1 (3)
C16—C17—N14—Zn1155.1 (3)N31—C31—C32—N3258.6 (3)
C16—C17—N14—C18176.3 (3)C31—N31—C40—C39174.9 (2)
C17—N14—C18—C19177.6 (3)C31—C32—N32—Zn3152.7 (2)
N14—C18—C19—C2070.1 (4)C31—C32—N32—C33176.6 (2)
C18—C19—C20—N1166.4 (4)C32—N32—C33—C34178.2 (3)
C20—N11—C11—C12174.7 (3)N32—C33—C34—C3566.2 (4)
Zn21—N21—C21—C2226.1 (6)C33—C34—C35—N3367.1 (4)
Zn21—N21—C30—C2951.0 (5)C34—C35—N33—Zn3165.5 (3)
Zn21—N22—C23—C2463.2 (7)C34—C35—N33—C36176.2 (3)
Zn21—N23—C26—C2753.6 (6)C35—N33—C36—C37176.5 (3)
Zn21—N24—C28—C2955.3 (5)N33—C36—C37—N3458.9 (3)
Zn21—N21'—C21'—C22'26.7 (12)C36—C37—N34—Zn3132.4 (3)
Zn21—N21'—C30'—C29'43.7 (13)C36—C37—N34—C38165.0 (3)
Zn21—N22'—C23'—C24'60.1 (12)C37—N34—C38—C39173.5 (3)
Zn21—N23'—C26'—C27'47 (2)N34—C38—C39—C4075.5 (3)
Zn21—N24'—C28'—C29'50.3 (11)C38—C39—C40—N3175.1 (3)
N21—C21—C22—N2255.0 (6)C40—N31—C31—C32165.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S21.002.303.289 (2)172
N11—H11···O421.002.002.948 (5)157
N12—H12···S41.002.403.404 (3)178
N13—H13···S31.002.463.444 (3)169
N14—H14···O241.002.173.135 (6)163
N14—H14···O311.002.283.115 (19)140
N14—H14···O331.002.473.41 (4)156
N22—H22···O31.002.163.158 (6)175
N23—H23···O411.002.353.235 (6)147
N24—H24···S121.002.563.483 (3)154
N22—H22···O121.002.293.27 (3)166
N31—H31···S141.002.363.355 (3)174
N33—H33···S3i1.002.533.419 (3)148
N34—H34···S131.002.583.532 (2)159
O41—H41A···S14ii0.822.483.256 (4)158
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

Financial support by the state of Schleswig-Holstein is gratefully acknowledged.

References

First citationAnderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953–16959.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAnderer, C., Näther, C. & Bensch, W. (2016a). Cryst. Growth Des. B71, 395–401.  Google Scholar
First citationAnderer, C., Näther, C. & Bensch, W. (2016b). Z. Naturforsch. 16, 3802–38109.  CAS Google Scholar
First citationBensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. 18, 1773–1774.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDanker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107–18117.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEngelke, L., Näther, C., Leisner, P. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959–2965.  Web of Science CSD CrossRef CAS Google Scholar
First citationEngelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B, 59, 869–876.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHilbert, J., Näther, C. & Bensch, W. (2017). Inorg. Chim. Acta, 459, 29–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillebrecht, H., Thiele, G., Koppenhöfer, A. & Vahrenkamp, H. (1994). Z. Naturforsch. B, 49, 1163–1168.  CrossRef ICSD CAS Web of Science Google Scholar
First citationIto, T., Kato, M. & Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 2634–2640.  CSD CrossRef CAS Web of Science Google Scholar
First citationJia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, D. X., Zhu, Q. Y., Dai, J., Lu, W. & Guo, W. J. (2005). Inorg. Chem. 44, 819–821.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKato, M. & Ito, T. (1985). Inorg. Chem. 24, 509–514.  CSD CrossRef CAS Web of Science Google Scholar
First citationKiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553–2556.  CSD CrossRef Google Scholar
First citationLichte, J., Lühmann, H., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837–842.  CrossRef CAS Web of Science Google Scholar
First citationLühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.  Google Scholar
First citationMikenda, W. & Preisinger, A. (1980). Spectrochim. Acta A, 36, 365–370.  CrossRef Web of Science Google Scholar
First citationMosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879–889.  Web of Science CrossRef CAS Google Scholar
First citationNäther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270–274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNotni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. pp. 1444–1455.  CSD CrossRef Google Scholar
First citationPienack, N., Lehmann, S., Lühmann, H., El–Madani, M., Näther, C. & Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323–2329.  Web of Science CSD CrossRef CAS Google Scholar
First citationPienack, N., Puls, A., Näther, C. & Bensch, W. (2008a). Inorg. Chem. 47, 9606–9611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPlaner-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855–6863.  Web of Science CAS PubMed Google Scholar
First citationPlaner-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322–323, 1–10.  CAS Google Scholar
First citationPoon, C. K. (1971). Inorg. Chim. Acta, 5, 322–324.  CrossRef CAS Google Scholar
First citationPorai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. & Varava, F. B. (1994). Russ. J. Inorg. Chem. 39, 435–439.  CAS Google Scholar
First citationPuls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.  Web of Science CSD CrossRef CAS Google Scholar
First citationRammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchaefer, M., Näther, C. & Bensch, W. (2003). Solid State Sci. 5, 1135–1139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchaefer, M., Näther, C. & Bensch, W. (2004b). Monatsh. Chem. 135, 461–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchaefer, M., Stähler, R., Kiebach, W. R., Näther, C. & Bensch, W. (2004a). Z. Anorg. Allg. Chem. 630, 1816–1822.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch.B, 56, 79–84.  CrossRef CAS Google Scholar
First citationSchur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101–107.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211–233.  Web of Science CrossRef CAS Google Scholar
First citationSpetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, M.-F., Yue, C.-Y., Yuan, Z.-D. & Lei, X.-W. (2013). Acta Cryst. C69, 855–858.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZapata, F. & García-Ruiz, C. (2018). Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 535–542.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, J. (2016). Coord. Chem. Rev. 315, 112–134.  Web of Science CrossRef CAS Google Scholar
First citationZhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002–19013.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationZhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds