research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 5,10-bis­­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene

crossmark logo

aGraduate School of Science and Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, bDepartment of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, cDepartment of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, and dResearch Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: orita@ous.ac.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 19 December 2024; accepted 22 January 2025; online 28 January 2025)

5,10-Bis(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, C28H22O4S2, 1, was suc­cessfully synthesized via the photocatalyst-promoted hy­dro­genative transannulation of di­sulfonyl­cyclo­octa­tetra­ene, 2, using perylene as the photocatalyst in the presence of (i-Pr)2NEt under UV-light irradiation (398 nm, 30 W). In this reaction, the cyclo­octa­tetra­ene moiety of 2 underwent hy­dro­genative transannulation, yielding 1. Single-crystal X-ray analysis revealed that both enanti­omers of 1 are arranged alternately along the a axis of the unit cell. The structure features a wide V-shaped motif consisting of 6–5–5–6 fused rings, with a dihedral angle of approximately 97.2° between the planes of the terminal phenyl­ene rings. Additionally, a pair of phenyl­sulfonyl groups were observed at the exo positions relative to the V-shaped array.

1. Chemical context

Acenes have garnered significant attention for their strong inter­actions with single-wall carbon nanotubes (SWCNTs), which led to the formation of acene–SWCNT com­posites. For example, ferrocenoyl-substituted acetyl­enic anthracene (Watanabe et al., 2023[Watanabe, H., Ekuni, K., Okuda, Y., Nakayama, R., Kawano, K., Iwanaga, T., Yamaguchi, A., Kiyomura, T., Miyake, H., Yamagami, M., Tajima, T., Kitai, T., Hayashi, T., Nishiyama, N., Kusano, Y., Kurata, H., Takaguchi, Y. & Orita, A. (2023). Bull. Chem. Soc. Jpn, 96, 57-64.]) and anthrylene nano tweezers (Marquis et al., 2009[Marquis, R., Kulikiewicz, K., Lebedkin, S., Kappes, M. M., Mioskowski, C., Meunier, S. & Wagner, A. (2009). Chem. Eur. J. 15, 11187-11196.]) have been utilized to fabricate anthracene derivative–SWCNT com­posites. In both cases, multi-adsorption effects on the SWCNT surface play a pivotal role; in the former, co-operative adsorption of ferrocenoyl and acetyl­enic anthrylene moieties is essential, while in the latter, dual adsorption of V-shaped anthrylenes drives com­posite formation. The nano tweezers consist of a pair of anthrylenes connected by methyl­ene hinges. Inspired by this, we envisioned the synthesis of a new class of nano tweezer, i.e. 1 (see Scheme), featuring a pair of aromatic rings connected by a five-membered ring-fused hinge.

[Scheme 1]

To synthesize com­pound 1, we employed our photocatalyst-assisted hy­dro­genative reduction protocol on 5,11-bis­(phenyl­sulfon­yl)dibenzo[a,e]cyclo­octa­tetra­ene (2), using a perylene photocatalyst under UV/visible-light irradiation (Watanabe et al., 2020[Watanabe, H., Takemoto, M., Adachi, K., Okuda, Y., Dakegata, A., Fukuyama, T., Ryu, I., Wakamatsu, K. & Orita, A. (2020). Chem. Lett. 49, 409-412.], 2021[Watanabe, H., Nakajima, K., Ekuni, K., Edagawa, R., Akagi, Y., Okuda, Y., Wakamatsu, K. & Orita, A. (2021). Synthesis, 53, 2984-2994.], 2024[Watanabe, H., Sato, T., Sumita, M., Shiroyama, M., Sugawara, D., Tokuyama, T., Okuda, Y., Wakamatsu, K. & Orita, A. (2024). Bull. Chem. Soc. Jpn, 97, uoad013.]) (Fig. 1[link]). In this reaction, we anti­cipated that the in-situ-formed anion radical 2. would undergo transannulation to yield 1. Notably, we have previously reported the anionic transannulation of 5,6,11,12-tetra­dehydro­dibenzo[a,e]cyclo­octa­tetra­ene, which afforded the corresponding 6–5–5–6 cyclic product dibenzo­penta­lene (Xu et al., 2014[Xu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). J. Org. Chem. 79, 11592-11608.]). The photocatalyst-promoted hy­dro­genative transannulation of 2 proceeded successfully, yielding the nano tweezer 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene (1). In this reaction, the cyclo­octa­tetra­ene moiety of 2 was transformed into the desired five-membered ring-fused hinge.

[Figure 1]
Figure 1
Synthetic route for the preparation of 1.

This study presents the synthesis of 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene (1), a five-membered ring-fused nano-tweezer com­pound, along with its single-crystal X-ray structure and a plausible mechanism for the perylene/UV-light-promoted hy­dro­genative transannulation of 2.

2. Structural commentary

The core structure of 1 is a fused 6–5–5–6-membered ring system, in which two phenyl­ene rings are connected by a five-membered-ring hinge array (Fig. 2[link]). The dihedral angle between the planes of the terminal phenyl­ene rings is ca 97.2°. Phenyl­sulfonyl groups are located at the outside of the V-shaped fused-ring motif, leaning over the five-membered rings. The C1–C5/C16 (C8–C12/C13) phenyl­ene ring shows identical aromatic bond lengths (1.38–1.40 Å). In the hinge ring C6–C8/C13/C14, the C6—C7 and C6—C14 single bonds are somewhat longer than the C7—C8 and C13—C14 bonds, respectively: 1.547 (2) and 1.563 (2) Å versus 1.508 (3) and 1.514 (2) Å. The bond angles around the Csp2 atoms in the hinge ring [C7—C8—C13 = 110.70 (15)° and C8—C13—C14 = 111.38 (15)°] are rather larger than those around the Csp3 atoms [C6—C7—C8 = 103.59 (14)°, C7—C6—C14 = 106.00 (14)° and C6—C14—C13 = 102.05 (14)°].Similar features are observed in the other hinge ring C14–C16/C5/C6.

[Figure 2]
Figure 2
The mol­ecular structure of (E,E)-1, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, 1 forms a column diagonally in the a-axis direction with a mol­ecular distance of 8.84 Å (Fig. 3[link]). In the columnar structure of 1, a pair of [(S)-C7, (S)-C15] and [(R)-C7, (R)-C15] enanti­omers are arranged alternately in the same direction, with the mid-points of the C6—C14 bonds aligned. The shortest inter­molecular contact is between the C8–C13 phenyl­ene ring and the C23′–C28′ phenyl­sulfonyl ring. The inter­molecular centroid–centroid distance between the two benzene rings is 3.86 Å, and this value is somewhat longer than conventional ππ stacking (Banerjee et al., 2019[Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.]).

[Figure 3]
Figure 3
A partial packing plot of 1, showing the linear alternating alignment of (S,S)- and (R,R)- isomers and the shortest inter­molecular contacts (blue lines).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023, with updates to March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates that 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, 1, is unprecedented. However, a related 5,10-bis­(sulfonimidoyl­meth­yl)tetra­hydro­dibenzo­pen­ta­lene derivative has been reported (CSD refcode ATUHIJ; Hermann et al., 2021[Hermann, M., Wassy, D., Kohn, J., Seitz, P., Betschart, M. U., Grimme, S. & Esser, B. (2021). Angew. Chem. Int. Ed. 60, 10680-10689.]). The crystal structures of analogous 6–5–5–6 fused rings with carbon substituents at both the 5 and 10 positions are common, with more than 20 examples available, including the 5,10-diphenyl derivative (e.g. MAMYEI; Wössner et al., 2022[Wössner, J. S., Kohn, J., Wassy, D., Hermann, M., Grimme, S. & Esser, B. (2022). Org. Lett. 24, 983-988.]).

5. Synthesis and crystallization

5,10-Bis(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, 1, was successfully synthesized via photocatalyst perylene-promoted hy­dro­genative transannulation of di­sulfonyl­cyclo­octa­tetra­ene, 2, in the presence of (i-Pr)2NEt under irradiation of UV light (398 nm, 30 W). Starting com­pound 2 was synthesized from the cyclic dimerization of 2-formyl­phenyl­methyl phenyl sul­fone according to the reported procedure of Xu et al. (2014[Xu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). J. Org. Chem. 79, 11592-11608.]).

To a round-bottomed flask charged with a magnetic stirrer bar were added 2 (121 mg, 0.25 mmol), perylene (3.15 mg, 12.5 µmol), (i-Pr)2NEt (0.35 ml, 2.0 mmol) and MeCN (2.5 ml). The flask was placed in a glass water bath surrounded by UV LED strip lighting, and the mixture was irradiated with UV light for 9 h. During the photoreaction, the tem­per­a­ture of the bath was kept at 50–55 °C because of heat radiation from the photoreactor. After com­pletion of the reaction, the mix­ture was evaporated and the crude product was purified by flash chromatography on silica gel (hexa­ne/EtOAc, 7:3 v/v) to afford the desired product 1 (yield: 104 mg, 0.215 mmol, 86%).

Analysis for 1: white powder; m.p. 237–238 °C; 1H NMR (CDCl3, 400 MHz, room tem­per­a­ture): δ 3.67 (s, 2H), 4.62 (s, 2H), 7.15 (d, 2H, J = 7.8 Hz), 7.23–7.27 (m, 2H), 7.33 (t, 2H, J = 7.4 Hz), 7.40 (d, 2H, J = 7.8 Hz), 7.44–7.49 (m, 8H), 7.66–7.70 (m, 2H); 13C{1H} NMR (CDCl3, 101 MHz, room tem­per­a­ture): δ 50.4, 77.1, 124.4, 127.8, 128.5, 129.0, 129.4, 130.5, 133.5, 134.2, 136.6, 145.0. HRMS (MALDI–TOF) m/z [M + Na]+ calculated for C28H22NaO4S2 509.0857; found 509.0807.

A crystal of 1 suitable for X-ray diffraction was obtained from the slow evaporation of an AcOEt solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were refined using a riding model, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and 0.98 Å, Uiso(H) = 1.2Ueq(C) for CH.

Table 1
Experimental details

Crystal data
Chemical formula C28H22O4S2
Mr 486.57
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 17.2598 (3), 10.0898 (1), 13.1810 (2)
V3) 2295.44 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.15 × 0.1 × 0.05
 
Data collection
Diffractometer Rigaku VariMax Saturn724
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.830, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 42446, 7150, 6863
Rint 0.036
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.13
No. of reflections 7150
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.39
Absolute structure Flack x determined using 3042 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.048 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

7. Reaction mechanism

7.1. Mechanistic insights into hy­dro­genative transannulation via DFT calculations

Density functional theory (DFT) calculations [B3LYP/6-31+G(d) with the IEFPCM solvent model in MeCN] were performed to elucidate the mechanism of hy­dro­genative transannulation. The results suggest that the reaction proceeds primarily via the anion radical 2. through an anion radical-mediated mechanism (Fig. 4[link], route 1).

[Figure 4]
Figure 4
Mechanistic pathways for the transformation of 2 to 1.

The process begins with photoexcitation of the perylene photocatalyst upon UV LED irradiation (Fig. 5[link]). The excited-state perylene accepts an electron from the sacrificial reductant (i-Pr)2NEt, generating the anion radical (perylene).. This highly reductive species transfers an electron to 2, forming the anion radical 2., which subsequently undergoes transannulation to yield 1. This occurs via consecutive double protonation and one-electron reduction of the inter­mediate anion radical 3. (Fig. 4[link], route 1). Although an alternative pathway involving the formation of the anion radical (4 + PhSO2). via S—C bond elongation (route 1′) is also possible, its relatively high activation energy renders it less favourable.

[Figure 5]
Figure 5
Mechanism of the generation of the anion radical 2.− by a photoexcited perylene photocatalyst.

Another proposed pathway involves the radical inter­mediate 5., generated by protonation of 2.. This radical could theoretically lead to 1 via the inter­mediate 6. through radical transannulation, protonation and single-electron reduction (route 2). However, DFT calculations indicate that rapid elimination of PhSO2. from 5. is more likely, yielding the elimination product 7. Similarly, the anion 5, another potential precursor to 6, likely undergoes rapid elimination of PhSO2, also forming 7.

Supporting information


Computing details top

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene top
Crystal data top
C28H22O4S2Dx = 1.408 Mg m3
Mr = 486.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 35175 reflections
a = 17.2598 (3) Åθ = 2.3–31.6°
b = 10.0898 (1) ŵ = 0.27 mm1
c = 13.1810 (2) ÅT = 293 K
V = 2295.44 (6) Å3Plate, yellow
Z = 40.15 × 0.1 × 0.05 mm
F(000) = 1016
Data collection top
Rigaku VariMax Saturn724
diffractometer
7150 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source6863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 31.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 2425
Tmin = 0.830, Tmax = 1.000k = 1414
42446 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1545P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.46 e Å3
7150 reflectionsΔρmin = 0.39 e Å3
307 parametersAbsolute structure: Flack x determined using 3042 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.048 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65385 (3)0.57943 (4)0.64924 (4)0.01544 (10)
S20.63855 (3)0.13233 (5)0.35409 (3)0.01764 (10)
O10.69190 (9)0.70159 (14)0.67785 (11)0.0215 (3)
O20.60389 (9)0.51442 (16)0.72176 (12)0.0228 (3)
O30.60283 (9)0.21632 (17)0.27880 (12)0.0243 (3)
O40.66469 (9)0.00191 (15)0.32373 (13)0.0242 (3)
C10.80081 (11)0.02918 (18)0.49055 (17)0.0204 (4)
H10.8104430.0153900.4300980.024*
C20.82842 (13)0.01963 (19)0.58237 (19)0.0236 (4)
H20.8570290.0977320.5832860.028*
C30.81388 (12)0.0466 (2)0.67250 (17)0.0227 (4)
H30.8329980.0124620.7330820.027*
C40.77070 (11)0.16425 (19)0.67352 (15)0.0187 (4)
H40.7609810.2086560.7340240.022*
C50.74280 (10)0.21293 (17)0.58196 (14)0.0145 (3)
C60.69361 (10)0.33572 (18)0.56404 (13)0.0135 (3)
H60.6394910.3215980.5837700.016*
C70.72795 (10)0.46170 (18)0.61359 (14)0.0134 (3)
H70.7579310.4366920.6737610.016*
C80.78194 (10)0.51514 (17)0.53349 (14)0.0136 (3)
C90.83936 (11)0.61022 (19)0.54509 (15)0.0172 (3)
H90.8470460.6522130.6070830.021*
C100.88527 (12)0.64112 (19)0.46118 (16)0.0205 (4)
H100.9234160.7058020.4668370.025*
C110.87461 (12)0.57648 (19)0.36968 (16)0.0211 (4)
H110.9063750.5972150.3149480.025*
C120.81676 (11)0.48033 (18)0.35813 (15)0.0172 (3)
H120.8100900.4367020.2965920.021*
C130.76950 (10)0.45154 (17)0.44072 (13)0.0131 (3)
C140.70237 (10)0.35534 (17)0.44694 (13)0.0133 (3)
H140.6552020.3919590.4164770.016*
C150.72236 (10)0.21799 (17)0.40319 (14)0.0149 (3)
H150.7608730.2279670.3490970.018*
C160.75839 (10)0.14641 (18)0.49152 (15)0.0156 (3)
C170.60164 (10)0.60785 (18)0.53663 (14)0.0153 (3)
C180.53457 (11)0.53499 (19)0.51733 (15)0.0181 (3)
H180.5143110.4783520.5662710.022*
C190.49848 (11)0.5487 (2)0.42331 (17)0.0203 (4)
H190.4544000.4993240.4084760.024*
C200.52824 (11)0.63586 (19)0.35179 (17)0.0211 (4)
H200.5041270.6440750.2890130.025*
C210.59374 (12)0.71103 (19)0.37309 (16)0.0213 (4)
H210.6122960.7711590.3254490.026*
C220.63150 (11)0.69642 (18)0.46544 (15)0.0180 (3)
H220.6760090.7449520.4795940.022*
C230.57343 (11)0.11531 (19)0.45694 (15)0.0181 (4)
C240.58859 (11)0.02218 (19)0.53314 (16)0.0209 (4)
H240.6320030.0322140.5296450.025*
C250.53722 (13)0.0128 (2)0.61426 (17)0.0257 (4)
H250.5457870.0495150.6650120.031*
C260.47331 (13)0.0959 (2)0.61982 (19)0.0279 (5)
H260.4399900.0904820.6751190.033*
C270.45880 (12)0.1873 (2)0.5432 (2)0.0272 (4)
H270.4155720.2420990.5471050.033*
C280.50857 (11)0.1971 (2)0.46074 (17)0.0228 (4)
H280.4987340.2573980.4089240.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01851 (18)0.01647 (19)0.01135 (19)0.00111 (15)0.00189 (16)0.00361 (16)
S20.01760 (18)0.0206 (2)0.0147 (2)0.00383 (15)0.00205 (17)0.00729 (18)
O10.0270 (7)0.0187 (6)0.0190 (7)0.0009 (5)0.0016 (6)0.0079 (5)
O20.0245 (7)0.0286 (7)0.0152 (7)0.0023 (6)0.0086 (5)0.0005 (6)
O30.0242 (7)0.0331 (8)0.0156 (7)0.0028 (6)0.0030 (5)0.0040 (6)
O40.0249 (7)0.0230 (7)0.0248 (8)0.0052 (6)0.0073 (6)0.0135 (6)
C10.0180 (8)0.0162 (8)0.0270 (10)0.0014 (6)0.0045 (7)0.0050 (7)
C20.0224 (9)0.0150 (8)0.0334 (11)0.0013 (7)0.0025 (8)0.0015 (8)
C30.0241 (9)0.0195 (8)0.0245 (10)0.0002 (7)0.0006 (8)0.0059 (7)
C40.0229 (8)0.0173 (8)0.0159 (9)0.0018 (7)0.0019 (7)0.0029 (6)
C50.0154 (7)0.0134 (7)0.0148 (8)0.0015 (6)0.0020 (6)0.0002 (6)
C60.0147 (7)0.0146 (7)0.0112 (8)0.0007 (6)0.0015 (6)0.0016 (6)
C70.0153 (7)0.0143 (7)0.0105 (7)0.0005 (6)0.0002 (6)0.0018 (6)
C80.0150 (7)0.0132 (7)0.0125 (8)0.0009 (6)0.0012 (6)0.0000 (6)
C90.0207 (8)0.0146 (7)0.0163 (8)0.0025 (6)0.0002 (7)0.0017 (7)
C100.0226 (8)0.0168 (8)0.0220 (9)0.0062 (7)0.0030 (7)0.0011 (7)
C110.0236 (9)0.0220 (9)0.0177 (9)0.0036 (7)0.0056 (7)0.0033 (7)
C120.0218 (8)0.0183 (7)0.0114 (7)0.0007 (6)0.0018 (7)0.0012 (7)
C130.0149 (7)0.0129 (7)0.0115 (8)0.0002 (6)0.0005 (6)0.0006 (6)
C140.0147 (7)0.0147 (7)0.0106 (7)0.0006 (6)0.0000 (6)0.0028 (6)
C150.0157 (7)0.0162 (8)0.0128 (8)0.0027 (6)0.0020 (6)0.0042 (6)
C160.0140 (7)0.0149 (7)0.0179 (9)0.0018 (6)0.0017 (6)0.0023 (6)
C170.0158 (7)0.0152 (7)0.0150 (8)0.0023 (6)0.0000 (6)0.0029 (6)
C180.0167 (8)0.0180 (8)0.0194 (9)0.0002 (6)0.0036 (7)0.0009 (7)
C190.0166 (8)0.0200 (8)0.0243 (10)0.0013 (7)0.0022 (7)0.0030 (7)
C200.0211 (8)0.0229 (9)0.0193 (9)0.0056 (7)0.0028 (8)0.0006 (7)
C210.0249 (9)0.0188 (8)0.0202 (9)0.0010 (7)0.0012 (7)0.0034 (7)
C220.0189 (8)0.0138 (7)0.0212 (9)0.0004 (6)0.0011 (7)0.0008 (7)
C230.0164 (8)0.0199 (8)0.0181 (9)0.0052 (6)0.0037 (7)0.0080 (7)
C240.0198 (8)0.0201 (8)0.0227 (10)0.0032 (7)0.0031 (7)0.0071 (7)
C250.0282 (10)0.0283 (10)0.0205 (9)0.0095 (8)0.0044 (8)0.0046 (8)
C260.0241 (9)0.0334 (11)0.0262 (10)0.0104 (8)0.0101 (8)0.0128 (9)
C270.0187 (8)0.0280 (10)0.0348 (11)0.0027 (7)0.0058 (8)0.0116 (9)
C280.0180 (8)0.0216 (8)0.0288 (11)0.0032 (7)0.0007 (8)0.0065 (8)
Geometric parameters (Å, º) top
S1—O11.4467 (15)C11—C121.400 (3)
S1—O21.4448 (15)C12—H120.9300
S1—C71.8077 (18)C12—C131.391 (2)
S1—C171.7600 (19)C13—C141.514 (2)
S2—O31.4433 (17)C14—H140.9800
S2—O41.4475 (15)C14—C151.540 (2)
S2—C151.8051 (18)C15—H150.9800
S2—C231.7693 (19)C15—C161.505 (3)
C1—H10.9300C17—C181.395 (3)
C1—C21.391 (3)C17—C221.394 (3)
C1—C161.391 (3)C18—H180.9300
C2—H20.9300C18—C191.394 (3)
C2—C31.386 (3)C19—H190.9300
C3—H30.9300C19—C201.388 (3)
C3—C41.402 (3)C20—H200.9300
C4—H40.9300C20—C211.390 (3)
C4—C51.389 (3)C21—H210.9300
C5—C61.520 (2)C21—C221.388 (3)
C5—C161.394 (2)C22—H220.9300
C6—H60.9800C23—C241.400 (3)
C6—C71.547 (2)C23—C281.392 (3)
C6—C141.563 (2)C24—H240.9300
C7—H70.9800C24—C251.392 (3)
C7—C81.508 (3)C25—H250.9300
C8—C91.388 (2)C25—C261.388 (3)
C8—C131.398 (2)C26—H260.9300
C9—H90.9300C26—C271.391 (4)
C9—C101.396 (3)C27—H270.9300
C10—H100.9300C27—C281.388 (3)
C10—C111.383 (3)C28—H280.9300
C11—H110.9300
O1—S1—C7107.84 (9)C8—C13—C14111.38 (15)
O1—S1—C17108.27 (9)C12—C13—C8119.92 (16)
O2—S1—O1119.03 (9)C12—C13—C14128.70 (16)
O2—S1—C7107.21 (9)C6—C14—H14111.8
O2—S1—C17109.05 (9)C13—C14—C6102.05 (14)
C17—S1—C7104.48 (9)C13—C14—H14111.8
O3—S2—O4118.48 (10)C13—C14—C15112.65 (14)
O3—S2—C15107.92 (9)C15—C14—C6106.10 (14)
O3—S2—C23108.21 (10)C15—C14—H14111.8
O4—S2—C15106.53 (9)S2—C15—H15109.4
O4—S2—C23108.76 (9)C14—C15—S2112.68 (12)
C23—S2—C15106.31 (9)C14—C15—H15109.4
C2—C1—H1120.9C16—C15—S2112.26 (12)
C2—C1—C16118.26 (19)C16—C15—C14103.58 (14)
C16—C1—H1120.9C16—C15—H15109.4
C1—C2—H2119.6C1—C16—C5121.24 (18)
C3—C2—C1120.88 (18)C1—C16—C15128.22 (18)
C3—C2—H2119.6C5—C16—C15110.53 (15)
C2—C3—H3119.6C18—C17—S1119.53 (15)
C2—C3—C4120.8 (2)C22—C17—S1118.87 (14)
C4—C3—H3119.6C22—C17—C18121.45 (18)
C3—C4—H4120.8C17—C18—H18120.6
C5—C4—C3118.38 (18)C19—C18—C17118.74 (18)
C5—C4—H4120.8C19—C18—H18120.6
C4—C5—C6128.07 (17)C18—C19—H19120.0
C4—C5—C16120.38 (17)C20—C19—C18120.08 (18)
C16—C5—C6111.55 (16)C20—C19—H19120.0
C5—C6—H6111.9C19—C20—H20119.7
C5—C6—C7112.95 (14)C19—C20—C21120.6 (2)
C5—C6—C14101.69 (14)C21—C20—H20119.7
C7—C6—H6111.9C20—C21—H21120.0
C7—C6—C14106.00 (14)C22—C21—C20120.05 (19)
C14—C6—H6111.9C22—C21—H21120.0
S1—C7—H7109.4C17—C22—H22120.5
C6—C7—S1112.24 (12)C21—C22—C17118.98 (17)
C6—C7—H7109.4C21—C22—H22120.5
C8—C7—S1112.60 (12)C24—C23—S2119.74 (15)
C8—C7—C6103.59 (14)C28—C23—S2118.75 (16)
C8—C7—H7109.4C28—C23—C24121.51 (19)
C9—C8—C7127.69 (17)C23—C24—H24120.7
C9—C8—C13121.56 (17)C25—C24—C23118.52 (19)
C13—C8—C7110.70 (15)C25—C24—H24120.7
C8—C9—H9120.9C24—C25—H25119.8
C8—C9—C10118.20 (18)C26—C25—C24120.4 (2)
C10—C9—H9120.9C26—C25—H25119.8
C9—C10—H10119.7C25—C26—H26119.8
C11—C10—C9120.66 (18)C25—C26—C27120.4 (2)
C11—C10—H10119.7C27—C26—H26119.8
C10—C11—H11119.5C26—C27—H27119.9
C10—C11—C12121.08 (19)C28—C27—C26120.3 (2)
C12—C11—H11119.5C28—C27—H27119.9
C11—C12—H12120.7C23—C28—H28120.5
C13—C12—C11118.53 (18)C27—C28—C23118.9 (2)
C13—C12—H12120.7C27—C28—H28120.5
S1—C7—C8—C973.1 (2)C7—S1—C17—C2280.77 (16)
S1—C7—C8—C13109.25 (15)C7—C6—C14—C1324.61 (17)
S1—C17—C18—C19173.37 (14)C7—C6—C14—C15142.74 (13)
S1—C17—C22—C21174.87 (15)C7—C8—C9—C10177.19 (18)
S2—C15—C16—C172.1 (2)C7—C8—C13—C12175.93 (16)
S2—C15—C16—C5106.73 (15)C7—C8—C13—C143.8 (2)
S2—C23—C24—C25178.68 (15)C8—C9—C10—C111.3 (3)
S2—C23—C28—C27177.74 (15)C8—C13—C14—C617.84 (18)
O1—S1—C7—C6170.12 (12)C8—C13—C14—C15131.19 (16)
O1—S1—C7—C853.69 (15)C9—C8—C13—C121.9 (3)
O1—S1—C17—C18150.48 (15)C9—C8—C13—C14178.38 (16)
O1—S1—C17—C2233.97 (17)C9—C10—C11—C121.2 (3)
O2—S1—C7—C660.58 (15)C10—C11—C12—C130.5 (3)
O2—S1—C7—C8177.01 (13)C11—C12—C13—C82.0 (3)
O2—S1—C17—C1819.58 (17)C11—C12—C13—C14178.35 (18)
O2—S1—C17—C22164.87 (14)C12—C13—C14—C6161.85 (18)
O3—S2—C15—C1456.45 (15)C12—C13—C14—C1548.5 (2)
O3—S2—C15—C16172.94 (12)C13—C8—C9—C100.2 (3)
O3—S2—C23—C24169.95 (15)C13—C14—C15—S2152.10 (13)
O3—S2—C23—C2811.08 (18)C13—C14—C15—C1686.35 (17)
O4—S2—C15—C14175.33 (13)C14—C6—C7—S198.89 (14)
O4—S2—C15—C1658.84 (15)C14—C6—C7—C822.85 (17)
O4—S2—C23—C2440.02 (18)C14—C15—C16—C1166.03 (18)
O4—S2—C23—C28141.01 (15)C14—C15—C16—C515.10 (19)
C1—C2—C3—C40.2 (3)C15—S2—C23—C2474.34 (17)
C2—C1—C16—C50.9 (3)C15—S2—C23—C28104.63 (16)
C2—C1—C16—C15179.62 (18)C16—C1—C2—C30.2 (3)
C2—C3—C4—C50.0 (3)C16—C5—C6—C7129.03 (16)
C3—C4—C5—C6178.56 (17)C16—C5—C6—C1415.86 (18)
C3—C4—C5—C160.7 (3)C17—S1—C7—C655.08 (14)
C4—C5—C6—C751.7 (2)C17—S1—C7—C861.35 (14)
C4—C5—C6—C14164.83 (18)C17—C18—C19—C201.5 (3)
C4—C5—C16—C11.1 (3)C18—C17—C22—C210.6 (3)
C4—C5—C16—C15179.91 (16)C18—C19—C20—C210.5 (3)
C5—C6—C7—S1150.61 (13)C19—C20—C21—C222.0 (3)
C5—C6—C7—C887.66 (17)C20—C21—C22—C171.4 (3)
C5—C6—C14—C1393.66 (15)C22—C17—C18—C192.1 (3)
C5—C6—C14—C1524.47 (17)C23—S2—C15—C1459.45 (15)
C6—C5—C16—C1178.24 (16)C23—S2—C15—C1657.04 (15)
C6—C5—C16—C150.7 (2)C23—C24—C25—C261.1 (3)
C6—C7—C8—C9165.41 (17)C24—C23—C28—C271.2 (3)
C6—C7—C8—C1312.25 (19)C24—C25—C26—C271.6 (3)
C6—C14—C15—S297.06 (15)C25—C26—C27—C280.6 (3)
C6—C14—C15—C1624.50 (17)C26—C27—C28—C230.8 (3)
C7—S1—C17—C1894.78 (16)C28—C23—C24—C250.3 (3)
 

Acknowledgements

This work was supported by Okayama University of Science Research Instruments Center for the measurements by 400 MHz NMR spectroscopy (JNM-ECS400 and JNM-ECZ400S), MALDI–TOF MS (autoflex speed) and single-crystal X-ray analysis (Rigaku VariMax Saturn724 diffractometer).

Funding information

Funding for this research was provided by: the Grants-in-Aid for Scientific Research (JP23K04741 to AO; JP23K13755 to YO; 22J14995 to HW); OUS Research Project (OUS-RP-23-2 to AO; OUS-RP-24-7 to YO).

References

First citationBanerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHermann, M., Wassy, D., Kohn, J., Seitz, P., Betschart, M. U., Grimme, S. & Esser, B. (2021). Angew. Chem. Int. Ed. 60, 10680–10689.  CrossRef Google Scholar
First citationMarquis, R., Kulikiewicz, K., Lebedkin, S., Kappes, M. M., Mioskowski, C., Meunier, S. & Wagner, A. (2009). Chem. Eur. J. 15, 11187–11196.  CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatanabe, H., Ekuni, K., Okuda, Y., Nakayama, R., Kawano, K., Iwanaga, T., Yamaguchi, A., Kiyomura, T., Miyake, H., Yamagami, M., Tajima, T., Kitai, T., Hayashi, T., Nishiyama, N., Kusano, Y., Kurata, H., Takaguchi, Y. & Orita, A. (2023). Bull. Chem. Soc. Jpn, 96, 57–64.  CrossRef Google Scholar
First citationWatanabe, H., Nakajima, K., Ekuni, K., Edagawa, R., Akagi, Y., Okuda, Y., Wakamatsu, K. & Orita, A. (2021). Synthesis, 53, 2984–2994.  CAS Google Scholar
First citationWatanabe, H., Sato, T., Sumita, M., Shiroyama, M., Sugawara, D., Tokuyama, T., Okuda, Y., Wakamatsu, K. & Orita, A. (2024). Bull. Chem. Soc. Jpn, 97, uoad013.  CrossRef Google Scholar
First citationWatanabe, H., Takemoto, M., Adachi, K., Okuda, Y., Dakegata, A., Fukuyama, T., Ryu, I., Wakamatsu, K. & Orita, A. (2020). Chem. Lett. 49, 409–412.  Web of Science CrossRef CAS Google Scholar
First citationWössner, J. S., Kohn, J., Wassy, D., Hermann, M., Grimme, S. & Esser, B. (2022). Org. Lett. 24, 983–988.  PubMed Google Scholar
First citationXu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). J. Org. Chem. 79, 11592–11608.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds