research communications
II complex derived from 3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thiourea)
of a solvated dinuclear CuaDepartment of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam, and bDepartment of Inorganic Chemistry, VNU University of Science, Vietnam National, University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: phamchienthang@hus.edu.vn
Reaction between equimolar amounts of 3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thiourea) (H2L) and CuCl2·2H2O in methanol in the presence of the supporting base Et3N gave rise to a neutral dinuclear complex bis[μ-3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate, [Cu2(C16H22N4O3S2)2]·2CH2Cl2 or [Cu2(L)2]·2CH2Cl2. The aroylbis(thioureas) are doubly deprotonated and the resulting anions {L2–} bond to metal ions through (S,O)-chelating moieties. The copper atoms adopt a virtually cis-square-planar environment. In the crystal, adjacent [Cu2(L)2]·2CH2Cl2 units are linked into polymeric chains along the a-axis direction by intermolecular coordinative Cu⋯S interactions. The co-crystallized solvent molecules play a vital role in the crystal packing. In particular, weak C—Hfuran⋯Cl and C—Hethyl⋯Cl contacts consolidate the three-dimensional supramolecular architecture.
CCDC reference: 2400458
1. Chemical context
Benzoyl(N,N-dialkylthioureas) are versatile ligands forming stable complexes with a great number of transition-metal ions, in which the organic compounds mainly act as monoanionic and (S,O)-bidentate ligands (Fitzl et al., 1977; Knuuttila et al., 1982; Sieler et al., 1990; Bensch et al., 1995; Nguyen et al., 2007; Barnard et al., 2019; Pham et al., 2021). This coordination fashion also plays an important role in metal complexes of aroylbis(thioureas), such as homo-dinuclear complexes based on the bipodal iso-phthaloylbis(N,N-dialkylthioureas) (Koch et al., 2001; Rodenstein et al., 2008; Schwade et al., 2013; Schwade et al., 2020; Teixeira et al., 2020). The presence of potential donor atom(s) in the spacer between two aroylthiourea moieties, such as pyridine N or catechol O atoms, could enable the corresponding aroylbis(thioureas) to serve as building blocks for the construction of heteronuclear host–guest systems (Nguyen et al., 2016; Pham et al., 2017, 2020; Le et al., 2019; Jesudas et al., 2020). However, it seems such aroylbis(thioureas) are not appropriate for the production of homonuclear systems. Indeed, all efforts to produce related homonuclear complexes, as in the case of iso-phthaloylbis(N,N-dialkylthioureas), have hitherto failed. Herein, we describe the synthesis and of the first homonuclear complex derived from the novel 3,3,3′,3′-tetraethyl-1,1′-(furan-2,5-dicarbonyl)bis(thiourea) (H2L), referred to as furan-2,5-dicarbonylbis(N,N-diethylthiourea), which possesses a potential furan O donor atom in the molecular backbone. The compound, [Cu2(L)2], potentially exhibits interesting magnetic and catalytic properties (Pham et al., 2019; Nath et al., 2020).
2. Structural commentary
The complex [Cu2(L)2] crystallizes as a solvated form in the centrosymmetric monoclinic P21/n with half of [Cu2(L)2]·2CH2Cl2 in the The molecular structure, including solvent molecules, is shown in Fig. 1. The complex consists of two CuII ions and two doubly deprotonated ligands {L}2–, which bond to the metal ions through (S,O)-chelating aroylthiourea moieties. The Cu1—O bond lengths are Cu1—O10 = 1.9406 (15) Å and Cu1—O20 = 1.9431 (14) Å, while the Cu1—S10 and Cu1—S20 bond lengths are 2.2624 (6) and 2.2612 (6) Å, respectively. These bond distances fall in the same ranges for those observed in several copper(II) complexes with aroylmono(thioureas) (Wu et al., 2015; Selvakumaran et al., 2016; Binzet et al., 2018; Pham et al., 2021) and aroylbis(thioureas) (Rodenstein et al., 2008; Schwade et al., 2013; Teixeira et al., 2020). The metal⋯metal distance is 7.762 (3) Å and the midpoint between the two copper atoms is on the inversion center of the molecule. The two chelate planes Cu1/O10–S10 (r.m.s.d. = 0.075 Å) and Cu1/O20i–S10i (r.m.s.d. = 0.156 Å) form a dihedral angle of 15.32 (2)°. Thus, the four-coordinate CuII atoms adopt a flat isosceles trapezoid geometry due to the cis arrangement of the donor atoms. The atoms within the furan-2,5-dicarboxamide moieties and the copper atoms are nearly coplanar with a largest deviation of 0.298 (2) Å from the mean least-squares plane for the furan oxygen atoms. Two CH2Cl2 molecules are located on either side of the plane at a distance of 1.991 (5) Å from the plane to the solvent carbon atoms. One chlorine atom of the solvent molecule is disordered over two positions with occupancy factor of 0.6163 (9) for the atom labelled A. In addition, the solvent interacts with the complex through hydrogen bonds formed with the carbonyl oxygen atoms O10 (Table 1).
3. Supramolecular features
Each [Cu2(L)2]·2CH2Cl2 unit interacts with two adjacent ones by long bonding interactions between the CuII ions and S20 atoms of adjacent blocks (Fig. 2a). These bonds, with a distance of 2.9884 (6) Å, are considerably longer than the coordinative Cu—S bonds within the [Cu2(L)2] unit. Such interactions between the units results in polymeric chains along the a-axis direction (Fig. 2b).
Furthermore, intermolecular hydrogen bonds (Table 1) involving the solvent molecules and the C—H bonds of the furan rings and ethyl groups are responsible for aggregation of the polymeric chains (Fig. 3).
4. Database survey
The crystal structures of neither the ligand nor its metal complexes are found in the Cambridge Structure Database (CSD version 5.45, update of June 2024; Groom et al., 2016). A search of the CSD for dinuclear copper(II) complexes derived from aroylbis(thioureas) reveals only five hits involving isophthaloyl derivatives: DIZTEM and DIZTEM1 (Rodenstein et al., 2008), BEWKAR (Schwade et al., 2013), DOMNIE (Selvakumaran et al., 2014) and YUFNUL (Teixeira et al., 2020). Across the series of metrics for these structures, all values regarding the coordination of copper(II) ions and aroylthiourea moieties are in accordance with those reported herein.
5. Synthesis and crystallization
H2L (38.5 mg, 0.1 mmol) was added into a solution of CuCl2·2H2O (17.1 mg, 0.1 mmol) in 1 mL of MeOH. The reaction mixture was stirred at 313 K for 30 min before adding the supporting base Et3N (0.03 mL, 0.2 mmol). A brown precipitate deposited immediately. After stirring for additional 1 h at 313 K, the product was filtered off, washed with MeOH, and dried under reduced pressure. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the complex in a mixture of CH2Cl2 and MeOH. Under ambient conditions, the crystals slowly turned to powder due to the evaporation of the co-crystalized solvent.
IR (KBr, cm−1): 2974 (w), 2931 (w), 1536 (s), 1492 (s), 1455 (m), 1399 (s), 1373 (s), 1348 (s), 1304 (s), 1262 (s), 1219 (m), 1148 (m), 1111 (m), 1074 (m), 1008 (s), 9722 (m), 880 (s), 813 (s), 767 (s), 665 (m), 6155 (w), 548 (w), 455 (m).
+ESI MS (m/z): 893.19 (calculated 893.09), 50% [Cu2(L)2 + H]+; 931.24 (calculated 931.05), 100% [Cu2(L)2 + K]+.
6. Refinement
Crystal data, data collection and structure . The H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 Å (aromatic), 0.99 Å (CH2) and 0.98 Å (CH3), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms (1.5Ueq for CH3).
details are summarized in Table 2Supporting information
CCDC reference: 2400458
https://doi.org/10.1107/S2056989024010703/oo2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010703/oo2007Isup2.hkl
[Cu2(C16H22N4O3S2)2]·2CH2Cl2 | F(000) = 1092 |
Mr = 1061.92 | Dx = 1.572 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2290 (9) Å | Cell parameters from 8429 reflections |
b = 13.0681 (10) Å | θ = 2.9–28.6° |
c = 16.9601 (15) Å | µ = 1.42 mm−1 |
β = 98.377 (3)° | T = 140 K |
V = 2242.9 (3) Å3 | Plate, red |
Z = 2 | 0.14 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4232 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.8°, θmin = 2.9° |
Tmin = 0.686, Tmax = 0.746 | h = −13→12 |
29179 measured reflections | k = −16→17 |
5809 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0292P)2 + 0.9669P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5809 reflections | Δρmax = 0.50 e Å−3 |
276 parameters | Δρmin = −0.44 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.84517 (2) | 0.55425 (2) | 0.43977 (2) | 0.01612 (8) | |
S20 | −0.02763 (5) | 0.36002 (4) | 0.50470 (3) | 0.01813 (12) | |
S10 | 0.92190 (5) | 0.55137 (4) | 0.32124 (3) | 0.02175 (13) | |
Cl1 | 0.51955 (6) | 0.24405 (4) | 0.50494 (4) | 0.02871 (14) | |
Cl2A | 0.6845 (12) | 0.3546 (8) | 0.6351 (5) | 0.0389 (13) | 0.62 (6) |
O1 | 0.43749 (13) | 0.41530 (10) | 0.37590 (8) | 0.0148 (3) | |
O20 | 0.24820 (14) | 0.42489 (11) | 0.46961 (9) | 0.0201 (3) | |
O10 | 0.67999 (14) | 0.49014 (12) | 0.39462 (9) | 0.0234 (4) | |
N20 | 0.12097 (16) | 0.30601 (13) | 0.38549 (10) | 0.0161 (4) | |
N10 | 0.72045 (17) | 0.41079 (13) | 0.27587 (11) | 0.0171 (4) | |
N21 | −0.06963 (17) | 0.22096 (13) | 0.39037 (11) | 0.0174 (4) | |
N11 | 0.90007 (17) | 0.40368 (13) | 0.21277 (11) | 0.0181 (4) | |
C20 | 0.2228 (2) | 0.36677 (15) | 0.40972 (12) | 0.0155 (4) | |
C21 | 0.01399 (19) | 0.29379 (15) | 0.42245 (12) | 0.0149 (4) | |
C10 | 0.6509 (2) | 0.43597 (15) | 0.33275 (12) | 0.0146 (4) | |
C5 | 0.3243 (2) | 0.35962 (15) | 0.35652 (13) | 0.0156 (4) | |
C2 | 0.5189 (2) | 0.38896 (16) | 0.32183 (12) | 0.0150 (4) | |
C11 | 0.8417 (2) | 0.44890 (16) | 0.26910 (12) | 0.0165 (4) | |
C4 | 0.3331 (2) | 0.29970 (17) | 0.29214 (14) | 0.0226 (5) | |
H4 | 0.267641 | 0.253875 | 0.267244 | 0.027* | |
C12 | 1.0320 (2) | 0.43485 (17) | 0.19544 (14) | 0.0221 (5) | |
H12A | 1.076331 | 0.374578 | 0.175901 | 0.026* | |
H12B | 1.085855 | 0.457912 | 0.245532 | 0.026* | |
C14 | 0.8325 (2) | 0.31971 (17) | 0.16420 (13) | 0.0229 (5) | |
H14A | 0.784256 | 0.276870 | 0.198538 | 0.027* | |
H14B | 0.899900 | 0.276039 | 0.144445 | 0.027* | |
C3 | 0.4587 (2) | 0.31868 (17) | 0.26922 (13) | 0.0218 (5) | |
H3 | 0.493828 | 0.288489 | 0.225885 | 0.026* | |
C22 | −0.1906 (2) | 0.19430 (17) | 0.42337 (14) | 0.0237 (5) | |
H22A | −0.255015 | 0.163290 | 0.380844 | 0.028* | |
H22B | −0.230516 | 0.257583 | 0.441381 | 0.028* | |
C30 | 0.5687 (2) | 0.36547 (17) | 0.54694 (14) | 0.0244 (5) | |
H30A | 0.608215 | 0.406292 | 0.507265 | 0.029* | 0.62 (6) |
H30B | 0.489631 | 0.402474 | 0.559208 | 0.029* | 0.62 (6) |
H30C | 0.620516 | 0.402930 | 0.511272 | 0.029* | 0.38 (6) |
H30D | 0.489701 | 0.406736 | 0.553233 | 0.029* | 0.38 (6) |
C24 | −0.0367 (2) | 0.15816 (17) | 0.32306 (14) | 0.0233 (5) | |
H24A | −0.002603 | 0.203498 | 0.283944 | 0.028* | |
H24B | −0.118227 | 0.125169 | 0.296061 | 0.028* | |
C23 | −0.1646 (3) | 0.12006 (18) | 0.49296 (16) | 0.0324 (6) | |
H23A | −0.122811 | 0.057995 | 0.475893 | 0.049* | |
H23B | −0.248397 | 0.102117 | 0.511037 | 0.049* | |
H23C | −0.105823 | 0.152244 | 0.536775 | 0.049* | |
C15 | 0.7365 (3) | 0.3571 (2) | 0.09391 (15) | 0.0333 (6) | |
H15A | 0.784371 | 0.396006 | 0.057839 | 0.050* | |
H15B | 0.670058 | 0.401186 | 0.112873 | 0.050* | |
H15C | 0.692659 | 0.298337 | 0.065448 | 0.050* | |
C13 | 1.0272 (3) | 0.5201 (2) | 0.13398 (16) | 0.0336 (6) | |
H13A | 0.975577 | 0.497390 | 0.083784 | 0.050* | |
H13B | 1.117258 | 0.536891 | 0.125049 | 0.050* | |
H13C | 0.985739 | 0.580787 | 0.153507 | 0.050* | |
C25 | 0.0658 (3) | 0.07585 (18) | 0.34959 (17) | 0.0336 (6) | |
H25A | 0.087206 | 0.038988 | 0.302800 | 0.050* | |
H25B | 0.030115 | 0.027765 | 0.385352 | 0.050* | |
H25C | 0.145957 | 0.107842 | 0.377676 | 0.050* | |
Cl2B | 0.6656 (19) | 0.3460 (10) | 0.6407 (9) | 0.044 (2) | 0.38 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01290 (13) | 0.02103 (14) | 0.01530 (14) | −0.00403 (10) | 0.00497 (10) | −0.00410 (11) |
S20 | 0.0141 (3) | 0.0184 (3) | 0.0231 (3) | −0.0034 (2) | 0.0069 (2) | −0.0044 (2) |
S10 | 0.0214 (3) | 0.0267 (3) | 0.0191 (3) | −0.0083 (2) | 0.0096 (2) | −0.0042 (2) |
Cl1 | 0.0350 (3) | 0.0237 (3) | 0.0301 (3) | 0.0012 (2) | 0.0136 (3) | 0.0036 (2) |
Cl2A | 0.041 (2) | 0.045 (2) | 0.0275 (12) | 0.006 (2) | −0.0045 (13) | 0.0173 (14) |
O1 | 0.0119 (7) | 0.0207 (7) | 0.0127 (8) | −0.0033 (6) | 0.0046 (6) | −0.0045 (6) |
O20 | 0.0158 (7) | 0.0274 (8) | 0.0184 (8) | −0.0086 (6) | 0.0074 (6) | −0.0106 (6) |
O10 | 0.0135 (8) | 0.0379 (9) | 0.0199 (9) | −0.0081 (7) | 0.0067 (6) | −0.0118 (7) |
N20 | 0.0125 (9) | 0.0177 (9) | 0.0181 (10) | −0.0029 (7) | 0.0023 (7) | −0.0029 (7) |
N10 | 0.0156 (9) | 0.0200 (9) | 0.0168 (10) | −0.0010 (7) | 0.0063 (8) | −0.0021 (7) |
N21 | 0.0133 (9) | 0.0172 (9) | 0.0217 (10) | −0.0030 (7) | 0.0022 (7) | −0.0021 (7) |
N11 | 0.0150 (9) | 0.0240 (9) | 0.0166 (10) | 0.0002 (7) | 0.0068 (8) | −0.0021 (8) |
C20 | 0.0142 (10) | 0.0174 (10) | 0.0146 (11) | −0.0015 (8) | 0.0014 (9) | −0.0008 (8) |
C21 | 0.0124 (10) | 0.0134 (10) | 0.0184 (11) | 0.0005 (8) | 0.0010 (9) | 0.0019 (8) |
C10 | 0.0144 (10) | 0.0163 (10) | 0.0129 (11) | 0.0013 (8) | 0.0018 (8) | 0.0019 (8) |
C5 | 0.0124 (10) | 0.0177 (10) | 0.0165 (11) | −0.0032 (8) | 0.0010 (8) | −0.0025 (8) |
C2 | 0.0141 (10) | 0.0204 (11) | 0.0114 (11) | 0.0029 (8) | 0.0046 (8) | −0.0012 (8) |
C11 | 0.0156 (10) | 0.0199 (10) | 0.0141 (11) | 0.0012 (9) | 0.0022 (8) | 0.0026 (9) |
C4 | 0.0173 (11) | 0.0275 (12) | 0.0232 (13) | −0.0066 (9) | 0.0036 (10) | −0.0097 (10) |
C12 | 0.0134 (11) | 0.0320 (12) | 0.0224 (12) | 0.0028 (9) | 0.0078 (9) | −0.0027 (10) |
C14 | 0.0230 (12) | 0.0251 (12) | 0.0222 (13) | 0.0030 (10) | 0.0084 (10) | −0.0045 (9) |
C3 | 0.0201 (11) | 0.0279 (12) | 0.0189 (12) | −0.0038 (9) | 0.0079 (10) | −0.0092 (9) |
C22 | 0.0142 (11) | 0.0241 (12) | 0.0331 (14) | −0.0086 (9) | 0.0044 (10) | −0.0022 (10) |
C30 | 0.0273 (13) | 0.0233 (12) | 0.0222 (13) | 0.0032 (10) | 0.0028 (10) | 0.0042 (9) |
C24 | 0.0221 (12) | 0.0257 (12) | 0.0215 (12) | −0.0086 (10) | 0.0013 (10) | −0.0080 (9) |
C23 | 0.0313 (14) | 0.0234 (13) | 0.0458 (17) | −0.0043 (11) | 0.0165 (12) | 0.0046 (11) |
C15 | 0.0300 (14) | 0.0382 (15) | 0.0303 (15) | −0.0026 (11) | −0.0004 (11) | −0.0064 (11) |
C13 | 0.0251 (13) | 0.0474 (16) | 0.0303 (15) | −0.0067 (12) | 0.0108 (11) | 0.0089 (12) |
C25 | 0.0389 (15) | 0.0242 (13) | 0.0392 (16) | 0.0012 (11) | 0.0106 (13) | −0.0070 (11) |
Cl2B | 0.056 (4) | 0.043 (2) | 0.027 (3) | −0.021 (3) | −0.016 (3) | 0.0175 (18) |
Cu1—S20i | 2.2612 (6) | C12—H12B | 0.9900 |
Cu1—S10 | 2.2624 (6) | C12—C13 | 1.521 (3) |
Cu1—O20i | 1.9431 (14) | C14—H14A | 0.9900 |
Cu1—O10 | 1.9406 (15) | C14—H14B | 0.9900 |
S20—C21 | 1.746 (2) | C14—C15 | 1.511 (3) |
S10—C11 | 1.743 (2) | C3—H3 | 0.9500 |
Cl1—C30 | 1.781 (2) | C22—H22A | 0.9900 |
Cl2A—C30 | 1.773 (8) | C22—H22B | 0.9900 |
O1—C5 | 1.366 (2) | C22—C23 | 1.521 (3) |
O1—C2 | 1.369 (2) | C30—H30A | 0.9900 |
O20—C20 | 1.265 (2) | C30—H30B | 0.9900 |
O10—C10 | 1.265 (2) | C30—H30C | 0.9900 |
N20—C20 | 1.326 (3) | C30—H30D | 0.9900 |
N20—C21 | 1.347 (3) | C30—Cl2B | 1.766 (13) |
N10—C10 | 1.321 (3) | C24—H24A | 0.9900 |
N10—C11 | 1.357 (3) | C24—H24B | 0.9900 |
N21—C21 | 1.341 (3) | C24—C25 | 1.523 (3) |
N21—C22 | 1.472 (3) | C23—H23A | 0.9800 |
N21—C24 | 1.484 (3) | C23—H23B | 0.9800 |
N11—C11 | 1.336 (3) | C23—H23C | 0.9800 |
N11—C12 | 1.479 (3) | C15—H15A | 0.9800 |
N11—C14 | 1.481 (3) | C15—H15B | 0.9800 |
C20—C5 | 1.475 (3) | C15—H15C | 0.9800 |
C10—C2 | 1.471 (3) | C13—H13A | 0.9800 |
C5—C4 | 1.357 (3) | C13—H13B | 0.9800 |
C2—C3 | 1.363 (3) | C13—H13C | 0.9800 |
C4—H4 | 0.9500 | C25—H25A | 0.9800 |
C4—C3 | 1.417 (3) | C25—H25B | 0.9800 |
C12—H12A | 0.9900 | C25—H25C | 0.9800 |
S20i—Cu1—S10 | 90.35 (2) | C2—C3—C4 | 106.24 (19) |
O20i—Cu1—S20i | 94.14 (4) | C2—C3—H3 | 126.9 |
O20i—Cu1—S10 | 168.29 (5) | C4—C3—H3 | 126.9 |
O10—Cu1—S20i | 175.25 (5) | N21—C22—H22A | 109.1 |
O10—Cu1—S10 | 92.12 (5) | N21—C22—H22B | 109.1 |
O10—Cu1—O20i | 82.68 (6) | N21—C22—C23 | 112.59 (19) |
C21—S20—Cu1i | 107.20 (7) | H22A—C22—H22B | 107.8 |
C11—S10—Cu1 | 105.37 (7) | C23—C22—H22A | 109.1 |
C5—O1—C2 | 106.35 (15) | C23—C22—H22B | 109.1 |
C20—O20—Cu1i | 130.70 (13) | Cl1—C30—H30A | 109.1 |
C10—O10—Cu1 | 130.91 (13) | Cl1—C30—H30B | 109.1 |
C20—N20—C21 | 125.52 (18) | Cl1—C30—H30C | 110.0 |
C10—N10—C11 | 124.50 (18) | Cl1—C30—H30D | 110.0 |
C21—N21—C22 | 122.38 (18) | Cl2A—C30—Cl1 | 112.4 (4) |
C21—N21—C24 | 120.11 (17) | Cl2A—C30—H30A | 109.1 |
C22—N21—C24 | 117.34 (17) | Cl2A—C30—H30B | 109.1 |
C11—N11—C12 | 122.41 (18) | H30A—C30—H30B | 107.9 |
C11—N11—C14 | 120.30 (17) | H30C—C30—H30D | 108.3 |
C12—N11—C14 | 117.29 (17) | Cl2B—C30—Cl1 | 108.7 (5) |
O20—C20—N20 | 131.98 (19) | Cl2B—C30—H30C | 110.0 |
O20—C20—C5 | 116.66 (17) | Cl2B—C30—H30D | 110.0 |
N20—C20—C5 | 111.33 (18) | N21—C24—H24A | 109.0 |
N20—C21—S20 | 128.46 (16) | N21—C24—H24B | 109.0 |
N21—C21—S20 | 117.42 (15) | N21—C24—C25 | 112.76 (19) |
N21—C21—N20 | 114.12 (18) | H24A—C24—H24B | 107.8 |
O10—C10—N10 | 131.22 (19) | C25—C24—H24A | 109.0 |
O10—C10—C2 | 116.03 (17) | C25—C24—H24B | 109.0 |
N10—C10—C2 | 112.72 (18) | C22—C23—H23A | 109.5 |
O1—C5—C20 | 117.82 (17) | C22—C23—H23B | 109.5 |
C4—C5—O1 | 110.36 (17) | C22—C23—H23C | 109.5 |
C4—C5—C20 | 131.58 (19) | H23A—C23—H23B | 109.5 |
O1—C2—C10 | 116.58 (17) | H23A—C23—H23C | 109.5 |
C3—C2—O1 | 110.28 (18) | H23B—C23—H23C | 109.5 |
C3—C2—C10 | 133.07 (19) | C14—C15—H15A | 109.5 |
N10—C11—S10 | 127.42 (16) | C14—C15—H15B | 109.5 |
N11—C11—S10 | 118.44 (15) | C14—C15—H15C | 109.5 |
N11—C11—N10 | 114.05 (18) | H15A—C15—H15B | 109.5 |
C5—C4—H4 | 126.6 | H15A—C15—H15C | 109.5 |
C5—C4—C3 | 106.76 (19) | H15B—C15—H15C | 109.5 |
C3—C4—H4 | 126.6 | C12—C13—H13A | 109.5 |
N11—C12—H12A | 108.9 | C12—C13—H13B | 109.5 |
N11—C12—H12B | 108.9 | C12—C13—H13C | 109.5 |
N11—C12—C13 | 113.50 (19) | H13A—C13—H13B | 109.5 |
H12A—C12—H12B | 107.7 | H13A—C13—H13C | 109.5 |
C13—C12—H12A | 108.9 | H13B—C13—H13C | 109.5 |
C13—C12—H12B | 108.9 | C24—C25—H25A | 109.5 |
N11—C14—H14A | 108.9 | C24—C25—H25B | 109.5 |
N11—C14—H14B | 108.9 | C24—C25—H25C | 109.5 |
N11—C14—C15 | 113.34 (19) | H25A—C25—H25B | 109.5 |
H14A—C14—H14B | 107.7 | H25A—C25—H25C | 109.5 |
C15—C14—H14A | 108.9 | H25B—C25—H25C | 109.5 |
C15—C14—H14B | 108.9 | ||
Cu1i—S20—C21—N20 | −14.0 (2) | C10—N10—C11—S10 | −11.0 (3) |
Cu1i—S20—C21—N21 | 166.21 (14) | C10—N10—C11—N11 | 172.43 (19) |
Cu1—S10—C11—N10 | 29.0 (2) | C10—C2—C3—C4 | 176.6 (2) |
Cu1—S10—C11—N11 | −154.56 (15) | C5—O1—C2—C10 | −177.26 (17) |
Cu1i—O20—C20—N20 | 5.2 (4) | C5—O1—C2—C3 | 0.3 (2) |
Cu1i—O20—C20—C5 | −172.26 (14) | C5—C4—C3—C2 | 0.4 (3) |
Cu1—O10—C10—N10 | −5.1 (3) | C2—O1—C5—C20 | 175.01 (18) |
Cu1—O10—C10—C2 | 172.61 (14) | C2—O1—C5—C4 | 0.0 (2) |
O1—C5—C4—C3 | −0.2 (3) | C11—N10—C10—O10 | −6.7 (4) |
O1—C2—C3—C4 | −0.4 (3) | C11—N10—C10—C2 | 175.57 (19) |
O20—C20—C5—O1 | 0.3 (3) | C11—N11—C12—C13 | −88.5 (3) |
O20—C20—C5—C4 | 174.1 (2) | C11—N11—C14—C15 | 83.8 (2) |
O10—C10—C2—O1 | 5.2 (3) | C12—N11—C11—S10 | 2.4 (3) |
O10—C10—C2—C3 | −171.6 (2) | C12—N11—C11—N10 | 179.34 (18) |
N20—C20—C5—O1 | −177.58 (17) | C12—N11—C14—C15 | −95.6 (2) |
N20—C20—C5—C4 | −3.8 (3) | C14—N11—C11—S10 | −176.94 (15) |
N10—C10—C2—O1 | −176.69 (17) | C14—N11—C11—N10 | 0.0 (3) |
N10—C10—C2—C3 | 6.5 (3) | C14—N11—C12—C13 | 90.9 (2) |
C20—N20—C21—S20 | 6.1 (3) | C22—N21—C21—S20 | −1.7 (3) |
C20—N20—C21—N21 | −174.10 (19) | C22—N21—C21—N20 | 178.48 (18) |
C20—C5—C4—C3 | −174.3 (2) | C22—N21—C24—C25 | −98.7 (2) |
C21—N20—C20—O20 | 0.9 (4) | C24—N21—C21—S20 | −176.80 (15) |
C21—N20—C20—C5 | 178.46 (19) | C24—N21—C21—N20 | 3.4 (3) |
C21—N21—C22—C23 | −82.9 (2) | C24—N21—C22—C23 | 92.4 (2) |
C21—N21—C24—C25 | 76.7 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C30—H30A···O10 | 0.99 | 2.41 | 3.388 (3) | 171 |
C30—H30B···O10i | 0.99 | 2.45 | 3.428 (3) | 171 |
C14—H14B···Cl1ii | 0.99 | 2.83 | 3.627 (2) | 138 |
C4—H4···Cl2Aiii | 0.95 | 2.68 | 3.506 (8) | 145 |
C4—H4···Cl2Biii | 0.95 | 2.60 | 3.446 (12) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z−1/2. |
Funding information
Funding for this research was provided by: The Asia Research Center at Vietnam National University, Hanoi (grant No. CA.22.06A to Chien Thang Pham).
References
Barnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019. Web of Science CSD CrossRef Google Scholar
Bensch, W. & Schuster, M. (1995). Z. Kristallogr. Cryst. Mater. 210, 68–68. CSD CrossRef CAS Web of Science Google Scholar
Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519–529. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fitzl, G., Beyer, L., Sieler, J., Richter, R., Kaiser, J. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 433, 237–241. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jesudas, J. J., Pham, C. T., Hagenbach, A., Abram, U. & Nguyen, H. H. (2020). Inorg. Chem. 59, 386–395. Web of Science CSD CrossRef CAS PubMed Google Scholar
Knuuttila, P., Knuuttila, H., Hennig, H. & Beyer, L. (1982). Acta Chem. Scand. A, 36, 541–545. CSD CrossRef Web of Science Google Scholar
Koch, K. R., Hallale, O., Bourne, S. A., Miller, J. & Bacsa, J. (2001). J. Mol. Struct. 561, 185–196. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Le, C. D., Pham, C. T. & Nguyen, H. H. (2019). Polyhedron, 173, 114143–114147. Web of Science CSD CrossRef CAS Google Scholar
Nath, B. D., Takaishi, K. & Ema, T. (2020). Catal. Sci. Technol. 10, 12–34. Web of Science CrossRef CAS Google Scholar
Nguyen, H. H. & Abram, U. (2007). Inorg. Chem. 46, 5310–5319. Web of Science CrossRef PubMed Google Scholar
Nguyen, H. H., Jegathesh, J. J., Takiden, A., Hauenstein, D., Pham, C. T., Le, C. D. & Abram, U. (2016). Dalton Trans. 45, 10771–10779. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pham, C. T., Barnard, I., Nguyen, H. H., Abram, U. & Koch, K. R. (2020). Inorg. Chem. 59, 1183–1192. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pham, C. T., Nguyen, H. H., Hagenbach, A. & Abram, U. (2017). Inorg. Chem. 56, 11406–11416. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pham, C. T., Nguyen, T. H., Matsumoto, K. & Nguyen, H. H. (2019). Eur. J. Inorg. Chem. 2019, 4142–4146. Web of Science CSD CrossRef CAS Google Scholar
Pham, C. T., Pham, T. T., Nguyen, V. H., Trieu, T. N. & Nguyen, H. H. (2021). Z. Anorg. Allg. Chem. 647, 1383–1391. Web of Science CrossRef ICSD Google Scholar
Rodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867–874. Web of Science CSD CrossRef CAS Google Scholar
Schwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155–161. Web of Science CSD CrossRef CAS Google Scholar
Schwade, V. D., Teixeira, E. I., dos Santos, F. A., Bortolotto, T., Tirloni, B. & Abram, U. (2020). New J. Chem. 44, 19598–19611. Web of Science CSD CrossRef CAS Google Scholar
Selvakumaran, N., Bhuvanesh, N. S. P. & Karvembu, R. (2014). Dalton Trans. 43, 16395–16410. Web of Science CSD CrossRef CAS PubMed Google Scholar
Selvakumaran, N., Sandhiya, L., Bhuvanesh, N. S. P., Senthilkumar, K. & Karvembu, R. (2016). New J. Chem. 40, 5401–5413. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167–174. CSD CrossRef CAS Web of Science Google Scholar
Teixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). J. Mol. Struct. 1210, 127999. Web of Science CSD CrossRef Google Scholar
Wu, S.-Y., Zhao, X.-Y., Li, H.-P., Yang, Y. & Roesky, H. W. (2015). Z. Anorg. Allg. Chem. 641, 883–889. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.