research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure analysis of 1-ethyl-1,3-di­hydro-2H-benzo[d]imidazole-2-thione

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, bKosygin State University of Russia, 117997 Moscow, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, dHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, eWestern Caspian University, Istiglaliyyat Str. 31, AZ 1001 Baku, Azerbaijan, fAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, gDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and hDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by S. Parkin, University of Kentucky, USA (Received 9 December 2024; accepted 20 January 2025; online 28 January 2025)

The asymmetric unit of the title compound, C9H10N2S, contains two crystallographically independent, almost planar, mol­ecules. In the crystal, inter­mole­cular N—H⋯S hydrogen bonds link the mol­ecules into pseudocentrosymmetric dimers, enclosing R22(8) ring motifs. There are mutual ππ inter­actions between the five- and six-membered rings of each independent mol­ecule in the chosen asymmetric unit, with ring centroid-to-centroid distances of 3.6685 (12) and 3.7062 (12) Å. A weak C—H⋯π(ring) inter­action is also observed. The N—H⋯S hydrogen bonds, the ππ inter­actions and the weak C—H⋯π(ring) inter­action are effective in the stabilization of the crystal structure. The structure was refined as an inversion twin with a component occupancy ratio of 0.546 (15):0.454 (16).

1. Chemical context

Benzimidazoles are defined as a class of heterocyclic aromatic organic compounds characterized by a benzene ring fused to an imidazole ring at specific positions, exhibiting both acidic and weakly basic properties (Gaba et al., 2014[Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494-505.]). Benzimidazole and its derivatives have attracted considerable inter­est in recent years for their versatile properties in chemistry and pharmacology (Akhtar et al., 2017[Akhtar, W., Khan, M. F., Verma, G., Shaquiquzzaman, M., Rizvi, M. A., Mehdi, S. H., Akhter, M. & Alam, M. M. (2017). Eur. J. Med. Chem. 126, 705-753.]; Khalilov et al., 2024[Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.]). They are used as auxilliary ligands in the synthesis of coordination compounds (Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. 2014, 4541-4550.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305-2313.]). Thus, benzimidazole compounds have been an inter­esting resource for researchers for more than a century (Guseinov et al., 2006[Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943-947.], 2017[Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. (2017). Crystals, 7, 327.], 2020[Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674-675.]; Rzayev & Khalilov, 2024[Rzayev, R. & Khalilov, A. (2024). Chem. Rev. Lett. 7, 479-490.]). For instance, 2-mer­captobenzimidazole was successfully built into zeolitic imidazolate framework-8 on graphene oxide nanosheets and then embedded into an ep­oxy coating to prepare a composite coating with pH-responsive and self-healing performance (Li et al., 2021[Li, H., Qiang, Y., Zhao, W. & Zhang, S. (2021). Corros. Sci. 191, 109715.]). The attachment of noncovalent halogen-bond donor or acceptor site(s) to benzimidazole can be used as a synthetic strategy in the design of catalysts, materials and drugs (Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Herein, we have synthesized 1-ethyl-1,3-di­hydro-2H-benzo[d]imidazole-2-thione by the reaction of N1-ethyl­benzene-1,2-di­amine with carbon di­sulfide in the presence of pyridine (see Scheme[link]) and studied its mol­ecular and crystal structures.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title structure contains two crystallographically independent mol­ecules (Fig. 1[link]). The planar A (atoms C4a–C9a), B (N1a/N3a/C2a/C4a/C9a), C (C4b–C9b) and D (N1b/N3b/C2b/C4b/C9b) rings are oriented at dihedral angles of A/B = 0.75 (9)° and C/D = 1.64 (12)°. Thus, they are almost coplanar. On the other hand, atoms S2a/C10a and S2b/C10b are 0.0061 (3)/−0.1824 (15) and 0.0864 (4)/−0.0278 (15) Å away from the best least-squares planes of the B and D rings, respectively. Thus, they are almost coplanar with the corresponding ring planes. The orientations of the ethyl groups relative to the benzimidazole fused rings may be described by the torsion angles C2a—N3a—C10a—C11a = 91.4 (2)°, C4a—N3a—C10a—C11a = −98.0 (2)°, C2b—N3b—C10b—C11b = 94.4 (2)° and C4b–N3b—C10b—C11b = −84.5 (2)°. There no unusual bond distances or inter­bond angles in the mol­ecules. The structure was refined as an inversion twin with a component occupancy ratio of 0.546 (15):0.454 (16).

[Figure 1]
Figure 1
The title mol­ecules with the atom-numbering scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, inter­molecular N—H⋯S hydrogen bonds (Table 1[link]) link the mol­ecules into pseudocentrosymmetric dimers, enclosing R22(8) ring motifs, where the mol­ecules are stacked along the a-axis direction (Fig. 2[link]). There are ππ inter­actions between the B and C rings, and between the A and D rings, with centroid-to-centroid distances of 3.6685 (12) [dihedral = 11.02 (10)° and slippage = 0.413 Å] and 3.7062 (12) Å [dihedral = 11.26 (11)° and slippage = 0.405 Å], respectively. A weak C—H⋯π(ring) inter­action is also observed (Table 1[link]). The N—H⋯S hydrogen bonds, the ππ inter­actions and the weak C—H⋯π(ring) inter­action are effective in the stabilization of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4A⋯C9A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯S2Ai 0.84 (3) 2.49 (3) 3.3258 (18) 171 (3)
N1A—H1A⋯S2Bii 0.88 (3) 2.41 (3) 3.2654 (18) 165 (3)
C6B—H6BCg3iii 0.95 2.85 3.6470 (17) 143
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram. Inter­molecular N—H⋯S hydrogen bonds are shown as dashed lines.

4. Synthesis and crystallization

CS2 (228 mg, 3.00 mmol) was added to a solution of N1-ethyl­benzene-1,2-di­amine (136 mg, 1.00 mmol) in pyridine (10 ml) and the resulting solution refluxed for 8 h. The reaction mixture was then evaporated in a vacuum and the residue crystallized from ethanol. The title compound was obtained in the form of orange crystals (yield: 146 mg, 82%; m.p. 120–122 °C) which were soluble in methanol, ethanol and dimethyl sulfoxide (DMSO). Analysis calculated (%) for C9H10N2S: C 60.64, H 5.65, N 15.72; found: C 60.61, H 5.65, N 15.69. 1H NMR (300 MHz, DMSO-d6): δ 1.19 (3H, CH3), 3.82 (2H, CH2), 6.83–7.08 (4H, Ar-H), 10.87 (1H, NH). 13C NMR (75 MHz, DMSO-d6): δ 13.8, 34.8, 107.9, 108.8, 120.4, 120.6, 128.3, 129.8, 153.9.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH hydrogens were located in a difference Fourier map and refined freely. The C-bound H-atom positions were calculated geometrically at distances of 0.95 (for aromatic CH), 0.99 (for CH2) and 0.98 Å (for CH3), and refined using a riding model by applying the constraint Uiso(H) = kUeq(C), where k = 1.5 for methyl H atoms and 1.2 for the other H atoms. The title compound was refined as an inversion twin with component ratio occupancies of 0.546 (15):0.454 (16).

Table 2
Experimental details

Crystal data
Chemical formula C9H10N2S
Mr 178.25
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.4512 (5), 14.77990 (12), 15.89120 (11)
V3) 1750.06 (12)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.80
Crystal size (mm) 0.41 × 0.24 × 0.17
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.405, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23801, 3799, 3779
Rint 0.035
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.06
No. of reflections 3799
No. of parameters 229
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.454 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1-Ethyl-1,3-dihydro-2H-benzo[d]imidazole-2-thione top
Crystal data top
C9H10N2SDx = 1.353 Mg m3
Mr = 178.25Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 18990 reflections
a = 7.4512 (5) Åθ = 4.1–79.0°
b = 14.77990 (12) ŵ = 2.80 mm1
c = 15.89120 (11) ÅT = 100 K
V = 1750.06 (12) Å3Block, colorless
Z = 80.41 × 0.24 × 0.17 mm
F(000) = 752
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
3799 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3779 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 79.5°, θmin = 4.1°
ω scansh = 99
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2023)
k = 1818
Tmin = 0.405, Tmax = 1.000l = 1520
23801 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5853P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.25 e Å3
3799 reflectionsΔρmin = 0.21 e Å3
229 parametersExtinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0010 (2)
Primary atom site location: dualAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.454 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S2A0.22204 (7)0.21363 (3)0.89250 (3)0.02146 (13)
N1A0.0479 (2)0.19722 (11)0.74247 (10)0.0187 (3)
N3A0.1123 (2)0.15428 (11)0.85066 (10)0.0173 (3)
C2A0.0506 (3)0.18841 (13)0.82739 (12)0.0182 (4)
C4A0.2181 (3)0.14132 (12)0.77941 (12)0.0177 (4)
C5A0.3909 (3)0.10730 (14)0.76978 (14)0.0218 (4)
H5A0.4596390.0872620.8165520.026*
C6A0.4579 (3)0.10412 (14)0.68818 (15)0.0250 (4)
H6A0.5756840.0816700.6789100.030*
C7A0.3556 (3)0.13326 (14)0.61921 (14)0.0234 (4)
H7A0.4059830.1302370.5643700.028*
C8A0.1826 (3)0.16641 (14)0.62913 (13)0.0218 (4)
H8A0.1129690.1858070.5824210.026*
C9A0.1164 (3)0.16980 (13)0.71074 (13)0.0180 (4)
C10A0.1735 (3)0.14556 (14)0.93791 (13)0.0212 (4)
H10A0.1175180.1939800.9720370.025*
H10B0.3050980.1545530.9397130.025*
C11A0.1290 (3)0.05472 (14)0.97697 (14)0.0247 (4)
H11A0.1828600.0062930.9432610.037*
H11B0.0015600.0467980.9785450.037*
H11C0.1768600.0523271.0343690.037*
S2B0.71248 (7)0.32708 (3)0.61994 (3)0.02249 (13)
N1B0.5206 (2)0.33699 (12)0.76571 (11)0.0201 (3)
N3B0.3941 (2)0.40686 (11)0.65996 (11)0.0188 (3)
C2B0.5411 (3)0.35762 (13)0.68320 (13)0.0189 (4)
C4B0.2768 (3)0.41420 (13)0.72778 (12)0.0189 (4)
C5B0.1079 (3)0.45342 (14)0.73544 (14)0.0229 (4)
H5B0.0514160.4827330.6892950.028*
C6B0.0258 (3)0.44772 (14)0.81367 (15)0.0259 (4)
H6B0.0899390.4734750.8211870.031*
C7B0.1094 (3)0.40496 (14)0.88166 (14)0.0247 (4)
H7B0.0494960.4028370.9343960.030*
C8B0.2777 (3)0.36553 (13)0.87409 (13)0.0218 (4)
H8B0.3347840.3368670.9204380.026*
C9B0.3587 (3)0.37001 (13)0.79548 (13)0.0191 (4)
C10B0.3654 (3)0.44431 (14)0.57602 (13)0.0205 (4)
H10C0.4831110.4547110.5487510.025*
H10D0.3040310.5034660.5810240.025*
C11B0.2538 (3)0.38201 (15)0.52124 (13)0.0262 (5)
H11D0.2386320.4092310.4654620.039*
H11E0.1358620.3729600.5472030.039*
H11F0.3147440.3235600.5156520.039*
H1B0.596 (4)0.308 (2)0.7946 (19)0.034 (8)*
H1A0.130 (4)0.225 (2)0.7125 (19)0.032 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S2A0.0218 (2)0.0243 (2)0.0183 (2)0.00626 (19)0.00212 (18)0.00069 (17)
N1A0.0183 (8)0.0205 (8)0.0173 (8)0.0042 (7)0.0001 (6)0.0007 (6)
N3A0.0185 (8)0.0153 (7)0.0181 (8)0.0005 (6)0.0010 (6)0.0004 (6)
C2A0.0201 (9)0.0145 (8)0.0198 (9)0.0009 (7)0.0014 (8)0.0011 (7)
C4A0.0185 (9)0.0128 (8)0.0217 (9)0.0010 (7)0.0005 (8)0.0008 (7)
C5A0.0184 (9)0.0187 (9)0.0282 (10)0.0007 (8)0.0021 (8)0.0015 (8)
C6A0.0193 (9)0.0202 (10)0.0354 (12)0.0022 (8)0.0051 (9)0.0005 (8)
C7A0.0254 (10)0.0195 (9)0.0253 (10)0.0012 (8)0.0066 (9)0.0002 (8)
C8A0.0239 (10)0.0193 (9)0.0222 (9)0.0004 (8)0.0014 (8)0.0012 (7)
C9A0.0179 (9)0.0143 (8)0.0219 (9)0.0005 (7)0.0003 (7)0.0012 (7)
C10A0.0232 (10)0.0211 (9)0.0193 (9)0.0003 (8)0.0058 (8)0.0004 (7)
C11A0.0275 (11)0.0226 (10)0.0241 (10)0.0020 (9)0.0021 (9)0.0022 (8)
S2B0.0200 (2)0.0253 (2)0.0222 (2)0.00355 (19)0.00136 (18)0.00493 (18)
N1B0.0196 (8)0.0205 (8)0.0203 (8)0.0035 (7)0.0015 (7)0.0033 (6)
N3B0.0190 (7)0.0164 (7)0.0210 (8)0.0012 (6)0.0031 (7)0.0015 (6)
C2B0.0185 (9)0.0152 (8)0.0229 (9)0.0000 (7)0.0046 (8)0.0017 (7)
C4B0.0202 (9)0.0144 (8)0.0221 (9)0.0014 (8)0.0016 (8)0.0007 (7)
C5B0.0220 (10)0.0174 (9)0.0294 (11)0.0027 (8)0.0034 (9)0.0010 (8)
C6B0.0235 (10)0.0192 (9)0.0351 (12)0.0030 (8)0.0034 (9)0.0019 (8)
C7B0.0288 (10)0.0191 (9)0.0263 (10)0.0014 (8)0.0046 (9)0.0025 (8)
C8B0.0261 (10)0.0174 (9)0.0219 (9)0.0017 (8)0.0006 (8)0.0009 (7)
C9B0.0197 (9)0.0144 (8)0.0231 (9)0.0008 (7)0.0017 (8)0.0003 (7)
C10B0.0220 (9)0.0188 (9)0.0206 (9)0.0005 (8)0.0037 (8)0.0044 (7)
C11B0.0286 (11)0.0259 (10)0.0241 (10)0.0033 (9)0.0066 (9)0.0001 (8)
Geometric parameters (Å, º) top
S2A—C2A1.686 (2)S2B—C2B1.687 (2)
N1A—C2A1.356 (3)N1B—C2B1.355 (3)
N1A—C9A1.385 (3)N1B—C9B1.385 (3)
N1A—H1A0.88 (3)N1B—H1B0.84 (3)
N3A—C2A1.365 (3)N3B—C2B1.366 (3)
N3A—C4A1.393 (3)N3B—C4B1.392 (3)
N3A—C10A1.465 (2)N3B—C10B1.460 (2)
C4A—C5A1.391 (3)C4B—C5B1.391 (3)
C4A—C9A1.394 (3)C4B—C9B1.399 (3)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.390 (3)C5B—C6B1.388 (3)
C6A—H6A0.9500C6B—H6B0.9500
C6A—C7A1.403 (3)C6B—C7B1.398 (3)
C7A—H7A0.9500C7B—H7B0.9500
C7A—C8A1.388 (3)C7B—C8B1.388 (3)
C8A—H8A0.9500C8B—H8B0.9500
C8A—C9A1.388 (3)C8B—C9B1.389 (3)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C10A—C11A1.516 (3)C10B—C11B1.516 (3)
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C2A—N1A—C9A110.32 (17)C2B—N1B—C9B110.45 (17)
C2A—N1A—H1A125.1 (19)C2B—N1B—H1B125 (2)
C9A—N1A—H1A123.7 (19)C9B—N1B—H1B125 (2)
C2A—N3A—C4A109.50 (16)C2B—N3B—C4B109.61 (16)
C2A—N3A—C10A124.42 (16)C2B—N3B—C10B124.51 (18)
C4A—N3A—C10A125.52 (17)C4B—N3B—C10B125.87 (17)
N1A—C2A—S2A126.93 (16)N1B—C2B—S2B127.00 (15)
N1A—C2A—N3A106.97 (17)N1B—C2B—N3B106.95 (18)
N3A—C2A—S2A126.10 (15)N3B—C2B—S2B126.05 (16)
N3A—C4A—C9A106.69 (17)N3B—C4B—C9B106.57 (17)
C5A—C4A—N3A131.55 (19)C5B—C4B—N3B131.94 (19)
C5A—C4A—C9A121.76 (19)C5B—C4B—C9B121.5 (2)
C4A—C5A—H5A121.7C4B—C5B—H5B121.6
C6A—C5A—C4A116.6 (2)C6B—C5B—C4B116.9 (2)
C6A—C5A—H5A121.7C6B—C5B—H5B121.6
C5A—C6A—H6A119.2C5B—C6B—H6B119.2
C5A—C6A—C7A121.6 (2)C5B—C6B—C7B121.5 (2)
C7A—C6A—H6A119.2C7B—C6B—H6B119.2
C6A—C7A—H7A119.2C6B—C7B—H7B119.2
C8A—C7A—C6A121.6 (2)C8B—C7B—C6B121.7 (2)
C8A—C7A—H7A119.2C8B—C7B—H7B119.2
C7A—C8A—H8A121.7C7B—C8B—H8B121.6
C7A—C8A—C9A116.66 (19)C7B—C8B—C9B116.77 (19)
C9A—C8A—H8A121.7C9B—C8B—H8B121.6
N1A—C9A—C4A106.50 (17)N1B—C9B—C4B106.37 (18)
N1A—C9A—C8A131.66 (19)N1B—C9B—C8B131.99 (19)
C8A—C9A—C4A121.84 (18)C8B—C9B—C4B121.64 (19)
N3A—C10A—H10A108.9N3B—C10B—H10C109.2
N3A—C10A—H10B108.9N3B—C10B—H10D109.2
N3A—C10A—C11A113.41 (17)N3B—C10B—C11B112.01 (17)
H10A—C10A—H10B107.7H10C—C10B—H10D107.9
C11A—C10A—H10A108.9C11B—C10B—H10C109.2
C11A—C10A—H10B108.9C11B—C10B—H10D109.2
C10A—C11A—H11A109.5C10B—C11B—H11D109.5
C10A—C11A—H11B109.5C10B—C11B—H11E109.5
C10A—C11A—H11C109.5C10B—C11B—H11F109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
N3A—C4A—C5A—C6A179.6 (2)N3B—C4B—C5B—C6B179.4 (2)
N3A—C4A—C9A—N1A1.1 (2)N3B—C4B—C9B—N1B0.7 (2)
N3A—C4A—C9A—C8A179.75 (18)N3B—C4B—C9B—C8B179.23 (18)
C2A—N1A—C9A—C4A1.1 (2)C2B—N1B—C9B—C4B0.8 (2)
C2A—N1A—C9A—C8A179.9 (2)C2B—N1B—C9B—C8B179.3 (2)
C2A—N3A—C4A—C5A178.9 (2)C2B—N3B—C4B—C5B176.8 (2)
C2A—N3A—C4A—C9A0.8 (2)C2B—N3B—C4B—C9B1.9 (2)
C2A—N3A—C10A—C11A91.4 (2)C2B—N3B—C10B—C11B94.4 (2)
C4A—N3A—C2A—S2A179.34 (14)C4B—N3B—C2B—S2B176.59 (15)
C4A—N3A—C2A—N1A0.2 (2)C4B—N3B—C2B—N1B2.3 (2)
C4A—N3A—C10A—C11A98.0 (2)C4B—N3B—C10B—C11B84.5 (2)
C4A—C5A—C6A—C7A0.4 (3)C4B—C5B—C6B—C7B0.3 (3)
C5A—C4A—C9A—N1A178.60 (17)C5B—C4B—C9B—N1B178.17 (18)
C5A—C4A—C9A—C8A0.5 (3)C5B—C4B—C9B—C8B1.9 (3)
C5A—C6A—C7A—C8A0.2 (3)C5B—C6B—C7B—C8B0.5 (3)
C6A—C7A—C8A—C9A0.4 (3)C6B—C7B—C8B—C9B0.5 (3)
C7A—C8A—C9A—N1A178.9 (2)C7B—C8B—C9B—N1B178.5 (2)
C7A—C8A—C9A—C4A0.1 (3)C7B—C8B—C9B—C4B1.7 (3)
C9A—N1A—C2A—S2A179.93 (14)C9B—N1B—C2B—S2B176.99 (15)
C9A—N1A—C2A—N3A0.6 (2)C9B—N1B—C2B—N3B1.9 (2)
C9A—C4A—C5A—C6A0.7 (3)C9B—C4B—C5B—C6B0.9 (3)
C10A—N3A—C2A—S2A8.8 (3)C10B—N3B—C2B—S2B2.5 (3)
C10A—N3A—C2A—N1A171.69 (17)C10B—N3B—C2B—N1B178.59 (18)
C10A—N3A—C4A—C5A9.4 (3)C10B—N3B—C4B—C5B2.3 (3)
C10A—N3A—C4A—C9A170.92 (17)C10B—N3B—C4B—C9B179.08 (18)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C4A···C9A ring.
D—H···AD—HH···AD···AD—H···A
N1B—H1B···S2Ai0.84 (3)2.49 (3)3.3258 (18)171 (3)
N1A—H1A···S2Bii0.88 (3)2.41 (3)3.2654 (18)165 (3)
C6B—H6B···Cg3iii0.952.853.6470 (17)143
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+3/2, y1/2, z.
 

Acknowledgements

Crystal structure determination was performed in the Department of Structural Studies of the Zelinsky Institute of Organic Chemistry, Moscow. This work was supported by Baku State University, Western Caspian University, Azerbaijan Medical University and Khazar University in Azerbaijan. TH is also grateful to Hacettepe University Scientific Research Project Unit. The contributions of the author are as follows: conceptualization AVG, TH and ANB; synthesis AVG and FIG; X-ray analysis AIS; writing (review and editing of the manuscript) AVG and TH; funding acquisition AVG, KIH and TAJ; supervision AVG, TH and ANB.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to T. Hökelek).

References

First citationAkhtar, W., Khan, M. F., Verma, G., Shaquiquzzaman, M., Rizvi, M. A., Mehdi, S. H., Akhter, M. & Alam, M. M. (2017). Eur. J. Med. Chem. 126, 705–753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. (2017). Crystals, 7, 327.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.  CrossRef CAS Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. 2014, 4541–4550.  CrossRef Google Scholar
First citationKhalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.  Web of Science CSD CrossRef Google Scholar
First citationLi, H., Qiang, Y., Zhao, W. & Zhang, S. (2021). Corros. Sci. 191, 109715.  CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305–2313.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRzayev, R. & Khalilov, A. (2024). Chem. Rev. Lett. 7, 479–490.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds