research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

crossmark logo

aInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, 100170, M. Ulugbek Str 77a, Tashkent, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, cAlfraganus University, 100190, Uzbekistan, Tashkent, Yunusabad district, Yukori Karakamish Street 2, Uzbekistan, dUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent 100095, Uzbekistan, eS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, fTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, 100095 Tashkent, Uzbekistan, gInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, Uzbekistan, hUniversity of Geological Sciences, Olimlar Street, 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, and iNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan
*Correspondence e-mail: jabborova0707@gmail.com

Edited by G. Ferrence, Illinois State University, USA (Received 4 July 2024; accepted 26 October 2024; online 5 November 2024)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.

1. Chemical context

A greater understanding of the coordination chemistry of uranium is important for the development of new technologies for the safe reprocessing and long-term immobilization of irradiated nuclear fuel. One of the main reasons for the renewed inter­est in uranium compounds is their remarkable structural versatility. In the oxidation states +III or +IV, eight- or nine-coordinate uranium environments are typically found, similar to those observed in lanthanide complexes (Enriquez et al., 2005[Enriquez, A. E., Scott, B. L. & Neu, M. P. (2005). Inorg. Chem. 44, 7403-7413.]; Oldham et al. 2002[Oldham, W. J., Scott, B. L., Abney, K. D., Smith, W. H. & Costa, D. A. (2002). Acta Cryst. C58, m139-m140.]). Uranium oxo compounds with oxidation state +VI form approximately linear triatomic uranyl ions, UO22+. Although this cation can bind additional ligands perpendicular to the uranium axis to form five-, six-, seven-, and eight-coordinate metal centres, seven-coordinate is particularly common for hexa­valent uranium oxo compounds (Hernandez et al., 2022[Hernandez, A., Chakraborty, I., Ortega, G. & Dares, C. J. (2022). Acta Cryst. E78, 40-43.]; Almond & Albrecht-Schmitt, 2003[Almond, P. M. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 5693-5698.]; Arndt et al. 2002[Arndt, S., Spaniol, T. P. & Okuda, J. (2002). Chem. Commun. pp. 896-897.]). Heptacoordinated uranium centers can exhibit penta­gonal–bipyramidal, capped-octa­hedral, and trigonal–prismatic coordination geometries. The specific geometry depends on steric requirements caused by ligand–ligand repulsion, weaker bonds, and generally reduced crystal field stability. Despite the abundance of layered structures for UVI–oxo compounds (Chakraborty et al., 2006[Chakraborty, S., Dinda, S., Bhattacharyya, R. & Mukherjee, A. K. (2006). Z. Kristallogr. Cryst. Mater. 221, 606-611.]; Hughes & Burns, 2003[Hughes, K.-A. & Burns, P. C. (2003). Acta Cryst. C59, i7-i8.]; Neu et al., 2001[Neu, M. P., Johnson, M. T., Matonic, J. H. & Scott, B. L. (2001). Acta Cryst. C57, 240-242.]), one-dimensional topology or multidimensional framework structural studies of uranyl compounds are rather sparse (Bean et al., 2001[Bean, A. C., Ruf, M. & Albrecht-Schmitt, T. E. (2001). Inorg. Chem. 40, 3959-3963.]; Sykora & Albrecht-Schmitt, 2003[Sykora, R. E. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 2179-2181.]). The anti-inflammatory, analgesic, anti-microbial, anti-convulsant, anti-cancer, anti-tubercular, anti­oxidant, anti­depressant, anti­glycation, anti­helmintic, anti-fungal, anti-tumour, anti­biotic and anti-allergic effects of the ligand have been studied (Şahin & Dege, 2021[Şahin, S. & Dege, N. (2021). Polyhedron, 205, 115320-115330.]).

[Scheme 1]

The present work was undertaken to study the effect of oxo-ligands on the metal coordination geometry and explore the possibility of any supra­molecular architecture in the resulting uranyl compounds. We isolated the title metal–organic complex uranium salt, [C22H24O7U] and report here its crystal structure and Hirshfeld surface analysis.

2. Structural commentary

The single-crystal structure of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI) crystallizes in the monoclinic space group P21/n. The mol­ecular structure is shown in Fig. 1[link]. The mol­ecule is almost planar with an r.m.s. deviation of 0.0593 Å from planarity. In the compound, the coordination geometry around the uranium atom includes seven oxygen donors from one ethanol, two oxido, and two bidentate benzoyl­acetonoate ligands. It is approximately penta­gonal bipyramidal. The U—O uranyl bond distances [1.759 (7) and 2.358 (7) Å; Table 1[link]] agree well with the previously reported values for dioxouranium (VI) complexes (Hernandez et al., 2022[Hernandez, A., Chakraborty, I., Ortega, G. & Dares, C. J. (2022). Acta Cryst. E78, 40-43.]; Takao & Ikeda, 2008[Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219-m220.]; Chakraborty et al., 2006[Chakraborty, S., Dinda, S., Bhattacharyya, R. & Mukherjee, A. K. (2006). Z. Kristallogr. Cryst. Mater. 221, 606-611.]; Gatto et al., 2004[Gatto, C. C., Lang, E. S., Jagst, A. & Abram, U. (2004). Inorg. Chim. Acta, 357, 4349-4644.]; Kannan et al., 2004[Kannan, S., Chetty, K. V., Venugopal, V. & Drew, G. B. (2004). Dalton Trans. pp. 3604-3610.]). The distortion of the metal coordination geometry from an ideal penta­gonal bipyramidal arrangement (Fig. 2[link]) is revealed by the O—U—O bond angles for the penta­gon, which range between 70.6 (2) and 177.4 (3)°.

Table 1
Selected bond lengths (Å)

U1—O6 2.317 (5) U1—O1 1.759 (7)
U1—O7 2.458 (5) U1—O3 2.358 (7)
U1—O4 2.308 (5) U1—O5 2.369 (7)
U1—O2 1.779 (8)    
[Figure 1]
Figure 1
The mol­ecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are displayed as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A view of the mol­ecular packing showing the penta­gonal–bipyramidal structure extending along the b-axis direction.

3. Supra­molecular features

In the complex, the crystal packing exhibits one inter­molecular O7—H7⋯O2(1 − x, 1 − y, 1 − z) hydrogen-bonding inter­actions (Fig. 3[link], Table 2[link]). In additional ππ stacking (Fig. 3[link]) occurs between the aromatic rings of neighbouring mol­ecules with centroid–centroid distances Cg1⋯Cg2(−1 + x, y, z) = 3.900 (6) Å, with a ring slippage of 1.577 Å, and Cg2⋯Cg1([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) = 3.765 (6) Å, with a ring slippage of 1.035 Å where Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O2i 0.86 (6) 2.44 (5) 3.246 (10) 158 (3)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
View of the crystal structure of the title compound, showing the O—H⋯O hydrogen bond and ππ inter­actions as green dotted lines.

4. Hirshfeld surface analysis

To further investigate the inter­molecular inter­actions present in the title compound, a Hirshfeld surface (HS) analysis was performed, and the two-dimensional fingerprint plots were generated with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The HS mapped with dnorm, curvedness and shape-index are given in Fig. 4[link]. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red points in the dnorm surface of the mol­ecule are located near atoms O2 and O7/H7, consistent with the O7—H7⋯O2 hydrogen-bonding inter­action, highlighted in Fig. 3[link]. From the Hirshfeld surfaces, it is also evident that the mol­ecules are related to one another by ππ stacking inter­actions, as can be inferred from inspection of the adjacent red and blue triangles (highlighted by yellow circles) on the shape-index surface (Fig. 4[link]). The presence of ππ stacking is also evident in the flat region toward the top of both sides of the mol­ecules and is clearly visible on the curvedness surface (Fig. 4[link]): the shape of the blue outline on the curvedness surface unambiguously delineates the contacting patches of the mol­ecules.

[Figure 4]
Figure 4
Hirshfeld surfaces of the title complex mapped with (a) dnorm, (b) curvedness and (c) shape-index.

The two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 5[link]. On the HS, the largest contributions (53.2%, 23.4%, 13.8%) come from short contacts such as van der Waals forces, H⋯H, O⋯H and C⋯H contacts. C⋯C (8.6%), O⋯C (0.8%) and O⋯O (0.1%) contacts are also observed. The classical O—H⋯O hydrogen bonds correspond to O⋯H/H⋯O contacts (23.4% contribution) in Fig. 5[link] and show up as a pair of spikes. The scattered points in the breakdown of the fingerprint plot show that the ππ stacking inter­actions C⋯C comprise 8.6% of the total Hirshfeld surface of the mol­ecule displayed as a region of blue/green colour.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and decomposed into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions.

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 25 hits with the β-diketonate ligand moiety. Among these, one structure contains tin (AGESUA: Pettinari et al., 2002[Pettinari, C., Marchetti, F., Pettinari, R., Gindulyte, A., Massa, L., Rossi, M. & Caruso, F. (2002). Inorg. Chem. pp. 1447-1455.]), two structures contain zinc (BZACZN: Belford et al., 1969[Belford, R. L., Chasteen, E. D., Hitchmbx, M. A., Ho'k, P. K., Pfluger, C. E. & Paul, I. C. (1969). Inorg. Chem. 8, 1312-1319.]; NEYBID: Dang et al., 2006[Dang, F. F., Lei, K. W., Wang, Y. W., Liu, W. Sh. & Sun, Y. X. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x279-x280.]), one structure contains uranium(VI) (CAZMEV: Haider et al., 1983[Haider, S. Z., Malik, K. M. A., Rahman, A. & Hursthouse, M. B. (1983). J. Bangladesh Acad. Sci. 7, 7-12.]), one structure contains platinum(II) (CBZACP: Okeya et al., 1976[Okeya, S., Asai, H., Ooi, S., Matsumoto, K., Kawaguchi, S. & Kuroya, H. (1976). Inorg. Nucl. Chem. Lett. 12, 677-680.]), one structure contains iron(III) (ARUMOR: Zou et al., 2016[Zou, F., Tang, X., Huang, Y., Wan, Sh., Lu, F., Chen, Z. N., Wu, A. & Zhang, H. (2016). CrystEngComm, 18, 6624-6631.]), one structure contains manganese(II), one structure contains cadmium (HICRAP and HICRET: Yang, 2018a[Yang, P. (2018a). CSD Communication (refcode HICRAP). CCDC, Cambridge, England.],b[Yang, P. (2018b). CSD Communication (refcode HICRET). CCDC, Cambridge, England.]), one structure contains vanadium (KIJPAV: Xing et al., 2007[Xing, Y. H., Bai, F. Y., Aoki, K., Sun, Z. & Ge, M. F. (2007). Inorg. Nano-Met. Chem. 37, 203-211.]), four structures contain copper (CUBEAC: Hon et al., 1966[Hon, P., Pfluger, C. E. & Belford, R. L. (1966). Inorg. Chem. 5, 516-521.]; LEZVAO: Lennartson et al., 2007[Lennartson, A., Håkansson, M. & Jagner, S. (2007). New J. Chem. 31, 344-347.]; NINFIC, NINFOI: Chen et al., 2018[Chen, G. J., Chen, Ch. Q., Li, X. T., Ma, H. Ch. & Dong, Y. B. (2018). Chem. Commun. 54, 11550-11553.]), one structure contains lithium (UCIMAU: Jung et al., 1998[Jung, Y. S., Lee, J. H., Song, K. & Kang, S. J. (1998). Bull. Korean Chem. Soc. 19, 4484-4486.]), nine structures contain manganese(II) (NENNAX: Cvrtila et al., 2012[Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587-594.]; PIDPOJ, PIDPUP, PIDQAW, PIDQEA, PIDQIE, PIDQOK, PIDQUQ, PIDRAX: Cvrtila et al., 2013[Cvrtila, I., Stilinović, V. & Kaitner, B. (2013). CrystEngComm, 15, 6585-6593.]), and two structures contain cobalt(II) (POJBUN: Perdih, 2014[Perdih, F. (2014). Struct. Chem. 25, 809-819.]; YADKUJ: Döring et al., 1992[Döring, M., Ludwig, W., Uhlig, E., Wočadlo, S. & Müller, U. (1992). Z. Anorg. Allg. Chem. 611, 61-67.]). A search for the uranyl moiety returned five hits with penta­gonal–bipyramidal geometries similar to that in the title structure. These include: aqua­bis­(benzoyl­acetonato)dioxouranium(VI) monohydrate (CAZMEV: Haider et al., 1983[Haider, S. Z., Malik, K. M. A., Rahman, A. & Hursthouse, M. B. (1983). J. Bangladesh Acad. Sci. 7, 7-12.]), uran­yl(VI) complexes containing the β-diketonatephenol ligands derived from 1-(2-hy­droxy­phen­yl)-1,3-butane­dione and 1-(2-hy­droxy­phen­yl)-3-phenyl-1,3-propane­dione (GIYXAN, GIYXER: Ainscough et al., 1998[Ainscough, E. W., Brodie, A. M., Cresswell, R. J. & Waters, J. M. (1998). Inorg. Chem. 277, 37-45.]), a uranyl β-diketonate complex [UO2(tfa)2(L)] [L = H2O, OHCH2CH3; tfa = deprotonated 4,4,4,-tri­fluoro-1-(2-fur­yl)-1,3-butane­dione] with a well-described 3D supra­molecular structure and electronic absorption spectroscopy (IVEDIX: Al-Anber et al., 2011[Al-Anber, M. A., Daoud, H. M., Rüffer, T. & Lang, H. (2011). J. Mol. Struct. 997, 1-6.]), and bis­(2-benzoyl-1-phenyl­ethenolato-κ2O,O′)(ethanol-κO)dioxidouranium(VI) (RISVAR: Takao & Ikeda, 2008[Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219-m220.]).

6. Synthesis and crystallization

Benzoyl­acetone (BNA) (0.0324 g, 0.200 mmol) dissolved in 5 ml of ethanol and uranyl acetate (0.0388 g, 0.100 mmol) dissolved in 5 ml of ethanol were mixed under constant stirring until the colour of the solution turned to orange–red. The stirring continued for an hour, then the solution was left to stand overnight. The orange–red crystalline solid was filtered off and dried under vacuum. The solid was dissolved in ethanol and slow evaporation of the solution yielded diffraction-quality single-crystals of the title compound. Selected IR bands (KBr pellet, cm−1): 1589 (C=O), 1340 (C—O), 471 (U—Oligand), 380 (U—Oeth Raman spectroscopy), 908 (O=U=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and treated as riding on their parent atoms, with C—H = 0.95 Å (aromatic) and were refined with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [U(C10H9O2)2O2(C2H6O)]
Mr 638.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.55214 (16), 26.0026 (4), 10.3057 (2)
β (°) 102.8291 (19)
V3) 2234.56 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 20.79
Crystal size (mm) 0.28 × 0.26 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.266, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22840, 4331, 3260
Rint 0.085
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.05
No. of reflections 4331
No. of parameters 277
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.49, −1.95
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Bis(benzoylacetonato)(ethanol)dioxidouranium(VI) top
Crystal data top
[U(C10H9O2)2O2(C2H6O)]F(000) = 1216
Mr = 638.44Dx = 1.898 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.55214 (16) ÅCell parameters from 7001 reflections
b = 26.0026 (4) Åθ = 3.4–70.9°
c = 10.3057 (2) ŵ = 20.79 mm1
β = 102.8291 (19)°T = 293 K
V = 2234.56 (7) Å3Block, orange
Z = 40.28 × 0.26 × 0.18 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
4331 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3260 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.085
Detector resolution: 10.0000 pixels mm-1θmax = 71.6°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 3131
Tmin = 0.266, Tmax = 1.000l = 1212
22840 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0559P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4331 reflectionsΔρmax = 1.49 e Å3
277 parametersΔρmin = 1.94 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.35139 (3)0.42260 (2)0.30596 (3)0.06079 (13)
O60.4734 (6)0.3427 (2)0.3413 (7)0.0814 (19)
O70.4126 (8)0.5149 (2)0.3315 (7)0.089 (2)
H70.492 (7)0.5227 (10)0.395 (6)0.133*
O40.1461 (6)0.3644 (2)0.2364 (7)0.0834 (18)
O20.3043 (11)0.4237 (2)0.4656 (7)0.097 (2)
O10.4002 (10)0.4245 (2)0.1490 (7)0.086 (2)
O30.1132 (8)0.4682 (3)0.2177 (7)0.094 (2)
O50.6224 (8)0.4331 (2)0.4195 (8)0.109 (3)
C170.6112 (8)0.3228 (3)0.3875 (7)0.0546 (17)
C160.6196 (9)0.2656 (3)0.3843 (7)0.0553 (17)
C190.7469 (10)0.4058 (3)0.4512 (8)0.0612 (19)
C180.7443 (8)0.3533 (3)0.4370 (8)0.065 (2)
H180.8420140.3364190.4633990.077*
C60.0712 (9)0.3112 (3)0.1567 (8)0.065 (2)
C70.0003 (9)0.3631 (3)0.1833 (8)0.063 (2)
C110.4925 (11)0.2381 (3)0.3120 (9)0.073 (2)
H110.4022820.2554450.2653960.088*
C90.0310 (12)0.4571 (4)0.1714 (10)0.083 (3)
C200.8965 (10)0.4343 (4)0.5093 (11)0.088 (3)
H20A0.9390750.4491180.4391230.132*
H20B0.9737200.4110310.5600450.132*
H20C0.8734950.4610830.5663680.132*
C150.7523 (10)0.2390 (3)0.4547 (9)0.074 (2)
H150.8402310.2569080.5031910.088*
C80.0906 (11)0.4086 (4)0.1504 (10)0.084 (3)
H80.1991470.4050100.1114880.101*
C50.2247 (11)0.3018 (5)0.0822 (10)0.096 (3)
H50.2906520.3293670.0488090.116*
C120.4969 (13)0.1855 (3)0.3079 (12)0.094 (3)
H120.4119370.1672930.2559280.113*
C10.0190 (11)0.2687 (4)0.2006 (10)0.080 (2)
H10.1234510.2731240.2494790.096*
C140.7535 (13)0.1862 (4)0.4526 (11)0.097 (3)
H140.8418280.1683850.5009490.117*
C130.6271 (15)0.1598 (4)0.3807 (12)0.096 (3)
H130.6286390.1239900.3806800.116*
C40.2814 (15)0.2524 (6)0.0566 (12)0.110 (4)
H40.3844910.2470470.0059430.132*
C20.0393 (14)0.2198 (4)0.1749 (12)0.104 (3)
H20.0255030.1917390.2065480.125*
C30.1889 (15)0.2122 (5)0.1044 (12)0.103 (4)
H30.2285850.1789160.0887170.123*
C100.1408 (12)0.5024 (4)0.1353 (11)0.115 (4)
H10A0.1846580.5117530.2100660.172*
H10B0.2263100.4936190.0612870.172*
H10C0.0815410.5309400.1114460.172*
C210.369 (2)0.5632 (6)0.2438 (15)0.164 (7)
H21A0.2646320.5587750.1846570.196*
H21B0.3646620.5929900.2994050.196*
C220.492 (2)0.5711 (7)0.165 (2)0.226 (11)
H22A0.4544730.5958400.0959930.339*
H22B0.5131780.5390420.1254000.339*
H22C0.5894970.5833920.2219520.339*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0615 (2)0.04146 (17)0.0673 (2)0.00267 (10)0.01179 (13)0.00574 (11)
O60.059 (3)0.045 (3)0.122 (5)0.009 (2)0.018 (3)0.019 (3)
O70.111 (5)0.051 (3)0.085 (4)0.005 (3)0.023 (3)0.006 (3)
O40.056 (3)0.055 (3)0.121 (5)0.006 (2)0.022 (3)0.006 (3)
O20.143 (7)0.072 (5)0.064 (4)0.009 (4)0.002 (4)0.002 (3)
O10.117 (6)0.073 (4)0.061 (4)0.010 (3)0.009 (4)0.015 (3)
O30.075 (4)0.068 (4)0.122 (6)0.016 (3)0.013 (4)0.009 (4)
O50.074 (4)0.056 (4)0.166 (8)0.002 (3)0.038 (4)0.030 (4)
C170.058 (4)0.053 (4)0.048 (4)0.002 (3)0.002 (3)0.001 (3)
C160.059 (4)0.048 (4)0.058 (4)0.009 (3)0.011 (3)0.001 (3)
C190.056 (5)0.062 (5)0.063 (5)0.000 (4)0.007 (4)0.014 (4)
C180.044 (4)0.058 (5)0.086 (6)0.000 (3)0.002 (4)0.007 (4)
C60.056 (5)0.083 (6)0.053 (4)0.004 (4)0.009 (3)0.004 (4)
C70.058 (5)0.061 (5)0.063 (5)0.001 (4)0.003 (4)0.002 (4)
C110.073 (5)0.057 (5)0.085 (6)0.008 (4)0.007 (4)0.001 (4)
C90.082 (7)0.080 (7)0.077 (6)0.017 (5)0.003 (5)0.003 (5)
C200.054 (5)0.097 (7)0.109 (8)0.025 (5)0.013 (5)0.029 (6)
C150.068 (5)0.066 (5)0.086 (6)0.017 (4)0.013 (4)0.005 (5)
C80.059 (5)0.088 (7)0.088 (7)0.020 (5)0.019 (5)0.002 (6)
C50.078 (7)0.114 (9)0.090 (7)0.029 (6)0.003 (5)0.003 (6)
C120.098 (7)0.048 (5)0.134 (9)0.016 (5)0.022 (6)0.015 (6)
C10.069 (5)0.074 (6)0.093 (6)0.011 (5)0.011 (5)0.010 (5)
C140.106 (8)0.069 (7)0.118 (9)0.041 (6)0.027 (7)0.027 (6)
C130.134 (9)0.047 (5)0.119 (9)0.012 (6)0.050 (7)0.012 (6)
C40.088 (8)0.139 (11)0.098 (8)0.050 (8)0.009 (6)0.018 (8)
C20.107 (8)0.078 (7)0.132 (10)0.023 (6)0.039 (7)0.011 (7)
C30.116 (9)0.102 (9)0.101 (9)0.061 (7)0.049 (7)0.036 (7)
C100.102 (7)0.086 (7)0.132 (9)0.051 (6)0.026 (7)0.011 (7)
C210.24 (2)0.151 (14)0.102 (11)0.078 (13)0.038 (12)0.012 (10)
C220.154 (19)0.30 (3)0.23 (2)0.022 (15)0.046 (17)0.070 (19)
Geometric parameters (Å, º) top
U1—O62.317 (5)C20—H20B0.9600
U1—O72.458 (5)C20—H20C0.9600
U1—O42.308 (5)C15—H150.9300
U1—O21.779 (8)C15—C141.374 (12)
U1—O11.759 (7)C8—H80.9300
U1—O32.358 (7)C5—H50.9300
U1—O52.369 (7)C5—C41.376 (15)
O6—C171.279 (8)C12—H120.9300
O7—H70.854 (10)C12—C131.371 (14)
O7—C211.544 (15)C1—H10.9300
O4—C71.246 (8)C1—C21.371 (12)
O3—C91.253 (10)C14—H140.9300
O5—C191.260 (10)C14—C131.354 (14)
C17—C161.490 (10)C13—H130.9300
C17—C181.389 (10)C4—H40.9300
C16—C111.374 (11)C4—C31.339 (16)
C16—C151.388 (10)C2—H20.9300
C19—C181.373 (11)C2—C31.338 (15)
C19—C201.484 (11)C3—H30.9300
C18—H180.9300C10—H10A0.9600
C6—C71.481 (11)C10—H10B0.9600
C6—C51.388 (11)C10—H10C0.9600
C6—C11.366 (12)C21—H21A0.9700
C7—C81.414 (12)C21—H21B0.9700
C11—H110.9300C21—C221.482 (9)
C11—C121.370 (12)C22—H22A0.9600
C9—C81.360 (14)C22—H22B0.9600
C9—C101.502 (12)C22—H22C0.9600
C20—H20A0.9600
O6—U1—O7141.3 (2)C19—C20—H20B109.5
O6—U1—O3146.3 (2)C19—C20—H20C109.5
O6—U1—O570.61 (19)H20A—C20—H20B109.5
O4—U1—O675.28 (18)H20A—C20—H20C109.5
O4—U1—O7143.4 (2)H20B—C20—H20C109.5
O4—U1—O371.2 (2)C16—C15—H15120.1
O4—U1—O5145.3 (2)C14—C15—C16119.8 (9)
O2—U1—O693.2 (3)C14—C15—H15120.1
O2—U1—O788.4 (3)C7—C8—H8117.6
O2—U1—O489.1 (3)C9—C8—C7124.8 (8)
O2—U1—O389.7 (3)C9—C8—H8117.6
O2—U1—O586.5 (4)C6—C5—H5119.3
O1—U1—O688.8 (3)C4—C5—C6121.4 (11)
O1—U1—O789.0 (2)C4—C5—H5119.3
O1—U1—O493.0 (3)C11—C12—H12120.2
O1—U1—O2177.4 (3)C11—C12—C13119.7 (9)
O1—U1—O389.6 (3)C13—C12—H12120.2
O1—U1—O592.6 (3)C6—C1—H1118.9
O3—U1—O772.3 (2)C6—C1—C2122.2 (9)
O3—U1—O5143.1 (2)C2—C1—H1118.9
O5—U1—O770.9 (2)C15—C14—H14119.7
C17—O6—U1140.2 (5)C13—C14—C15120.5 (9)
U1—O7—H7115.4 (16)C13—C14—H14119.7
C21—O7—U1135.6 (7)C12—C13—H13119.8
C21—O7—H7107.4 (17)C14—C13—C12120.3 (9)
C7—O4—U1140.5 (6)C14—C13—H13119.8
C9—O3—U1136.3 (6)C5—C4—H4119.9
C19—O5—U1137.9 (5)C3—C4—C5120.3 (11)
O6—C17—C16116.3 (6)C3—C4—H4119.9
O6—C17—C18121.1 (7)C1—C2—H2119.8
C18—C17—C16122.6 (7)C3—C2—C1120.3 (12)
C11—C16—C17119.6 (7)C3—C2—H2119.8
C11—C16—C15118.8 (7)C4—C3—H3120.0
C15—C16—C17121.6 (7)C2—C3—C4120.0 (11)
O5—C19—C18122.6 (8)C2—C3—H3120.0
O5—C19—C20115.3 (8)C9—C10—H10A109.5
C18—C19—C20122.0 (8)C9—C10—H10B109.5
C17—C18—H18116.5C9—C10—H10C109.5
C19—C18—C17126.9 (7)H10A—C10—H10B109.5
C19—C18—H18116.5H10A—C10—H10C109.5
C5—C6—C7124.4 (9)H10B—C10—H10C109.5
C1—C6—C7119.7 (7)O7—C21—H21A109.9
C1—C6—C5115.8 (9)O7—C21—H21B109.9
O4—C7—C6116.0 (7)H21A—C21—H21B108.3
O4—C7—C8121.8 (8)C22—C21—O7109.0 (17)
C8—C7—C6122.3 (7)C22—C21—H21A109.9
C16—C11—H11119.6C22—C21—H21B109.9
C12—C11—C16120.8 (9)C21—C22—H22A109.5
C12—C11—H11119.6C21—C22—H22B109.5
O3—C9—C8125.3 (9)C21—C22—H22C109.5
O3—C9—C10114.9 (9)H22A—C22—H22B109.5
C8—C9—C10119.8 (9)H22A—C22—H22C109.5
C19—C20—H20A109.5H22B—C22—H22C109.5
U1—O6—C17—C16179.6 (6)C18—C17—C16—C1513.4 (12)
U1—O6—C17—C180.3 (13)C6—C7—C8—C9179.4 (9)
U1—O7—C21—C2290.4 (15)C6—C5—C4—C30.4 (18)
U1—O4—C7—C6177.7 (6)C6—C1—C2—C30.2 (16)
U1—O4—C7—C82.2 (16)C7—C6—C5—C4177.2 (9)
U1—O3—C9—C85.2 (17)C7—C6—C1—C2177.7 (9)
U1—O3—C9—C10176.2 (7)C11—C16—C15—C140.9 (13)
U1—O5—C19—C189.9 (17)C11—C12—C13—C142.4 (17)
U1—O5—C19—C20172.1 (8)C20—C19—C18—C17178.2 (8)
O6—C17—C16—C1112.1 (11)C15—C16—C11—C120.8 (13)
O6—C17—C16—C15166.8 (7)C15—C14—C13—C120.7 (17)
O6—C17—C18—C194.2 (14)C5—C6—C7—O4170.7 (8)
O4—C7—C8—C90.5 (17)C5—C6—C7—C89.2 (14)
O3—C9—C8—C73.0 (19)C5—C6—C1—C21.2 (14)
O5—C19—C18—C170.3 (15)C5—C4—C3—C21.5 (19)
C17—C16—C11—C12179.7 (9)C1—C6—C7—O45.5 (12)
C17—C16—C15—C14178.0 (8)C1—C6—C7—C8174.5 (9)
C16—C17—C18—C19176.0 (8)C1—C6—C5—C40.9 (14)
C16—C11—C12—C132.5 (15)C1—C2—C3—C41.2 (18)
C16—C15—C14—C131.0 (15)C10—C9—C8—C7178.4 (10)
C18—C17—C16—C11167.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.86 (6)2.44 (5)3.246 (10)158 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge support from the MIRAI Fund (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences.

References

First citationAinscough, E. W., Brodie, A. M., Cresswell, R. J. & Waters, J. M. (1998). Inorg. Chem. 277, 37–45.  CAS Google Scholar
First citationAl-Anber, M. A., Daoud, H. M., Rüffer, T. & Lang, H. (2011). J. Mol. Struct. 997, 1–6.  CAS Google Scholar
First citationAlmond, P. M. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 5693–5698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArndt, S., Spaniol, T. P. & Okuda, J. (2002). Chem. Commun. pp. 896–897.  Web of Science CSD CrossRef Google Scholar
First citationBean, A. C., Ruf, M. & Albrecht-Schmitt, T. E. (2001). Inorg. Chem. 40, 3959–3963.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationBelford, R. L., Chasteen, E. D., Hitchmbx, M. A., Ho'k, P. K., Pfluger, C. E. & Paul, I. C. (1969). Inorg. Chem. 8, 1312–1319.  CSD CrossRef CAS Web of Science Google Scholar
First citationChakraborty, S., Dinda, S., Bhattacharyya, R. & Mukherjee, A. K. (2006). Z. Kristallogr. Cryst. Mater. 221, 606–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, G. J., Chen, Ch. Q., Li, X. T., Ma, H. Ch. & Dong, Y. B. (2018). Chem. Commun. 54, 11550–11553.  Web of Science CSD CrossRef CAS Google Scholar
First citationCvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.  Web of Science CSD CrossRef CAS Google Scholar
First citationCvrtila, I., Stilinović, V. & Kaitner, B. (2013). CrystEngComm, 15, 6585–6593.  Web of Science CSD CrossRef CAS Google Scholar
First citationDang, F. F., Lei, K. W., Wang, Y. W., Liu, W. Sh. & Sun, Y. X. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x279–x280.  CSD CrossRef CAS Google Scholar
First citationDöring, M., Ludwig, W., Uhlig, E., Wočadlo, S. & Müller, U. (1992). Z. Anorg. Allg. Chem. 611, 61–67.  Google Scholar
First citationEnriquez, A. E., Scott, B. L. & Neu, M. P. (2005). Inorg. Chem. 44, 7403–7413.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGatto, C. C., Lang, E. S., Jagst, A. & Abram, U. (2004). Inorg. Chim. Acta, 357, 4349–4644.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaider, S. Z., Malik, K. M. A., Rahman, A. & Hursthouse, M. B. (1983). J. Bangladesh Acad. Sci. 7, 7–12.  CAS Google Scholar
First citationHernandez, A., Chakraborty, I., Ortega, G. & Dares, C. J. (2022). Acta Cryst. E78, 40–43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHon, P., Pfluger, C. E. & Belford, R. L. (1966). Inorg. Chem. 5, 516–521.  CSD CrossRef CAS Web of Science Google Scholar
First citationHughes, K.-A. & Burns, P. C. (2003). Acta Cryst. C59, i7–i8.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationJung, Y. S., Lee, J. H., Song, K. & Kang, S. J. (1998). Bull. Korean Chem. Soc. 19, 4484–4486.  Google Scholar
First citationKannan, S., Chetty, K. V., Venugopal, V. & Drew, G. B. (2004). Dalton Trans. pp. 3604–3610.  Web of Science CSD CrossRef Google Scholar
First citationLennartson, A., Håkansson, M. & Jagner, S. (2007). New J. Chem. 31, 344–347.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNeu, M. P., Johnson, M. T., Matonic, J. H. & Scott, B. L. (2001). Acta Cryst. C57, 240–242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkeya, S., Asai, H., Ooi, S., Matsumoto, K., Kawaguchi, S. & Kuroya, H. (1976). Inorg. Nucl. Chem. Lett. 12, 677–680.  CSD CrossRef CAS Web of Science Google Scholar
First citationOldham, W. J., Scott, B. L., Abney, K. D., Smith, W. H. & Costa, D. A. (2002). Acta Cryst. C58, m139–m140.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerdih, F. (2014). Struct. Chem. 25, 809–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationPettinari, C., Marchetti, F., Pettinari, R., Gindulyte, A., Massa, L., Rossi, M. & Caruso, F. (2002). Inorg. Chem. pp. 1447–1455.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationŞahin, S. & Dege, N. (2021). Polyhedron, 205, 115320–115330.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSykora, R. E. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 2179–2181.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationTakao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219–m220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, Y. H., Bai, F. Y., Aoki, K., Sun, Z. & Ge, M. F. (2007). Inorg. Nano-Met. Chem. 37, 203–211.  CAS Google Scholar
First citationYang, P. (2018a). CSD Communication (refcode HICRAP). CCDC, Cambridge, England.  Google Scholar
First citationYang, P. (2018b). CSD Communication (refcode HICRET). CCDC, Cambridge, England.  Google Scholar
First citationZou, F., Tang, X., Huang, Y., Wan, Sh., Lu, F., Chen, Z. N., Wu, A. & Zhang, H. (2016). CrystEngComm, 18, 6624–6631.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds