research communications
and Hirshfeld surface analysis of bis(benzoylacetonato)(ethanol)dioxidouranium(VI)
aInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, 100170, M. Ulugbek Str 77a, Tashkent, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, cAlfraganus University, 100190, Uzbekistan, Tashkent, Yunusabad district, Yukori Karakamish Street 2, Uzbekistan, dUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent 100095, Uzbekistan, eS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, fTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, 100095 Tashkent, Uzbekistan, gInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, Uzbekistan, hUniversity of Geological Sciences, Olimlar Street, 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, and iNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan
*Correspondence e-mail: jabborova0707@gmail.com
A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis(benzoylacetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is pentagonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as including H⋯H, O⋯H and C⋯H. Interactions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the is minor. A packing analysis was performed to check the strength of the crystal packing.
Keywords: benzoyl acetone; uranium complex; crystal structure; Hirshfeld surface analysis; hydrogen bonding; π–π interaction.
CCDC reference: 2291369
1. Chemical context
A greater understanding of the coordination chemistry of uranium is important for the development of new technologies for the safe reprocessing and long-term immobilization of irradiated et al., 2005; Oldham et al. 2002). Uranium with +VI form approximately linear triatomic uranyl ions, UO22+. Although this cation can bind additional ligands perpendicular to the uranium axis to form five-, six-, seven-, and eight-coordinate metal centres, seven-coordinate is particularly common for hexavalent uranium (Hernandez et al., 2022; Almond & Albrecht-Schmitt, 2003; Arndt et al. 2002). Heptacoordinated uranium centers can exhibit pentagonal–bipyramidal, capped-octahedral, and trigonal–prismatic coordination geometries. The specific geometry depends on steric requirements caused by ligand–ligand repulsion, weaker bonds, and generally reduced crystal field stability. Despite the abundance of layered structures for UVI–oxo compounds (Chakraborty et al., 2006; Hughes & Burns, 2003; Neu et al., 2001), one-dimensional topology or multidimensional framework structural studies of uranyl compounds are rather sparse (Bean et al., 2001; Sykora & Albrecht-Schmitt, 2003). The anti-inflammatory, analgesic, anti-microbial, anti-convulsant, anti-cancer, anti-tubercular, antioxidant, antidepressant, antiglycation, antihelmintic, anti-fungal, anti-tumour, antibiotic and anti-allergic effects of the ligand have been studied (Şahin & Dege, 2021).
One of the main reasons for the renewed interest in uranium compounds is their remarkable structural versatility. In the oxidation states +III or +IV, eight- or nine-coordinate uranium environments are typically found, similar to those observed in lanthanide complexes (EnriquezThe present work was undertaken to study the effect of oxo-ligands on the metal coordination geometry and explore the possibility of any supramolecular architecture in the resulting uranyl compounds. We isolated the title metal–organic complex uranium salt, [C22H24O7U] and report here its and Hirshfeld surface analysis.
2. Structural commentary
The single-crystal structure of bis(benzoylacetonato)(ethanol)dioxidouranium(VI) crystallizes in the monoclinic P21/n. The molecular structure is shown in Fig. 1. The molecule is almost planar with an r.m.s. deviation of 0.0593 Å from planarity. In the compound, the coordination geometry around the uranium atom includes seven oxygen donors from one ethanol, two oxido, and two bidentate benzoylacetonoate ligands. It is approximately pentagonal bipyramidal. The U—O uranyl bond distances [1.759 (7) and 2.358 (7) Å; Table 1] agree well with the previously reported values for dioxouranium (VI) complexes (Hernandez et al., 2022; Takao & Ikeda, 2008; Chakraborty et al., 2006; Gatto et al., 2004; Kannan et al., 2004). The distortion of the metal coordination geometry from an ideal pentagonal bipyramidal arrangement (Fig. 2) is revealed by the O—U—O bond angles for the pentagon, which range between 70.6 (2) and 177.4 (3)°.
|
3. Supramolecular features
In the complex, the crystal packing exhibits one intermolecular O7—H7⋯O2(1 − x, 1 − y, 1 − z) hydrogen-bonding interactions (Fig. 3, Table 2). In additional π–π stacking (Fig. 3) occurs between the aromatic rings of neighbouring molecules with centroid–centroid distances Cg1⋯Cg2(−1 + x, y, z) = 3.900 (6) Å, with a ring slippage of 1.577 Å, and Cg2⋯Cg1( + x, − y, + z) = 3.765 (6) Å, with a ring slippage of 1.035 Å where Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
4. Hirshfeld surface analysis
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface (HS) analysis was performed, and the two-dimensional fingerprint plots were generated with CrystalExplorer17.5 (Spackman et al., 2021). The HS mapped with dnorm, curvedness and shape-index are given in Fig. 4. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red points in the dnorm surface of the molecule are located near atoms O2 and O7/H7, consistent with the O7—H7⋯O2 hydrogen-bonding interaction, highlighted in Fig. 3. From the Hirshfeld surfaces, it is also evident that the molecules are related to one another by π–π stacking interactions, as can be inferred from inspection of the adjacent red and blue triangles (highlighted by yellow circles) on the shape-index surface (Fig. 4). The presence of π–π stacking is also evident in the flat region toward the top of both sides of the molecules and is clearly visible on the curvedness surface (Fig. 4): the shape of the blue outline on the curvedness surface unambiguously delineates the contacting patches of the molecules.
The two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5. On the HS, the largest contributions (53.2%, 23.4%, 13.8%) come from short contacts such as H⋯H, O⋯H and C⋯H contacts. C⋯C (8.6%), O⋯C (0.8%) and O⋯O (0.1%) contacts are also observed. The classical O—H⋯O hydrogen bonds correspond to O⋯H/H⋯O contacts (23.4% contribution) in Fig. 5 and show up as a pair of spikes. The scattered points in the breakdown of the fingerprint plot show that the π–π stacking interactions C⋯C comprise 8.6% of the total Hirshfeld surface of the molecule displayed as a region of blue/green colour.
5. Database survey
A search in the Cambridge Structural Database (CSD, version 5.43, update of November 2022; Groom et al., 2016) revealed 25 hits with the β-diketonate ligand moiety. Among these, one structure contains tin (AGESUA: Pettinari et al., 2002), two structures contain zinc (BZACZN: Belford et al., 1969; NEYBID: Dang et al., 2006), one structure contains uranium(VI) (CAZMEV: Haider et al., 1983), one structure contains platinum(II) (CBZACP: Okeya et al., 1976), one structure contains iron(III) (ARUMOR: Zou et al., 2016), one structure contains manganese(II), one structure contains cadmium (HICRAP and HICRET: Yang, 2018a,b), one structure contains vanadium (KIJPAV: Xing et al., 2007), four structures contain copper (CUBEAC: Hon et al., 1966; LEZVAO: Lennartson et al., 2007; NINFIC, NINFOI: Chen et al., 2018), one structure contains lithium (UCIMAU: Jung et al., 1998), nine structures contain manganese(II) (NENNAX: Cvrtila et al., 2012; PIDPOJ, PIDPUP, PIDQAW, PIDQEA, PIDQIE, PIDQOK, PIDQUQ, PIDRAX: Cvrtila et al., 2013), and two structures contain cobalt(II) (POJBUN: Perdih, 2014; YADKUJ: Döring et al., 1992). A search for the uranyl moiety returned five hits with pentagonal–bipyramidal geometries similar to that in the title structure. These include: aquabis(benzoylacetonato)dioxouranium(VI) monohydrate (CAZMEV: Haider et al., 1983), uranyl(VI) complexes containing the β-diketonatephenol ligands derived from 1-(2-hydroxyphenyl)-1,3-butanedione and 1-(2-hydroxyphenyl)-3-phenyl-1,3-propanedione (GIYXAN, GIYXER: Ainscough et al., 1998), a uranyl β-diketonate complex [UO2(tfa)2(L)] [L = H2O, OHCH2CH3; tfa = deprotonated 4,4,4,-trifluoro-1-(2-furyl)-1,3-butanedione] with a well-described 3D supramolecular structure and electronic absorption spectroscopy (IVEDIX: Al-Anber et al., 2011), and bis(2-benzoyl-1-phenylethenolato-κ2O,O′)(ethanol-κO)dioxidouranium(VI) (RISVAR: Takao & Ikeda, 2008).
6. Synthesis and crystallization
Benzoylacetone (BNA) (0.0324 g, 0.200 mmol) dissolved in 5 ml of ethanol and uranyl acetate (0.0388 g, 0.100 mmol) dissolved in 5 ml of ethanol were mixed under constant stirring until the colour of the solution turned to orange–red. The stirring continued for an hour, then the solution was left to stand overnight. The orange–red crystalline solid was filtered off and dried under vacuum. The solid was dissolved in ethanol and slow evaporation of the solution yielded diffraction-quality single-crystals of the title compound. Selected IR bands (KBr pellet, cm−1): 1589 (C=O), 1340 (C—O), 471 (U—Oligand), 380 (U—Oeth Raman spectroscopy), 908 (O=U=O).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and treated as riding on their parent atoms, with C—H = 0.95 Å (aromatic) and were refined with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2291369
https://doi.org/10.1107/S2056989024010417/ej2006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010417/ej2006Isup2.hkl
[U(C10H9O2)2O2(C2H6O)] | F(000) = 1216 |
Mr = 638.44 | Dx = 1.898 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 8.55214 (16) Å | Cell parameters from 7001 reflections |
b = 26.0026 (4) Å | θ = 3.4–70.9° |
c = 10.3057 (2) Å | µ = 20.79 mm−1 |
β = 102.8291 (19)° | T = 293 K |
V = 2234.56 (7) Å3 | Block, orange |
Z = 4 | 0.28 × 0.26 × 0.18 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 4331 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3260 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.085 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.6°, θmin = 3.4° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | k = −31→31 |
Tmin = 0.266, Tmax = 1.000 | l = −12→12 |
22840 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4331 reflections | Δρmax = 1.49 e Å−3 |
277 parameters | Δρmin = −1.94 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.35139 (3) | 0.42260 (2) | 0.30596 (3) | 0.06079 (13) | |
O6 | 0.4734 (6) | 0.3427 (2) | 0.3413 (7) | 0.0814 (19) | |
O7 | 0.4126 (8) | 0.5149 (2) | 0.3315 (7) | 0.089 (2) | |
H7 | 0.492 (7) | 0.5227 (10) | 0.395 (6) | 0.133* | |
O4 | 0.1461 (6) | 0.3644 (2) | 0.2364 (7) | 0.0834 (18) | |
O2 | 0.3043 (11) | 0.4237 (2) | 0.4656 (7) | 0.097 (2) | |
O1 | 0.4002 (10) | 0.4245 (2) | 0.1490 (7) | 0.086 (2) | |
O3 | 0.1132 (8) | 0.4682 (3) | 0.2177 (7) | 0.094 (2) | |
O5 | 0.6224 (8) | 0.4331 (2) | 0.4195 (8) | 0.109 (3) | |
C17 | 0.6112 (8) | 0.3228 (3) | 0.3875 (7) | 0.0546 (17) | |
C16 | 0.6196 (9) | 0.2656 (3) | 0.3843 (7) | 0.0553 (17) | |
C19 | 0.7469 (10) | 0.4058 (3) | 0.4512 (8) | 0.0612 (19) | |
C18 | 0.7443 (8) | 0.3533 (3) | 0.4370 (8) | 0.065 (2) | |
H18 | 0.842014 | 0.336419 | 0.463399 | 0.077* | |
C6 | −0.0712 (9) | 0.3112 (3) | 0.1567 (8) | 0.065 (2) | |
C7 | 0.0003 (9) | 0.3631 (3) | 0.1833 (8) | 0.063 (2) | |
C11 | 0.4925 (11) | 0.2381 (3) | 0.3120 (9) | 0.073 (2) | |
H11 | 0.402282 | 0.255445 | 0.265396 | 0.088* | |
C9 | −0.0310 (12) | 0.4571 (4) | 0.1714 (10) | 0.083 (3) | |
C20 | 0.8965 (10) | 0.4343 (4) | 0.5093 (11) | 0.088 (3) | |
H20A | 0.939075 | 0.449118 | 0.439123 | 0.132* | |
H20B | 0.973720 | 0.411031 | 0.560045 | 0.132* | |
H20C | 0.873495 | 0.461083 | 0.566368 | 0.132* | |
C15 | 0.7523 (10) | 0.2390 (3) | 0.4547 (9) | 0.074 (2) | |
H15 | 0.840231 | 0.256908 | 0.503191 | 0.088* | |
C8 | −0.0906 (11) | 0.4086 (4) | 0.1504 (10) | 0.084 (3) | |
H8 | −0.199147 | 0.405010 | 0.111488 | 0.101* | |
C5 | −0.2247 (11) | 0.3018 (5) | 0.0822 (10) | 0.096 (3) | |
H5 | −0.290652 | 0.329367 | 0.048809 | 0.116* | |
C12 | 0.4969 (13) | 0.1855 (3) | 0.3079 (12) | 0.094 (3) | |
H12 | 0.411937 | 0.167293 | 0.255928 | 0.113* | |
C1 | 0.0190 (11) | 0.2687 (4) | 0.2006 (10) | 0.080 (2) | |
H1 | 0.123451 | 0.273124 | 0.249479 | 0.096* | |
C14 | 0.7535 (13) | 0.1862 (4) | 0.4526 (11) | 0.097 (3) | |
H14 | 0.841828 | 0.168385 | 0.500949 | 0.117* | |
C13 | 0.6271 (15) | 0.1598 (4) | 0.3807 (12) | 0.096 (3) | |
H13 | 0.628639 | 0.123990 | 0.380680 | 0.116* | |
C4 | −0.2814 (15) | 0.2524 (6) | 0.0566 (12) | 0.110 (4) | |
H4 | −0.384491 | 0.247047 | 0.005943 | 0.132* | |
C2 | −0.0393 (14) | 0.2198 (4) | 0.1749 (12) | 0.104 (3) | |
H2 | 0.025503 | 0.191739 | 0.206548 | 0.125* | |
C3 | −0.1889 (15) | 0.2122 (5) | 0.1044 (12) | 0.103 (4) | |
H3 | −0.228585 | 0.178916 | 0.088717 | 0.123* | |
C10 | −0.1408 (12) | 0.5024 (4) | 0.1353 (11) | 0.115 (4) | |
H10A | −0.184658 | 0.511753 | 0.210066 | 0.172* | |
H10B | −0.226310 | 0.493619 | 0.061287 | 0.172* | |
H10C | −0.081541 | 0.530940 | 0.111446 | 0.172* | |
C21 | 0.369 (2) | 0.5632 (6) | 0.2438 (15) | 0.164 (7) | |
H21A | 0.264632 | 0.558775 | 0.184657 | 0.196* | |
H21B | 0.364662 | 0.592990 | 0.299405 | 0.196* | |
C22 | 0.492 (2) | 0.5711 (7) | 0.165 (2) | 0.226 (11) | |
H22A | 0.454473 | 0.595840 | 0.095993 | 0.339* | |
H22B | 0.513178 | 0.539042 | 0.125400 | 0.339* | |
H22C | 0.589497 | 0.583392 | 0.221952 | 0.339* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.0615 (2) | 0.04146 (17) | 0.0673 (2) | 0.00267 (10) | −0.01179 (13) | −0.00574 (11) |
O6 | 0.059 (3) | 0.045 (3) | 0.122 (5) | 0.009 (2) | −0.018 (3) | −0.019 (3) |
O7 | 0.111 (5) | 0.051 (3) | 0.085 (4) | 0.005 (3) | −0.023 (3) | −0.006 (3) |
O4 | 0.056 (3) | 0.055 (3) | 0.121 (5) | −0.006 (2) | −0.022 (3) | 0.006 (3) |
O2 | 0.143 (7) | 0.072 (5) | 0.064 (4) | 0.009 (4) | −0.002 (4) | −0.002 (3) |
O1 | 0.117 (6) | 0.073 (4) | 0.061 (4) | −0.010 (3) | 0.009 (4) | −0.015 (3) |
O3 | 0.075 (4) | 0.068 (4) | 0.122 (6) | 0.016 (3) | −0.013 (4) | 0.009 (4) |
O5 | 0.074 (4) | 0.056 (4) | 0.166 (8) | 0.002 (3) | −0.038 (4) | −0.030 (4) |
C17 | 0.058 (4) | 0.053 (4) | 0.048 (4) | 0.002 (3) | 0.002 (3) | −0.001 (3) |
C16 | 0.059 (4) | 0.048 (4) | 0.058 (4) | 0.009 (3) | 0.011 (3) | −0.001 (3) |
C19 | 0.056 (5) | 0.062 (5) | 0.063 (5) | 0.000 (4) | 0.007 (4) | −0.014 (4) |
C18 | 0.044 (4) | 0.058 (5) | 0.086 (6) | 0.000 (3) | 0.002 (4) | −0.007 (4) |
C6 | 0.056 (5) | 0.083 (6) | 0.053 (4) | −0.004 (4) | 0.009 (3) | −0.004 (4) |
C7 | 0.058 (5) | 0.061 (5) | 0.063 (5) | 0.001 (4) | −0.003 (4) | −0.002 (4) |
C11 | 0.073 (5) | 0.057 (5) | 0.085 (6) | −0.008 (4) | 0.007 (4) | −0.001 (4) |
C9 | 0.082 (7) | 0.080 (7) | 0.077 (6) | 0.017 (5) | −0.003 (5) | −0.003 (5) |
C20 | 0.054 (5) | 0.097 (7) | 0.109 (8) | −0.025 (5) | 0.013 (5) | −0.029 (6) |
C15 | 0.068 (5) | 0.066 (5) | 0.086 (6) | 0.017 (4) | 0.013 (4) | 0.005 (5) |
C8 | 0.059 (5) | 0.088 (7) | 0.088 (7) | 0.020 (5) | −0.019 (5) | −0.002 (6) |
C5 | 0.078 (7) | 0.114 (9) | 0.090 (7) | −0.029 (6) | 0.003 (5) | −0.003 (6) |
C12 | 0.098 (7) | 0.048 (5) | 0.134 (9) | −0.016 (5) | 0.022 (6) | −0.015 (6) |
C1 | 0.069 (5) | 0.074 (6) | 0.093 (6) | −0.011 (5) | 0.011 (5) | −0.010 (5) |
C14 | 0.106 (8) | 0.069 (7) | 0.118 (9) | 0.041 (6) | 0.027 (7) | 0.027 (6) |
C13 | 0.134 (9) | 0.047 (5) | 0.119 (9) | 0.012 (6) | 0.050 (7) | 0.012 (6) |
C4 | 0.088 (8) | 0.139 (11) | 0.098 (8) | −0.050 (8) | 0.009 (6) | −0.018 (8) |
C2 | 0.107 (8) | 0.078 (7) | 0.132 (10) | −0.023 (6) | 0.039 (7) | −0.011 (7) |
C3 | 0.116 (9) | 0.102 (9) | 0.101 (9) | −0.061 (7) | 0.049 (7) | −0.036 (7) |
C10 | 0.102 (7) | 0.086 (7) | 0.132 (9) | 0.051 (6) | −0.026 (7) | −0.011 (7) |
C21 | 0.24 (2) | 0.151 (14) | 0.102 (11) | −0.078 (13) | 0.038 (12) | −0.012 (10) |
C22 | 0.154 (19) | 0.30 (3) | 0.23 (2) | −0.022 (15) | 0.046 (17) | −0.070 (19) |
U1—O6 | 2.317 (5) | C20—H20B | 0.9600 |
