research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3′,3′-tetra­ethyl-1,1′-(furan-2,5-di­carbonyl)bis­(thiourea)

crossmark logo

aDepartment of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam, and bDepartment of Inorganic Chemistry, VNU University of Science, Vietnam National, University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: phamchienthang@hus.edu.vn

Edited by L. Suescun, Universidad de la República, Uruguay (Received 9 September 2024; accepted 4 November 2024; online 8 November 2024)

Reaction between equimolar amounts of 3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thiourea) (H2L) and CuCl2·2H2O in methanol in the presence of the supporting base Et3N gave rise to a neutral dinuclear complex bis­[μ-3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) di­chloro­methane disolvate, [Cu2(C16H22N4O3S2)2]·2CH2Cl2 or [Cu2(L)2]·2CH2Cl2. The aroylbis(thio­ureas) are doubly deprotonated and the resulting anions {L2–} bond to metal ions through (S,O)-chelating moieties. The copper atoms adopt a virtually cis-square-planar environment. In the crystal, adjacent [Cu2(L)2]·2CH2Cl2 units are linked into polymeric chains along the a-axis direction by inter­molecular coordinative Cu⋯S inter­actions. The co-crystallized solvent mol­ecules play a vital role in the crystal packing. In particular, weak C—Hfuran⋯Cl and C—Heth­yl⋯Cl contacts consolidate the three-dimensional supra­mol­ecular architecture.

1. Chemical context

Benzo­yl(N,N-di­alkyl­thio­ureas) are versatile ligands forming stable complexes with a great number of transition-metal ions, in which the organic compounds mainly act as monoanionic and (S,O)-bidentate ligands (Fitzl et al., 1977[Fitzl, G., Beyer, L., Sieler, J., Richter, R., Kaiser, J. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 433, 237-241.]; Knuuttila et al., 1982[Knuuttila, P., Knuuttila, H., Hennig, H. & Beyer, L. (1982). Acta Chem. Scand. A, 36, 541-545.]; Sieler et al., 1990[Sieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167-174.]; Bensch et al., 1995[Bensch, W. & Schuster, M. (1995). Z. Kristallogr. Cryst. Mater. 210, 68-68.]; Nguyen et al., 2007[Nguyen, H. H. & Abram, U. (2007). Inorg. Chem. 46, 5310-5319.]; Barnard et al., 2019[Barnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019.]; Pham et al., 2021[Pham, C. T., Pham, T. T., Nguyen, V. H., Trieu, T. N. & Nguyen, H. H. (2021). Z. Anorg. Allg. Chem. 647, 1383-1391.]). This coordination fashion also plays an important role in metal complexes of aroylbis(thio­ureas), such as homo-dinuclear complexes based on the bipodal iso-phthaloylbis(N,N-di­alkyl­thio­ureas) (Koch et al., 2001[Koch, K. R., Hallale, O., Bourne, S. A., Miller, J. & Bacsa, J. (2001). J. Mol. Struct. 561, 185-196.]; Rodenstein et al., 2008[Rodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867-874.]; Schwade et al., 2013[Schwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155-161.]; Schwade et al., 2020[Schwade, V. D., Teixeira, E. I., dos Santos, F. A., Bortolotto, T., Tirloni, B. & Abram, U. (2020). New J. Chem. 44, 19598-19611.]; Teixeira et al., 2020[Teixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). J. Mol. Struct. 1210, 127999.]). The presence of potential donor atom(s) in the spacer between two aroyl­thio­urea moieties, such as pyridine N or catechol O atoms, could enable the corresponding aroylbis(thio­ureas) to serve as building blocks for the construction of heteronuclear host–guest systems (Nguyen et al., 2016[Nguyen, H. H., Jegathesh, J. J., Takiden, A., Hauenstein, D., Pham, C. T., Le, C. D. & Abram, U. (2016). Dalton Trans. 45, 10771-10779.]; Pham et al., 2017[Pham, C. T., Nguyen, H. H., Hagenbach, A. & Abram, U. (2017). Inorg. Chem. 56, 11406-11416.], 2020[Pham, C. T., Barnard, I., Nguyen, H. H., Abram, U. & Koch, K. R. (2020). Inorg. Chem. 59, 1183-1192.]; Le et al., 2019[Le, C. D., Pham, C. T. & Nguyen, H. H. (2019). Polyhedron, 173, 114143-114147.]; Jesudas et al., 2020[Jesudas, J. J., Pham, C. T., Hagenbach, A., Abram, U. & Nguyen, H. H. (2020). Inorg. Chem. 59, 386-395.]). However, it seems such aroylbis(thio­ureas) are not appropriate for the production of homonuclear systems. Indeed, all efforts to produce related homonuclear complexes, as in the case of iso-phthaloylbis(N,N-di­alkyl­thio­ureas), have hitherto failed. Herein, we describe the synthesis and crystal structure of the first homonuclear complex derived from the novel 3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thiourea) (H2L), referred to as furan-2,5-di­carbonyl­bis­(N,N-di­ethyl­thio­urea), which possesses a potential furan O donor atom in the mol­ecular backbone. The compound, [Cu2(L)2], potentially exhibits inter­esting magnetic and catalytic properties (Pham et al., 2019[Pham, C. T., Nguyen, T. H., Matsumoto, K. & Nguyen, H. H. (2019). Eur. J. Inorg. Chem. 2019, 4142-4146.]; Nath et al., 2020[Nath, B. D., Takaishi, K. & Ema, T. (2020). Catal. Sci. Technol. 10, 12-34.]).

[Scheme 1]

2. Structural commentary

The complex [Cu2(L)2] crystallizes as a solvated form in the centrosymmetric monoclinic space group P21/n with half of [Cu2(L)2]·2CH2Cl2 in the asymmetric unit. The mol­ecular structure, including solvent mol­ecules, is shown in Fig. 1[link]. The complex consists of two CuII ions and two doubly deproton­ated ligands {L}2–, which bond to the metal ions through (S,O)-chelating aroyl­thio­urea moieties. The Cu1—O bond lengths are Cu1—O10 = 1.9406 (15) Å and Cu1—O20 = 1.9431 (14) Å, while the Cu1—S10 and Cu1—S20 bond lengths are 2.2624 (6) and 2.2612 (6) Å, respectively. These bond distances fall in the same ranges for those observed in several copper(II) complexes with aroylmono(thio­ureas) (Wu et al., 2015[Wu, S.-Y., Zhao, X.-Y., Li, H.-P., Yang, Y. & Roesky, H. W. (2015). Z. Anorg. Allg. Chem. 641, 883-889.]; Selvakumaran et al., 2016[Selvakumaran, N., Sandhiya, L., Bhuvanesh, N. S. P., Senthilkumar, K. & Karvembu, R. (2016). New J. Chem. 40, 5401-5413.]; Binzet et al., 2018[Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519-529.]; Pham et al., 2021[Pham, C. T., Pham, T. T., Nguyen, V. H., Trieu, T. N. & Nguyen, H. H. (2021). Z. Anorg. Allg. Chem. 647, 1383-1391.]) and aroylbis(thio­ureas) (Rodenstein et al., 2008[Rodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867-874.]; Schwade et al., 2013[Schwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155-161.]; Teixeira et al., 2020[Teixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). J. Mol. Struct. 1210, 127999.]). The metal⋯metal distance is 7.762 (3) Å and the midpoint between the two copper atoms is on the inversion center of the mol­ecule. The two chelate planes Cu1/O10–S10 (r.m.s.d. = 0.075 Å) and Cu1/O20i–S10i (r.m.s.d. = 0.156 Å) form a dihedral angle of 15.32 (2)°. Thus, the four-coordinate CuII atoms adopt a flat isosceles trapezoid geometry due to the cis arrangement of the donor atoms. The atoms within the furan-2,5-dicarboxamide moieties and the copper atoms are nearly coplanar with a largest deviation of 0.298 (2) Å from the mean least-squares plane for the furan oxygen atoms. Two CH2Cl2 mol­ecules are located on either side of the plane at a distance of 1.991 (5) Å from the plane to the solvent carbon atoms. One chlorine atom of the solvent mol­ecule is disordered over two positions with occupancy factor of 0.6163 (9) for the atom labelled A. In addition, the solvent inter­acts with the complex through hydrogen bonds formed with the carbonyl oxygen atoms O10 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30A⋯O10 0.99 2.41 3.388 (3) 171
C30—H30B⋯O10i 0.99 2.45 3.428 (3) 171
C14—H14B⋯Cl1ii 0.99 2.83 3.627 (2) 138
C4—H4⋯Cl2Aiii 0.95 2.68 3.506 (8) 145
C4—H4⋯Cl2Biii 0.95 2.60 3.446 (12) 149
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound [Cu2(L)2]·2CH2Cl2. (a) Top view with complete labeling of non-hydrogen atoms within the complex mol­ecule. (b) Side view. Hydrogen atoms of the complex are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. The red dotted lines indicate the C—H⋯O hydrogen bonds. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

3. Supra­molecular features

Each [Cu2(L)2]·2CH2Cl2 unit inter­acts with two adjacent ones by long bonding inter­actions between the CuII ions and S20 atoms of adjacent blocks (Fig. 2[link]a). These bonds, with a distance of 2.9884 (6) Å, are considerably longer than the coordinative Cu—S bonds within the [Cu2(L)2] unit. Such inter­actions between the units results in polymeric chains along the a-axis direction (Fig. 2[link]b).

[Figure 2]
Figure 2
(a) Mol­ecular packing of [Cu2(L)2]·2CH2Cl2 units by coordinative Cu⋯S inter­actions (dashed lines). Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (I)[link] x + 1, y, z; (II) −x + 2, −y + 1, −z + 1; (III) −x, −y + 1, −z + 1; (IV) x − 1, y, z. Ethyl groups are omitted for clarity. (b) Polymeric chains along the a-axis direction. Hydrogen atoms of ethyl groups are omitted for clarity.

Furthermore, inter­molecular hydrogen bonds (Table 1[link]) involving the solvent mol­ecules and the C—H bonds of the furan rings and ethyl groups are responsible for aggregation of the polymeric chains (Fig. 3[link]).

[Figure 3]
Figure 3
Crystal packing of the title compound shown in projection down the a-axis illustrating the aggregation of chains by C—H⋯Cl hydrogen bonding (green dotted lines). The central units are highlighted for clarity.

4. Database survey

The crystal structures of neither the ligand nor its metal complexes are found in the Cambridge Structure Database (CSD version 5.45, update of June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search of the CSD for dinuclear copper(II) complexes derived from aroylbis(thio­ureas) reveals only five hits involving isophthaloyl derivatives: DIZTEM and DIZTEM1 (Rodenstein et al., 2008[Rodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867-874.]), BEWKAR (Schwade et al., 2013[Schwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155-161.]), DOMNIE (Selvakumaran et al., 2014[Selvakumaran, N., Bhuvanesh, N. S. P. & Karvembu, R. (2014). Dalton Trans. 43, 16395-16410.]) and YUFNUL (Teixeira et al., 2020[Teixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). J. Mol. Struct. 1210, 127999.]). Across the series of metrics for these structures, all values regarding the coordination of copper(II) ions and aroyl­thio­urea moieties are in accordance with those reported herein.

5. Synthesis and crystallization

H2L (38.5 mg, 0.1 mmol) was added into a solution of CuCl2·2H2O (17.1 mg, 0.1 mmol) in 1 mL of MeOH. The reaction mixture was stirred at 313 K for 30 min before adding the supporting base Et3N (0.03 mL, 0.2 mmol). A brown precipitate deposited immediately. After stirring for additional 1 h at 313 K, the product was filtered off, washed with MeOH, and dried under reduced pressure. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the complex in a mixture of CH2Cl2 and MeOH. Under ambient conditions, the crystals slowly turned to powder due to the evaporation of the co-crystalized solvent.

IR (KBr, cm−1): 2974 (w), 2931 (w), 1536 (s), 1492 (s), 1455 (m), 1399 (s), 1373 (s), 1348 (s), 1304 (s), 1262 (s), 1219 (m), 1148 (m), 1111 (m), 1074 (m), 1008 (s), 9722 (m), 880 (s), 813 (s), 767 (s), 665 (m), 6155 (w), 548 (w), 455 (m).

+ESI MS (m/z): 893.19 (calculated 893.09), 50% [Cu2(L)2 + H]+; 931.24 (calculated 931.05), 100% [Cu2(L)2 + K]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 Å (aromatic), 0.99 Å (CH2) and 0.98 Å (CH3), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms (1.5Ueq for CH3).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C16H22N4O3S2)2]·2CH2Cl2
Mr 1061.92
Crystal system, space group Monoclinic, P21/n
Temperature (K) 140
a, b, c (Å) 10.2290 (9), 13.0681 (10), 16.9601 (15)
β (°) 98.377 (3)
V3) 2242.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.42
Crystal size (mm) 0.14 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29179, 5809, 4232
Rint 0.062
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.076, 1.03
No. of reflections 5809
No. of parameters 276
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.45
Computer programs: APEX2 ans SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[µ-3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate top
Crystal data top
[Cu2(C16H22N4O3S2)2]·2CH2Cl2F(000) = 1092
Mr = 1061.92Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2290 (9) ÅCell parameters from 8429 reflections
b = 13.0681 (10) Åθ = 2.9–28.6°
c = 16.9601 (15) ŵ = 1.42 mm1
β = 98.377 (3)°T = 140 K
V = 2242.9 (3) Å3Plate, red
Z = 20.14 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4232 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.8°, θmin = 2.9°
Tmin = 0.686, Tmax = 0.746h = 1312
29179 measured reflectionsk = 1617
5809 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.9669P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5809 reflectionsΔρmax = 0.50 e Å3
276 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.84517 (2)0.55425 (2)0.43977 (2)0.01612 (8)
S200.02763 (5)0.36002 (4)0.50470 (3)0.01813 (12)
S100.92190 (5)0.55137 (4)0.32124 (3)0.02175 (13)
Cl10.51955 (6)0.24405 (4)0.50494 (4)0.02871 (14)
Cl2A0.6845 (12)0.3546 (8)0.6351 (5)0.0389 (13)0.62 (6)
O10.43749 (13)0.41530 (10)0.37590 (8)0.0148 (3)
O200.24820 (14)0.42489 (11)0.46961 (9)0.0201 (3)
O100.67999 (14)0.49014 (12)0.39462 (9)0.0234 (4)
N200.12097 (16)0.30601 (13)0.38549 (10)0.0161 (4)
N100.72045 (17)0.41079 (13)0.27587 (11)0.0171 (4)
N210.06963 (17)0.22096 (13)0.39037 (11)0.0174 (4)
N110.90007 (17)0.40368 (13)0.21277 (11)0.0181 (4)
C200.2228 (2)0.36677 (15)0.40972 (12)0.0155 (4)
C210.01399 (19)0.29379 (15)0.42245 (12)0.0149 (4)
C100.6509 (2)0.43597 (15)0.33275 (12)0.0146 (4)
C50.3243 (2)0.35962 (15)0.35652 (13)0.0156 (4)
C20.5189 (2)0.38896 (16)0.32183 (12)0.0150 (4)
C110.8417 (2)0.44890 (16)0.26910 (12)0.0165 (4)
C40.3331 (2)0.29970 (17)0.29214 (14)0.0226 (5)
H40.2676410.2538750.2672440.027*
C121.0320 (2)0.43485 (17)0.19544 (14)0.0221 (5)
H12A1.0763310.3745780.1759010.026*
H12B1.0858550.4579120.2455320.026*
C140.8325 (2)0.31971 (17)0.16420 (13)0.0229 (5)
H14A0.7842560.2768700.1985380.027*
H14B0.8999000.2760390.1444450.027*
C30.4587 (2)0.31868 (17)0.26922 (13)0.0218 (5)
H30.4938280.2884890.2258850.026*
C220.1906 (2)0.19430 (17)0.42337 (14)0.0237 (5)
H22A0.2550150.1632900.3808440.028*
H22B0.2305160.2575830.4413810.028*
C300.5687 (2)0.36547 (17)0.54694 (14)0.0244 (5)
H30A0.6082150.4062920.5072650.029*0.62 (6)
H30B0.4896310.4024740.5592080.029*0.62 (6)
H30C0.6205160.4029300.5112720.029*0.38 (6)
H30D0.4897010.4067360.5532330.029*0.38 (6)
C240.0367 (2)0.15816 (17)0.32306 (14)0.0233 (5)
H24A0.0026030.2034980.2839440.028*
H24B0.1182270.1251690.2960610.028*
C230.1646 (3)0.12006 (18)0.49296 (16)0.0324 (6)
H23A0.1228110.0579950.4758930.049*
H23B0.2483970.1021170.5110370.049*
H23C0.1058230.1522440.5367750.049*
C150.7365 (3)0.3571 (2)0.09391 (15)0.0333 (6)
H15A0.7843710.3960060.0578390.050*
H15B0.6700580.4011860.1128730.050*
H15C0.6926590.2983370.0654480.050*
C131.0272 (3)0.5201 (2)0.13398 (16)0.0336 (6)
H13A0.9755770.4973900.0837840.050*
H13B1.1172580.5368910.1250490.050*
H13C0.9857390.5807870.1535070.050*
C250.0658 (3)0.07585 (18)0.34959 (17)0.0336 (6)
H25A0.0872060.0389880.3028000.050*
H25B0.0301150.0277650.3853520.050*
H25C0.1459570.1078420.3776760.050*
Cl2B0.6656 (19)0.3460 (10)0.6407 (9)0.044 (2)0.38 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01290 (13)0.02103 (14)0.01530 (14)0.00403 (10)0.00497 (10)0.00410 (11)
S200.0141 (3)0.0184 (3)0.0231 (3)0.0034 (2)0.0069 (2)0.0044 (2)
S100.0214 (3)0.0267 (3)0.0191 (3)0.0083 (2)0.0096 (2)0.0042 (2)
Cl10.0350 (3)0.0237 (3)0.0301 (3)0.0012 (2)0.0136 (3)0.0036 (2)
Cl2A0.041 (2)0.045 (2)0.0275 (12)0.006 (2)0.0045 (13)0.0173 (14)
O10.0119 (7)0.0207 (7)0.0127 (8)0.0033 (6)0.0046 (6)0.0045 (6)
O200.0158 (7)0.0274 (8)0.0184 (8)0.0086 (6)0.0074 (6)0.0106 (6)
O100.0135 (8)0.0379 (9)0.0199 (9)0.0081 (7)0.0067 (6)0.0118 (7)
N200.0125 (9)0.0177 (9)0.0181 (10)0.0029 (7)0.0023 (7)0.0029 (7)
N100.0156 (9)0.0200 (9)0.0168 (10)0.0010 (7)0.0063 (8)0.0021 (7)
N210.0133 (9)0.0172 (9)0.0217 (10)0.0030 (7)0.0022 (7)0.0021 (7)
N110.0150 (9)0.0240 (9)0.0166 (10)0.0002 (7)0.0068 (8)0.0021 (8)
C200.0142 (10)0.0174 (10)0.0146 (11)0.0015 (8)0.0014 (9)0.0008 (8)
C210.0124 (10)0.0134 (10)0.0184 (11)0.0005 (8)0.0010 (9)0.0019 (8)
C100.0144 (10)0.0163 (10)0.0129 (11)0.0013 (8)0.0018 (8)0.0019 (8)
C50.0124 (10)0.0177 (10)0.0165 (11)0.0032 (8)0.0010 (8)0.0025 (8)
C20.0141 (10)0.0204 (11)0.0114 (11)0.0029 (8)0.0046 (8)0.0012 (8)
C110.0156 (10)0.0199 (10)0.0141 (11)0.0012 (9)0.0022 (8)0.0026 (9)
C40.0173 (11)0.0275 (12)0.0232 (13)0.0066 (9)0.0036 (10)0.0097 (10)
C120.0134 (11)0.0320 (12)0.0224 (12)0.0028 (9)0.0078 (9)0.0027 (10)
C140.0230 (12)0.0251 (12)0.0222 (13)0.0030 (10)0.0084 (10)0.0045 (9)
C30.0201 (11)0.0279 (12)0.0189 (12)0.0038 (9)0.0079 (10)0.0092 (9)
C220.0142 (11)0.0241 (12)0.0331 (14)0.0086 (9)0.0044 (10)0.0022 (10)
C300.0273 (13)0.0233 (12)0.0222 (13)0.0032 (10)0.0028 (10)0.0042 (9)
C240.0221 (12)0.0257 (12)0.0215 (12)0.0086 (10)0.0013 (10)0.0080 (9)
C230.0313 (14)0.0234 (13)0.0458 (17)0.0043 (11)0.0165 (12)0.0046 (11)
C150.0300 (14)0.0382 (15)0.0303 (15)0.0026 (11)0.0004 (11)0.0064 (11)
C130.0251 (13)0.0474 (16)0.0303 (15)0.0067 (12)0.0108 (11)0.0089 (12)
C250.0389 (15)0.0242 (13)0.0392 (16)0.0012 (11)0.0106 (13)0.0070 (11)
Cl2B0.056 (4)0.043 (2)0.027 (3)0.021 (3)0.016 (3)0.0175 (18)
Geometric parameters (Å, º) top
Cu1—S20i2.2612 (6)C12—H12B0.9900
Cu1—S102.2624 (6)C12—C131.521 (3)
Cu1—O20i1.9431 (14)C14—H14A0.9900
Cu1—O101.9406 (15)C14—H14B0.9900
S20—C211.746 (2)C14—C151.511 (3)
S10—C111.743 (2)C3—H30.9500
Cl1—C301.781 (2)C22—H22A0.9900
Cl2A—C301.773 (8)C22—H22B0.9900
O1—C51.366 (2)C22—C231.521 (3)
O1—C21.369 (2)C30—H30A0.9900
O20—C201.265 (2)C30—H30B0.9900
O10—C101.265 (2)C30—H30C0.9900
N20—C201.326 (3)C30—H30D0.9900
N20—C211.347 (3)C30—Cl2B1.766 (13)
N10—C101.321 (3)C24—H24A0.9900
N10—C111.357 (3)C24—H24B0.9900
N21—C211.341 (3)C24—C251.523 (3)
N21—C221.472 (3)C23—H23A0.9800
N21—C241.484 (3)C23—H23B0.9800
N11—C111.336 (3)C23—H23C0.9800
N11—C121.479 (3)C15—H15A0.9800
N11—C141.481 (3)C15—H15B0.9800
C20—C51.475 (3)C15—H15C0.9800
C10—C21.471 (3)C13—H13A0.9800
C5—C41.357 (3)C13—H13B0.9800
C2—C31.363 (3)C13—H13C0.9800
C4—H40.9500C25—H25A0.9800
C4—C31.417 (3)C25—H25B0.9800
C12—H12A0.9900C25—H25C0.9800
S20i—Cu1—S1090.35 (2)C2—C3—C4106.24 (19)
O20i—Cu1—S20i94.14 (4)C2—C3—H3126.9
O20i—Cu1—S10168.29 (5)C4—C3—H3126.9
O10—Cu1—S20i175.25 (5)N21—C22—H22A109.1
O10—Cu1—S1092.12 (5)N21—C22—H22B109.1
O10—Cu1—O20i82.68 (6)N21—C22—C23112.59 (19)
C21—S20—Cu1i107.20 (7)H22A—C22—H22B107.8
C11—S10—Cu1105.37 (7)C23—C22—H22A109.1
C5—O1—C2106.35 (15)C23—C22—H22B109.1
C20—O20—Cu1i130.70 (13)Cl1—C30—H30A109.1
C10—O10—Cu1130.91 (13)Cl1—C30—H30B109.1
C20—N20—C21125.52 (18)Cl1—C30—H30C110.0
C10—N10—C11124.50 (18)Cl1—C30—H30D110.0
C21—N21—C22122.38 (18)Cl2A—C30—Cl1112.4 (4)
C21—N21—C24120.11 (17)Cl2A—C30—H30A109.1
C22—N21—C24117.34 (17)Cl2A—C30—H30B109.1
C11—N11—C12122.41 (18)H30A—C30—H30B107.9
C11—N11—C14120.30 (17)H30C—C30—H30D108.3
C12—N11—C14117.29 (17)Cl2B—C30—Cl1108.7 (5)
O20—C20—N20131.98 (19)Cl2B—C30—H30C110.0
O20—C20—C5116.66 (17)Cl2B—C30—H30D110.0
N20—C20—C5111.33 (18)N21—C24—H24A109.0
N20—C21—S20128.46 (16)N21—C24—H24B109.0
N21—C21—S20117.42 (15)N21—C24—C25112.76 (19)
N21—C21—N20114.12 (18)H24A—C24—H24B107.8
O10—C10—N10131.22 (19)C25—C24—H24A109.0
O10—C10—C2116.03 (17)C25—C24—H24B109.0
N10—C10—C2112.72 (18)C22—C23—H23A109.5
O1—C5—C20117.82 (17)C22—C23—H23B109.5
C4—C5—O1110.36 (17)C22—C23—H23C109.5
C4—C5—C20131.58 (19)H23A—C23—H23B109.5
O1—C2—C10116.58 (17)H23A—C23—H23C109.5
C3—C2—O1110.28 (18)H23B—C23—H23C109.5
C3—C2—C10133.07 (19)C14—C15—H15A109.5
N10—C11—S10127.42 (16)C14—C15—H15B109.5
N11—C11—S10118.44 (15)C14—C15—H15C109.5
N11—C11—N10114.05 (18)H15A—C15—H15B109.5
C5—C4—H4126.6H15A—C15—H15C109.5
C5—C4—C3106.76 (19)H15B—C15—H15C109.5
C3—C4—H4126.6C12—C13—H13A109.5
N11—C12—H12A108.9C12—C13—H13B109.5
N11—C12—H12B108.9C12—C13—H13C109.5
N11—C12—C13113.50 (19)H13A—C13—H13B109.5
H12A—C12—H12B107.7H13A—C13—H13C109.5
C13—C12—H12A108.9H13B—C13—H13C109.5
C13—C12—H12B108.9C24—C25—H25A109.5
N11—C14—H14A108.9C24—C25—H25B109.5
N11—C14—H14B108.9C24—C25—H25C109.5
N11—C14—C15113.34 (19)H25A—C25—H25B109.5
H14A—C14—H14B107.7H25A—C25—H25C109.5
C15—C14—H14A108.9H25B—C25—H25C109.5
C15—C14—H14B108.9
Cu1i—S20—C21—N2014.0 (2)C10—N10—C11—S1011.0 (3)
Cu1i—S20—C21—N21166.21 (14)C10—N10—C11—N11172.43 (19)
Cu1—S10—C11—N1029.0 (2)C10—C2—C3—C4176.6 (2)
Cu1—S10—C11—N11154.56 (15)C5—O1—C2—C10177.26 (17)
Cu1i—O20—C20—N205.2 (4)C5—O1—C2—C30.3 (2)
Cu1i—O20—C20—C5172.26 (14)C5—C4—C3—C20.4 (3)
Cu1—O10—C10—N105.1 (3)C2—O1—C5—C20175.01 (18)
Cu1—O10—C10—C2172.61 (14)C2—O1—C5—C40.0 (2)
O1—C5—C4—C30.2 (3)C11—N10—C10—O106.7 (4)
O1—C2—C3—C40.4 (3)C11—N10—C10—C2175.57 (19)
O20—C20—C5—O10.3 (3)C11—N11—C12—C1388.5 (3)
O20—C20—C5—C4174.1 (2)C11—N11—C14—C1583.8 (2)
O10—C10—C2—O15.2 (3)C12—N11—C11—S102.4 (3)
O10—C10—C2—C3171.6 (2)C12—N11—C11—N10179.34 (18)
N20—C20—C5—O1177.58 (17)C12—N11—C14—C1595.6 (2)
N20—C20—C5—C43.8 (3)C14—N11—C11—S10176.94 (15)
N10—C10—C2—O1176.69 (17)C14—N11—C11—N100.0 (3)
N10—C10—C2—C36.5 (3)C14—N11—C12—C1390.9 (2)
C20—N20—C21—S206.1 (3)C22—N21—C21—S201.7 (3)
C20—N20—C21—N21174.10 (19)C22—N21—C21—N20178.48 (18)
C20—C5—C4—C3174.3 (2)C22—N21—C24—C2598.7 (2)
C21—N20—C20—O200.9 (4)C24—N21—C21—S20176.80 (15)
C21—N20—C20—C5178.46 (19)C24—N21—C21—N203.4 (3)
C21—N21—C22—C2382.9 (2)C24—N21—C22—C2392.4 (2)
C21—N21—C24—C2576.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30A···O100.992.413.388 (3)171
C30—H30B···O10i0.992.453.428 (3)171
C14—H14B···Cl1ii0.992.833.627 (2)138
C4—H4···Cl2Aiii0.952.683.506 (8)145
C4—H4···Cl2Biii0.952.603.446 (12)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: The Asia Research Center at Vietnam National University, Hanoi (grant No. CA.22.06A to Chien Thang Pham).

References

First citationBarnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019.  Web of Science CSD CrossRef Google Scholar
First citationBensch, W. & Schuster, M. (1995). Z. Kristallogr. Cryst. Mater. 210, 68–68.  CSD CrossRef CAS Web of Science Google Scholar
First citationBinzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519–529.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitzl, G., Beyer, L., Sieler, J., Richter, R., Kaiser, J. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 433, 237–241.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJesudas, J. J., Pham, C. T., Hagenbach, A., Abram, U. & Nguyen, H. H. (2020). Inorg. Chem. 59, 386–395.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnuuttila, P., Knuuttila, H., Hennig, H. & Beyer, L. (1982). Acta Chem. Scand. A, 36, 541–545.  CSD CrossRef Web of Science Google Scholar
First citationKoch, K. R., Hallale, O., Bourne, S. A., Miller, J. & Bacsa, J. (2001). J. Mol. Struct. 561, 185–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLe, C. D., Pham, C. T. & Nguyen, H. H. (2019). Polyhedron, 173, 114143–114147.  Web of Science CSD CrossRef CAS Google Scholar
First citationNath, B. D., Takaishi, K. & Ema, T. (2020). Catal. Sci. Technol. 10, 12–34.  Web of Science CrossRef CAS Google Scholar
First citationNguyen, H. H. & Abram, U. (2007). Inorg. Chem. 46, 5310–5319.  Web of Science CrossRef PubMed Google Scholar
First citationNguyen, H. H., Jegathesh, J. J., Takiden, A., Hauenstein, D., Pham, C. T., Le, C. D. & Abram, U. (2016). Dalton Trans. 45, 10771–10779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPham, C. T., Barnard, I., Nguyen, H. H., Abram, U. & Koch, K. R. (2020). Inorg. Chem. 59, 1183–1192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPham, C. T., Nguyen, H. H., Hagenbach, A. & Abram, U. (2017). Inorg. Chem. 56, 11406–11416.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPham, C. T., Nguyen, T. H., Matsumoto, K. & Nguyen, H. H. (2019). Eur. J. Inorg. Chem. 2019, 4142–4146.  Web of Science CSD CrossRef CAS Google Scholar
First citationPham, C. T., Pham, T. T., Nguyen, V. H., Trieu, T. N. & Nguyen, H. H. (2021). Z. Anorg. Allg. Chem. 647, 1383–1391.  Web of Science CrossRef ICSD Google Scholar
First citationRodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867–874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155–161.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwade, V. D., Teixeira, E. I., dos Santos, F. A., Bortolotto, T., Tirloni, B. & Abram, U. (2020). New J. Chem. 44, 19598–19611.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvakumaran, N., Bhuvanesh, N. S. P. & Karvembu, R. (2014). Dalton Trans. 43, 16395–16410.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSelvakumaran, N., Sandhiya, L., Bhuvanesh, N. S. P., Senthilkumar, K. & Karvembu, R. (2016). New J. Chem. 40, 5401–5413.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167–174.  CSD CrossRef CAS Web of Science Google Scholar
First citationTeixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). J. Mol. Struct. 1210, 127999.  Web of Science CSD CrossRef Google Scholar
First citationWu, S.-Y., Zhao, X.-Y., Li, H.-P., Yang, Y. & Roesky, H. W. (2015). Z. Anorg. Allg. Chem. 641, 883–889.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds