research communications
and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione
aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Morocco, cScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and fLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
*Correspondence e-mail: houda.lamssane@usmba.ac.ma
The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.
Keywords: crystal structure; imidazolidine; C—H⋯π(ring) interaction; hydrogen bond; Hirshfeld surface.
CCDC reference: 2385417
1. Chemical context
et al., 2020; Pradeep et al., 2023). Hydantoins are a class of heterocyclic organic compounds that have piqued the interest of researchers due to their diverse biological applications (Aqeel et al., 2023). These substances have a variety of pharmacological characteristics, such as anticonvulsant (Emami et al., 2021), antibacterial (Pandeya et al., 2000; Sangeetha et al., 2016), antidiabetic (Salem et al., 2018), antitumor (Żesławska et al., 2021), antinociceptive and anti-inflammatory activities (Abdel-Aziz et al., 2016; Da Silva Guerra et al., 2011). Phenytoin is a widely recognized pharmaceutical drug belonging to the hydantoin class and is recognized in the treatment of epileptic seizures. However, it can also be used to treat heart rhythm disorders resulting from digitalis glucoside intoxication (Dylag et al. 2004; Thenmozhiyal et al., 2004). Continuing our research in this field, we have synthesized the compound 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione by reacting 1,3-dibromopropane with 3-benzyl-5,5-diphenylimidazolidine-2,4-dione under conditions. We determined its molecular and crystal structures, performed a Hirshfeld surface analysis, and investigated its crystal voids, intermolecular interaction energies and energy frameworks.
are essential in medicinal chemistry as they serve as the basic building blocks for many biologically active molecules, and thus are crucial for medication research and development (Negi2. Structural commentary
The molecule adopts a cup-shaped conformation with the imidazolidine ring as the bottom and the benzyl, the C4–C9 phenyl and the 3-bromopropyl groups forming the sides (Fig. 1). The imidazolidine ring is quite ruffled and a puckering analysis of its conformation (Cremer & Pople, 1975) gave the parameters Q(2) = 0.0937 (13) Å and φ(2) = 232.0 (8)°. The best descriptor is a twist on C2—C1. The dihedral angles between the mean planes of the C4⋯C9 and C10⋯C15 rings and that of the imidazolidine ring are 78.40 (5) and 82.90 (4)°, respectively. The mean plane of the C17–C22 ring is inclined to that of the imidazolidine ring by 85.94 (4)°. All bond distances and interbond angles appear as expected for the formulation given.
3. Supramolecular features
In the crystal, weak C12—H12⋯O1 hydrogen bonds and C25—H25B⋯Cg4 interactions (Table 1) form helical chains of molecules extending along the b-axis direction (Fig. 2). The chains are connected by weak C16—H16A⋯Cg4 interactions across inversion centres (Table 1) to form the full 3-D structure (Fig. 3). Although the D—H⋯A angles in these interactions are noticeably less than 180°, for both C—H⋯O and C—H⋯π interactions, angles down to 130° have been identified as being consistent with hydrogen bond-like character for them (Steiner & Desiraju, 1998; Takahashi et al., 2001).
4. Hirshfeld surface analysis
To visualize the intermolecular interactions in the crystal, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Spackman et al., 2021). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than this sum, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors and they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on electrostatic potential plot (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5.
Possible π–π stacking and C—H⋯π interactions were further visualized by plotting the surface over the shape-index. The shape-index represents the C—H⋯π interactions as `red p-holes', which are related to the electron-ring interactions between the CH groups with the centroids of the aromatic rings of neighbouring molecules. Fig. 6 clearly suggests that there are C—H⋯π interactions present. The presence of π–π stacking is indicated by adjacent red and blue triangles on the shape-index surface and as these are absent in Fig. 6 there are no π–π interactions. The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O, C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯Br/Br⋯C (McKinnon et al., 2007) are illustrated in Fig. 7b–i respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 51.0% to the overall crystal packing, which is shown in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.15 Å. The C⋯H/H⋯C contacts, contributing 21.3% to the overall crystal packing and shown in Fig. 7c with the tips at de + di = 2.66 Å, are mainly due to the C—H⋯π interactions (Table 1 and Fig. 5). The symmetrical pair of wings in the fingerprint plot delineated into Br⋯H/H⋯Br contacts (Fig. 7d) with the tips at de + di = 3.05 Å contributes 12.8% to the intermolecular interactions. The O⋯H/H⋯O contacts, appearing as a symmetrical pair of spikes with the tips at de + di = 2.38 Å (Table 1 and Fig. 7e), contribute 12.4% to the total while the C⋯C (Table 2 and Fig. 7f), N⋯H/H⋯N (Table 3 and Fig. 7g), C⋯O/O⋯C (Table 2 and Fig. 7h) and C⋯Br/Br⋯C contacts contribute less than 1% each.
|
The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O interactions in Fig. 8a–d, respectively. These results confirm the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Crystal voids
The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, the molecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole where the void surface meets the boundary of the and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9a and b) and the percentage of free space in the are calculated as 251.24 Å3 and 11.71%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.
(Turner6. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–HF/3–21G energy model available in Crystal Explorer 17.5 (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.019, 0.651, 0.901 and 0.811, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −22.9 (Eele), −7.5 (Epol), −42.9 (Edis), 18.5 (Erep) and −54.8 (Etot) for the C12—H12⋯O1 hydrogen-bonding interaction. Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 10a, b and c). The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the crystal structure.
7. Database survey
A survey of the Cambridge Structural Database (CSD, updated to June 2024; Groom et al., 2016) with the search fragment shown in Fig. 11 (R = R′ = nothing) yielded 37 hits, of which 15 were considered not similar to the title molecule as they were either ionic or were spiro(fluorene-9,5-imidazolidin)-2,4-dione derivatives instead of having two independent phenyl groups. Of the remaining 22, eighteen had R = H with R′ = allyl (BUCDEL; Guerrab et al., 2020a), CH2CH(OH)CH2N(CH2CH2)2NPh (EKANOT; Kieć-Kononowicz et al., 2003), Et (Guerrab et al., 2017a), n-pentyl (GEMSOJ; Guerrab et al., 2017b), CH2C(=O)(4-FC6H4) (GITSOT; Mague et al., 2014, GITSOT01; Alnazi et al., 2013), CH2COOEt (JALGEL; Ramli, et al., 2017), benzyl (MESSAH; Guerrab et al., 2018), CH2CH2Br (NIBMOE; Guerrab et al., 2023), n-decyl (PAJMAS; Guerrab et al., 2021), Me (PEPDUM; Guerrab et al., 2017c), n-octyl (QAGPAT; Guerrab et al., 2020b), n-butyl (QUNBET; Guerrab et al., 2018b), n-hexyl (QENBOD; Guerrab et al., 2018c), n-propyl (WEMQUD; Guerrab et al., 2017d. WEMQUD01; Trišović et al., 2019), i-butyl TEDYOZ; Guerrab et al., 2022) and CH2CH2N(CH2CH2)2O (LOKXAO; Lamssane et al., 2024). In most of these, the five-membered rings are somewhat ruffled with deviations of atoms from the mean plane of up to 0.053 (2) Å except for FEHPUG and QENBET where the largest deviations were only 0.006 (1) and 0.005 (1) Å, respectively. The minimum and maximum dihedral angles between the mean plane of the five-membered ring and an attached phenyl ring are 53.21 (1) and 84.94 (16)°, respectively, and the difference between these dihedral angles in a given molecule ranged from essentially 0° (MESSAH) to about 24° (EKANOT). The main determinant of the supramolecular structures is N—H⋯O hydrogen bonds, which either form chains of molecules or inversion dimers. These are further connected by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions with the detailed, 3-D structures influenced by the nature and bulk of R′. The four molecules with substituents on both nitrogen atoms of the five-membered ring have R = CH2CH(OH)CH2NHiPr and R′ = CH2COOMe (EKANIN; Kieć-Kononowicz et al., 2003), R = benzyl and R′ = CH2COOH (HAVLOF; Ciechanowicz-Rutkowska et al., 1994), R = CH2COOH and R′ = CH2(2,4-Cl2C6H3) (HAVLUL; Ciechanowicz-Rutkowska et al., 1994) and R = R′ = CH2C≡CH (XOLLUI; Ghandour et al., 2019). In these, the five-membered rings are somewhat more ruffled than in the previous group and the dihedral angles between the five-membered ring and the attached phenyl groups range from 64.30 (17)° (HAVLUL) to 82.8 (4)° (EKANIN). The first three contain OH groups in the side chain so O—H⋯O hydrogen bonds are the dominant packing interaction and, again, either chains or dimers are formed from these. These units are further linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. In XOLLUI, C—H⋯O hydrogen bonds and weak C—H⋯π(ring) interactions generate the supramolecular structure.
8. Synthesis and crystallization
In a flask, 3-benzyl-5,5-diphenylimidazolidine-2,4-dione (0.5 g, 1.46 mmol) was dissolved in 20 mL of acetone. Potassium carbonate, (K2CO3; 0.3 g, 2.17 mmol) and tetra-n-butylammonium bromide (BTBA; 0.05 g, 0.14 mmol) were added and the mixture was stirred for 30 min. After that, 1,3-dibromopropane (0.35 g, 1.73 mmol) was added and the mixture was stirred at ambient temperature for 48 h. The solvent was evaporated under reduced pressure and the salts removed by liquid–liquid extraction with water and dichloromethane. The resulting residue was purified using silica with an ethyl acetate/hexane (1/6) solvent system and recrystallized from ethanol. Yield 68%. Colourless crystals. Rf: 0.54 (ethyl acetate/hexane: 1/4), m.p. 378–380 K. LCMS (ESI): 463.10147 [M + H+]. 1H NMR (CDCl3, 600.13 MHz): δ (ppm) 7.22–7.42 (m, 15H, HAr); 4.76 (s, 1H, CH2), 3.53 (t, 2H, CH2, 3JH–H = 6 Hz), 3.10 (t, 2H, CH2, 3JH–H = 6 Hz), 1.45 (qt, 2H, CH2, 3JH–H = 6 Hz). 13C NMR (CDCl3, 100.62 MHz): δ (ppm) 173.35, 155.74 (C=O); 136.90, 136.07, 74.93 (Cq); 127.95–129.08 (CHAr); 42.92, 41.00, 30.57, 30.48 (CH2).
9. Refinement
Crystal data, data collection and structure . H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.
details are summarized in Table 3Supporting information
CCDC reference: 2385417
https://doi.org/10.1107/S2056989024009228/jy2051sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989024009228/jy2051Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009228/jy2051Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009228/jy2051Isup4.cml
C25H23BrN2O2 | F(000) = 952 |
Mr = 463.36 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 9.4306 (3) Å | Cell parameters from 9871 reflections |
b = 8.5084 (3) Å | θ = 3.3–74.6° |
c = 26.7891 (10) Å | µ = 2.80 mm−1 |
β = 93.270 (1)° | T = 150 K |
V = 2146.04 (13) Å3 | Block, colourless |
Z = 4 | 0.13 × 0.11 × 0.11 mm |
Bruker D8 VENTURE PHOTON 3 CPAD diffractometer | 4348 independent reflections |
Radiation source: INCOATEC IµS micro—-focus source | 4262 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 74.6°, θmin = 3.3° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→10 |
Tmin = 0.69, Tmax = 0.75 | l = −33→33 |
87214 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0239P)2 + 1.2411P] where P = (Fo2 + 2Fc2)/3 |
4348 reflections | (Δ/σ)max = 0.004 |
271 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Experimental. The diffraction data were obtained from 30 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 2 to 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.63895 (2) | 1.19589 (2) | 0.56429 (2) | 0.03559 (6) | |
O1 | 0.23072 (9) | 0.41429 (10) | 0.66257 (3) | 0.02231 (18) | |
O2 | 0.10937 (12) | 0.85648 (13) | 0.57357 (4) | 0.0371 (2) | |
N1 | 0.13721 (11) | 0.61386 (13) | 0.61309 (4) | 0.0222 (2) | |
N2 | 0.25962 (11) | 0.81958 (12) | 0.64354 (4) | 0.0218 (2) | |
C1 | 0.29725 (13) | 0.69120 (14) | 0.67837 (4) | 0.0189 (2) | |
C2 | 0.22121 (12) | 0.55173 (15) | 0.65126 (4) | 0.0189 (2) | |
C3 | 0.16363 (14) | 0.77601 (16) | 0.60666 (5) | 0.0249 (3) | |
C4 | 0.45740 (13) | 0.66583 (14) | 0.68382 (5) | 0.0198 (2) | |
C5 | 0.52555 (14) | 0.58925 (16) | 0.64591 (5) | 0.0256 (3) | |
H5 | 0.471139 | 0.548166 | 0.617953 | 0.031* | |
C6 | 0.67213 (15) | 0.57249 (18) | 0.64864 (6) | 0.0320 (3) | |
H6 | 0.717723 | 0.520761 | 0.622523 | 0.038* | |
C7 | 0.75206 (14) | 0.63127 (17) | 0.68951 (6) | 0.0314 (3) | |
H7 | 0.852430 | 0.619850 | 0.691417 | 0.038* | |
C8 | 0.68546 (15) | 0.70657 (16) | 0.72751 (5) | 0.0286 (3) | |
H8 | 0.740099 | 0.745919 | 0.755670 | 0.034* | |
C9 | 0.53839 (14) | 0.72480 (16) | 0.72455 (5) | 0.0243 (3) | |
H9 | 0.493245 | 0.777830 | 0.750515 | 0.029* | |
C10 | 0.22387 (13) | 0.70770 (14) | 0.72776 (5) | 0.0206 (2) | |
C11 | 0.11328 (14) | 0.81385 (16) | 0.73237 (5) | 0.0260 (3) | |
H11 | 0.089411 | 0.885625 | 0.706059 | 0.031* | |
C12 | 0.03746 (15) | 0.81517 (18) | 0.77547 (6) | 0.0315 (3) | |
H12 | −0.037298 | 0.888758 | 0.778555 | 0.038* | |
C13 | 0.07011 (16) | 0.71037 (18) | 0.81373 (5) | 0.0331 (3) | |
H13 | 0.017278 | 0.710944 | 0.842878 | 0.040* | |
C14 | 0.18033 (16) | 0.60422 (18) | 0.80946 (5) | 0.0312 (3) | |
H14 | 0.203268 | 0.532104 | 0.835765 | 0.037* | |
C15 | 0.25732 (14) | 0.60323 (16) | 0.76670 (5) | 0.0252 (3) | |
H15 | 0.333213 | 0.530848 | 0.764033 | 0.030* | |
C16 | 0.04615 (13) | 0.52076 (16) | 0.57837 (5) | 0.0249 (3) | |
H16A | −0.014958 | 0.592296 | 0.557440 | 0.030* | |
H16B | −0.016421 | 0.453160 | 0.597633 | 0.030* | |
C17 | 0.13128 (14) | 0.41896 (16) | 0.54494 (5) | 0.0235 (3) | |
C18 | 0.24295 (15) | 0.48328 (17) | 0.51974 (5) | 0.0276 (3) | |
H18 | 0.265958 | 0.591359 | 0.523930 | 0.033* | |
C19 | 0.32050 (16) | 0.39077 (19) | 0.48868 (5) | 0.0323 (3) | |
H19 | 0.396777 | 0.435428 | 0.471840 | 0.039* | |
C20 | 0.28716 (17) | 0.23303 (19) | 0.48208 (6) | 0.0346 (3) | |
H20 | 0.340292 | 0.169796 | 0.460658 | 0.042* | |
C21 | 0.17633 (18) | 0.16807 (18) | 0.50677 (5) | 0.0342 (3) | |
H21 | 0.153035 | 0.060211 | 0.502189 | 0.041* | |
C22 | 0.09907 (15) | 0.26050 (17) | 0.53826 (5) | 0.0292 (3) | |
H22 | 0.023634 | 0.215106 | 0.555364 | 0.035* | |
C23 | 0.31763 (14) | 0.97844 (15) | 0.64620 (5) | 0.0250 (3) | |
H23A | 0.354179 | 1.000408 | 0.680878 | 0.030* | |
H23B | 0.241029 | 1.054855 | 0.637461 | 0.030* | |
C24 | 0.43793 (14) | 0.99988 (15) | 0.61061 (5) | 0.0269 (3) | |
H24A | 0.520223 | 0.934448 | 0.622133 | 0.032* | |
H24B | 0.405496 | 0.964347 | 0.576670 | 0.032* | |
C25 | 0.48288 (16) | 1.17047 (16) | 0.60868 (6) | 0.0298 (3) | |
H25A | 0.513553 | 1.206741 | 0.642713 | 0.036* | |
H25B | 0.401208 | 1.235731 | 0.596448 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03717 (10) | 0.03173 (10) | 0.03858 (10) | −0.00687 (6) | 0.00825 (7) | 0.00692 (6) |
O1 | 0.0252 (4) | 0.0202 (4) | 0.0217 (4) | −0.0023 (3) | 0.0024 (3) | 0.0009 (3) |
O2 | 0.0411 (6) | 0.0316 (5) | 0.0369 (6) | −0.0024 (5) | −0.0134 (5) | 0.0119 (5) |
N1 | 0.0225 (5) | 0.0231 (5) | 0.0205 (5) | −0.0024 (4) | −0.0028 (4) | 0.0013 (4) |
N2 | 0.0230 (5) | 0.0189 (5) | 0.0232 (5) | −0.0012 (4) | −0.0008 (4) | 0.0031 (4) |
C1 | 0.0193 (6) | 0.0180 (6) | 0.0193 (6) | −0.0002 (4) | 0.0007 (4) | 0.0001 (4) |
C2 | 0.0174 (5) | 0.0225 (6) | 0.0171 (5) | −0.0013 (5) | 0.0039 (4) | −0.0006 (5) |
C3 | 0.0243 (6) | 0.0246 (6) | 0.0257 (6) | −0.0009 (5) | 0.0004 (5) | 0.0029 (5) |
C4 | 0.0194 (6) | 0.0178 (5) | 0.0223 (6) | −0.0008 (4) | 0.0012 (4) | 0.0022 (5) |
C5 | 0.0226 (6) | 0.0276 (7) | 0.0264 (6) | −0.0003 (5) | 0.0010 (5) | −0.0044 (5) |
C6 | 0.0242 (7) | 0.0330 (7) | 0.0391 (8) | 0.0035 (6) | 0.0060 (6) | −0.0065 (6) |
C7 | 0.0195 (6) | 0.0284 (7) | 0.0459 (8) | 0.0013 (5) | −0.0011 (6) | 0.0017 (6) |
C8 | 0.0245 (7) | 0.0278 (7) | 0.0328 (7) | −0.0044 (5) | −0.0061 (5) | 0.0016 (5) |
C9 | 0.0244 (6) | 0.0232 (6) | 0.0253 (6) | −0.0023 (5) | 0.0004 (5) | −0.0016 (5) |
C10 | 0.0192 (6) | 0.0218 (6) | 0.0209 (6) | −0.0030 (5) | 0.0012 (5) | −0.0045 (5) |
C11 | 0.0212 (6) | 0.0270 (7) | 0.0297 (7) | −0.0002 (5) | 0.0009 (5) | −0.0047 (5) |
C12 | 0.0213 (6) | 0.0356 (8) | 0.0381 (8) | −0.0021 (5) | 0.0067 (6) | −0.0137 (6) |
C13 | 0.0302 (7) | 0.0425 (8) | 0.0277 (7) | −0.0122 (6) | 0.0106 (6) | −0.0134 (6) |
C14 | 0.0364 (7) | 0.0369 (8) | 0.0207 (6) | −0.0091 (6) | 0.0030 (5) | −0.0016 (6) |
C15 | 0.0262 (6) | 0.0265 (7) | 0.0231 (6) | −0.0011 (5) | 0.0017 (5) | −0.0017 (5) |
C16 | 0.0224 (6) | 0.0296 (7) | 0.0223 (6) | −0.0056 (5) | −0.0037 (5) | 0.0000 (5) |
C17 | 0.0250 (6) | 0.0273 (7) | 0.0177 (6) | −0.0035 (5) | −0.0050 (5) | 0.0026 (5) |
C18 | 0.0311 (7) | 0.0268 (7) | 0.0247 (6) | −0.0063 (5) | −0.0002 (5) | 0.0011 (5) |
C19 | 0.0314 (7) | 0.0376 (8) | 0.0280 (7) | −0.0041 (6) | 0.0035 (5) | 0.0012 (6) |
C20 | 0.0405 (8) | 0.0342 (8) | 0.0290 (7) | 0.0056 (6) | 0.0001 (6) | −0.0024 (6) |
C21 | 0.0472 (9) | 0.0244 (7) | 0.0302 (7) | −0.0019 (6) | −0.0040 (6) | 0.0010 (6) |
C22 | 0.0346 (7) | 0.0284 (7) | 0.0240 (6) | −0.0077 (6) | −0.0029 (5) | 0.0036 (5) |
C23 | 0.0270 (6) | 0.0181 (6) | 0.0300 (6) | −0.0008 (5) | 0.0021 (5) | −0.0001 (5) |
C24 | 0.0290 (7) | 0.0205 (6) | 0.0316 (7) | −0.0018 (5) | 0.0048 (5) | 0.0009 (5) |
C25 | 0.0322 (7) | 0.0231 (7) | 0.0346 (7) | −0.0029 (5) | 0.0063 (6) | 0.0024 (6) |
Br1—C25 | 1.9562 (14) | C12—H12 | 0.9500 |
O1—C2 | 1.2100 (15) | C13—C14 | 1.387 (2) |
O2—C3 | 1.2103 (17) | C13—H13 | 0.9500 |
N1—C2 | 1.3639 (16) | C14—C15 | 1.3908 (18) |
N1—C3 | 1.4142 (17) | C14—H14 | 0.9500 |
N1—C16 | 1.4626 (16) | C15—H15 | 0.9500 |
N2—C3 | 1.3530 (17) | C16—C17 | 1.5095 (19) |
N2—C23 | 1.4584 (16) | C16—H16A | 0.9900 |
N2—C1 | 1.4669 (15) | C16—H16B | 0.9900 |
C1—C4 | 1.5244 (16) | C17—C22 | 1.3914 (19) |
C1—C10 | 1.5343 (17) | C17—C18 | 1.3947 (19) |
C1—C2 | 1.5461 (16) | C18—C19 | 1.384 (2) |
C4—C9 | 1.3895 (18) | C18—H18 | 0.9500 |
C4—C5 | 1.3940 (18) | C19—C20 | 1.388 (2) |
C5—C6 | 1.3874 (19) | C19—H19 | 0.9500 |
C5—H5 | 0.9500 | C20—C21 | 1.384 (2) |
C6—C7 | 1.387 (2) | C20—H20 | 0.9500 |
C6—H6 | 0.9500 | C21—C22 | 1.390 (2) |
C7—C8 | 1.383 (2) | C21—H21 | 0.9500 |
C7—H7 | 0.9500 | C22—H22 | 0.9500 |
C8—C9 | 1.3934 (19) | C23—C24 | 1.5339 (18) |
C8—H8 | 0.9500 | C23—H23A | 0.9900 |
C9—H9 | 0.9500 | C23—H23B | 0.9900 |
C10—C11 | 1.3904 (18) | C24—C25 | 1.5138 (18) |
C10—C15 | 1.3928 (18) | C24—H24A | 0.9900 |
C11—C12 | 1.392 (2) | C24—H24B | 0.9900 |
C11—H11 | 0.9500 | C25—H25A | 0.9900 |
C12—C13 | 1.380 (2) | C25—H25B | 0.9900 |
O1···C5 | 3.2074 (16) | C2···H5 | 2.57 |
O1···C15 | 3.2170 (16) | C4···H15 | 2.76 |
H12···O1i | 2.49 | C4···H24A | 2.90 |
H8···O1ii | 2.62 | C9···H15 | 2.80 |
H21···O2iii | 2.63 | C10···H9 | 2.65 |
O2···H23B | 2.66 | C12···H8iv | 2.88 |
O2···H16A | 2.56 | C15···H9 | 2.73 |
N1···H18 | 2.75 | C17···H16Av | 2.90 |
N2···H11 | 2.45 | C23···H11 | 2.87 |
C9···C15 | 3.1165 (19) | H16B···H22 | 2.36 |
C11···C23 | 3.3928 (19) | ||
C2—N1—C3 | 111.75 (10) | C13—C14—C15 | 120.06 (14) |
C2—N1—C16 | 124.18 (11) | C13—C14—H14 | 120.0 |
C3—N1—C16 | 123.51 (11) | C15—C14—H14 | 120.0 |
C3—N2—C23 | 121.54 (11) | C14—C15—C10 | 120.42 (13) |
C3—N2—C1 | 112.83 (10) | C14—C15—H15 | 119.8 |
C23—N2—C1 | 125.63 (10) | C10—C15—H15 | 119.8 |
N2—C1—C4 | 111.64 (10) | N1—C16—C17 | 112.04 (10) |
N2—C1—C10 | 112.08 (10) | N1—C16—H16A | 109.2 |
C4—C1—C10 | 115.06 (10) | C17—C16—H16A | 109.2 |
N2—C1—C2 | 100.59 (9) | N1—C16—H16B | 109.2 |
C4—C1—C2 | 111.51 (10) | C17—C16—H16B | 109.2 |
C10—C1—C2 | 104.80 (9) | H16A—C16—H16B | 107.9 |
O1—C2—N1 | 126.43 (11) | C22—C17—C18 | 118.90 (13) |
O1—C2—C1 | 126.76 (11) | C22—C17—C16 | 120.85 (12) |
N1—C2—C1 | 106.78 (10) | C18—C17—C16 | 120.25 (12) |
O2—C3—N2 | 128.11 (13) | C19—C18—C17 | 120.48 (13) |
O2—C3—N1 | 124.82 (12) | C19—C18—H18 | 119.8 |
N2—C3—N1 | 107.07 (11) | C17—C18—H18 | 119.8 |
C9—C4—C5 | 119.03 (12) | C18—C19—C20 | 120.20 (14) |
C9—C4—C1 | 121.41 (11) | C18—C19—H19 | 119.9 |
C5—C4—C1 | 119.47 (11) | C20—C19—H19 | 119.9 |
C6—C5—C4 | 120.59 (12) | C21—C20—C19 | 119.82 (14) |
C6—C5—H5 | 119.7 | C21—C20—H20 | 120.1 |
C4—C5—H5 | 119.7 | C19—C20—H20 | 120.1 |
C7—C6—C5 | 119.98 (13) | C20—C21—C22 | 120.05 (14) |
C7—C6—H6 | 120.0 | C20—C21—H21 | 120.0 |
C5—C6—H6 | 120.0 | C22—C21—H21 | 120.0 |
C8—C7—C6 | 119.92 (13) | C21—C22—C17 | 120.55 (13) |
C8—C7—H7 | 120.0 | C21—C22—H22 | 119.7 |
C6—C7—H7 | 120.0 | C17—C22—H22 | 119.7 |
C7—C8—C9 | 120.13 (13) | N2—C23—C24 | 111.62 (11) |
C7—C8—H8 | 119.9 | N2—C23—H23A | 109.3 |
C9—C8—H8 | 119.9 | C24—C23—H23A | 109.3 |
C4—C9—C8 | 120.35 (12) | N2—C23—H23B | 109.3 |
C4—C9—H9 | 119.8 | C24—C23—H23B | 109.3 |
C8—C9—H9 | 119.8 | H23A—C23—H23B | 108.0 |
C11—C10—C15 | 119.14 (12) | C25—C24—C23 | 110.72 (11) |
C11—C10—C1 | 120.90 (11) | C25—C24—H24A | 109.5 |
C15—C10—C1 | 119.57 (11) | C23—C24—H24A | 109.5 |
C10—C11—C12 | 120.15 (13) | C25—C24—H24B | 109.5 |
C10—C11—H11 | 119.9 | C23—C24—H24B | 109.5 |
C12—C11—H11 | 119.9 | H24A—C24—H24B | 108.1 |
C13—C12—C11 | 120.48 (13) | C24—C25—Br1 | 110.41 (9) |
C13—C12—H12 | 119.8 | C24—C25—H25A | 109.6 |
C11—C12—H12 | 119.8 | Br1—C25—H25A | 109.6 |
C12—C13—C14 | 119.75 (13) | C24—C25—H25B | 109.6 |
C12—C13—H13 | 120.1 | Br1—C25—H25B | 109.6 |
C14—C13—H13 | 120.1 | H25A—C25—H25B | 108.1 |
C3—N2—C1—C4 | 126.19 (12) | C6—C7—C8—C9 | −0.6 (2) |
C23—N2—C1—C4 | −52.97 (16) | C5—C4—C9—C8 | −0.41 (19) |
C3—N2—C1—C10 | −103.07 (12) | C1—C4—C9—C8 | −176.93 (12) |
C23—N2—C1—C10 | 77.77 (15) | C7—C8—C9—C4 | 0.8 (2) |
C3—N2—C1—C2 | 7.80 (13) | N2—C1—C10—C11 | 12.73 (16) |
C23—N2—C1—C2 | −171.36 (11) | C4—C1—C10—C11 | 141.71 (12) |
C3—N1—C2—O1 | −173.26 (12) | C2—C1—C10—C11 | −95.46 (13) |
C16—N1—C2—O1 | −1.6 (2) | N2—C1—C10—C15 | −174.51 (11) |
C3—N1—C2—C1 | 8.82 (13) | C4—C1—C10—C15 | −45.53 (15) |
C16—N1—C2—C1 | −179.55 (11) | C2—C1—C10—C15 | 77.30 (13) |
N2—C1—C2—O1 | 172.39 (12) | C15—C10—C11—C12 | 0.05 (19) |
C4—C1—C2—O1 | 53.90 (16) | C1—C10—C11—C12 | 172.84 (12) |
C10—C1—C2—O1 | −71.20 (15) | C10—C11—C12—C13 | −0.7 (2) |
N2—C1—C2—N1 | −9.70 (12) | C11—C12—C13—C14 | 0.8 (2) |
C4—C1—C2—N1 | −128.19 (10) | C12—C13—C14—C15 | −0.2 (2) |
C10—C1—C2—N1 | 106.71 (11) | C13—C14—C15—C10 | −0.5 (2) |
C23—N2—C3—O2 | −3.2 (2) | C11—C10—C15—C14 | 0.53 (19) |
C1—N2—C3—O2 | 177.56 (14) | C1—C10—C15—C14 | −172.36 (12) |
C23—N2—C3—N1 | 176.11 (11) | C2—N1—C16—C17 | −67.44 (15) |
C1—N2—C3—N1 | −3.09 (15) | C3—N1—C16—C17 | 103.23 (14) |
C2—N1—C3—O2 | 175.42 (13) | N1—C16—C17—C22 | 131.78 (13) |
C16—N1—C3—O2 | 3.7 (2) | N1—C16—C17—C18 | −48.94 (16) |
C2—N1—C3—N2 | −3.96 (14) | C22—C17—C18—C19 | −0.11 (19) |
C16—N1—C3—N2 | −175.66 (11) | C16—C17—C18—C19 | −179.40 (12) |
N2—C1—C4—C9 | 100.21 (13) | C17—C18—C19—C20 | 0.4 (2) |
C10—C1—C4—C9 | −28.97 (16) | C18—C19—C20—C21 | −0.2 (2) |
C2—C1—C4—C9 | −148.14 (12) | C19—C20—C21—C22 | −0.3 (2) |
N2—C1—C4—C5 | −76.28 (14) | C20—C21—C22—C17 | 0.6 (2) |
C10—C1—C4—C5 | 154.53 (12) | C18—C17—C22—C21 | −0.4 (2) |
C2—C1—C4—C5 | 35.37 (15) | C16—C17—C22—C21 | 178.90 (12) |
C9—C4—C5—C6 | −0.2 (2) | C3—N2—C23—C24 | −80.83 (15) |
C1—C4—C5—C6 | 176.36 (12) | C1—N2—C23—C24 | 98.26 (14) |
C4—C5—C6—C7 | 0.4 (2) | N2—C23—C24—C25 | 172.26 (11) |
C5—C6—C7—C8 | 0.0 (2) | C23—C24—C25—Br1 | 178.82 (9) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, y−1, z; (iv) x−1, y, z; (v) −x, −y+1, −z+1. |
Cg4 is the centroid of the C17–C22 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.95 | 2.49 | 3.2158 (17) | 133 |
C16—H16A···Cg4v | 0.99 | 2.66 | 3.5901 (14) | 157 |
C25—H25B···Cg4vi | 0.99 | 2.89 | 3.7621 (17) | 148 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (v) −x, −y+1, −z+1; (vi) x, y+1, z. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abdel-Aziz, A. A. M., El-Azab, A. S., Abou-Zeid, L. A., ElTahir, K. E. H., Abdel-Aziz, N. I., Ayyad, R. R. & Al-Obaid, A. M. (2016). Eur. J. Med. Chem. 115, 121–131. Web of Science CAS PubMed Google Scholar
Alanazi, A. M., El-Azab, A. S., Al-Swaidan, I. A., Maarouf, A. R., El-Bendary, E. R., Abu El-Enin, M. A. & Abdel-Aziz, A. A. (2013). Med Chem Res. 22, 6129–6142. Web of Science CSD CrossRef CAS Google Scholar
Aqeel, A. W., Al-Shaer, M. A., Ayoub, R., Jarrar, Q. & Alelaimat, M. A. (2023). Res. Chemi. 6, 101118. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dylag, T., Zygmunt, M., Macia\,g, D., Handzlik, J., Bednarski, M., Filipek, B. & Kieć-Kononowicz, K. (2004). Eur. J. Med. Chem. 39, 1013–1027. Google Scholar
Emami, S., Valipour, M., Kazemi Komishani, F., Sadati-Ashrafi, F., Rasoulian, M., Ghasemian, M., Tajbakhsh, M., Honarchian Masihi, P., Shakiba, A., Irannejad, H. & Ahangar, N. (2021). Bioorg. Chem. 112, 104943. Web of Science CrossRef PubMed Google Scholar
Ghandour, I., Bouayad, A., Hökelek, T., Haoudi, A., Capet, F., Renard, C. & Kandri Rodi, Y. (2019). Acta Cryst. E75, 951–956. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171591. Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171693. Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832. Google Scholar
Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. 40, 8766–8782. Google Scholar
Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). IUCrData, 7, x220598. Google Scholar
Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230060. Google Scholar
Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630. Web of Science CSD CrossRef Google Scholar
Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427. Web of Science CSD CrossRef CAS Google Scholar
Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018c). IUCrData, 3, x180057. Google Scholar
Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017d). IUCrData, 2, x171808. Google Scholar
Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018b). IUCrData, 3, x180050. Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData 3, x171534. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. https://hirshfeldsurface. net/ Google Scholar
Kieć-Kononowicz, K., Stadnicka, K., Mitka, A., Pękala, E., Filipek, B., Sapa, J. & Zygmunt, M. (2003). Eur. J. Med. Chem. 38, 555–566. Web of Science PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lamssane, H., Haoudi, A., Kartah, B. E., Mazzah, A., Mague, J. T., Hökelek, T., Kandri Rodi, Y. & Sebbar, N. K. (2024). Acta Cryst. E80, 423–429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226–o227. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Negi, M., Chawla, P. A., Faruk, A. & Chawla, V. (2020). Bioorg. Chem. 104, 104315. Web of Science CrossRef PubMed Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255. Web of Science CrossRef PubMed CAS Google Scholar
Pradeep, S. D., Gopalakrishnan, A. K., Manoharan, D. K., Soumya, R. S., Gopalan, R. K. & Mohanan, P. V. (2023). J. Mol. Struct. 1271, 134121. Web of Science CrossRef Google Scholar
Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098. Google Scholar
Salem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M. (2018). Bioorg. Chem. 79, 131–144. Web of Science CrossRef CAS PubMed Google Scholar
Sangeetha, P., Siva, T., Balaji, R. & Tharini, K. (2016). World J. Sci. and Res. 1, 26–30. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva Guerra, A. S. H. da, do Nascimento Malta, D. J., Morais Laranjeira, L. P., Souza Maia, M. B., Cavalcanti Colaço, N., do Carmo Alves de Lima, M., Galdino, S. L., da Rocha Pitta, I. & Gonçalves-Silva, T. (2011). Int. Immunopharmacol. 11, 1816–1822. Web of Science PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892. Web of Science CrossRef Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W. K. (2004). J. Med. Chem. 47, 1527–1535. Web of Science CrossRef PubMed CAS Google Scholar
Trišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163–2174. Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Żesławska, E., Kucwaj-Brysz, K., Kincses, A., Spengler, G., Szymańska, E., Czopek, A., Marć, M. A., Kaczor, A., Nitek, W., Domínguez-Álvarez, E., Latacz, G., Kieć-Kononowicz, K. & Handzlik, J. (2021). Bioorg. Chem. 109, 104735. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.