U1—O7 | 2.458 (5) | C20—H20C | 0.9600 |
U1—O4 | 2.308 (5) | C15—H15 | 0.9300 |
U1—O2 | 1.779 (8) | C15—C14 | 1.374 (12) |
U1—O1 | 1.759 (7) | C8—H8 | 0.9300 |
U1—O3 | 2.358 (7) | C5—H5 | 0.9300 |
U1—O5 | 2.369 (7) | C5—C4 | 1.376 (15) |
O6—C17 | 1.279 (8) | C12—H12 | 0.9300 |
O7—H7 | 0.854 (10) | C12—C13 | 1.371 (14) |
O7—C21 | 1.544 (15) | C1—H1 | 0.9300 |
O4—C7 | 1.246 (8) | C1—C2 | 1.371 (12) |
O3—C9 | 1.253 (10) | C14—H14 | 0.9300 |
O5—C19 | 1.260 (10) | C14—C13 | 1.354 (14) |
C17—C16 | 1.490 (10) | C13—H13 | 0.9300 |
C17—C18 | 1.389 (10) | C4—H4 | 0.9300 |
C16—C11 | 1.374 (11) | C4—C3 | 1.339 (16) |
C16—C15 | 1.388 (10) | C2—H2 | 0.9300 |
C19—C18 | 1.373 (11) | C2—C3 | 1.338 (15) |
C19—C20 | 1.484 (11) | C3—H3 | 0.9300 |
C18—H18 | 0.9300 | C10—H10A | 0.9600 |
C6—C7 | 1.481 (11) | C10—H10B | 0.9600 |
C6—C5 | 1.388 (11) | C10—H10C | 0.9600 |
C6—C1 | 1.366 (12) | C21—H21A | 0.9700 |
C7—C8 | 1.414 (12) | C21—H21B | 0.9700 |
C11—H11 | 0.9300 | C21—C22 | 1.482 (9) |
C11—C12 | 1.370 (12) | C22—H22A | 0.9600 |
C9—C8 | 1.360 (14) | C22—H22B | 0.9600 |
C9—C10 | 1.502 (12) | C22—H22C | 0.9600 |
C20—H20A | 0.9600 | ||
O6—U1—O7 | 141.3 (2) | C19—C20—H20B | 109.5 |
O6—U1—O3 | 146.3 (2) | C19—C20—H20C | 109.5 |
O6—U1—O5 | 70.61 (19) | H20A—C20—H20B | 109.5 |
O4—U1—O6 | 75.28 (18) | H20A—C20—H20C | 109.5 |
O4—U1—O7 | 143.4 (2) | H20B—C20—H20C | 109.5 |
O4—U1—O3 | 71.2 (2) | C16—C15—H15 | 120.1 |
O4—U1—O5 | 145.3 (2) | C14—C15—C16 | 119.8 (9) |
O2—U1—O6 | 93.2 (3) | C14—C15—H15 | 120.1 |
O2—U1—O7 | 88.4 (3) | C7—C8—H8 | 117.6 |
O2—U1—O4 | 89.1 (3) | C9—C8—C7 | 124.8 (8) |
O2—U1—O3 | 89.7 (3) | C9—C8—H8 | 117.6 |
O2—U1—O5 | 86.5 (4) | C6—C5—H5 | 119.3 |
O1—U1—O6 | 88.8 (3) | C4—C5—C6 | 121.4 (11) |
O1—U1—O7 | 89.0 (2) | C4—C5—H5 | 119.3 |
O1—U1—O4 | 93.0 (3) | C11—C12—H12 | 120.2 |
O1—U1—O2 | 177.4 (3) | C11—C12—C13 | 119.7 (9) |
O1—U1—O3 | 89.6 (3) | C13—C12—H12 | 120.2 |
O1—U1—O5 | 92.6 (3) | C6—C1—H1 | 118.9 |
O3—U1—O7 | 72.3 (2) | C6—C1—C2 | 122.2 (9) |
O3—U1—O5 | 143.1 (2) | C2—C1—H1 | 118.9 |
O5—U1—O7 | 70.9 (2) | C15—C14—H14 | 119.7 |
C17—O6—U1 | 140.2 (5) | C13—C14—C15 | 120.5 (9) |
U1—O7—H7 | 115.4 (16) | C13—C14—H14 | 119.7 |
C21—O7—U1 | 135.6 (7) | C12—C13—H13 | 119.8 |
C21—O7—H7 | 107.4 (17) | C14—C13—C12 | 120.3 (9) |
C7—O4—U1 | 140.5 (6) | C14—C13—H13 | 119.8 |
C9—O3—U1 | 136.3 (6) | C5—C4—H4 | 119.9 |
C19—O5—U1 | 137.9 (5) | C3—C4—C5 | 120.3 (11) |
O6—C17—C16 | 116.3 (6) | C3—C4—H4 | 119.9 |
O6—C17—C18 | 121.1 (7) | C1—C2—H2 | 119.8 |
C18—C17—C16 | 122.6 (7) | C3—C2—C1 | 120.3 (12) |
C11—C16—C17 | 119.6 (7) | C3—C2—H2 | 119.8 |
C11—C16—C15 | 118.8 (7) | C4—C3—H3 | 120.0 |
C15—C16—C17 | 121.6 (7) | C2—C3—C4 | 120.0 (11) |
O5—C19—C18 | 122.6 (8) | C2—C3—H3 | 120.0 |
O5—C19—C20 | 115.3 (8) | C9—C10—H10A | 109.5 |
C18—C19—C20 | 122.0 (8) | C9—C10—H10B | 109.5 |
C17—C18—H18 | 116.5 | C9—C10—H10C | 109.5 |
C19—C18—C17 | 126.9 (7) | H10A—C10—H10B | 109.5 |
C19—C18—H18 | 116.5 | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 124.4 (9) | H10B—C10—H10C | 109.5 |
C1—C6—C7 | 119.7 (7) | O7—C21—H21A | 109.9 |
C1—C6—C5 | 115.8 (9) | O7—C21—H21B | 109.9 |
O4—C7—C6 | 116.0 (7) | H21A—C21—H21B | 108.3 |
O4—C7—C8 | 121.8 (8) | C22—C21—O7 | 109.0 (17) |
C8—C7—C6 | 122.3 (7) | C22—C21—H21A | 109.9 |
C16—C11—H11 | 119.6 | C22—C21—H21B | 109.9 |
C12—C11—C16 | 120.8 (9) | C21—C22—H22A | 109.5 |
C12—C11—H11 | 119.6 | C21—C22—H22B | 109.5 |
O3—C9—C8 | 125.3 (9) | C21—C22—H22C | 109.5 |
O3—C9—C10 | 114.9 (9) | H22A—C22—H22B | 109.5 |
C8—C9—C10 | 119.8 (9) | H22A—C22—H22C | 109.5 |
C19—C20—H20A | 109.5 | H22B—C22—H22C | 109.5 |
U1—O6—C17—C16 | −179.6 (6) | C18—C17—C16—C15 | 13.4 (12) |
U1—O6—C17—C18 | 0.3 (13) | C6—C7—C8—C9 | −179.4 (9) |
U1—O7—C21—C22 | −90.4 (15) | C6—C5—C4—C3 | 0.4 (18) |
U1—O4—C7—C6 | 177.7 (6) | C6—C1—C2—C3 | 0.2 (16) |
U1—O4—C7—C8 | −2.2 (16) | C7—C6—C5—C4 | 177.2 (9) |
U1—O3—C9—C8 | −5.2 (17) | C7—C6—C1—C2 | −177.7 (9) |
U1—O3—C9—C10 | 176.2 (7) | C11—C16—C15—C14 | −0.9 (13) |
U1—O5—C19—C18 | −9.9 (17) | C11—C12—C13—C14 | −2.4 (17) |
U1—O5—C19—C20 | 172.1 (8) | C20—C19—C18—C17 | 178.2 (8) |
O6—C17—C16—C11 | 12.1 (11) | C15—C16—C11—C12 | −0.8 (13) |
O6—C17—C16—C15 | −166.8 (7) | C15—C14—C13—C12 | 0.7 (17) |
O6—C17—C18—C19 | 4.2 (14) | C5—C6—C7—O4 | −170.7 (8) |
O4—C7—C8—C9 | 0.5 (17) | C5—C6—C7—C8 | 9.2 (14) |
O3—C9—C8—C7 | 3.0 (19) | C5—C6—C1—C2 | −1.2 (14) |
O5—C19—C18—C17 | 0.3 (15) | C5—C4—C3—C2 | −1.5 (19) |
C17—C16—C11—C12 | −179.7 (9) | C1—C6—C7—O4 | 5.5 (12) |
C17—C16—C15—C14 | 178.0 (8) | C1—C6—C7—C8 | −174.5 (9) |
C16—C17—C18—C19 | −176.0 (8) | C1—C6—C5—C4 | 0.9 (14) |
C16—C11—C12—C13 | 2.5 (15) | C1—C2—C3—C4 | 1.2 (18) |
C16—C15—C14—C13 | 1.0 (15) | C10—C9—C8—C7 | −178.4 (10) |
C18—C17—C16—C11 | −167.8 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O2i | 0.86 (6) | 2.44 (5) | 3.246 (10) | 158 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge support from the MIRAI Fund (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences.
References
Ainscough, E. W., Brodie, A. M., Cresswell, R. J. & Waters, J. M. (1998). Inorg. Chem. 277, 37–45. Google Scholar
Al-Anber, M. A., Daoud, H. M., Rüffer, T. & Lang, H. (2011). J. Mol. Struct. 997, 1–6. Google Scholar
Almond, P. M. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 5693–5698. CrossRef PubMed Google Scholar
Arndt, S., Spaniol, T. P. & Okuda, J. (2002). Chem. Commun. pp. 896–897. Web of Science CSD CrossRef Google Scholar
Bean, A. C., Ruf, M. & Albrecht-Schmitt, T. E. (2001). Inorg. Chem. 40, 3959–3963. CrossRef PubMed Google Scholar
Belford, R. L., Chasteen, E. D., Hitchmbx, M. A., Ho'k, P. K., Pfluger, C. E. & Paul, I. C. (1969). Inorg. Chem. 8, 1312–1319. CrossRef Google Scholar
Chakraborty, S., Dinda, S., Bhattacharyya, R. & Mukherjee, A. K. (2006). Z. Kristallogr. Cryst. Mater. 221, 606–611. CrossRef Google Scholar
Chen, G. J., Chen, Ch. Q., Li, X. T., Ma, H. Ch. & Dong, Y. B. (2018). Chem. Commun. 54, 11550–11553. CrossRef Google Scholar
Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594. Web of Science CSD CrossRef CAS Google Scholar
Cvrtila, I., Stilinović, V. & Kaitner, B. (2013). CrystEngComm, 15, 6585–6593. CrossRef Google Scholar
Dang, F. F., Lei, K. W., Wang, Y. W., Liu, W. Sh. & Sun, Y. X. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x279–x280. CrossRef Google Scholar
Döring, M., Ludwig, W., Uhlig, E., Wočadlo, S. & Müller, U. (1992). Z. Anorg. Allg. Chem. 611, 61–67. Google Scholar
Enriquez, A. E., Scott, B. L. & Neu, M. P. (2005). Inorg. Chem. 44, 7403–7413. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gatto, C. C., Lang, E. S., Jagst, A. & Abram, U. (2004). Inorg. Chim. Acta, 357, 4349–4644. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haider, S. Z., Malik, K. M. A., Rahman, A. & Hursthouse, M. B. (1983). J. Bangladesh Acad. Sci. 7, 7–12. Google Scholar
Hernandez, A., Chakraborty, I., Ortega, G. & Dares, C. J. (2022). Acta Cryst. E78, 40–43. CrossRef IUCr Journals Google Scholar
Hon, P., Pfluger, C. E. & Belford, R. L. (1966). Inorg. Chem. 5, 516–521. CrossRef Google Scholar
Hughes, K.-A. & Burns, P. C. (2003). Acta Cryst. C59, i7–i8. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Jung, Y. S., Lee, J. H., Song, K. & Kang, S. J. (1998). Bull. Korean Chem. Soc. 19, 4484–4486. Google Scholar
Kannan, S., Chetty, K. V., Venugopal, V. & Drew, G. B. (2004). Dalton Trans. pp. 3604–3610. CrossRef Google Scholar
Lennartson, A., Håkansson, M. & Jagner, S. (2007). New J. Chem. 31, 344–347. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Neu, M. P., Johnson, M. T., Matonic, J. H. & Scott, B. L. (2001). Acta Cryst. C57, 240–242. CrossRef IUCr Journals Google Scholar
Okeya, S., Asai, H., Ooi, S., Matsumoto, K., Kawaguchi, S. & Kuroya, H. (1976). Inorg. Nucl. Chem. Lett. 12, 677–680. CrossRef Google Scholar
Oldham, W. J., Scott, B. L., Abney, K. D., Smith, W. H. & Costa, D. A. (2002). Acta Cryst. C58, m139–m140. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perdih, F. (2014). Struct. Chem. 25, 809–819. Web of Science CSD CrossRef CAS Google Scholar
Pettinari, C., Marchetti, F., Pettinari, R., Gindulyte, A., Massa, L., Rossi, M. & Caruso, F. (2002). Inorg. Chem. pp. 1447–1455. Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Şahin, S. & Dege, N. (2021). Polyhedron, 205, 115320–115330. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sykora, R. E. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 2179–2181. CrossRef PubMed Google Scholar
Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219–m220. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xing, Y. H., Bai, F. Y., Aoki, K., Sun, Z. & Ge, M. F. (2007). Inorg. Nano-Met. Chem. 37, 203–211. Google Scholar
Yang, P. (2018a). CSD Communication (refcode HICRAP). CCDC, Cambridge, England. Google Scholar
Yang, P. (2018b). CSD Communication (refcode HICRET). CCDC, Cambridge, England. Google Scholar
Zou, F., Tang, X., Huang, Y., Wan, Sh., Lu, F., Chen, Z. N., Wu, A. & Zhang, H. (2016). CrystEngComm, 18, 6624–6631. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.