research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and crystal voids of 4-nitro­benzo[c][1,2,5]selena­diazole

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bCentro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, cHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, dDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, eWestern Caspian University, Istiglaliyyat Str. 31, AZ 1001 Baku, Azerbaijan, fAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, gDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and hDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 24 October 2024; accepted 23 December 2024; online 7 January 2025)

The title mol­ecule, C6H3N3O2Se, is almost planar. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a network structure, enclosing R22(7) and R33(8) ring motifs, parallel to the bc plane. There are ππ inter­actions present with centroid-to-centroid distances of 3.746 (3) and 3.697 (3) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (19.6%), H⋯N/N⋯H (11.0%), H⋯Se/Se⋯H (8.5%), O⋯Se/Se⋯O (8.2%), H⋯H (7.4%), C⋯N/N⋯C (7.3%) and N⋯Se/Se⋯N (7.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 25.60 Å3 and 3.73%, showing that there is no large cavity in the crystal.

1. Chemical context

Like other weak inter­actions, the chalcogen bond (ChB) has attracted considerable attention due to its various applications in synthesis, catalysis, crystal engineering, biochemical processes, mol­ecular recognition, functional materials, etc. (Mahmudov et al., 2017[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 10121-10138.]; Mahmudov et al., 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]; Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]). Both bond parameters, strength and directionality of ChB can be improved by variation of substituents, ChB atom (tunability), nucleophile, resonance and cooperation of weak inter­actions (Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]). For instance, due to cooperation of the ChB, the common four-membered Se2N2 aggregate of [1,2,5]selena­diazo­les is well employed in materials chemistry (Hua et al., 2020[Hua, B., Zhang, C., Zhou, W., Shao, L., Wang, Z., Wang, L., Zhu, H. & Huang, F. (2020). J. Am. Chem. Soc. 142, 16557-16561.]; Ho et al., 2020[Ho, P. C., Wang, J. Z., Meloni, F. & Vargas-Baca, I. (2020). Coord. Chem. Rev. 422, 213464.]; Tiekink, 2022[Tiekink, E. R. T. (2022). CrystEngComm, 25, 9-39.]). In this regard, we studied the ortho-NO2 effect on the Se2N2 synthon of 4-nitro­benzo[c][1,2,5]selena­diazole aggregates. We provided herein a detailed synthesis and an examination of the mol­ecular and crystal structures together with the Hirshfeld surface analysis and crystal voids of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is almost planar, with the planar A (C1–C6) and B (Se/N1/N2/C1/C6) rings oriented at a dihedral angle of A/B = 0.94 (15)°. Atoms N3, O1 and O2 are displaced by −0.004 (6), −0.024 (6) and 0.022 (6) Å, respectively, from the best least-squares plane of ring A. Hence, they are almost coplanar. There are no unusual bond distances or inter­bond angles in the mol­ecule.

[Figure 1]
Figure 1
The title mol­ecule with the atom-numbering scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into a network structure, enclosing R22(7) and R33(8) ring motifs (Fig. 2[link]), parallel to the bc plane (Fig. 3[link]). No C—H⋯π(ring) inter­actions are observed but there are two ππ inter­actions between the almost parallel A and B rings and also between the parallel B rings with centroid-to-centroid distances of 3.746 (3) and 3.697 (3) Å, respectively [Cg1⋯Cg2i = 3.746 (3) Å with α = 0.91° and Cg2⋯Cg2i = 3.697 (3) Å with α = 0.00° where Cg1 and Cg2 are the centroids of rings A and B, respectively; symmetry code: (i) −x, −y, 1 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2iv 0.95 2.52 3.269 (7) 135
C5—H5⋯O1iii 0.95 2.33 3.240 (7) 161
Symmetry codes: (iii) [x, y, z+1]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram. Inter­molecular C—H⋯O hydrogen bonds are shown by dashed lines.
[Figure 3]
Figure 3
A partial packing diagram, viewed down the b-axis direction. Inter­molecular C—H⋯O hydrogen bonds are shown by dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 4[link]), the white areas indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors. The shape-index surface can be used to identify characteristic packing modes, in particular, planar stacking arrangements and the presence of aromatic stacking inter­actions such as C—H⋯π and ππ inter­actions. C—H⋯π inter­actions are represented as red p-holes, which are related to the electron ring inter­actions between the CH groups and the centroid of the aromatic rings of neighbouring mol­ecules. Fig. 5[link] clearly suggests that there are no C—H⋯π inter­actions in (I)[link]. The shape-index is a tool for visualizing ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯O/O⋯H, H⋯N/N⋯H, H⋯Se/Se⋯H, O⋯Se/Se⋯O, H⋯H, C⋯N/N⋯C, N⋯Se/Se⋯N, N⋯O/O⋯N, C⋯O/O⋯C, H⋯C/C⋯H, C⋯C, N⋯N, O⋯O and C⋯Se/Se⋯C (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 6[link]bo, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯O/O⋯H (Table 2[link]) contributing 19.6% to the overall crystal packing, which is reflected in Fig. 6[link]b as a pair of spikes with the tips at de + di = 2.20 Å. The H⋯N/N⋯H contacts (Fig. 6[link]c) make an 11.0% contribution to the HS and have the tips at de + di = 3.46 Å. The H⋯Se/Se⋯H contacts (Fig. 6[link]d; 8.5% contribution to the HS) have a pair of wings with the tips at de + di = 3.34 Å. The pair of spikes for the O⋯Se/Se⋯O contacts (Table 2[link] and Fig. 6[link]e), contributing 8.2% to the HS, have the tips at de + di = 3.14 Å. The H⋯H inter­actions (Fig. 6[link]f) contribute 7.4% to the HS with the tip at de = di = 1.12 Å. The C⋯N/N⋯C (Fig. 6[link]g), N⋯Se/Se⋯N (Table 2[link] and Fig. 6[link]h) and N⋯O/O ⋯N (Table 2[link] and Fig. 6[link]i) contacts contribute 7.3%, 7.2% and 6.9%, respectively, to the HS and are viewed as pairs of spikes with the tips at de + di = 3.26, 3.08 and 3.04 Å, respectively. The C⋯O/ O⋯C contacts (Fig. 6[link]j) make 6.4% contribution to the HS with the central point at de = di = 1.72 Å. In the absence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts, contributing 5.9% to the overall crystal packing, are reflected in Fig. 6[link]k with the tips at de + di = 3.46 Å. The C⋯C contacts (Fig. 6[link]l) contributing 5.1% to the HS have a bullet-shaped distribution of points with the tip at de = di = 1.69Å. Finally, the N⋯N (Table 2[link] and Fig. 6[link]m), O⋯O (Fig. 6[link]n) and C⋯Se/Se⋯C (Fig. 6[link]o) contacts with 3.3%, 2.1% and 1.1% contributions, respectively, to the HS have very low densities.

Table 2
Selected interatomic distances (Å)

Se1⋯O1i 3.140 (4) O2⋯H3 2.37
Se1⋯N1i 3.132 (5) H4⋯O2iv 2.52
Se1⋯N2ii 3.079 (5) N1⋯N3 3.012 (6)
O1⋯N1 2.709 (6) N1⋯N2ii 3.017 (6)
H5⋯O1iii 2.33    
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, y, z+1]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H, (c) H⋯N/N⋯H, (d) H⋯Se/Se⋯H, (e) O⋯Se/Se⋯O, (f) H⋯H, (g) C⋯N/N⋯C, (h) N⋯Se/Se⋯N, (i) N⋯O/O⋯N, (j) C⋯O/O⋯C, (k) H⋯C/C ⋯H, (l) C⋯C, (m) N⋯N, (n) O⋯O and (o) C⋯Se/Se⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯O/O⋯H, H⋯N/N⋯H and H⋯Se/Se⋯H inter­actions in Fig. 7[link]ac, respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯O/O⋯H, (b) H⋯N/N⋯H and (c) H⋯Se/Se⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯N/N⋯H and H⋯Se/Se⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 8[link]ac) and the percentage of free space in the unit cell are calculated as 25.60 Å3 and 3.73%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 8]
Figure 8
Graphical views of voids in the crystal packing of (I)[link] (a) along the a-axis direction, (b) along the b-axis direction and (c) along the c-axis direction.

6. Database survey

A survey conducted of the Cambridge Structural Database (CSD, Version 5.45, last updated September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates that two mol­ecules are similar to the title compound (I)[link]: (rac)-4-methyl-4-nitro-2,1,3-benzoselena-diazol-5(4H)-one, C7H5N3O3Se (CSD refcode JURLAJ; Tian et al., 1993[Tian, W., Grivas, S. & Olsson, K. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 257.]) and 5-nitro-2,1,3-benzoselena­diazole, C6H3N3O2Se (CSD refcode DOBWUQ; Aliyeva et al., 2023[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]).

7. Synthesis and crystallization

3-Nitro­benzene-1,2-di­amine (10 mmol) and selenium dioxide (10 mmol) were dissolved in 25 ml of di­chloro­methane and stirred for 1 h at ambient temperature, and further refluxed for 1 h (Georges et al., 2024[Georges, T., Ovens, J. S. & Bryce, D. L. (2024). Chem. A Eur. J. e202402254.]). After cooling to room temperature, the solvent was evaporated under reduced pressure to give the reaction product. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Yield 82% (based on SeO2), yellow powder soluble in methanol, ethanol and DMSO. Analysis calculated for C6H3N3O2Se (Mr = 228.07): C, 31.60; H, 1.33; N, 18.42. Found: C, 31.58, H, 1.30; N, 18.40. ESI–MS (positive ion mode), m/z: 229.10 [Mr + H]+. 1H NMR (DMSO-d6), δ: 7.72–8.46 (3H, Ar-H). 13C NMR (DMSO-d6), 126.4, 126.8, 129.4, 140.5, 149.9 and 159.9.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bond H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C6H3N3O2Se
Mr 228.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.0105 (4), 13.2765 (8), 8.1311 (5)
β (°) 114.808 (3)
V3) 686.96 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.42
Crystal size (mm) 0.28 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.284, 0.473
No. of measured, independent and observed [I > 2σ(I)] reflections 5894, 1475, 1297
Rint 0.037
(sin θ/λ)max−1) 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.17
No. of reflections 1475
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.24, −1.27
Computer programs: APEX4 and SAINT (Bruker, 2014), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

4-Nitrobenzo[c][1,2,5]selenadiazole top
Crystal data top
C6H3N3O2SeF(000) = 440
Mr = 228.07Dx = 2.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0105 (4) ÅCell parameters from 2556 reflections
b = 13.2765 (8) Åθ = 3.1–26.7°
c = 8.1311 (5) ŵ = 5.42 mm1
β = 114.808 (3)°T = 150 K
V = 686.96 (7) Å3Prism, yellow
Z = 40.28 × 0.21 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
1297 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.9°, θmin = 3.1°
Tmin = 0.284, Tmax = 0.473h = 88
5894 measured reflectionsk = 1616
1475 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + 6.1884P]
where P = (Fo2 + 2Fc2)/3
1475 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.77441 (9)0.25835 (4)0.82143 (8)0.01947 (18)
O10.7737 (8)0.4739 (3)0.3944 (6)0.0372 (11)
O20.7408 (8)0.6348 (3)0.4079 (6)0.0324 (11)
N10.7713 (7)0.3520 (3)0.6607 (6)0.0179 (10)
N20.7564 (7)0.3476 (3)0.9783 (6)0.0198 (10)
N30.7548 (8)0.5496 (3)0.4731 (6)0.0219 (10)
C10.7570 (8)0.4405 (4)0.7304 (7)0.0152 (10)
C20.7477 (8)0.5380 (4)0.6503 (7)0.0155 (10)
C30.7288 (8)0.6233 (4)0.7359 (7)0.0175 (11)
H30.7208240.6868050.6795740.021*
C40.7207 (8)0.6192 (4)0.9056 (7)0.0174 (11)
H40.7076750.6801030.9613420.021*
C50.7310 (8)0.5300 (4)0.9926 (7)0.0164 (10)
H50.7265560.5283921.1077080.020*
C60.7487 (8)0.4387 (4)0.9056 (7)0.0161 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0249 (3)0.0107 (2)0.0233 (3)0.0001 (2)0.0106 (2)0.0017 (2)
O10.066 (3)0.019 (2)0.034 (3)0.001 (2)0.029 (2)0.0030 (18)
O20.054 (3)0.019 (2)0.029 (2)0.0017 (19)0.022 (2)0.0081 (17)
N10.023 (3)0.012 (2)0.020 (2)0.0017 (17)0.009 (2)0.0001 (17)
N20.022 (2)0.014 (2)0.024 (3)0.0000 (17)0.011 (2)0.0018 (18)
N30.028 (3)0.020 (2)0.020 (3)0.0003 (19)0.012 (2)0.0011 (19)
C10.013 (2)0.014 (2)0.018 (3)0.0010 (18)0.006 (2)0.0004 (19)
C20.017 (3)0.015 (2)0.017 (3)0.0001 (19)0.008 (2)0.0010 (19)
C30.019 (3)0.015 (2)0.017 (3)0.001 (2)0.006 (2)0.003 (2)
C40.022 (3)0.014 (2)0.019 (3)0.001 (2)0.012 (2)0.0055 (19)
C50.019 (3)0.018 (2)0.015 (3)0.001 (2)0.010 (2)0.002 (2)
C60.016 (3)0.015 (2)0.018 (3)0.0005 (19)0.009 (2)0.0011 (19)
Geometric parameters (Å, º) top
Se1—N21.784 (5)C1—C61.450 (7)
Se1—N11.797 (4)C2—C31.364 (7)
O1—N31.228 (6)C3—C41.406 (7)
O2—N31.235 (6)C3—H30.9500
N1—C11.327 (6)C4—C51.366 (7)
N2—C61.338 (7)C4—H40.9500
N3—C21.471 (7)C5—C61.434 (7)
C1—C21.439 (7)C5—H50.9500
Se1···O1i3.140 (4)O2···H32.37
Se1···N1i3.132 (5)H4···O2iv2.52
Se1···N2ii3.079 (5)N1···N33.012 (6)
O1···N12.709 (6)N1···N2ii3.017 (6)
H5···O1iii2.33
N2—Se1—N194.46 (19)C2—C3—C4121.4 (5)
C1—N1—Se1106.4 (3)C2—C3—H3119.3
C6—N2—Se1106.7 (4)C4—C3—H3119.3
O1—N3—O2122.2 (5)C5—C4—C3121.8 (5)
O1—N3—C2118.7 (4)C5—C4—H4119.1
O2—N3—C2119.1 (4)C3—C4—H4119.1
N1—C1—C2126.9 (5)C4—C5—C6118.3 (5)
N1—C1—C6116.5 (5)C4—C5—H5120.8
C2—C1—C6116.5 (4)C6—C5—H5120.8
C3—C2—C1120.7 (5)N2—C6—C5122.8 (5)
C3—C2—N3117.6 (4)N2—C6—C1116.0 (5)
C1—C2—N3121.6 (4)C5—C6—C1121.2 (5)
N2—Se1—N1—C10.2 (4)C1—C2—C3—C40.9 (8)
N1—Se1—N2—C60.2 (4)N3—C2—C3—C4180.0 (5)
Se1—N1—C1—C2179.5 (4)C2—C3—C4—C50.1 (9)
Se1—N1—C1—C60.2 (6)C3—C4—C5—C60.5 (8)
N1—C1—C2—C3178.7 (5)Se1—N2—C6—C5179.2 (4)
C6—C1—C2—C31.0 (7)Se1—N2—C6—C10.1 (6)
N1—C1—C2—N30.3 (8)C4—C5—C6—N2178.9 (5)
C6—C1—C2—N3180.0 (5)C4—C5—C6—C10.4 (8)
O1—N3—C2—C3179.4 (5)N1—C1—C6—N20.0 (7)
O2—N3—C2—C30.9 (8)C2—C1—C6—N2179.7 (5)
O1—N3—C2—C11.6 (8)N1—C1—C6—C5179.4 (5)
O2—N3—C2—C1178.1 (5)C2—C1—C6—C50.4 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y, z+1; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2iv0.952.523.269 (7)135
C5—H5···O1iii0.952.333.240 (7)161
Symmetry codes: (iii) x, y, z+1; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.

Funding information

This work was supported by the Fundaçao para a Ciencia e a Tecnologia (FCT, Portugal) , projects UIDB/00100/2020 (https://doi.org/10.54499/UIDB/00100/2020) and UIDP/00100/2020 (https://doi.org/10.54499/UIDP/00100/2020) of the Centro de Quimica Estrutural, and LA/P/0056/2020 (https://doi.org/10.54499/LA/P/0056/2020) of the Institute of Mol­ecular Sciences, as well as Baku State University, Azerbaijan Medical University, Western Caspian University and Khazar University in Azerbaijan. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791.  Web of Science CSD CrossRef CAS Google Scholar
First citationGeorges, T., Ovens, J. S. & Bryce, D. L. (2024). Chem. A Eur. J. e202402254.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHo, P. C., Wang, J. Z., Meloni, F. & Vargas-Baca, I. (2020). Coord. Chem. Rev. 422, 213464.  Web of Science CrossRef Google Scholar
First citationHua, B., Zhang, C., Zhou, W., Shao, L., Wang, Z., Wang, L., Zhu, H. & Huang, F. (2020). J. Am. Chem. Soc. 142, 16557–16561.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationScilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, W., Grivas, S. & Olsson, K. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 257.  Google Scholar
First citationTiekink, E. R. T. (2022). CrystEngComm, 25, 9–39.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds