

research communications

Synthesis and
of 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentaleneaGraduate School of Science and Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, bDepartment of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, cDepartment of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, and dResearch Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: orita@ous.ac.jp
5,10-Bis(phenylsulfonyl)tetrahydrodibenzopentalene, C28H22O4S2, 1, was successfully synthesized via the photocatalyst-promoted hydrogenative transannulation of disulfonylcyclooctatetraene, 2, using perylene as the photocatalyst in the presence of (i-Pr)2NEt under UV-light irradiation (398 nm, 30 W). In this reaction, the cyclooctatetraene moiety of 2 underwent hydrogenative transannulation, yielding 1. Single-crystal X-ray analysis revealed that both enantiomers of 1 are arranged alternately along the a axis of the The structure features a wide V-shaped motif consisting of 6–5–5–6 fused rings, with a dihedral angle of approximately 97.2° between the planes of the terminal phenylene rings. Additionally, a pair of phenylsulfonyl groups were observed at the exo positions relative to the V-shaped array.
Keywords: crystal structure; transannulation; ethenyl sulfone; hydrogenation; tetrahydrodibenzopentalene.
CCDC reference: 2243325
1. Chemical context
et al., 2023) and anthrylene nano tweezers (Marquis et al., 2009
) have been utilized to fabricate anthracene derivative–SWCNT composites. In both cases, multi-adsorption effects on the SWCNT surface play a pivotal role; in the former, co-operative adsorption of ferrocenoyl and acetylenic anthrylene moieties is essential, while in the latter, dual adsorption of V-shaped anthrylenes drives composite formation. The nano tweezers consist of a pair of anthrylenes connected by methylene hinges. Inspired by this, we envisioned the synthesis of a new class of nano tweezer, i.e. 1 (see Scheme), featuring a pair of aromatic rings connected by a five-membered ring-fused hinge.
To synthesize compound 1, we employed our photocatalyst-assisted hydrogenative reduction protocol on 5,11-bis(phenylsulfonyl)dibenzo[a,e]cyclooctatetraene (2), using a perylene photocatalyst under UV/visible-light irradiation (Watanabe et al., 2020, 2021
, 2024
) (Fig. 1
). In this reaction, we anticipated that the in-situ-formed 2.− would undergo transannulation to yield 1. Notably, we have previously reported the anionic transannulation of 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctatetraene, which afforded the corresponding 6–5–5–6 cyclic product dibenzopentalene (Xu et al., 2014
). The photocatalyst-promoted hydrogenative transannulation of 2 proceeded successfully, yielding the nano tweezer 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentalene (1). In this reaction, the cyclooctatetraene moiety of 2 was transformed into the desired five-membered ring-fused hinge.
![]() | Figure 1 Synthetic route for the preparation of 1. |
This study presents the synthesis of 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentalene (1), a five-membered ring-fused nano-tweezer compound, along with its single-crystal X-ray structure and a plausible mechanism for the perylene/UV-light-promoted hydrogenative transannulation of 2.
2. Structural commentary
The core structure of 1 is a fused 6–5–5–6-membered ring system, in which two phenylene rings are connected by a five-membered-ring hinge array (Fig. 2). The dihedral angle between the planes of the terminal phenylene rings is ca 97.2°. Phenylsulfonyl groups are located at the outside of the V-shaped fused-ring motif, leaning over the five-membered rings. The C1–C5/C16 (C8–C12/C13) phenylene ring shows identical aromatic bond lengths (1.38–1.40 Å). In the hinge ring C6–C8/C13/C14, the C6—C7 and C6—C14 single bonds are somewhat longer than the C7—C8 and C13—C14 bonds, respectively: 1.547 (2) and 1.563 (2) Å versus 1.508 (3) and 1.514 (2) Å. The bond angles around the Csp2 atoms in the hinge ring [C7—C8—C13 = 110.70 (15)° and C8—C13—C14 = 111.38 (15)°] are rather larger than those around the Csp3 atoms [C6—C7—C8 = 103.59 (14)°, C7—C6—C14 = 106.00 (14)° and C6—C14—C13 = 102.05 (14)°].Similar features are observed in the other hinge ring C14–C16/C5/C6.
![]() | Figure 2 The molecular structure of (E,E)-1, with displacement ellipsoids drawn at the 50% probability level. |
3. Supramolecular features
In the crystal, 1 forms a column diagonally in the a-axis direction with a molecular distance of 8.84 Å (Fig. 3). In the columnar structure of 1, a pair of [(S)-C7, (S)-C15] and [(R)-C7, (R)-C15] enantiomers are arranged alternately in the same direction, with the mid-points of the C6—C14 bonds aligned. The shortest intermolecular contact is between the C8–C13 phenylene ring and the C23′–C28′ phenylsulfonyl ring. The intermolecular centroid–centroid distance between the two benzene rings is 3.86 Å, and this value is somewhat longer than conventional π–π stacking (Banerjee et al., 2019
).
![]() | Figure 3 A partial packing plot of 1, showing the linear alternating alignment of (S,S)- and (R,R)- isomers and the shortest intermolecular contacts (blue lines). |
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023, with updates to March 2024; Groom et al., 2016) indicates that 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentalene, 1, is unprecedented. However, a related 5,10-bis(sulfonimidoylmethyl)tetrahydrodibenzopentalene derivative has been reported (CSD refcode ATUHIJ; Hermann et al., 2021
). The crystal structures of analogous 6–5–5–6 fused rings with carbon substituents at both the 5 and 10 positions are common, with more than 20 examples available, including the 5,10-diphenyl derivative (e.g. MAMYEI; Wössner et al., 2022
).
5. Synthesis and crystallization
5,10-Bis(phenylsulfonyl)tetrahydrodibenzopentalene, 1, was successfully synthesized via photocatalyst perylene-promoted hydrogenative transannulation of disulfonylcyclooctatetraene, 2, in the presence of (i-Pr)2NEt under irradiation of UV light (398 nm, 30 W). Starting compound 2 was synthesized from the cyclic dimerization of 2-formylphenylmethyl phenyl sulfone according to the reported procedure of Xu et al. (2014).
To a round-bottomed flask charged with a magnetic stirrer bar were added 2 (121 mg, 0.25 mmol), perylene (3.15 mg, 12.5 µmol), (i-Pr)2NEt (0.35 ml, 2.0 mmol) and MeCN (2.5 ml). The flask was placed in a glass water bath surrounded by UV LED strip lighting, and the mixture was irradiated with UV light for 9 h. During the photoreaction, the temperature of the bath was kept at 50–55 °C because of heat radiation from the photoreactor. After completion of the reaction, the mixture was evaporated and the crude product was purified by flash on silica gel (hexane/EtOAc, 7:3 v/v) to afford the desired product 1 (yield: 104 mg, 0.215 mmol, 86%).
Analysis for 1: white powder; m.p. 237–238 °C; 1H NMR (CDCl3, 400 MHz, room temperature): δ 3.67 (s, 2H), 4.62 (s, 2H), 7.15 (d, 2H, J = 7.8 Hz), 7.23–7.27 (m, 2H), 7.33 (t, 2H, J = 7.4 Hz), 7.40 (d, 2H, J = 7.8 Hz), 7.44–7.49 (m, 8H), 7.66–7.70 (m, 2H); 13C{1H} NMR (CDCl3, 101 MHz, room temperature): δ 50.4, 77.1, 124.4, 127.8, 128.5, 129.0, 129.4, 130.5, 133.5, 134.2, 136.6, 145.0. HRMS (MALDI–TOF) m/z [M + Na]+ calculated for C28H22NaO4S2 509.0857; found 509.0807.
A crystal of 1 suitable for X-ray diffraction was obtained from the slow evaporation of an AcOEt solution.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and 0.98 Å, Uiso(H) = 1.2Ueq(C) for CH.
|
7. Reaction mechanism
7.1. Mechanistic insights into hydrogenative transannulation via DFT calculations
Density functional theory (DFT) calculations [B3LYP/6-31+G(d) with the IEFPCM solvent model in MeCN] were performed to elucidate the mechanism of hydrogenative transannulation. The results suggest that the reaction proceeds primarily via the 2.− through an anion radical-mediated mechanism (Fig. 4, route 1).
![]() | Figure 4 Mechanistic pathways for the transformation of 2 to 1. |
The process begins with ). The excited-state perylene accepts an electron from the sacrificial reductant (i-Pr)2NEt, generating the (perylene).−. This highly reductive species transfers an electron to 2, forming the 2.−, which subsequently undergoes transannulation to yield 1. This occurs via consecutive double protonation and one-electron reduction of the intermediate 3.− (Fig. 4
, route 1). Although an alternative pathway involving the formation of the (4 + PhSO2).− via S—C bond elongation (route 1′) is also possible, its relatively high activation energy renders it less favourable.
![]() | Figure 5 Mechanism of the generation of the anion radical 2.− by a photoexcited perylene photocatalyst. |
Another proposed pathway involves the radical intermediate 5., generated by protonation of 2.−. This radical could theoretically lead to 1 via the intermediate 6. through radical transannulation, protonation and single-electron reduction (route 2). However, DFT calculations indicate that rapid elimination of PhSO2. from 5. is more likely, yielding the elimination product 7. Similarly, the anion 5−, another potential precursor to 6−, likely undergoes rapid elimination of PhSO2−, also forming 7.
Supporting information
CCDC reference: 2243325
https://doi.org/10.1107/S205698902500060X/ox2012sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902500060X/ox2012Isup2.hkl
C28H22O4S2 | Dx = 1.408 Mg m−3 |
Mr = 486.57 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 35175 reflections |
a = 17.2598 (3) Å | θ = 2.3–31.6° |
b = 10.0898 (1) Å | µ = 0.27 mm−1 |
c = 13.1810 (2) Å | T = 293 K |
V = 2295.44 (6) Å3 | Plate, yellow |
Z = 4 | 0.15 × 0.1 × 0.05 mm |
F(000) = 1016 |
Rigaku VariMax Saturn724 diffractometer | 7150 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 6863 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 31.5°, θmin = 2.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) | h = −24→25 |
Tmin = 0.830, Tmax = 1.000 | k = −14→14 |
42446 measured reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1545P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.46 e Å−3 |
7150 reflections | Δρmin = −0.39 e Å−3 |
307 parameters | Absolute structure: Flack x determined using 3042 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.048 (15) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.65385 (3) | 0.57943 (4) | 0.64924 (4) | 0.01544 (10) | |
S2 | 0.63855 (3) | 0.13233 (5) | 0.35409 (3) | 0.01764 (10) | |
O1 | 0.69190 (9) | 0.70159 (14) | 0.67785 (11) | 0.0215 (3) | |
O2 | 0.60389 (9) | 0.51442 (16) | 0.72176 (12) | 0.0228 (3) | |
O3 | 0.60283 (9) | 0.21632 (17) | 0.27880 (12) | 0.0243 (3) | |
O4 | 0.66469 (9) | 0.00191 (15) | 0.32373 (13) | 0.0242 (3) | |
C1 | 0.80081 (11) | 0.02918 (18) | 0.49055 (17) | 0.0204 (4) | |
H1 | 0.810443 | −0.015390 | 0.430098 | 0.024* | |
C2 | 0.82842 (13) | −0.01963 (19) | 0.58237 (19) | 0.0236 (4) | |
H2 | 0.857029 | −0.097732 | 0.583286 | 0.028* | |
C3 | 0.81388 (12) | 0.0466 (2) | 0.67250 (17) | 0.0227 (4) | |
H3 | 0.832998 | 0.012462 | 0.733082 | 0.027* | |
C4 | 0.77070 (11) | 0.16425 (19) | 0.67352 (15) | 0.0187 (4) | |
H4 | 0.760981 | 0.208656 | 0.734024 | 0.022* | |
C5 | 0.74280 (10) | 0.21293 (17) | 0.58196 (14) | 0.0145 (3) | |
C6 | 0.69361 (10) | 0.33572 (18) | 0.56404 (13) | 0.0135 (3) | |
H6 | 0.639491 | 0.321598 | 0.583770 | 0.016* | |
C7 | 0.72795 (10) | 0.46170 (18) | 0.61359 (14) | 0.0134 (3) | |
H7 | 0.757931 | 0.436692 | 0.673761 | 0.016* | |
C8 | 0.78194 (10) | 0.51514 (17) | 0.53349 (14) | 0.0136 (3) | |
C9 | 0.83936 (11) | 0.61022 (19) | 0.54509 (15) | 0.0172 (3) | |
H9 | 0.847046 | 0.652213 | 0.607083 | 0.021* | |
C10 | 0.88527 (12) | 0.64112 (19) | 0.46118 (16) | 0.0205 (4) | |
H10 | 0.923416 | 0.705802 | 0.466837 | 0.025* | |
C11 | 0.87461 (12) | 0.57648 (19) | 0.36968 (16) | 0.0211 (4) | |
H11 | 0.906375 | 0.597215 | 0.314948 | 0.025* | |
C12 | 0.81676 (11) | 0.48033 (18) | 0.35813 (15) | 0.0172 (3) | |
H12 | 0.810090 | 0.436702 | 0.296592 | 0.021* | |
C13 | 0.76950 (10) | 0.45154 (17) | 0.44072 (13) | 0.0131 (3) | |
C14 | 0.70237 (10) | 0.35534 (17) | 0.44694 (13) | 0.0133 (3) | |
H14 | 0.655202 | 0.391959 | 0.416477 | 0.016* | |
C15 | 0.72236 (10) | 0.21799 (17) | 0.40319 (14) | 0.0149 (3) | |
H15 | 0.760873 | 0.227967 | 0.349097 | 0.018* | |
C16 | 0.75839 (10) | 0.14641 (18) | 0.49152 (15) | 0.0156 (3) | |
C17 | 0.60164 (10) | 0.60785 (18) | 0.53663 (14) | 0.0153 (3) | |
C18 | 0.53457 (11) | 0.53499 (19) | 0.51733 (15) | 0.0181 (3) | |
H18 | 0.514311 | 0.478352 | 0.566271 | 0.022* | |
C19 | 0.49848 (11) | 0.5487 (2) | 0.42331 (17) | 0.0203 (4) | |
H19 | 0.454400 | 0.499324 | 0.408476 | 0.024* | |
C20 | 0.52824 (11) | 0.63586 (19) | 0.35179 (17) | 0.0211 (4) | |
H20 | 0.504127 | 0.644075 | 0.289013 | 0.025* | |
C21 | 0.59374 (12) | 0.71103 (19) | 0.37309 (16) | 0.0213 (4) | |
H21 | 0.612296 | 0.771159 | 0.325449 | 0.026* | |
C22 | 0.63150 (11) | 0.69642 (18) | 0.46544 (15) | 0.0180 (3) | |
H22 | 0.676009 | 0.744952 | 0.479594 | 0.022* | |
C23 | 0.57343 (11) | 0.11531 (19) | 0.45694 (15) | 0.0181 (4) | |
C24 | 0.58859 (11) | 0.02218 (19) | 0.53314 (16) | 0.0209 (4) | |
H24 | 0.632003 | −0.032214 | 0.529645 | 0.025* | |
C25 | 0.53722 (13) | 0.0128 (2) | 0.61426 (17) | 0.0257 (4) | |
H25 | 0.545787 | −0.049515 | 0.665012 | 0.031* | |
C26 | 0.47331 (13) | 0.0959 (2) | 0.61982 (19) | 0.0279 (5) | |
H26 | 0.439990 | 0.090482 | 0.675119 | 0.033* | |
C27 | 0.45880 (12) | 0.1873 (2) | 0.5432 (2) | 0.0272 (4) | |
H27 | 0.415572 | 0.242099 | 0.547105 | 0.033* | |
C28 | 0.50857 (11) | 0.1971 (2) | 0.46074 (17) | 0.0228 (4) | |
H28 | 0.498734 | 0.257398 | 0.408924 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01851 (18) | 0.01647 (19) | 0.01135 (19) | 0.00111 (15) | 0.00189 (16) | −0.00361 (16) |
S2 | 0.01760 (18) | 0.0206 (2) | 0.0147 (2) | −0.00383 (15) | 0.00205 (17) | −0.00729 (18) |
O1 | 0.0270 (7) | 0.0187 (6) | 0.0190 (7) | 0.0009 (5) | −0.0016 (6) | −0.0079 (5) |
O2 | 0.0245 (7) | 0.0286 (7) | 0.0152 (7) | 0.0023 (6) | 0.0086 (5) | 0.0005 (6) |
O3 | 0.0242 (7) | 0.0331 (8) | 0.0156 (7) | −0.0028 (6) | −0.0030 (5) | −0.0040 (6) |
O4 | 0.0249 (7) | 0.0230 (7) | 0.0248 (8) | −0.0052 (6) | 0.0073 (6) | −0.0135 (6) |
C1 | 0.0180 (8) | 0.0162 (8) | 0.0270 (10) | −0.0014 (6) | 0.0045 (7) | −0.0050 (7) |
C2 | 0.0224 (9) | 0.0150 (8) | 0.0334 (11) | 0.0013 (7) | 0.0025 (8) | 0.0015 (8) |
C3 | 0.0241 (9) | 0.0195 (8) | 0.0245 (10) | −0.0002 (7) | −0.0006 (8) | 0.0059 (7) |
C4 | 0.0229 (8) | 0.0173 (8) | 0.0159 (9) | −0.0018 (7) | 0.0019 (7) | 0.0029 (6) |
C5 | 0.0154 (7) | 0.0134 (7) | 0.0148 (8) | −0.0015 (6) | 0.0020 (6) | 0.0002 (6) |
C6 | 0.0147 (7) | 0.0146 (7) | 0.0112 (8) | −0.0007 (6) | 0.0015 (6) | −0.0016 (6) |
C7 | 0.0153 (7) | 0.0143 (7) | 0.0105 (7) | −0.0005 (6) | 0.0002 (6) | −0.0018 (6) |
C8 | 0.0150 (7) | 0.0132 (7) | 0.0125 (8) | 0.0009 (6) | 0.0012 (6) | 0.0000 (6) |
C9 | 0.0207 (8) | 0.0146 (7) | 0.0163 (8) | −0.0025 (6) | 0.0002 (7) | −0.0017 (7) |
C10 | 0.0226 (8) | 0.0168 (8) | 0.0220 (9) | −0.0062 (7) | 0.0030 (7) | 0.0011 (7) |
C11 | 0.0236 (9) | 0.0220 (9) | 0.0177 (9) | −0.0036 (7) | 0.0056 (7) | 0.0033 (7) |
C12 | 0.0218 (8) | 0.0183 (7) | 0.0114 (7) | −0.0007 (6) | 0.0018 (7) | 0.0012 (7) |
C13 | 0.0149 (7) | 0.0129 (7) | 0.0115 (8) | 0.0002 (6) | 0.0005 (6) | −0.0006 (6) |
C14 | 0.0147 (7) | 0.0147 (7) | 0.0106 (7) | −0.0006 (6) | 0.0000 (6) | −0.0028 (6) |
C15 | 0.0157 (7) | 0.0162 (8) | 0.0128 (8) | −0.0027 (6) | 0.0020 (6) | −0.0042 (6) |
C16 | 0.0140 (7) | 0.0149 (7) | 0.0179 (9) | −0.0018 (6) | 0.0017 (6) | −0.0023 (6) |
C17 | 0.0158 (7) | 0.0152 (7) | 0.0150 (8) | 0.0023 (6) | 0.0000 (6) | −0.0029 (6) |
C18 | 0.0167 (8) | 0.0180 (8) | 0.0194 (9) | −0.0002 (6) | 0.0036 (7) | −0.0009 (7) |
C19 | 0.0166 (8) | 0.0200 (8) | 0.0243 (10) | 0.0013 (7) | −0.0022 (7) | −0.0030 (7) |
C20 | 0.0211 (8) | 0.0229 (9) | 0.0193 (9) | 0.0056 (7) | −0.0028 (8) | −0.0006 (7) |
C21 | 0.0249 (9) | 0.0188 (8) | 0.0202 (9) | 0.0010 (7) | 0.0012 (7) | 0.0034 (7) |
C22 | 0.0189 (8) | 0.0138 (7) | 0.0212 (9) | 0.0004 (6) | 0.0011 (7) | −0.0008 (7) |
C23 | 0.0164 (8) | 0.0199 (8) | 0.0181 (9) | −0.0052 (6) | 0.0037 (7) | −0.0080 (7) |
C24 | 0.0198 (8) | 0.0201 (8) | 0.0227 (10) | −0.0032 (7) | 0.0031 (7) | −0.0071 (7) |
C25 | 0.0282 (10) | 0.0283 (10) | 0.0205 (9) | −0.0095 (8) | 0.0044 (8) | −0.0046 (8) |
C26 | 0.0241 (9) | 0.0334 (11) | 0.0262 (10) | −0.0104 (8) | 0.0101 (8) | −0.0128 (9) |
C27 | 0.0187 (8) | 0.0280 (10) | 0.0348 (11) | −0.0027 (7) | 0.0058 (8) | −0.0116 (9) |
C28 | 0.0180 (8) | 0.0216 (8) | 0.0288 (11) | −0.0032 (7) | 0.0007 (8) | −0.0065 (8) |
S1—O1 | 1.4467 (15) | C11—C12 | 1.400 (3) |
S1—O2 | 1.4448 (15) | C12—H12 | 0.9300 |
S1—C7 | 1.8077 (18) | C12—C13 | 1.391 (2) |
S1—C17 | 1.7600 (19) | C13—C14 | 1.514 (2) |
S2—O3 | 1.4433 (17) | C14—H14 | 0.9800 |
S2—O4 | 1.4475 (15) | C14—C15 | 1.540 (2) |
S2—C15 | 1.8051 (18) | C15—H15 | 0.9800 |
S2—C23 | 1.7693 (19) | C15—C16 | 1.505 (3) |
C1—H1 | 0.9300 | C17—C18 | 1.395 (3) |
C1—C2 | 1.391 (3) | C17—C22 | 1.394 (3) |
C1—C16 | 1.391 (3) | C18—H18 | 0.9300 |
C2—H2 | 0.9300 | C18—C19 | 1.394 (3) |
C2—C3 | 1.386 (3) | C19—H19 | 0.9300 |
C3—H3 | 0.9300 | C19—C20 | 1.388 (3) |
C3—C4 | 1.402 (3) | C20—H20 | 0.9300 |
C4—H4 | 0.9300 | C20—C21 | 1.390 (3) |
C4—C5 | 1.389 (3) | C21—H21 | 0.9300 |
C5—C6 | 1.520 (2) | C21—C22 | 1.388 (3) |
C5—C16 | 1.394 (2) | C22—H22 | 0.9300 |
C6—H6 | 0.9800 | C23—C24 | 1.400 (3) |
C6—C7 | 1.547 (2) | C23—C28 | 1.392 (3) |
C6—C14 | 1.563 (2) | C24—H24 | 0.9300 |
C7—H7 | 0.9800 | C24—C25 | 1.392 (3) |
C7—C8 | 1.508 (3) | C25—H25 | 0.9300 |
C8—C9 | 1.388 (2) | C25—C26 | 1.388 (3) |
C8—C13 | 1.398 (2) | C26—H26 | 0.9300 |
C9—H9 | 0.9300 | C26—C27 | 1.391 (4) |
C9—C10 | 1.396 (3) | C27—H27 | 0.9300 |
C10—H10 | 0.9300 | C27—C28 | 1.388 (3) |
C10—C11 | 1.383 (3) | C28—H28 | 0.9300 |
C11—H11 | 0.9300 | ||
O1—S1—C7 | 107.84 (9) | C8—C13—C14 | 111.38 (15) |
O1—S1—C17 | 108.27 (9) | C12—C13—C8 | 119.92 (16) |
O2—S1—O1 | 119.03 (9) | C12—C13—C14 | 128.70 (16) |
O2—S1—C7 | 107.21 (9) | C6—C14—H14 | 111.8 |
O2—S1—C17 | 109.05 (9) | C13—C14—C6 | 102.05 (14) |
C17—S1—C7 | 104.48 (9) | C13—C14—H14 | 111.8 |
O3—S2—O4 | 118.48 (10) | C13—C14—C15 | 112.65 (14) |
O3—S2—C15 | 107.92 (9) | C15—C14—C6 | 106.10 (14) |
O3—S2—C23 | 108.21 (10) | C15—C14—H14 | 111.8 |
O4—S2—C15 | 106.53 (9) | S2—C15—H15 | 109.4 |
O4—S2—C23 | 108.76 (9) | C14—C15—S2 | 112.68 (12) |
C23—S2—C15 | 106.31 (9) | C14—C15—H15 | 109.4 |
C2—C1—H1 | 120.9 | C16—C15—S2 | 112.26 (12) |
C2—C1—C16 | 118.26 (19) | C16—C15—C14 | 103.58 (14) |
C16—C1—H1 | 120.9 | C16—C15—H15 | 109.4 |
C1—C2—H2 | 119.6 | C1—C16—C5 | 121.24 (18) |
C3—C2—C1 | 120.88 (18) | C1—C16—C15 | 128.22 (18) |
C3—C2—H2 | 119.6 | C5—C16—C15 | 110.53 (15) |
C2—C3—H3 | 119.6 | C18—C17—S1 | 119.53 (15) |
C2—C3—C4 | 120.8 (2) | C22—C17—S1 | 118.87 (14) |
C4—C3—H3 | 119.6 | C22—C17—C18 | 121.45 (18) |
C3—C4—H4 | 120.8 | C17—C18—H18 | 120.6 |
C5—C4—C3 | 118.38 (18) | C19—C18—C17 | 118.74 (18) |
C5—C4—H4 | 120.8 | C19—C18—H18 | 120.6 |
C4—C5—C6 | 128.07 (17) | C18—C19—H19 | 120.0 |
C4—C5—C16 | 120.38 (17) | C20—C19—C18 | 120.08 (18) |
C16—C5—C6 | 111.55 (16) | C20—C19—H19 | 120.0 |
C5—C6—H6 | 111.9 | C19—C20—H20 | 119.7 |
C5—C6—C7 | 112.95 (14) | C19—C20—C21 | 120.6 (2) |
C5—C6—C14 | 101.69 (14) | C21—C20—H20 | 119.7 |
C7—C6—H6 | 111.9 | C20—C21—H21 | 120.0 |
C7—C6—C14 | 106.00 (14) | C22—C21—C20 | 120.05 (19) |
C14—C6—H6 | 111.9 | C22—C21—H21 | 120.0 |
S1—C7—H7 | 109.4 | C17—C22—H22 | 120.5 |
C6—C7—S1 | 112.24 (12) | C21—C22—C17 | 118.98 (17) |
C6—C7—H7 | 109.4 | C21—C22—H22 | 120.5 |
C8—C7—S1 | 112.60 (12) | C24—C23—S2 | 119.74 (15) |
C8—C7—C6 | 103.59 (14) | C28—C23—S2 | 118.75 (16) |
C8—C7—H7 | 109.4 | C28—C23—C24 | 121.51 (19) |
C9—C8—C7 | 127.69 (17) | C23—C24—H24 | 120.7 |
C9—C8—C13 | 121.56 (17) | C25—C24—C23 | 118.52 (19) |
C13—C8—C7 | 110.70 (15) | C25—C24—H24 | 120.7 |
C8—C9—H9 | 120.9 | C24—C25—H25 | 119.8 |
C8—C9—C10 | 118.20 (18) | C26—C25—C24 | 120.4 (2) |
C10—C9—H9 | 120.9 | C26—C25—H25 | 119.8 |
C9—C10—H10 | 119.7 | C25—C26—H26 | 119.8 |
C11—C10—C9 | 120.66 (18) | C25—C26—C27 | 120.4 (2) |
C11—C10—H10 | 119.7 | C27—C26—H26 | 119.8 |
C10—C11—H11 | 119.5 | C26—C27—H27 | 119.9 |
C10—C11—C12 | 121.08 (19) | C28—C27—C26 | 120.3 (2) |
C12—C11—H11 | 119.5 | C28—C27—H27 | 119.9 |
C11—C12—H12 | 120.7 | C23—C28—H28 | 120.5 |
C13—C12—C11 | 118.53 (18) | C27—C28—C23 | 118.9 (2) |
C13—C12—H12 | 120.7 | C27—C28—H28 | 120.5 |
S1—C7—C8—C9 | 73.1 (2) | C7—S1—C17—C22 | −80.77 (16) |
S1—C7—C8—C13 | −109.25 (15) | C7—C6—C14—C13 | 24.61 (17) |
S1—C17—C18—C19 | −173.37 (14) | C7—C6—C14—C15 | 142.74 (13) |
S1—C17—C22—C21 | 174.87 (15) | C7—C8—C9—C10 | 177.19 (18) |
S2—C15—C16—C1 | 72.1 (2) | C7—C8—C13—C12 | −175.93 (16) |
S2—C15—C16—C5 | −106.73 (15) | C7—C8—C13—C14 | 3.8 (2) |
S2—C23—C24—C25 | 178.68 (15) | C8—C9—C10—C11 | −1.3 (3) |
S2—C23—C28—C27 | −177.74 (15) | C8—C13—C14—C6 | −17.84 (18) |
O1—S1—C7—C6 | −170.12 (12) | C8—C13—C14—C15 | −131.19 (16) |
O1—S1—C7—C8 | −53.69 (15) | C9—C8—C13—C12 | 1.9 (3) |
O1—S1—C17—C18 | −150.48 (15) | C9—C8—C13—C14 | −178.38 (16) |
O1—S1—C17—C22 | 33.97 (17) | C9—C10—C11—C12 | 1.2 (3) |
O2—S1—C7—C6 | 60.58 (15) | C10—C11—C12—C13 | 0.5 (3) |
O2—S1—C7—C8 | 177.01 (13) | C11—C12—C13—C8 | −2.0 (3) |
O2—S1—C17—C18 | −19.58 (17) | C11—C12—C13—C14 | 178.35 (18) |
O2—S1—C17—C22 | 164.87 (14) | C12—C13—C14—C6 | 161.85 (18) |
O3—S2—C15—C14 | 56.45 (15) | C12—C13—C14—C15 | 48.5 (2) |
O3—S2—C15—C16 | 172.94 (12) | C13—C8—C9—C10 | −0.2 (3) |
O3—S2—C23—C24 | 169.95 (15) | C13—C14—C15—S2 | −152.10 (13) |
O3—S2—C23—C28 | −11.08 (18) | C13—C14—C15—C16 | 86.35 (17) |
O4—S2—C15—C14 | −175.33 (13) | C14—C6—C7—S1 | 98.89 (14) |
O4—S2—C15—C16 | −58.84 (15) | C14—C6—C7—C8 | −22.85 (17) |
O4—S2—C23—C24 | 40.02 (18) | C14—C15—C16—C1 | −166.03 (18) |
O4—S2—C23—C28 | −141.01 (15) | C14—C15—C16—C5 | 15.10 (19) |
C1—C2—C3—C4 | 0.2 (3) | C15—S2—C23—C24 | −74.34 (17) |
C2—C1—C16—C5 | −0.9 (3) | C15—S2—C23—C28 | 104.63 (16) |
C2—C1—C16—C15 | −179.62 (18) | C16—C1—C2—C3 | 0.2 (3) |
C2—C3—C4—C5 | 0.0 (3) | C16—C5—C6—C7 | −129.03 (16) |
C3—C4—C5—C6 | 178.56 (17) | C16—C5—C6—C14 | −15.86 (18) |
C3—C4—C5—C16 | −0.7 (3) | C17—S1—C7—C6 | −55.08 (14) |
C4—C5—C6—C7 | 51.7 (2) | C17—S1—C7—C8 | 61.35 (14) |
C4—C5—C6—C14 | 164.83 (18) | C17—C18—C19—C20 | −1.5 (3) |
C4—C5—C16—C1 | 1.1 (3) | C18—C17—C22—C21 | −0.6 (3) |
C4—C5—C16—C15 | −179.91 (16) | C18—C19—C20—C21 | −0.5 (3) |
C5—C6—C7—S1 | −150.61 (13) | C19—C20—C21—C22 | 2.0 (3) |
C5—C6—C7—C8 | 87.66 (17) | C20—C21—C22—C17 | −1.4 (3) |
C5—C6—C14—C13 | −93.66 (15) | C22—C17—C18—C19 | 2.1 (3) |
C5—C6—C14—C15 | 24.47 (17) | C23—S2—C15—C14 | −59.45 (15) |
C6—C5—C16—C1 | −178.24 (16) | C23—S2—C15—C16 | 57.04 (15) |
C6—C5—C16—C15 | 0.7 (2) | C23—C24—C25—C26 | −1.1 (3) |
C6—C7—C8—C9 | −165.41 (17) | C24—C23—C28—C27 | 1.2 (3) |
C6—C7—C8—C13 | 12.25 (19) | C24—C25—C26—C27 | 1.6 (3) |
C6—C14—C15—S2 | 97.06 (15) | C25—C26—C27—C28 | −0.6 (3) |
C6—C14—C15—C16 | −24.50 (17) | C26—C27—C28—C23 | −0.8 (3) |
C7—S1—C17—C18 | 94.78 (16) | C28—C23—C24—C25 | −0.3 (3) |
Acknowledgements
This work was supported by Okayama University of Science Research Instruments Center for the measurements by 400 MHz NMR spectroscopy (JNM-ECS400 and JNM-ECZ400S), MALDI–TOF MS (autoflex speed) and single-crystal X-ray analysis (Rigaku VariMax Saturn724 diffractometer).
Funding information
Funding for this research was provided by: the Grants-in-Aid for Scientific Research (JP23K04741 to AO; JP23K13755 to YO; 22J14995 to HW); OUS Research Project (OUS-RP-23-2 to AO; OUS-RP-24-7 to YO).
References
Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hermann, M., Wassy, D., Kohn, J., Seitz, P., Betschart, M. U., Grimme, S. & Esser, B. (2021). Angew. Chem. Int. Ed. 60, 10680–10689. CrossRef Google Scholar
Marquis, R., Kulikiewicz, K., Lebedkin, S., Kappes, M. M., Mioskowski, C., Meunier, S. & Wagner, A. (2009). Chem. Eur. J. 15, 11187–11196. CrossRef PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Watanabe, H., Ekuni, K., Okuda, Y., Nakayama, R., Kawano, K., Iwanaga, T., Yamaguchi, A., Kiyomura, T., Miyake, H., Yamagami, M., Tajima, T., Kitai, T., Hayashi, T., Nishiyama, N., Kusano, Y., Kurata, H., Takaguchi, Y. & Orita, A. (2023). Bull. Chem. Soc. Jpn, 96, 57–64. CrossRef Google Scholar
Watanabe, H., Nakajima, K., Ekuni, K., Edagawa, R., Akagi, Y., Okuda, Y., Wakamatsu, K. & Orita, A. (2021). Synthesis, 53, 2984–2994. CAS Google Scholar
Watanabe, H., Sato, T., Sumita, M., Shiroyama, M., Sugawara, D., Tokuyama, T., Okuda, Y., Wakamatsu, K. & Orita, A. (2024). Bull. Chem. Soc. Jpn, 97, uoad013. CrossRef Google Scholar
Watanabe, H., Takemoto, M., Adachi, K., Okuda, Y., Dakegata, A., Fukuyama, T., Ryu, I., Wakamatsu, K. & Orita, A. (2020). Chem. Lett. 49, 409–412. Web of Science CrossRef CAS Google Scholar
Wössner, J. S., Kohn, J., Wassy, D., Hermann, M., Grimme, S. & Esser, B. (2022). Org. Lett. 24, 983–988. PubMed Google Scholar
Xu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). J. Org. Chem. 79, 11592–11608. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
