research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

crossmark logo

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Morocco, cScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and fLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
*Correspondence e-mail: houda.lamssane@usmba.ac.ma

Edited by J. Reibenspies, Texas A & M University, USA (Received 26 July 2024; accepted 20 September 2024; online 4 October 2024)

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.

1. Chemical context

Heterocyclic compounds are essential in medicinal chemistry as they serve as the basic building blocks for many biologically active mol­ecules, and thus are crucial for medication research and development (Negi et al., 2020[Negi, M., Chawla, P. A., Faruk, A. & Chawla, V. (2020). Bioorg. Chem. 104, 104315.]; Pradeep et al., 2023[Pradeep, S. D., Gopalakrishnan, A. K., Manoharan, D. K., Soumya, R. S., Gopalan, R. K. & Mohanan, P. V. (2023). J. Mol. Struct. 1271, 134121.]). Hydantoins are a class of heterocyclic organic compounds that have piqued the inter­est of researchers due to their diverse biological applications (Aqeel et al., 2023[Aqeel, A. W., Al-Shaer, M. A., Ayoub, R., Jarrar, Q. & Alelaimat, M. A. (2023). Res. Chemi. 6, 101118.]). These substances have a variety of pharmacological characteristics, such as anti­convulsant (Emami et al., 2021[Emami, S., Valipour, M., Kazemi Komishani, F., Sadati-Ashrafi, F., Rasoulian, M., Ghasemian, M., Tajbakhsh, M., Honarchian Masihi, P., Shakiba, A., Irannejad, H. & Ahangar, N. (2021). Bioorg. Chem. 112, 104943.]), anti­bacterial (Pandeya et al., 2000[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249-255.]; Sangeetha et al., 2016[Sangeetha, P., Siva, T., Balaji, R. & Tharini, K. (2016). World J. Sci. and Res. 1, 26-30.]), anti­diabetic (Salem et al., 2018[Salem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M. (2018). Bioorg. Chem. 79, 131-144.]), anti­tumor (Żesławska et al., 2021[Żesławska, E., Kucwaj-Brysz, K., Kincses, A., Spengler, G., Szymańska, E., Czopek, A., Marć, M. A., Kaczor, A., Nitek, W., Domínguez-Álvarez, E., Latacz, G., Kieć-Kononowicz, K. & Handzlik, J. (2021). Bioorg. Chem. 109, 104735.]), anti­nociceptive and anti-inflammatory activities (Abdel-Aziz et al., 2016[Abdel-Aziz, A. A. M., El-Azab, A. S., Abou-Zeid, L. A., ElTahir, K. E. H., Abdel-Aziz, N. I., Ayyad, R. R. & Al-Obaid, A. M. (2016). Eur. J. Med. Chem. 115, 121-131.]; Da Silva Guerra et al., 2011[Silva Guerra, A. S. H. da, do Nascimento Malta, D. J., Morais Laranjeira, L. P., Souza Maia, M. B., Cavalcanti Colaço, N., do Carmo Alves de Lima, M., Galdino, S. L., da Rocha Pitta, I. & Gonçalves-Silva, T. (2011). Int. Immunopharmacol. 11, 1816-1822.]). Phenytoin is a widely recognized pharmaceutical drug belonging to the hydantoin class and is recognized in the treatment of epileptic seizures. However, it can also be used to treat heart rhythm disorders resulting from digitalis glucoside intoxication (Dylag et al. 2004[Dylag, T., Zygmunt, M., Macia\,g, D., Handzlik, J., Bednarski, M., Filipek, B. & Kieć-Kononowicz, K. (2004). Eur. J. Med. Chem. 39, 1013-1027.]; Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W. K. (2004). J. Med. Chem. 47, 1527-1535.]). Continuing our research in this field, we have synthesized the compound 3-benzyl-1-(3-bromo­prop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione by reacting 1,3-di­bromo­propane with 3-benzyl-5,5-di­phenyl­imidazolidine-2,4-dione under phase-transfer catalysis conditions. We determined its mol­ecular and crystal structures, performed a Hirshfeld surface analysis, and investigated its crystal voids, inter­molecular inter­action energies and energy frameworks.

[Scheme 1]

2. Structural commentary

The mol­ecule adopts a cup-shaped conformation with the imidazolidine ring as the bottom and the benzyl, the C4–C9 phenyl and the 3-bromo­propyl groups forming the sides (Fig. 1[link]). The imidazolidine ring is quite ruffled and a puckering analysis of its conformation (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) gave the parameters Q(2) = 0.0937 (13) Å and φ(2) = 232.0 (8)°. The best descriptor is a twist on C2—C1. The dihedral angles between the mean planes of the C4⋯C9 and C10⋯C15 rings and that of the imidazolidine ring are 78.40 (5) and 82.90 (4)°, respectively. The mean plane of the C17–C22 ring is inclined to that of the imidazolidine ring by 85.94 (4)°. All bond distances and inter­bond angles appear as expected for the formulation given.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, weak C12—H12⋯O1 hydrogen bonds and C25—H25BCg4 inter­actions (Table 1[link]) form helical chains of mol­ecules extending along the b-axis direction (Fig. 2[link]). The chains are connected by weak C16—H16ACg4 inter­actions across inversion centres (Table 1[link]) to form the full 3-D structure (Fig. 3[link]). Although the D—H⋯A angles in these inter­actions are noticeably less than 180°, for both C—H⋯O and C—H⋯π inter­actions, angles down to 130° have been identified as being consistent with hydrogen bond-like character for them (Steiner & Desiraju, 1998[Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.]; Takahashi et al., 2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.49 3.2158 (17) 133
C16—H16ACg4v 0.99 2.66 3.5901 (14) 157
C25—H25BCg4vi 0.99 2.89 3.7621 (17) 148
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, -y+1, -z+1]; (vi) [x, y+1, z].
[Figure 2]
Figure 2
A portion of one chain viewed along the a-axis direction with C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by black and green dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by black and green dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Hirshfeld surface analysis

To visualize the inter­molecular inter­actions in the crystal, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than this sum, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors and they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on electrostatic potential plot (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. https://hirshfeldsurface. net/]) as shown in Fig. 5[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
View of the ttitle compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Possible ππ stacking and C—H⋯π inter­actions were further visualized by plotting the surface over the shape-index. The shape-index represents the C—H⋯π inter­actions as `red p-holes', which are related to the electron-ring inter­actions between the CH groups with the centroids of the aromatic rings of neighbouring mol­ecules. Fig. 6[link] clearly suggests that there are C—H⋯π inter­actions present. The presence of ππ stacking is indicated by adjacent red and blue triangles on the shape-index surface and as these are absent in Fig. 6[link] there are no ππ inter­actions. The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O, C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯Br/Br⋯C (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 7[link]bi respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 51.0% to the overall crystal packing, which is shown in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.15 Å. The C⋯H/H⋯C contacts, contributing 21.3% to the overall crystal packing and shown in Fig. 7[link]c with the tips at de + di = 2.66 Å, are mainly due to the C—H⋯π inter­actions (Table 1[link] and Fig. 5[link]). The symmetrical pair of wings in the fingerprint plot delineated into Br⋯H/H⋯Br contacts (Fig. 7[link]d) with the tips at de + di = 3.05 Å contributes 12.8% to the inter­molecular inter­actions. The O⋯H/H⋯O contacts, appearing as a symmetrical pair of spikes with the tips at de + di = 2.38 Å (Table 1[link] and Fig. 7[link]e), contribute 12.4% to the total while the C⋯C (Table 2[link] and Fig. 7[link]f), N⋯H/H⋯N (Table 3[link] and Fig. 7[link]g), C⋯O/O⋯C (Table 2[link] and Fig. 7[link]h) and C⋯Br/Br⋯C contacts contribute less than 1% each.

Table 2
Selected interatomic distances (Å)

O1⋯C5 3.2074 (16) C2⋯H5 2.57
O1⋯C15 3.2170 (16) C4⋯H15 2.76
H12⋯O1i 2.49 C4⋯H24A 2.90
H8⋯O1ii 2.62 C9⋯H15 2.80
H21⋯O2iii 2.63 C10⋯H9 2.65
O2⋯H23B 2.66 C12⋯H8iv 2.88
O2⋯H16A 2.56 C15⋯H9 2.73
N1⋯H18 2.75 C17⋯H16Av 2.90
N2⋯H11 2.45 C23⋯H11 2.87
C9⋯C15 3.1165 (19) H16B⋯H22 2.36
C11⋯C23 3.3928 (19)    
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, y-1, z]; (iv) [x-1, y, z]; (v) [-x, -y+1, -z+1].

Table 3
Experimental details

Crystal data
Chemical formula C25H23BrN2O2
Mr 463.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.4306 (3), 8.5084 (3), 26.7891 (10)
β (°) 93.270 (1)
V3) 2146.04 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.80
Crystal size (mm) 0.13 × 0.11 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.69, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 87214, 4348, 4262
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.05
No. of reflections 4348
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.39
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C (d) Br⋯H/H⋯Br (e) O⋯H/H⋯OH⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O, (f) C⋯C, (g) N⋯H/H⋯N, (h) C⋯O/O⋯C and (i) C⋯Br/Br⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O inter­actions in Fig. 8[link]ad, respectively. These results confirm the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 8]
Figure 8
The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯H, (b) C⋯H/H⋯C, (c) Br⋯H/H⋯Br and (d) O⋯H/H⋯O inter­actions.

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9[link]a and b) and the percentage of free space in the unit cell are calculated as 251.24 Å3 and 11.71%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 9]
Figure 9
Graphical views of the voids in the crystal packing (a) along the a-axis direction and (b) along the b-axis direction.

6. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies were calculated using the CE–HF/3–21G energy model available in Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.019, 0.651, 0.901 and 0.811, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −22.9 (Eele), −7.5 (Epol), −42.9 (Edis), 18.5 (Erep) and −54.8 (Etot) for the C12—H12⋯O1 hydrogen-bonding inter­action. Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 10[link]a, b and c). The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the crystal structure.

[Figure 10]
Figure 10
The energy frameworks for a cluster of mol­ecules of the title compound viewed down the a-axis direction showing (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

7. Database survey

A survey of the Cambridge Structural Database (CSD, updated to June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment shown in Fig. 11[link] (R = R′ = nothing) yielded 37 hits, of which 15 were considered not similar to the title mol­ecule as they were either ionic or were spiro­(fluorene-9,5-imidazolidin)-2,4-dione derivatives instead of having two independent phenyl groups. Of the remaining 22, eighteen had R = H with R′ = allyl (BUCDEL; Guerrab et al., 2020a[Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.]), CH2CH(OH)CH2N(CH2CH2)2NPh (EKANOT; Kieć-Kononowicz et al., 2003[Kieć-Kononowicz, K., Stadnicka, K., Mitka, A., Pękala, E., Filipek, B., Sapa, J. & Zygmunt, M. (2003). Eur. J. Med. Chem. 38, 555-566.]), Et (Guerrab et al., 2017a[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171591.]), n-pentyl (GEMSOJ; Guerrab et al., 2017b[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171693.]), CH2C(=O)(4-FC6H4) (GITSOT; Mague et al., 2014[Mague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226-o227.], GITSOT01; Alnazi et al., 2013[Alanazi, A. M., El-Azab, A. S., Al-Swaidan, I. A., Maarouf, A. R., El-Bendary, E. R., Abu El-Enin, M. A. & Abdel-Aziz, A. A. (2013). Med Chem Res. 22, 6129-6142.]), CH2COOEt (JALGEL; Ramli, et al., 2017[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.]), benzyl (MESSAH; Guerrab et al., 2018[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832.]), CH2CH2Br (NIBMOE; Guerrab et al., 2023[Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230060.]), n-decyl (PAJMAS; Guerrab et al., 2021[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. 40, 8766-8782.]), Me (PEPDUM; Guerrab et al., 2017[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData 3, x171534.]c), n-octyl (QAGPAT; Guerrab et al., 2020b[Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425-1427.]), n-butyl (QUNBET; Guerrab et al., 2018b[Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018b). IUCrData, 3, x180050.]), n-hexyl (QENBOD; Guerrab et al., 2018c[Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018c). IUCrData, 3, x180057.]), n-propyl (WEMQUD; Guerrab et al., 2017d[Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017d). IUCrData, 2, x171808.]. WEMQUD01; Trišović et al., 2019[Trišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163-2174.]), i-butyl TEDYOZ; Guerrab et al., 2022[Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). IUCrData, 7, x220598.]) and CH2CH2N(CH2CH2)2O (LOKXAO; Lamssane et al., 2024[Lamssane, H., Haoudi, A., Kartah, B. E., Mazzah, A., Mague, J. T., Hökelek, T., Kandri Rodi, Y. & Sebbar, N. K. (2024). Acta Cryst. E80, 423-429.]). In most of these, the five-membered rings are somewhat ruffled with deviations of atoms from the mean plane of up to 0.053 (2) Å except for FEHPUG and QENBET where the largest deviations were only 0.006 (1) and 0.005 (1) Å, respectively. The minimum and maximum dihedral angles between the mean plane of the five-membered ring and an attached phenyl ring are 53.21 (1) and 84.94 (16)°, respectively, and the difference between these dihedral angles in a given mol­ecule ranged from essentially 0° (MESSAH) to about 24° (EKANOT). The main determinant of the supra­molecular structures is N—H⋯O hydrogen bonds, which either form chains of mol­ecules or inversion dimers. These are further connected by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions with the detailed, 3-D structures influenced by the nature and bulk of R′. The four mol­ecules with substituents on both nitro­gen atoms of the five-membered ring have R = CH2CH(OH)CH2NHiPr and R′ = CH2COOMe (EKANIN; Kieć-Kononowicz et al., 2003[Kieć-Kononowicz, K., Stadnicka, K., Mitka, A., Pękala, E., Filipek, B., Sapa, J. & Zygmunt, M. (2003). Eur. J. Med. Chem. 38, 555-566.]), R = benzyl and R′ = CH2COOH (HAVLOF; Ciechanowicz-Rutkowska et al., 1994[Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86-96.]), R = CH2COOH and R′ = CH2(2,4-Cl2C6H3) (HAVLUL; Ciechanowicz-Rutkowska et al., 1994[Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86-96.]) and R = R′ = CH2C≡CH (XOLLUI; Ghandour et al., 2019[Ghandour, I., Bouayad, A., Hökelek, T., Haoudi, A., Capet, F., Renard, C. & Kandri Rodi, Y. (2019). Acta Cryst. E75, 951-956.]). In these, the five-membered rings are somewhat more ruffled than in the previous group and the dihedral angles between the five-membered ring and the attached phenyl groups range from 64.30 (17)° (HAVLUL) to 82.8 (4)° (EKANIN). The first three contain OH groups in the side chain so O—H⋯O hydrogen bonds are the dominant packing inter­action and, again, either chains or dimers are formed from these. These units are further linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. In XOLLUI, C—H⋯O hydrogen bonds and weak C—H⋯π(ring) inter­actions generate the supra­molecular structure.

[Figure 11]
Figure 11
Fragment used for the database search.

8. Synthesis and crystallization

In a flask, 3-benzyl-5,5-di­phenyl­imidazolidine-2,4-dione (0.5 g, 1.46 mmol) was dissolved in 20 mL of acetone. Potassium carbonate, (K2CO3; 0.3 g, 2.17 mmol) and tetra-n-butyl­ammonium bromide (BTBA; 0.05 g, 0.14 mmol) were added and the mixture was stirred for 30 min. After that, 1,3-di­bromo­propane (0.35 g, 1.73 mmol) was added and the mixture was stirred at ambient temperature for 48 h. The solvent was evaporated under reduced pressure and the salts removed by liquid–liquid extraction with water and di­chloro­methane. The resulting residue was purified using silica column chromatography with an ethyl acetate/hexane (1/6) solvent system and recrystallized from ethanol. Yield 68%. Colourless crystals. Rf: 0.54 (ethyl acetate/hexa­ne: 1/4), m.p. 378–380 K. LCMS (ESI): 463.10147 [M + H+]. 1H NMR (CDCl3, 600.13 MHz): δ (ppm) 7.22–7.42 (m, 15H, HAr); 4.76 (s, 1H, CH2), 3.53 (t, 2H, CH2, 3JH–H = 6 Hz), 3.10 (t, 2H, CH2, 3JH–H = 6 Hz), 1.45 (qt, 2H, CH2, 3JH–H = 6 Hz). 13C NMR (CDCl3, 100.62 MHz): δ (ppm) 173.35, 155.74 (C=O); 136.90, 136.07, 74.93 (Cq); 127.95–129.08 (CHAr); 42.92, 41.00, 30.57, 30.48 (CH2).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Supporting information


Computing details top

3-Benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C25H23BrN2O2F(000) = 952
Mr = 463.36Dx = 1.434 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.4306 (3) ÅCell parameters from 9871 reflections
b = 8.5084 (3) Åθ = 3.3–74.6°
c = 26.7891 (10) ŵ = 2.80 mm1
β = 93.270 (1)°T = 150 K
V = 2146.04 (13) Å3Block, colourless
Z = 40.13 × 0.11 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
4348 independent reflections
Radiation source: INCOATEC IµS micro—-focus source4262 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 7.3910 pixels mm-1θmax = 74.6°, θmin = 3.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.69, Tmax = 0.75l = 3333
87214 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0239P)2 + 1.2411P]
where P = (Fo2 + 2Fc2)/3
4348 reflections(Δ/σ)max = 0.004
271 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Experimental. The diffraction data were obtained from 30 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 2 to 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63895 (2)1.19589 (2)0.56429 (2)0.03559 (6)
O10.23072 (9)0.41429 (10)0.66257 (3)0.02231 (18)
O20.10937 (12)0.85648 (13)0.57357 (4)0.0371 (2)
N10.13721 (11)0.61386 (13)0.61309 (4)0.0222 (2)
N20.25962 (11)0.81958 (12)0.64354 (4)0.0218 (2)
C10.29725 (13)0.69120 (14)0.67837 (4)0.0189 (2)
C20.22121 (12)0.55173 (15)0.65126 (4)0.0189 (2)
C30.16363 (14)0.77601 (16)0.60666 (5)0.0249 (3)
C40.45740 (13)0.66583 (14)0.68382 (5)0.0198 (2)
C50.52555 (14)0.58925 (16)0.64591 (5)0.0256 (3)
H50.4711390.5481660.6179530.031*
C60.67213 (15)0.57249 (18)0.64864 (6)0.0320 (3)
H60.7177230.5207610.6225230.038*
C70.75206 (14)0.63127 (17)0.68951 (6)0.0314 (3)
H70.8524300.6198500.6914170.038*
C80.68546 (15)0.70657 (16)0.72751 (5)0.0286 (3)
H80.7400990.7459190.7556700.034*
C90.53839 (14)0.72480 (16)0.72455 (5)0.0243 (3)
H90.4932450.7778300.7505150.029*
C100.22387 (13)0.70770 (14)0.72776 (5)0.0206 (2)
C110.11328 (14)0.81385 (16)0.73237 (5)0.0260 (3)
H110.0894110.8856250.7060590.031*
C120.03746 (15)0.81517 (18)0.77547 (6)0.0315 (3)
H120.0372980.8887580.7785550.038*
C130.07011 (16)0.71037 (18)0.81373 (5)0.0331 (3)
H130.0172780.7109440.8428780.040*
C140.18033 (16)0.60422 (18)0.80946 (5)0.0312 (3)
H140.2032680.5321040.8357650.037*
C150.25732 (14)0.60323 (16)0.76670 (5)0.0252 (3)
H150.3332130.5308480.7640330.030*
C160.04615 (13)0.52076 (16)0.57837 (5)0.0249 (3)
H16A0.0149580.5922960.5574400.030*
H16B0.0164210.4531600.5976330.030*
C170.13128 (14)0.41896 (16)0.54494 (5)0.0235 (3)
C180.24295 (15)0.48328 (17)0.51974 (5)0.0276 (3)
H180.2659580.5913590.5239300.033*
C190.32050 (16)0.39077 (19)0.48868 (5)0.0323 (3)
H190.3967770.4354280.4718400.039*
C200.28716 (17)0.23303 (19)0.48208 (6)0.0346 (3)
H200.3402920.1697960.4606580.042*
C210.17633 (18)0.16807 (18)0.50677 (5)0.0342 (3)
H210.1530350.0602110.5021890.041*
C220.09907 (15)0.26050 (17)0.53826 (5)0.0292 (3)
H220.0236340.2151060.5553640.035*
C230.31763 (14)0.97844 (15)0.64620 (5)0.0250 (3)
H23A0.3541791.0004080.6808780.030*
H23B0.2410291.0548550.6374610.030*
C240.43793 (14)0.99988 (15)0.61061 (5)0.0269 (3)
H24A0.5202230.9344480.6221330.032*
H24B0.4054960.9643470.5766700.032*
C250.48288 (16)1.17047 (16)0.60868 (6)0.0298 (3)
H25A0.5135531.2067410.6427130.036*
H25B0.4012081.2357310.5964480.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03717 (10)0.03173 (10)0.03858 (10)0.00687 (6)0.00825 (7)0.00692 (6)
O10.0252 (4)0.0202 (4)0.0217 (4)0.0023 (3)0.0024 (3)0.0009 (3)
O20.0411 (6)0.0316 (5)0.0369 (6)0.0024 (5)0.0134 (5)0.0119 (5)
N10.0225 (5)0.0231 (5)0.0205 (5)0.0024 (4)0.0028 (4)0.0013 (4)
N20.0230 (5)0.0189 (5)0.0232 (5)0.0012 (4)0.0008 (4)0.0031 (4)
C10.0193 (6)0.0180 (6)0.0193 (6)0.0002 (4)0.0007 (4)0.0001 (4)
C20.0174 (5)0.0225 (6)0.0171 (5)0.0013 (5)0.0039 (4)0.0006 (5)
C30.0243 (6)0.0246 (6)0.0257 (6)0.0009 (5)0.0004 (5)0.0029 (5)
C40.0194 (6)0.0178 (5)0.0223 (6)0.0008 (4)0.0012 (4)0.0022 (5)
C50.0226 (6)0.0276 (7)0.0264 (6)0.0003 (5)0.0010 (5)0.0044 (5)
C60.0242 (7)0.0330 (7)0.0391 (8)0.0035 (6)0.0060 (6)0.0065 (6)
C70.0195 (6)0.0284 (7)0.0459 (8)0.0013 (5)0.0011 (6)0.0017 (6)
C80.0245 (7)0.0278 (7)0.0328 (7)0.0044 (5)0.0061 (5)0.0016 (5)
C90.0244 (6)0.0232 (6)0.0253 (6)0.0023 (5)0.0004 (5)0.0016 (5)
C100.0192 (6)0.0218 (6)0.0209 (6)0.0030 (5)0.0012 (5)0.0045 (5)
C110.0212 (6)0.0270 (7)0.0297 (7)0.0002 (5)0.0009 (5)0.0047 (5)
C120.0213 (6)0.0356 (8)0.0381 (8)0.0021 (5)0.0067 (6)0.0137 (6)
C130.0302 (7)0.0425 (8)0.0277 (7)0.0122 (6)0.0106 (6)0.0134 (6)
C140.0364 (7)0.0369 (8)0.0207 (6)0.0091 (6)0.0030 (5)0.0016 (6)
C150.0262 (6)0.0265 (7)0.0231 (6)0.0011 (5)0.0017 (5)0.0017 (5)
C160.0224 (6)0.0296 (7)0.0223 (6)0.0056 (5)0.0037 (5)0.0000 (5)
C170.0250 (6)0.0273 (7)0.0177 (6)0.0035 (5)0.0050 (5)0.0026 (5)
C180.0311 (7)0.0268 (7)0.0247 (6)0.0063 (5)0.0002 (5)0.0011 (5)
C190.0314 (7)0.0376 (8)0.0280 (7)0.0041 (6)0.0035 (5)0.0012 (6)
C200.0405 (8)0.0342 (8)0.0290 (7)0.0056 (6)0.0001 (6)0.0024 (6)
C210.0472 (9)0.0244 (7)0.0302 (7)0.0019 (6)0.0040 (6)0.0010 (6)
C220.0346 (7)0.0284 (7)0.0240 (6)0.0077 (6)0.0029 (5)0.0036 (5)
C230.0270 (6)0.0181 (6)0.0300 (6)0.0008 (5)0.0021 (5)0.0001 (5)
C240.0290 (7)0.0205 (6)0.0316 (7)0.0018 (5)0.0048 (5)0.0009 (5)
C250.0322 (7)0.0231 (7)0.0346 (7)0.0029 (5)0.0063 (6)0.0024 (6)
Geometric parameters (Å, º) top
Br1—C251.9562 (14)C12—H120.9500
O1—C21.2100 (15)C13—C141.387 (2)
O2—C31.2103 (17)C13—H130.9500
N1—C21.3639 (16)C14—C151.3908 (18)
N1—C31.4142 (17)C14—H140.9500
N1—C161.4626 (16)C15—H150.9500
N2—C31.3530 (17)C16—C171.5095 (19)
N2—C231.4584 (16)C16—H16A0.9900
N2—C11.4669 (15)C16—H16B0.9900
C1—C41.5244 (16)C17—C221.3914 (19)
C1—C101.5343 (17)C17—C181.3947 (19)
C1—C21.5461 (16)C18—C191.384 (2)
C4—C91.3895 (18)C18—H180.9500
C4—C51.3940 (18)C19—C201.388 (2)
C5—C61.3874 (19)C19—H190.9500
C5—H50.9500C20—C211.384 (2)
C6—C71.387 (2)C20—H200.9500
C6—H60.9500C21—C221.390 (2)
C7—C81.383 (2)C21—H210.9500
C7—H70.9500C22—H220.9500
C8—C91.3934 (19)C23—C241.5339 (18)
C8—H80.9500C23—H23A0.9900
C9—H90.9500C23—H23B0.9900
C10—C111.3904 (18)C24—C251.5138 (18)
C10—C151.3928 (18)C24—H24A0.9900
C11—C121.392 (2)C24—H24B0.9900
C11—H110.9500C25—H25A0.9900
C12—C131.380 (2)C25—H25B0.9900
O1···C53.2074 (16)C2···H52.57
O1···C153.2170 (16)C4···H152.76
H12···O1i2.49C4···H24A2.90
H8···O1ii2.62C9···H152.80
H21···O2iii2.63C10···H92.65
O2···H23B2.66C12···H8iv2.88
O2···H16A2.56C15···H92.73
N1···H182.75C17···H16Av2.90
N2···H112.45C23···H112.87
C9···C153.1165 (19)H16B···H222.36
C11···C233.3928 (19)
C2—N1—C3111.75 (10)C13—C14—C15120.06 (14)
C2—N1—C16124.18 (11)C13—C14—H14120.0
C3—N1—C16123.51 (11)C15—C14—H14120.0
C3—N2—C23121.54 (11)C14—C15—C10120.42 (13)
C3—N2—C1112.83 (10)C14—C15—H15119.8
C23—N2—C1125.63 (10)C10—C15—H15119.8
N2—C1—C4111.64 (10)N1—C16—C17112.04 (10)
N2—C1—C10112.08 (10)N1—C16—H16A109.2
C4—C1—C10115.06 (10)C17—C16—H16A109.2
N2—C1—C2100.59 (9)N1—C16—H16B109.2
C4—C1—C2111.51 (10)C17—C16—H16B109.2
C10—C1—C2104.80 (9)H16A—C16—H16B107.9
O1—C2—N1126.43 (11)C22—C17—C18118.90 (13)
O1—C2—C1126.76 (11)C22—C17—C16120.85 (12)
N1—C2—C1106.78 (10)C18—C17—C16120.25 (12)
O2—C3—N2128.11 (13)C19—C18—C17120.48 (13)
O2—C3—N1124.82 (12)C19—C18—H18119.8
N2—C3—N1107.07 (11)C17—C18—H18119.8
C9—C4—C5119.03 (12)C18—C19—C20120.20 (14)
C9—C4—C1121.41 (11)C18—C19—H19119.9
C5—C4—C1119.47 (11)C20—C19—H19119.9
C6—C5—C4120.59 (12)C21—C20—C19119.82 (14)
C6—C5—H5119.7C21—C20—H20120.1
C4—C5—H5119.7C19—C20—H20120.1
C7—C6—C5119.98 (13)C20—C21—C22120.05 (14)
C7—C6—H6120.0C20—C21—H21120.0
C5—C6—H6120.0C22—C21—H21120.0
C8—C7—C6119.92 (13)C21—C22—C17120.55 (13)
C8—C7—H7120.0C21—C22—H22119.7
C6—C7—H7120.0C17—C22—H22119.7
C7—C8—C9120.13 (13)N2—C23—C24111.62 (11)
C7—C8—H8119.9N2—C23—H23A109.3
C9—C8—H8119.9C24—C23—H23A109.3
C4—C9—C8120.35 (12)N2—C23—H23B109.3
C4—C9—H9119.8C24—C23—H23B109.3
C8—C9—H9119.8H23A—C23—H23B108.0
C11—C10—C15119.14 (12)C25—C24—C23110.72 (11)
C11—C10—C1120.90 (11)C25—C24—H24A109.5
C15—C10—C1119.57 (11)C23—C24—H24A109.5
C10—C11—C12120.15 (13)C25—C24—H24B109.5
C10—C11—H11119.9C23—C24—H24B109.5
C12—C11—H11119.9H24A—C24—H24B108.1
C13—C12—C11120.48 (13)C24—C25—Br1110.41 (9)
C13—C12—H12119.8C24—C25—H25A109.6
C11—C12—H12119.8Br1—C25—H25A109.6
C12—C13—C14119.75 (13)C24—C25—H25B109.6
C12—C13—H13120.1Br1—C25—H25B109.6
C14—C13—H13120.1H25A—C25—H25B108.1
C3—N2—C1—C4126.19 (12)C6—C7—C8—C90.6 (2)
C23—N2—C1—C452.97 (16)C5—C4—C9—C80.41 (19)
C3—N2—C1—C10103.07 (12)C1—C4—C9—C8176.93 (12)
C23—N2—C1—C1077.77 (15)C7—C8—C9—C40.8 (2)
C3—N2—C1—C27.80 (13)N2—C1—C10—C1112.73 (16)
C23—N2—C1—C2171.36 (11)C4—C1—C10—C11141.71 (12)
C3—N1—C2—O1173.26 (12)C2—C1—C10—C1195.46 (13)
C16—N1—C2—O11.6 (2)N2—C1—C10—C15174.51 (11)
C3—N1—C2—C18.82 (13)C4—C1—C10—C1545.53 (15)
C16—N1—C2—C1179.55 (11)C2—C1—C10—C1577.30 (13)
N2—C1—C2—O1172.39 (12)C15—C10—C11—C120.05 (19)
C4—C1—C2—O153.90 (16)C1—C10—C11—C12172.84 (12)
C10—C1—C2—O171.20 (15)C10—C11—C12—C130.7 (2)
N2—C1—C2—N19.70 (12)C11—C12—C13—C140.8 (2)
C4—C1—C2—N1128.19 (10)C12—C13—C14—C150.2 (2)
C10—C1—C2—N1106.71 (11)C13—C14—C15—C100.5 (2)
C23—N2—C3—O23.2 (2)C11—C10—C15—C140.53 (19)
C1—N2—C3—O2177.56 (14)C1—C10—C15—C14172.36 (12)
C23—N2—C3—N1176.11 (11)C2—N1—C16—C1767.44 (15)
C1—N2—C3—N13.09 (15)C3—N1—C16—C17103.23 (14)
C2—N1—C3—O2175.42 (13)N1—C16—C17—C22131.78 (13)
C16—N1—C3—O23.7 (2)N1—C16—C17—C1848.94 (16)
C2—N1—C3—N23.96 (14)C22—C17—C18—C190.11 (19)
C16—N1—C3—N2175.66 (11)C16—C17—C18—C19179.40 (12)
N2—C1—C4—C9100.21 (13)C17—C18—C19—C200.4 (2)
C10—C1—C4—C928.97 (16)C18—C19—C20—C210.2 (2)
C2—C1—C4—C9148.14 (12)C19—C20—C21—C220.3 (2)
N2—C1—C4—C576.28 (14)C20—C21—C22—C170.6 (2)
C10—C1—C4—C5154.53 (12)C18—C17—C22—C210.4 (2)
C2—C1—C4—C535.37 (15)C16—C17—C22—C21178.90 (12)
C9—C4—C5—C60.2 (2)C3—N2—C23—C2480.83 (15)
C1—C4—C5—C6176.36 (12)C1—N2—C23—C2498.26 (14)
C4—C5—C6—C70.4 (2)N2—C23—C24—C25172.26 (11)
C5—C6—C7—C80.0 (2)C23—C24—C25—Br1178.82 (9)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y1, z; (iv) x1, y, z; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.493.2158 (17)133
C16—H16A···Cg4v0.992.663.5901 (14)157
C25—H25B···Cg4vi0.992.893.7621 (17)148
Symmetry codes: (i) x, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x, y+1, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbdel-Aziz, A. A. M., El-Azab, A. S., Abou-Zeid, L. A., ElTahir, K. E. H., Abdel-Aziz, N. I., Ayyad, R. R. & Al-Obaid, A. M. (2016). Eur. J. Med. Chem. 115, 121–131.  Web of Science CAS PubMed Google Scholar
First citationAlanazi, A. M., El-Azab, A. S., Al-Swaidan, I. A., Maarouf, A. R., El-Bendary, E. R., Abu El-Enin, M. A. & Abdel-Aziz, A. A. (2013). Med Chem Res. 22, 6129–6142.  Web of Science CSD CrossRef CAS Google Scholar
First citationAqeel, A. W., Al-Shaer, M. A., Ayoub, R., Jarrar, Q. & Alelaimat, M. A. (2023). Res. Chemi. 6, 101118.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCiechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDylag, T., Zygmunt, M., Macia\,g, D., Handzlik, J., Bednarski, M., Filipek, B. & Kieć-Kononowicz, K. (2004). Eur. J. Med. Chem. 39, 1013–1027.  Google Scholar
First citationEmami, S., Valipour, M., Kazemi Komishani, F., Sadati-Ashrafi, F., Rasoulian, M., Ghasemian, M., Tajbakhsh, M., Honarchian Masihi, P., Shakiba, A., Irannejad, H. & Ahangar, N. (2021). Bioorg. Chem. 112, 104943.  Web of Science CrossRef PubMed Google Scholar
First citationGhandour, I., Bouayad, A., Hökelek, T., Haoudi, A., Capet, F., Renard, C. & Kandri Rodi, Y. (2019). Acta Cryst. E75, 951–956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171591.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171693.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832.  Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. 40, 8766–8782.  Google Scholar
First citationGuerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). IUCrData, 7, x220598.  Google Scholar
First citationGuerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230060.  Google Scholar
First citationGuerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.  Web of Science CSD CrossRef Google Scholar
First citationGuerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018c). IUCrData, 3, x180057.  Google Scholar
First citationGuerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017d). IUCrData, 2, x171808.  Google Scholar
First citationGuerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018b). IUCrData, 3, x180050.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData 3, x171534.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. https://hirshfeldsurface. net/  Google Scholar
First citationKieć-Kononowicz, K., Stadnicka, K., Mitka, A., Pękala, E., Filipek, B., Sapa, J. & Zygmunt, M. (2003). Eur. J. Med. Chem. 38, 555–566.  Web of Science PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLamssane, H., Haoudi, A., Kartah, B. E., Mazzah, A., Mague, J. T., Hökelek, T., Kandri Rodi, Y. & Sebbar, N. K. (2024). Acta Cryst. E80, 423–429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226–o227.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNegi, M., Chawla, P. A., Faruk, A. & Chawla, V. (2020). Bioorg. Chem. 104, 104315.  Web of Science CrossRef PubMed Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPradeep, S. D., Gopalakrishnan, A. K., Manoharan, D. K., Soumya, R. S., Gopalan, R. K. & Mohanan, P. V. (2023). J. Mol. Struct. 1271, 134121.  Web of Science CrossRef Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.  Google Scholar
First citationSalem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M. (2018). Bioorg. Chem. 79, 131–144.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSangeetha, P., Siva, T., Balaji, R. & Tharini, K. (2016). World J. Sci. and Res. 1, 26–30.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva Guerra, A. S. H. da, do Nascimento Malta, D. J., Morais Laranjeira, L. P., Souza Maia, M. B., Cavalcanti Colaço, N., do Carmo Alves de Lima, M., Galdino, S. L., da Rocha Pitta, I. & Gonçalves-Silva, T. (2011). Int. Immunopharmacol. 11, 1816–1822.  Web of Science PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.  Web of Science CrossRef Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W. K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163–2174.  Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationŻesławska, E., Kucwaj-Brysz, K., Kincses, A., Spengler, G., Szymańska, E., Czopek, A., Marć, M. A., Kaczor, A., Nitek, W., Domínguez-Álvarez, E., Latacz, G., Kieć-Kononowicz, K. & Handzlik, J. (2021). Bioorg. Chem. 109, 104735.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds