research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of AlPCl8

crossmark logo

aDaegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea, bDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA, and cNexeriaTek Inc., Daejeon 34016, Republic of Korea
*Correspondence e-mail: st.hong@dgist.ac.kr

Edited by S.-L. Zheng, Harvard University, USA (Received 20 September 2024; accepted 4 November 2024; online 8 November 2024)

The crystal structure of aluminium phospho­rus chloride (systematic name: phospho­rus tetra­chloride tetra­chloridoa­luminate), (PCl4)[AlCl4] or AlPCl8, was determined and refined using single-crystal X-ray diffraction data. The compound crystallizes in the ortho­rhom­bic space group Pbcm. The asymmetric unit comprises one Al atom, one P atom, and five Cl atoms. The structure is characterized by isolated AlCl4 and PCl4 tetra­hedra, isostructural with FePCl8 and GaPCl8.

1. Chemical context

During our exploratory synthesis in the Mg–Al–P–Cl system, aimed at discovering new magnesium-ion conductors, we initially observed the AlPCl8 phase. Magnesium-ion conductors, such as MgAl2Cl8, exhibit Mg-ion conductivity of approximately 10−7 S cm−1 at 400 K (Tomita et al., 2021[Tomita, Y., Saito, R., Morishita, M., Yamane, Y. & Kohno, Y. (2021). Solid State Ionics, 361, 115566-115566.]). To enhance this ionic conductivity, we introduced an aliovalent substitution of Al with P to create magnesium-ion vacancies within the structure, following the general formula Mg1–xAl2–xPxCl8.

Across a wide range of x values (0.1 to 1), we identified a new phase through powder X-ray diffraction (XRD) patterns, which differed significantly from that of MgAl2Cl8. Subsequent analysis revealed that this new phase matched the XRD pattern of AlPCl8 (Fischer & Jübermann, 1938[Fischer, W. & Jübermann, O. (1938). Z. Anorg. Allg. Chem. 235, 337-351.]). Since the crystal structure of AlPCl8 was previously unknown, we proceeded to grow single crystals without Mg to determine its structure. The resulting analysis confirmed that its crystal structure is isostructural with FePCl8 (Kistenmacher & Stucky, 1968[Kistenmacher, T. J. & Stucky, G. D. (1968). Inorg. Chem. 7, 2150-2155.]) and GaPCl8 (Weigand et al., 2009[Weigand, J. J., Burford, N., Davidson, R. J., Cameron, T. S. & Seelheim, P. (2009). J. Am. Chem. Soc. 131, 17943-17953.]).

2. Structural commentary

Anhydrous aluminium phospho­rus chloride (AlPCl8) crystallizes in the ortho­rhom­bic space group Pbcm (Fig. 1[link]), with a structure consisting of isolated AlCl4 and PCl4 tetra­hedra, and one Al, one P, and five Cl sites in the asymmetric unit. Al3+ is tetra­hedrally coordinated by four Cl atoms, with an average Al—Cl bond distance of 2.127 (2) Å, while P5+ is similarly coordinated, but a shorter average P—Cl bond distance of 1.899 (2) Å. These bond lengths (Table 1[link]) are consistent with the sums of the ionic radii for Al, P, and Cl (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The local environment of each tetra­hedron is shown in Fig. 2[link]. The crystal structure was determined to be isostructural with (FeCl4)(PCl4) (Kistenmacher & Stucky, 1968[Kistenmacher, T. J. & Stucky, G. D. (1968). Inorg. Chem. 7, 2150-2155.]).

Table 1
Selected geometric parameters (Å, °)

Al1—Cl2i 2.1223 (12) P1—Cl5ii 1.9018 (12)
Al1—Cl1 2.1343 (16) P1—Cl4ii 1.8959 (12)
Al1—Cl2 2.1223 (12) P1—Cl4 1.8959 (12)
Al1—Cl3 2.128 (2) P1—Cl5 1.9018 (12)
       
Cl2i—Al1—Cl1 108.79 (6) Cl5ii—P1—Cl4ii 109.31 (6)
Cl2i—Al1—Cl2 112.83 (10) Cl5ii—P1—Cl4 110.49 (6)
Cl1—Al1—Cl2 108.79 (6) Cl4ii—P1—Cl4 108.26 (9)
Cl2i—Al1—Cl3 108.77 (6) Cl5ii—P1—Cl5 108.97 (8)
Cl1—Al1—Cl3 108.82 (8) Cl4ii—P1—Cl5 110.49 (6)
Cl2—Al1—Cl3 108.77 (6) Cl4—P1—Cl5 109.31 (6)
Symmetry codes: (i) [x, y, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The local environments of the AlCl4 (blue) and PCl4 tetra­hedra (purple) are shown. Symmetry codes correspond to those in Table 1[link].
[Figure 2]
Figure 2
The displacement of ellipsoids of AlPCl8 drawn at the 50% probability level viewed from two different orientations: (a) approximately along the [111] direction and (b) along the [001] direction. The AlCl4 tetra­hedra are represented in blue, and the PCl4 tetra­hedra in purple.

To validate the refined crystal structure, bond-valence sums (BVSs) were calculated using the softBV (Chen et al., 2019[Chen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18-33.]) program (V1.3.1). The calculated BVS values closely match the expected ionic charges, further supporting the reliability of the structural model: Al 3.04, P 5.05, Cl1 − 0.77, Cl2 − 0.78, Cl3 − 0.78, Cl4 − 1.25, and Cl5 − 1.24.

3. Synthesis and crystallization

Anhydrous aluminium chloride (AlCl3, Alfa Aesar, anhydrous, reagent grade) and phospho­rus(V) chloride (PCl5, Sigma-Aldrich, 95%) were used in the experiment. A stoichiometric mixture of AlCl3 and PCl5 was ground using a mortar and pestle and then pressed into a pellet. The pellet was placed in a dry fused-silica ampoule, which was sealed under vacuum and heated in a furnace. The temperature was increased from 303 K to 573 K at a rate of 5 K min−1, then gradually lowered to 373 K at a rate of 0.0694 K min−1. The sample was then allowed to cool naturally to room temperature. Single crystals were collected at 293 K using an optical microscope in a dry room with a dew point of 223 K. A crystal, approximately 0.1 mm in size, was placed into a 0.5 mm diameter glass capillary and sealed with capillary wax (Hampton Research). The same sample was subsequently used for powder analysis.

4. Refinement

Details of the data collection and structure refinement are summarized in Table 2[link]. Single-crystal X-ray diffraction data for AlPCl8 were collected and processed using APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), with absorption corrections applied through SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]). The structure was solved using SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) and refined using CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]). Three-dimensional Fourier electron-density maps were visualized using MCE (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]), and structural visualizations were generated using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Table 2
Experimental details

Crystal data
Chemical formula PCl4+·AlCl4
Mr 341.55
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 293
a, b, c (Å) 6.2653 (6), 13.5033 (12), 14.0112 (13)
V3) 1185.38 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.05
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.664, 0.671
No. of measured, independent and observed [I > 2.0σ(I)] reflections 38491, 1399, 1061
Rint 0.130
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.056, 1.17
No. of reflections 1061
No. of parameters 51
Δρmax, Δρmin (e Å−3) 0.79, −1.04
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

The structure of AlPCl8 was further confirmed using the powder X-ray Rietveld refinement technique. Data were collected with a Bruker AXS D8 Advance powder X-ray diffractometer, equipped with Cu Kα1 radiation in Debye-Scherrer geometry, a focusing primary Ge (111) monochromator, and a Vantec position-sensitive detector with a 6° detector slit. The powder sample was homogeneously mixed with carbon (Super C, TIMCAL) at a 1:1 weight ratio to reduce preferred orientation effects, lower effective packing density, and mitigate absorption effects. The sample was placed in a 0.5 mm glass capillary and sealed with wax to prevent air exposure. Measurements were taken over an angular range of 10° ≤ 2θ ≤ 130°, with a step size of 0.016693°, conducted over 13 h at room temperature. Powder profile refinement was performed using GSAS-II software (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). The final Rietveld plot is shown in Fig. 3[link].

[Figure 3]
Figure 3
Powder X-ray Rietveld refinement profile of AlPCl8. Black dots indicate the observed pattern, the red line represents the calculated pattern, the blue line shows the difference between the observed and calculated patterns, and the pink tick marks correspond to the Bragg reflections positions.

Supporting information


Computing details top

Phosphorus tetrachloride tetrachloridoaluminate top
Crystal data top
PCl4+·AlCl4F(000) = 656
Mr = 341.55Dx = 1.914 Mg m3
Dm = 1.914 Mg m3
Dm measured by not measured
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 38491 reflections
a = 6.2653 (6) Åθ = 3.4–27.4°
b = 13.5033 (12) ŵ = 2.05 mm1
c = 14.0112 (13) ÅT = 293 K
V = 1185.38 (19) Å3Block, white
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Bruker D8 Venture
diffractometer
1061 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.130
ω/2θ scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.664, Tmax = 0.671k = 1717
38491 measured reflectionsl = 1818
1399 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: other
R[F2 > 2σ(F2)] = 0.093Weighting scheme based on measured s.u.'s Method = SQRT(W) = 1/(Data with the key SIGMA(/FO/) in list 6)
wR(F2) = 0.056(Δ/σ)max = 0.0003
S = 1.17Δρmax = 0.79 e Å3
1061 reflectionsΔρmin = 1.04 e Å3
51 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.2214 (2)0.47461 (11)0.25000.0427
P10.45745 (17)0.75000.50000.0479
Cl10.55881 (16)0.49641 (12)0.25000.0638
Cl20.09231 (14)0.53762 (10)0.37618 (9)0.0859
Cl30.1572 (3)0.31987 (12)0.25000.0839
Cl40.28015 (19)0.80367 (9)0.40331 (8)0.0952
Cl50.63379 (17)0.85187 (8)0.55069 (10)0.0984
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0338 (6)0.0499 (9)0.0445 (8)0.0005 (6)0.00000.0000
P10.0443 (6)0.0493 (7)0.0501 (7)0.00000.00000.0041 (7)
Cl10.0288 (6)0.0861 (10)0.0764 (8)0.0026 (6)0.00000.0000
Cl20.0579 (6)0.1250 (12)0.0746 (7)0.0020 (5)0.0154 (5)0.0428 (8)
Cl30.0807 (10)0.0571 (9)0.1140 (13)0.0146 (8)0.00000.0000
Cl40.0936 (9)0.1129 (12)0.0791 (9)0.0081 (7)0.0211 (7)0.0365 (7)
Cl50.0842 (8)0.0780 (9)0.1329 (12)0.0163 (7)0.0074 (6)0.0404 (7)
Geometric parameters (Å, º) top
Al1—Cl2i2.1223 (12)P1—Cl5ii1.9018 (12)
Al1—Cl12.1343 (16)P1—Cl4ii1.8959 (12)
Al1—Cl22.1223 (12)P1—Cl41.8959 (12)
Al1—Cl32.128 (2)P1—Cl51.9018 (12)
Cl2i—Al1—Cl1108.79 (6)Cl5ii—P1—Cl4ii109.31 (6)
Cl2i—Al1—Cl2112.83 (10)Cl5ii—P1—Cl4110.49 (6)
Cl1—Al1—Cl2108.79 (6)Cl4ii—P1—Cl4108.26 (9)
Cl2i—Al1—Cl3108.77 (6)Cl5ii—P1—Cl5108.97 (8)
Cl1—Al1—Cl3108.82 (8)Cl4ii—P1—Cl5110.49 (6)
Cl2—Al1—Cl3108.77 (6)Cl4—P1—Cl5109.31 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+3/2, z+1.
 

Footnotes

Contributed equally.

Funding information

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant No. 2020R1A2C2007070) and by the BK21 FOUR program funded by the Ministry of Education of Korea.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18–33.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFischer, W. & Jübermann, O. (1938). Z. Anorg. Allg. Chem. 235, 337–351.  CrossRef CAS Google Scholar
First citationKistenmacher, T. J. & Stucky, G. D. (1968). Inorg. Chem. 7, 2150–2155.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomita, Y., Saito, R., Morishita, M., Yamane, Y. & Kohno, Y. (2021). Solid State Ionics, 361, 115566–115566.  CrossRef CAS Google Scholar
First citationWeigand, J. J., Burford, N., Davidson, R. J., Cameron, T. S. & Seelheim, P. (2009). J. Am. Chem. Soc. 131, 17943–17953.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds