research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 5-oxo-N-phenyl-3-(thio­phen-2-yl)-2,3,4,5-tetra­hydro-[1,1′-biphen­yl]-4-carboxamide

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cFriendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, e`Composite materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov Str. 194, AZ 1065, Baku, Azerbaijan, fDepartment of Chemistry, M. M. A. M. C. (Tribhuvan University), Biratnagar, Nepal, and gDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev Str. 120, AZ 0101 Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 December 2024; accepted 21 January 2025; online 28 January 2025)

The asymmetric unit of the title com­pound, C23H19NO2S, contains two mol­ecules that differ in the conformation of the two carb­ox­amide moieties. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating parallel to the c-axis direction. Between the mol­ecules, weak C—H⋯π(ring) inter­actions are present, whereas ππ inter­actions are not observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.6%), H⋯C/C⋯H (33.4%) and H⋯O/O⋯H (11.6%) inter­actions. Orientational disorder is observed for both thio­phene rings.

1. Chemical context

The syntheses and structural characterization of heterocyclic com­pounds continue to be of inter­est in organic and medicinal chemistry due to the various applications of these compounds in pharmaceuticals, materials science and catalysis (Askerov et al., 2020[Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007-1011.]; Karimli et al., 2023[Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474-477.]; Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]; Khalilov et al., 2024[Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.]). Among these, biphenyl derivatives containing thio­phene and amide functional groups are particularly notable for their biological activities, including anti-inflammatory, anti­cancer and anti­microbial properties (Tas et al., 2023[Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.]; Rzayev & Khalilov, 2024[Rzayev, R. & Khalilov, A. N. (2024). Chem. Rev. Lett. 7, 479-490.]). Furthermore, the structural features of these com­pounds suggest their potential relevance in coordination chemistry (Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]; Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]). In particular, when other functional groups are present, like the amide group, the thio­phene moiety and the biphenyl skeleton, multiple coordination sites are available, enabling the formation of stable metal com­plexes (Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Naghiyev et al., 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]; Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]).

[Scheme 1]

Natural products with a tetra­hydro-[1,1′-biphen­yl] core are rare, but many contain biphenyl-like or partially hydrogenated systems. Examples include flavonoids, stilbenoids and lignans, which often function as biosynthetic inter­mediates or exhibit significant biological activities (Nenajdenko et al., 2023[Nenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M., Atakishiyeva, G. T., Niyazova, A. A., Khrustalev, V. N., Shastin, A. V. & Tskhovrebov, A. G. (2023). Catalysts, 13, 1194.]; Niesen et al., 2013[Niesen, D. B., Hessler, C. & Seeram, N. P. (2013). J. Berry Res. 3, 181-196.]). Thio­phene-containing fragments appear in natural products such as biotin and thio­cillins, the latter of which exhibit anti­biotic activity. The amide functionality is a common feature in bioactive mol­ecules such as capsaicin, which has pain-relieving properties, and β-lactam anti­biotics, which are critical in medicinal treatments. These structural motifs contribute to the rigidity, conjugation and hydrogen-bonding potential, influencing its inter­actions in biological and chemical environments (Nagiyev et al., 2022[Nagiyev, F. N., Mamedov, I. G., Askerov, R., Taslimi, P. & Poustforoosh, A. (2022). ChemistrySelect, 7, e202202006.]; Mamedov et al., 2020[Mamedov, I., Naghiyev, F., Maharramov, A. M., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]).

In the context given above, we report here the synthesis, mol­ecular and crystal structures, as well as Hirshfeld surface analysis, of 5-oxo-N-phenyl-3-(thio­phen-2-yl)-2,3,4,5-tetra­hydro-[1,1′-biphen­yl]-4-carboxamide. The results provide com­prehensive insights into its mol­ecular shape, hydrogen-bonding inter­actions and crystal packing features, contributing valuable information to the growing database of functionalized carbo- and heterocyclic com­pounds.

2. Structural commentary

The asymmetric unit of the title com­pound com­prises two mol­ecules (Fig. 1[link]). The A (C1—C6) and E (C24—C29) rings are in envelope conformations (Fig. 2[link]), with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of QT = 0.496 (3) Å, θ = 126.0 (3)° and φ = 289.2 (4)° for ring A, and QT = 0.443 (3) Å, θ = 126.2 (4)° and φ = 299.2 (4)° for ring E, where atoms C3 and C26, respectively, are at the flap positions and are 0.6894 (16) and 0.6191 (16) Å away from the least-squares planes of the other five atoms. The coplanar B (C8—C13), C (S1/C14—C17) and D (C18—C23) rings, and coplanar F (C31—C36), G (S2/C37—C40) and H (C41—C46) rings are oriented at dihedral angles of B/C = 58.93 (7)°, B/D = 87.08 (8)° and C/D = 41.61 (8)°, and F/G = 62.65 (5)°, F/H = 89.30 (7)° and G/H = 80.57 (6)°. Thus, the B/D and F/H rings are almost perpendicularly oriented. Both thio­phene rings (C and G) are disordered over two sets of sites. For a more com­pherensible and visual com­parison of the two mol­ecules present in the asymmetric unit, an overlay plot is given in Fig. 3[link]. The differences between the two mol­ecules are clearly seen in the conformations about the carb­ox­amide moieties, with torsion angles of 71.4 (3)° for C1—C2—C7—O2 and −60.9 (3)° for C24—C25—C30—O4, so that the N—H and C=O groups in the two mol­ecules are oppositely oriented. The C and D, and G and H rings overlap exactly, whereas the A and B, and E and F rings do not. There are no unusual bond distances or inter­bond angles in the mol­ecules.

[Figure 1]
Figure 1
The asymmetric unit of the title com­pound, with displacement ellipsoids drawn at the 50% probability level and with the labelling scheme for the rings. Only the major parts of the disordered thio­phene rings are shown for clarity.
[Figure 2]
Figure 2
Conformations of the central (a) A (C1–C6) ring and (b) E (C24–C29) ring.
[Figure 3]
Figure 3
An overlay plot of the two mol­ecules present in the asymmetric unit.

3. Supra­molecular features

In the crystal, inter­molecular N—H⋯O hydrogen bonds between neighbouring carb­ox­amide moieties (Table 1[link]) link the mol­ecules into supra­molecular chains propagating parallel to the c-axis direction (Fig. 4[link]). Weak C—H⋯π(ring) inter­actions are observed (Table 1[link]), whereas notable ππ inter­actions are not present.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg7 and Cg10 are the centroids of the S1/C14–C17, S2/C37–C49, C18–C23 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4iii 0.85 (4) 2.07 (4) 2.921 (3) 173 (4)
N2—H2N⋯O2 0.94 (4) 1.95 (4) 2.871 (3) 167 (3)
C11—H11⋯Cg1v 0.95 2.71 3.468 (3) 137
C12—H12⋯Cg10vi 0.95 2.87 3.772 (3) 159
C34—H34⋯Cg2i 0.95 2.78 3.546 (3) 139
C38—H38⋯Cg7v 0.95 2.81 3.603 (5) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [x, -y+2, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial packing diagram showing inter­molecular N—H⋯O hydrogen bonds as dashed lines. Only the major parts of the disordered thio­phene rings are shown for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title com­pound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). It is noted that only the major com­ponents of the disordered part of the thio­phene rings were taken into account for the analysis. In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The present bright-red spots indicate their roles as the respective donors and/or acceptors in hydrogen bonding, as discussed. In addition, shape index was used to identify possible ππ stacking and C—H⋯π inter­actions, where ππ stacking is indicated by the presence of adjacent red and blue triangles, and C—H⋯π inter­actions as ‘red p-holes’ which are related to the electron ring inter­actions between the C—H groups with the centroid of the aromatic rings of neighbouring mol­ecules. Fig. 6[link] clearly suggests that there are C—H⋯π inter­actions in the title com­pound but no ππ inter­actions.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title com­pound plotted over dnorm.
[Figure 6]
Figure 6
Hirshfeld surface of the title com­pound plotted over shape index for two orientations.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is ahown in Fig. 7([link]a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯S/S⋯H, C⋯S/S⋯C and H⋯N/N⋯H inter­actions are illustrated in Figs. 7[link](b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]), contributing 47.6% to the overall crystal packing, which is reflected in Fig. 7[link](b), with the tip at de = di = 1.10 Å. Due to C—H⋯π inter­actions (Table 1[link]), the characteristic wings of the H⋯C/C⋯H contacts (Table 2[link]) are reflected in Fig. 7[link](c), with the tips at de + di = 2.64 Å and de + di = 2.66 Å for the sharper and wider ones, respectively. The symmetrical pairs of spikes of the H⋯O/O⋯H [Table 2[link] and Fig. 7[link](d)] and H⋯S/S⋯H [Table 2[link] and Fig. 7[link](e)] contacts are viewed with the tips at de + di = 1.94 Å and de + di = 3.00 Å, respectively. The C⋯S/S⋯C [Fig. 7[link](f)] contacts have an arrow-shaped distribution of points, and they are viewed with the tip at de = di = 1.72 Å. Finally, the H⋯N/N⋯H [Fig. 7[link](g)] contacts contribute only marginally to the HS.

Table 2
Selected interatomic distances (Å)

S1⋯H2 2.95 C23⋯H4B 2.57
S2⋯H25 2.96 C27⋯H42 2.54
S2⋯H27B 2.93 C27⋯H38A 2.97
O2⋯C13 2.920 (3) C29⋯H46 2.65
O4⋯C36 2.900 (3) C30⋯H36 2.79
H16⋯O1i 2.71 C30⋯H43i 2.88
H17A⋯O1i 2.72 C40⋯H44iv 2.84
H22⋯O1ii 2.35 C42⋯H27A 2.61
O2⋯H3 2.68 C46⋯H29 2.59
O2⋯H13 2.37 H1N⋯H9 2.32
O2⋯H2N 1.95 (4) H1N⋯H2 2.10
O3⋯H43i 2.42 H2N⋯H25 2.03
O4⋯H26 2.67 H4B⋯H23 1.96
O4⋯H36 2.38 H6⋯H19 2.06
H1N⋯O4iii 2.07 (4) H27A⋯H42 2.11
C4⋯H23 2.61 H27B⋯H38A 2.37
C6⋯H19 2.62 H29⋯H46 2.05
C7⋯H13 2.84 H40⋯H44iv 2.36
C19⋯H6 2.58    
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, y-1, z].
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯S/S⋯H, (f) C⋯S/S⋯C and (g) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The nearest neighbour environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Figs. 8[link](a)–(c), respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

In summary, the HS analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that corresponding van der Waals inter­actions, as well as hydrogen bonding, play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

A solution of acetoacetanilide (5.20 mmol) and 1-phenyl-3-(thio­phen-2-yl)prop-2-en-1-one (5.10 mmol) in methanol (10 ml) was stirred for 1 h. 3 drops of methyl­piperazine were then added to the solution. The resulting mixture was refluxed for 3 h. When the reaction was com­plete, it was kept for 5 d for the formation of crystals, which were separated by filtration and recrystallized from an ethanol–water solution (m.p. 568–569 K; yield: 72%). 1H NMR (300 MHz, DMSO-d6): δ 3.19 (dd, 2H, CH2), 3.86 (d, 1H, CH), 4.16 (k, 1H, CH) [q, 6.59 (s, 1H, =CH), 6.95–7.74 (m, 13H, 10CHar + 3CHthien), 10.23 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ 36.20 (CH2), 38.47 (CH), 61.44 (CH), 119.50 (CH=), 119.60 (CHar), 123.91 (CHthien), 124.11 (CHar), 124.69 (CHar), 125.19 (CHthien), 126.99 (2CHar), 127.29 (CHthien), 129.19 (2CHar), 129.34 (2CHar), 131.01 (CHar), 137.82 (Cthien), 139.14 (Ctert), 145.82 (Car), 159.18 (Car), 167.72 (–N—C=O), 195.19 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N—H hydrogens were located in a difference Fourier map and refined freely. The C-bound H-atom positions were calculated geometrically at distances of 1.00 (for methine CH), 0.95 (for aromatic CH) and 0.99 Å (for CH2), and refined using a riding model with Uiso(H) = 1.2Ueq(C). Both thio­phene rings are found to be disordered over two sets of sites. They were refined with a fixed occupancy ratio of 0.7:0.3 for the major and minor parts.

Table 3
Experimental details

Crystal data
Chemical formula C23H19NO2S
Mr 373.45
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 16.1416 (5), 12.8991 (4), 19.0656 (5)
β (°) 107.416 (1)
V3) 3787.71 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III area-detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 44070, 13781, 12646
Rint 0.031
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.03
No. of reflections 13781
No. of parameters 494
No. of restraints 34
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.65
Absolute structure Refined as an inversion twin; Flack x determined using 5763 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter 0.37 (8)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

5-Oxo-N-phenyl-3-(thiophen-2-yl)-2,3,4,5-tetrahydro-[1,1'-biphenyl]-4-carboxamide top
Crystal data top
C23H19NO2SF(000) = 1568
Mr = 373.45Dx = 1.310 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.1416 (5) ÅCell parameters from 9482 reflections
b = 12.8991 (4) Åθ = 2.2–32.5°
c = 19.0656 (5) ŵ = 0.19 mm1
β = 107.416 (1)°T = 100 K
V = 3787.71 (19) Å3Prism, colourless
Z = 80.25 × 0.20 × 0.15 mm
Data collection top
Bruker D8 QUEST PHOTON-III area-detector
diffractometer
12646 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.2°
Tmin = 0.666, Tmax = 0.746h = 2424
44070 measured reflectionsk = 1919
13781 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0623P)2 + 3.960P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
13781 reflectionsΔρmax = 0.62 e Å3
494 parametersΔρmin = 0.65 e Å3
34 restraintsAbsolute structure: Refined as an inversion twin; Flack x determined using 5763 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.37 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.73160 (7)0.42886 (8)0.71887 (6)0.02445 (19)0.7
S1'0.73378 (16)0.38641 (19)0.57558 (16)0.0263 (5)0.3
O10.40433 (13)0.60901 (15)0.57901 (13)0.0270 (4)
O20.49029 (13)0.39952 (15)0.53972 (10)0.0221 (3)
N10.48998 (14)0.37371 (15)0.65812 (11)0.0165 (3)
C10.48285 (15)0.62230 (18)0.59522 (13)0.0173 (4)
C20.54702 (15)0.53526 (17)0.62719 (13)0.0163 (4)
H20.5641640.5395950.6820400.020*
C30.62924 (13)0.54764 (17)0.60251 (13)0.0174 (4)
H30.6106280.5459200.5475610.021*
C40.66919 (15)0.65469 (18)0.62661 (15)0.0208 (4)
H4A0.6932290.6558670.6808520.025*
H4B0.7178650.6659110.6058880.025*
C50.60495 (15)0.74233 (17)0.60257 (13)0.0162 (4)
C60.51878 (15)0.72339 (17)0.58679 (13)0.0168 (4)
H60.4796300.7791770.5692540.020*
C70.50540 (14)0.42931 (17)0.60344 (13)0.0155 (4)
C80.46246 (15)0.26899 (17)0.65529 (13)0.0159 (4)
C90.47950 (19)0.21882 (19)0.72294 (14)0.0232 (5)
H90.5084570.2549120.7668730.028*
C100.4544 (2)0.1165 (2)0.72647 (16)0.0263 (5)
H100.4665160.0828560.7727740.032*
C110.41199 (17)0.06340 (19)0.66302 (15)0.0218 (4)
H110.3946830.0065490.6655480.026*
C120.39466 (18)0.1132 (2)0.59509 (15)0.0232 (5)
H120.3656160.0766140.5513900.028*
C130.41951 (16)0.21586 (19)0.59071 (14)0.0198 (4)
H130.4074050.2493910.5443720.024*
C140.69198 (9)0.46161 (14)0.62909 (10)0.0199 (4)
C150.7246 (2)0.3998 (3)0.5853 (3)0.02445 (19)0.7
H150.7095030.4069780.5333950.029*0.7
C160.7843 (2)0.3228 (3)0.62621 (18)0.02445 (19)0.7
H160.8133660.2733070.6051540.029*0.7
C170.79315 (18)0.3309 (2)0.69932 (19)0.02445 (19)0.7
H170.8295530.2869420.7356420.029*0.7
C15'0.7301 (4)0.4225 (5)0.6987 (3)0.0263 (5)0.3
H15A0.7151370.4543230.7381970.032*0.3
C16'0.7904 (4)0.3381 (5)0.7164 (4)0.0263 (5)0.3
H16A0.8191700.3074820.7626000.032*0.3
C17'0.7948 (3)0.3143 (5)0.6480 (3)0.0263 (5)0.3
H17A0.8306390.2593950.6407670.032*0.3
C180.63757 (16)0.84809 (18)0.59696 (13)0.0179 (4)
C190.58505 (17)0.9349 (2)0.59560 (17)0.0252 (5)
H190.5281690.9257200.5994210.030*
C200.6148 (2)1.0343 (2)0.58875 (19)0.0313 (6)
H200.5782441.0924510.5876430.038*
C210.6980 (2)1.0486 (2)0.58352 (17)0.0304 (6)
H210.7183681.1164230.5783790.037*
C220.75120 (19)0.9639 (2)0.58582 (18)0.0300 (6)
H220.8083010.9736810.5826330.036*
C230.72128 (18)0.8642 (2)0.59279 (17)0.0251 (5)
H230.7584820.8065500.5947270.030*
S20.28115 (7)0.47394 (8)0.41495 (7)0.02627 (18)0.7
S2'0.25927 (18)0.4669 (2)0.26876 (14)0.0280 (5)0.3
O30.59672 (12)0.67727 (16)0.42626 (12)0.0250 (4)
O40.50311 (13)0.52390 (14)0.29766 (10)0.0215 (3)
N20.50923 (14)0.41810 (15)0.39523 (11)0.0163 (3)
C240.51761 (15)0.68815 (19)0.41100 (13)0.0178 (4)
C250.45807 (15)0.59458 (17)0.39697 (13)0.0163 (4)
H250.4557430.5673330.4454440.020*
C260.36501 (13)0.62122 (17)0.35019 (13)0.0181 (4)
H260.3665130.6390010.2995340.022*
C270.33101 (16)0.71636 (19)0.38174 (15)0.0204 (4)
H27A0.2750710.7382340.3467000.024*
H27B0.3198190.6963220.4282050.024*
C280.39277 (15)0.80691 (18)0.39644 (13)0.0166 (4)
C290.47893 (15)0.79046 (18)0.40955 (13)0.0177 (4)
H290.5163140.8490280.4183060.021*
C300.49336 (15)0.50904 (17)0.35838 (13)0.0165 (4)
C310.53480 (14)0.32350 (17)0.36947 (13)0.0153 (4)
C320.57754 (16)0.25144 (18)0.42214 (14)0.0188 (4)
H320.5893950.2670250.4728930.023*
C330.60284 (17)0.15704 (19)0.40074 (15)0.0221 (4)
H330.6327450.1085740.4370230.026*
C340.58502 (18)0.13252 (19)0.32701 (16)0.0238 (5)
H340.6031180.0679870.3125370.029*
C350.5403 (2)0.2036 (2)0.27440 (15)0.0267 (5)
H350.5266140.1865760.2237290.032*
C360.51516 (19)0.29968 (19)0.29508 (14)0.0226 (5)
H360.4850790.3481210.2588520.027*
C370.30635 (9)0.53143 (15)0.34455 (11)0.0236 (5)
C380.2622 (2)0.4790 (3)0.2804 (3)0.02627 (18)0.7
H380.2677200.4985780.2339750.032*0.7
C390.2081 (2)0.3941 (3)0.2878 (2)0.02627 (18)0.7
H390.1741310.3519090.2489640.032*0.7
C400.21388 (18)0.3843 (2)0.36005 (19)0.02627 (18)0.7
H400.1835840.3328860.3783020.032*0.7
C38'0.2831 (4)0.4893 (5)0.4023 (4)0.0280 (5)0.3
H38A0.3046770.5173810.4504370.034*0.3
C39'0.2257 (4)0.4022 (5)0.3880 (4)0.0280 (5)0.3
H39A0.2040870.3650490.4218000.034*0.3
C40'0.2093 (3)0.3847 (4)0.3147 (3)0.0280 (5)0.3
H40A0.1723280.3302000.2902800.034*0.3
C410.35706 (15)0.91145 (18)0.39858 (13)0.0175 (4)
C420.27141 (16)0.92410 (19)0.40067 (15)0.0211 (4)
H420.2363480.8647810.4001460.025*
C430.23728 (17)1.0228 (2)0.40349 (16)0.0234 (5)
H430.1795751.0301140.4057460.028*
C440.28699 (18)1.1103 (2)0.40302 (15)0.0241 (5)
H440.2633951.1774380.4045120.029*
C450.37189 (18)1.0989 (2)0.40036 (15)0.0230 (4)
H450.4061961.1586520.3999700.028*
C460.40657 (16)1.00110 (19)0.39827 (14)0.0202 (4)
H460.4645680.9944960.3965970.024*
H1N0.498 (2)0.406 (3)0.699 (2)0.024*
H2N0.496 (2)0.419 (3)0.440 (2)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (4)0.0249 (4)0.0211 (4)0.0066 (3)0.0066 (3)0.0059 (3)
S1'0.0214 (9)0.0245 (10)0.0325 (12)0.0058 (8)0.0073 (7)0.0081 (8)
O10.0174 (8)0.0195 (8)0.0452 (12)0.0051 (7)0.0108 (8)0.0005 (8)
O20.0310 (9)0.0207 (8)0.0159 (7)0.0068 (7)0.0091 (7)0.0013 (6)
N10.0216 (8)0.0131 (8)0.0157 (8)0.0019 (7)0.0070 (7)0.0006 (6)
C10.0171 (9)0.0155 (9)0.0210 (10)0.0037 (7)0.0081 (8)0.0018 (8)
C20.0185 (9)0.0135 (9)0.0185 (9)0.0042 (7)0.0081 (7)0.0013 (7)
C30.0176 (9)0.0141 (9)0.0225 (10)0.0018 (7)0.0089 (8)0.0008 (7)
C40.0164 (9)0.0132 (9)0.0329 (12)0.0026 (7)0.0076 (9)0.0010 (8)
C50.0167 (9)0.0138 (9)0.0199 (9)0.0039 (7)0.0079 (7)0.0000 (7)
C60.0152 (9)0.0135 (9)0.0223 (10)0.0030 (7)0.0065 (7)0.0005 (8)
C70.0164 (9)0.0129 (8)0.0188 (9)0.0017 (7)0.0078 (7)0.0004 (7)
C80.0175 (9)0.0125 (8)0.0194 (9)0.0023 (7)0.0082 (7)0.0018 (7)
C90.0344 (13)0.0166 (10)0.0190 (10)0.0030 (9)0.0086 (9)0.0002 (8)
C100.0388 (14)0.0178 (10)0.0235 (11)0.0029 (10)0.0109 (10)0.0026 (9)
C110.0259 (11)0.0141 (9)0.0269 (11)0.0050 (8)0.0101 (9)0.0000 (8)
C120.0257 (11)0.0183 (10)0.0250 (11)0.0085 (9)0.0067 (9)0.0039 (8)
C130.0234 (10)0.0159 (9)0.0188 (10)0.0053 (8)0.0046 (8)0.0000 (8)
C140.0186 (9)0.0142 (9)0.0274 (11)0.0018 (8)0.0078 (8)0.0001 (8)
C150.0270 (4)0.0249 (4)0.0211 (4)0.0066 (3)0.0066 (3)0.0059 (3)
C160.0270 (4)0.0249 (4)0.0211 (4)0.0066 (3)0.0066 (3)0.0059 (3)
C170.0270 (4)0.0249 (4)0.0211 (4)0.0066 (3)0.0066 (3)0.0059 (3)
C15'0.0214 (9)0.0245 (10)0.0325 (12)0.0058 (8)0.0073 (7)0.0081 (8)
C16'0.0214 (9)0.0245 (10)0.0325 (12)0.0058 (8)0.0073 (7)0.0081 (8)
C17'0.0214 (9)0.0245 (10)0.0325 (12)0.0058 (8)0.0073 (7)0.0081 (8)
C180.0178 (9)0.0148 (9)0.0215 (10)0.0044 (8)0.0066 (8)0.0010 (8)
C190.0215 (11)0.0147 (10)0.0372 (14)0.0047 (8)0.0054 (10)0.0034 (9)
C200.0296 (13)0.0156 (10)0.0440 (16)0.0043 (10)0.0038 (11)0.0061 (10)
C210.0369 (14)0.0214 (12)0.0292 (13)0.0146 (11)0.0041 (11)0.0044 (10)
C220.0267 (12)0.0266 (12)0.0391 (15)0.0135 (10)0.0135 (11)0.0022 (11)
C230.0222 (11)0.0198 (11)0.0358 (13)0.0079 (9)0.0126 (10)0.0013 (10)
S20.0239 (4)0.0226 (4)0.0338 (5)0.0018 (3)0.0109 (3)0.0058 (3)
S2'0.0325 (11)0.0291 (11)0.0197 (10)0.0075 (8)0.0035 (7)0.0159 (7)
O30.0177 (8)0.0237 (9)0.0335 (10)0.0064 (7)0.0074 (7)0.0025 (7)
O40.0310 (9)0.0171 (7)0.0198 (8)0.0051 (7)0.0129 (7)0.0038 (6)
N20.0216 (9)0.0114 (7)0.0178 (8)0.0034 (6)0.0086 (7)0.0019 (6)
C240.0183 (9)0.0168 (9)0.0196 (10)0.0057 (8)0.0074 (8)0.0000 (7)
C250.0189 (9)0.0126 (8)0.0194 (9)0.0050 (7)0.0086 (7)0.0025 (7)
C260.0180 (9)0.0141 (9)0.0233 (10)0.0019 (7)0.0076 (8)0.0012 (8)
C270.0161 (9)0.0154 (9)0.0316 (12)0.0032 (8)0.0098 (8)0.0007 (8)
C280.0178 (9)0.0138 (9)0.0195 (9)0.0032 (7)0.0076 (8)0.0011 (7)
C290.0164 (9)0.0152 (9)0.0223 (10)0.0039 (7)0.0072 (8)0.0005 (8)
C300.0169 (9)0.0137 (9)0.0196 (9)0.0039 (7)0.0067 (7)0.0013 (7)
C310.0160 (9)0.0117 (8)0.0195 (9)0.0003 (7)0.0073 (7)0.0011 (7)
C320.0201 (10)0.0160 (9)0.0191 (9)0.0013 (8)0.0038 (8)0.0001 (8)
C330.0210 (10)0.0160 (10)0.0279 (12)0.0045 (8)0.0054 (9)0.0035 (8)
C340.0273 (11)0.0148 (9)0.0327 (13)0.0024 (8)0.0144 (10)0.0040 (9)
C350.0425 (15)0.0198 (11)0.0200 (11)0.0008 (10)0.0128 (10)0.0032 (9)
C360.0336 (13)0.0169 (10)0.0177 (10)0.0029 (9)0.0083 (9)0.0017 (8)
C370.0196 (10)0.0173 (10)0.0349 (13)0.0037 (8)0.0096 (9)0.0011 (9)
C380.0239 (4)0.0226 (4)0.0338 (5)0.0018 (3)0.0109 (3)0.0058 (3)
C390.0239 (4)0.0226 (4)0.0338 (5)0.0018 (3)0.0109 (3)0.0058 (3)
C400.0239 (4)0.0226 (4)0.0338 (5)0.0018 (3)0.0109 (3)0.0058 (3)
C38'0.0325 (11)0.0291 (11)0.0197 (10)0.0075 (8)0.0035 (7)0.0159 (7)
C39'0.0325 (11)0.0291 (11)0.0197 (10)0.0075 (8)0.0035 (7)0.0159 (7)
C40'0.0325 (11)0.0291 (11)0.0197 (10)0.0075 (8)0.0035 (7)0.0159 (7)
C410.0174 (9)0.0158 (9)0.0198 (9)0.0052 (7)0.0062 (8)0.0002 (7)
C420.0186 (10)0.0152 (9)0.0323 (12)0.0043 (8)0.0118 (9)0.0023 (9)
C430.0215 (10)0.0193 (10)0.0309 (12)0.0082 (9)0.0102 (9)0.0004 (9)
C440.0267 (11)0.0175 (10)0.0255 (12)0.0079 (9)0.0041 (9)0.0012 (9)
C450.0266 (11)0.0145 (9)0.0268 (11)0.0011 (8)0.0065 (9)0.0000 (8)
C460.0187 (10)0.0177 (10)0.0249 (11)0.0020 (8)0.0075 (8)0.0006 (8)
Geometric parameters (Å, º) top
S1—C141.692 (2)S2—C371.686 (2)
S1—C171.716 (3)S2—C401.712 (3)
S1'—C141.688 (3)S2'—C371.644 (3)
S1'—C17'1.712 (4)S2'—C40'1.722 (4)
O1—C11.223 (3)O3—C241.230 (3)
O2—C71.227 (3)O4—C301.229 (3)
N1—C71.349 (3)N2—C301.352 (3)
N1—C81.418 (3)N2—C311.422 (3)
N1—H1N0.85 (4)N2—H2N0.94 (4)
C1—C61.455 (3)C24—C291.457 (3)
C1—C21.526 (3)C24—C251.516 (3)
C2—C71.530 (3)C25—C301.528 (3)
C2—C31.543 (3)C25—C261.539 (3)
C2—H21.0000C25—H251.0000
C3—C141.486 (3)C26—C371.479 (3)
C3—C41.535 (3)C26—C271.538 (3)
C3—H31.0000C26—H261.0000
C4—C51.510 (3)C27—C281.507 (3)
C4—H4A0.9900C27—H27A0.9900
C4—H4B0.9900C27—H27B0.9900
C5—C61.354 (3)C28—C291.354 (3)
C5—C181.478 (3)C28—C411.472 (3)
C6—H60.9500C29—H290.9500
C8—C91.395 (3)C31—C321.391 (3)
C8—C131.398 (3)C31—C361.392 (3)
C9—C101.388 (4)C32—C331.384 (3)
C9—H90.9500C32—H320.9500
C10—C111.380 (4)C33—C341.385 (4)
C10—H100.9500C33—H330.9500
C11—C121.397 (4)C34—C351.391 (4)
C11—H110.9500C34—H340.9500
C12—C131.394 (3)C35—C361.397 (4)
C12—H120.9500C35—H350.9500
C13—H130.9500C36—H360.9500
C14—C151.369 (4)C37—C38'1.377 (4)
C14—C15'1.381 (4)C37—C381.392 (4)
C15—C161.440 (4)C38—C391.435 (4)
C15—H150.9500C38—H380.9500
C16—C171.362 (3)C39—C401.358 (3)
C16—H160.9500C39—H390.9500
C17—H170.9500C40—H400.9500
C15'—C16'1.432 (4)C38'—C39'1.430 (4)
C15'—H15A0.9500C38'—H38A0.9500
C16'—C17'1.361 (4)C39'—C40'1.360 (4)
C16'—H16A0.9500C39'—H39A0.9500
C17'—H17A0.9500C40'—H40A0.9500
C18—C231.393 (3)C41—C421.404 (3)
C18—C191.401 (4)C41—C461.407 (3)
C19—C201.389 (4)C42—C431.395 (3)
C19—H190.9500C42—H420.9500
C20—C211.389 (4)C43—C441.386 (4)
C20—H200.9500C43—H430.9500
C21—C221.381 (5)C44—C451.394 (4)
C21—H210.9500C44—H440.9500
C22—C231.394 (4)C45—C461.386 (3)
C22—H220.9500C45—H450.9500
C23—H230.9500C46—H460.9500
S1···H22.95C23···H4B2.57
S2···H252.96C27···H422.54
S2···H27B2.93C27···H38A2.97
O2···C132.920 (3)C29···H462.65
O4···C362.900 (3)C30···H362.79
H16···O1i2.71C30···H43i2.88
H17A···O1i2.72C40···H44iv2.84
H22···O1ii2.35C42···H27A2.61
O2···H32.68C46···H292.59
O2···H132.37H1N···H92.32
O2···H2N1.95 (4)H1N···H22.10
O3···H43i2.42H2N···H252.03
O4···H262.67H4B···H231.96
O4···H362.38H6···H192.06
H1N···O4iii2.07 (4)H27A···H422.11
C4···H232.61H27B···H38A2.37
C6···H192.62H29···H462.05
C7···H132.84H40···H44iv2.36
C19···H62.58
C14—S1—C1791.85 (14)C37—S2—C4094.03 (16)
C14—S1'—C17'93.6 (3)C37—S2'—C40'91.6 (3)
C7—N1—C8127.3 (2)C30—N2—C31126.5 (2)
C7—N1—H1N115 (3)C30—N2—H2N114 (2)
C8—N1—H1N118 (3)C31—N2—H2N119 (2)
O1—C1—C6121.0 (2)O3—C24—C29121.1 (2)
O1—C1—C2121.7 (2)O3—C24—C25120.6 (2)
C6—C1—C2117.26 (19)C29—C24—C25118.20 (19)
C1—C2—C7110.71 (19)C24—C25—C30110.62 (18)
C1—C2—C3110.18 (18)C24—C25—C26112.44 (18)
C7—C2—C3110.10 (18)C30—C25—C26108.80 (19)
C1—C2—H2108.6C24—C25—H25108.3
C7—C2—H2108.6C30—C25—H25108.3
C3—C2—H2108.6C26—C25—H25108.3
C14—C3—C4112.79 (15)C37—C26—C27110.94 (16)
C14—C3—C2112.29 (16)C37—C26—C25111.09 (15)
C4—C3—C2108.93 (19)C27—C26—C25110.6 (2)
C14—C3—H3107.5C37—C26—H26108.0
C4—C3—H3107.5C27—C26—H26108.0
C2—C3—H3107.5C25—C26—H26108.0
C5—C4—C3113.19 (19)C28—C27—C26113.43 (19)
C5—C4—H4A108.9C28—C27—H27A108.9
C3—C4—H4A108.9C26—C27—H27A108.9
C5—C4—H4B108.9C28—C27—H27B108.9
C3—C4—H4B108.9C26—C27—H27B108.9
H4A—C4—H4B107.8H27A—C27—H27B107.7
C6—C5—C18121.0 (2)C29—C28—C41121.8 (2)
C6—C5—C4119.9 (2)C29—C28—C27119.9 (2)
C18—C5—C4119.08 (19)C41—C28—C27118.21 (19)
C5—C6—C1123.6 (2)C28—C29—C24123.8 (2)
C5—C6—H6118.2C28—C29—H29118.1
C1—C6—H6118.2C24—C29—H29118.1
O2—C7—N1124.8 (2)O4—C30—N2124.5 (2)
O2—C7—C2120.8 (2)O4—C30—C25120.8 (2)
N1—C7—C2114.36 (19)N2—C30—C25114.6 (2)
C9—C8—C13119.7 (2)C32—C31—C36120.0 (2)
C9—C8—N1115.7 (2)C32—C31—N2117.2 (2)
C13—C8—N1124.6 (2)C36—C31—N2122.7 (2)
C10—C9—C8120.4 (2)C33—C32—C31120.1 (2)
C10—C9—H9119.8C33—C32—H32119.9
C8—C9—H9119.8C31—C32—H32119.9
C11—C10—C9120.3 (2)C32—C33—C34120.7 (2)
C11—C10—H10119.8C32—C33—H33119.7
C9—C10—H10119.8C34—C33—H33119.7
C10—C11—C12119.6 (2)C33—C34—C35119.1 (2)
C10—C11—H11120.2C33—C34—H34120.4
C12—C11—H11120.2C35—C34—H34120.4
C13—C12—C11120.7 (2)C34—C35—C36120.9 (2)
C13—C12—H12119.6C34—C35—H35119.6
C11—C12—H12119.6C36—C35—H35119.6
C12—C13—C8119.3 (2)C31—C36—C35119.1 (2)
C12—C13—H13120.4C31—C36—H36120.4
C8—C13—H13120.4C35—C36—H36120.4
C15—C14—C3125.1 (3)C38'—C37—C26124.9 (4)
C15'—C14—C3131.5 (4)C38—C37—C26126.3 (3)
C15'—C14—S1'103.1 (4)C38'—C37—S2'109.8 (4)
C3—C14—S1'125.3 (2)C26—C37—S2'125.3 (2)
C15—C14—S1112.0 (3)C38—C37—S2107.7 (3)
C3—C14—S1122.98 (16)C26—C37—S2126.02 (18)
C14—C15—C16112.8 (4)C37—C38—C39116.8 (4)
C14—C15—H15123.6C37—C38—H38121.6
C16—C15—H15123.6C39—C38—H38121.6
C17—C16—C15110.5 (4)C40—C39—C38108.2 (4)
C17—C16—H16124.7C40—C39—H39125.9
C15—C16—H16124.7C38—C39—H39125.9
C16—C17—S1112.8 (3)C39—C40—S2113.3 (3)
C16—C17—H17123.6C39—C40—H40123.3
S1—C17—H17123.6S2—C40—H40123.3
C14—C15'—C16'125.5 (8)C37—C38'—C39'118.2 (7)
C14—C15'—H15A117.3C37—C38'—H38A120.9
C16'—C15'—H15A117.3C39'—C38'—H38A120.9
C17'—C16'—C15'99.9 (8)C40'—C39'—C38'104.0 (8)
C17'—C16'—H16A130.0C40'—C39'—H39A128.0
C15'—C16'—H16A130.0C38'—C39'—H39A128.0
C16'—C17'—S1'117.9 (7)C39'—C40'—S2'116.4 (6)
C16'—C17'—H17A121.1C39'—C40'—H40A121.8
S1'—C17'—H17A121.1S2'—C40'—H40A121.8
C23—C18—C19118.1 (2)C42—C41—C46118.0 (2)
C23—C18—C5121.0 (2)C42—C41—C28120.3 (2)
C19—C18—C5120.9 (2)C46—C41—C28121.7 (2)
C20—C19—C18121.1 (3)C43—C42—C41120.7 (2)
C20—C19—H19119.5C43—C42—H42119.6
C18—C19—H19119.5C41—C42—H42119.6
C19—C20—C21119.8 (3)C44—C43—C42120.5 (2)
C19—C20—H20120.1C44—C43—H43119.8
C21—C20—H20120.1C42—C43—H43119.8
C22—C21—C20119.9 (2)C43—C44—C45119.5 (2)
C22—C21—H21120.1C43—C44—H44120.3
C20—C21—H21120.1C45—C44—H44120.3
C21—C22—C23120.2 (3)C46—C45—C44120.4 (2)
C21—C22—H22119.9C46—C45—H45119.8
C23—C22—H22119.9C44—C45—H45119.8
C18—C23—C22120.9 (3)C45—C46—C41120.9 (2)
C18—C23—H23119.6C45—C46—H46119.6
C22—C23—H23119.6C41—C46—H46119.6
O1—C1—C2—C725.9 (3)O3—C24—C25—C3035.2 (3)
C6—C1—C2—C7156.0 (2)C29—C24—C25—C30147.8 (2)
O1—C1—C2—C3147.9 (2)O3—C24—C25—C26157.1 (2)
C6—C1—C2—C334.0 (3)C29—C24—C25—C2626.0 (3)
C1—C2—C3—C14177.06 (17)C24—C25—C26—C37173.58 (18)
C7—C2—C3—C1454.7 (2)C30—C25—C26—C3763.5 (2)
C1—C2—C3—C457.3 (2)C24—C25—C26—C2749.9 (3)
C7—C2—C3—C4179.64 (19)C30—C25—C26—C27172.79 (19)
C14—C3—C4—C5177.59 (19)C37—C26—C27—C28173.80 (19)
C2—C3—C4—C552.2 (3)C25—C26—C27—C2850.0 (3)
C3—C4—C5—C622.4 (3)C26—C27—C28—C2925.5 (3)
C3—C4—C5—C18157.9 (2)C26—C27—C28—C41156.6 (2)
C18—C5—C6—C1176.4 (2)C41—C28—C29—C24177.4 (2)
C4—C5—C6—C13.3 (4)C27—C28—C29—C240.4 (4)
O1—C1—C6—C5178.8 (2)O3—C24—C29—C28176.9 (2)
C2—C1—C6—C53.1 (3)C25—C24—C29—C280.1 (3)
C8—N1—C7—O26.8 (4)C31—N2—C30—O43.7 (4)
C8—N1—C7—C2171.5 (2)C31—N2—C30—C25174.1 (2)
C1—C2—C7—O271.4 (3)C24—C25—C30—O460.9 (3)
C3—C2—C7—O250.7 (3)C26—C25—C30—O463.1 (3)
C1—C2—C7—N1110.2 (2)C24—C25—C30—N2121.2 (2)
C3—C2—C7—N1127.7 (2)C26—C25—C30—N2114.8 (2)
C7—N1—C8—C9158.7 (2)C30—N2—C31—C32157.3 (2)
C7—N1—C8—C1322.4 (4)C30—N2—C31—C3625.8 (4)
C13—C8—C9—C100.3 (4)C36—C31—C32—C331.8 (4)
N1—C8—C9—C10179.3 (2)N2—C31—C32—C33178.9 (2)
C8—C9—C10—C110.3 (4)C31—C32—C33—C340.9 (4)
C9—C10—C11—C120.2 (4)C32—C33—C34—C350.8 (4)
C10—C11—C12—C130.2 (4)C33—C34—C35—C361.5 (4)
C11—C12—C13—C80.2 (4)C32—C31—C36—C351.1 (4)
C9—C8—C13—C120.2 (4)N2—C31—C36—C35178.0 (2)
N1—C8—C13—C12179.2 (2)C34—C35—C36—C310.6 (4)
C4—C3—C14—C15111.8 (2)C27—C26—C37—C38'57.0 (2)
C2—C3—C14—C15124.67 (19)C25—C26—C37—C38'66.5 (2)
C4—C3—C14—C15'69.4 (2)C27—C26—C37—C38119.5 (2)
C2—C3—C14—C15'54.2 (2)C25—C26—C37—C38117.0 (2)
C4—C3—C14—S1'110.7 (2)C27—C26—C37—S2'123.1 (2)
C2—C3—C14—S1'125.8 (2)C25—C26—C37—S2'113.4 (2)
C4—C3—C14—S168.23 (18)C27—C26—C37—S260.68 (18)
C2—C3—C14—S155.32 (17)C25—C26—C37—S262.81 (17)
C17'—S1'—C14—C15'0.03 (12)C40'—S2'—C37—C38'0.00 (12)
C17'—S1'—C14—C3179.97 (7)C40'—S2'—C37—C26179.91 (7)
C17—S1—C14—C150.02 (11)C40—S2—C37—C380.36 (11)
C17—S1—C14—C3179.97 (6)C40—S2—C37—C26179.79 (7)
C3—C14—C15—C16179.94 (10)C26—C37—C38—C39179.62 (11)
S1—C14—C15—C160.07 (18)S2—C37—C38—C390.54 (18)
C14—C15—C16—C170.1 (2)C37—C38—C39—C400.5 (2)
C15—C16—C17—S10.2 (2)C38—C39—C40—S20.2 (2)
C14—S1—C17—C160.11 (14)C37—S2—C40—C390.12 (15)
C3—C14—C15'—C16'179.92 (14)C26—C37—C38'—C39'179.91 (13)
S1'—C14—C15'—C16'0.2 (2)S2'—C37—C38'—C39'0.0 (2)
C14—C15'—C16'—C17'0.2 (3)C37—C38'—C39'—C40'0.0 (3)
C15'—C16'—C17'—S1'0.2 (2)C38'—C39'—C40'—S2'0.0 (2)
C14—S1'—C17'—C16'0.08 (17)C37—S2'—C40'—C39'0.00 (17)
C6—C5—C18—C23161.9 (2)C29—C28—C41—C42166.2 (2)
C4—C5—C18—C2318.4 (3)C27—C28—C41—C4211.7 (3)
C6—C5—C18—C1918.0 (4)C29—C28—C41—C4614.1 (4)
C4—C5—C18—C19161.7 (2)C27—C28—C41—C46168.0 (2)
C23—C18—C19—C201.3 (4)C46—C41—C42—C431.0 (4)
C5—C18—C19—C20178.6 (3)C28—C41—C42—C43179.3 (2)
C18—C19—C20—C210.3 (5)C41—C42—C43—C441.1 (4)
C19—C20—C21—C220.6 (5)C42—C43—C44—C450.6 (4)
C20—C21—C22—C230.5 (5)C43—C44—C45—C460.1 (4)
C19—C18—C23—C221.4 (4)C44—C45—C46—C410.2 (4)
C5—C18—C23—C22178.5 (3)C42—C41—C46—C450.3 (4)
C21—C22—C23—C180.5 (5)C28—C41—C46—C45180.0 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg7 and Cg10 are the centroids of the S1/C14···C17, S2/C37···C49, C18···C23 and C41···C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4iii0.85 (4)2.07 (4)2.921 (3)173 (4)
N2—H2N···O20.94 (4)1.95 (4)2.871 (3)167 (3)
C11—H11···Cg1v0.952.713.468 (3)137
C12—H12···Cg10vi0.952.873.772 (3)159
C34—H34···Cg2i0.952.783.546 (3)139
C38—H38···Cg7v0.952.813.603 (5)142
Symmetry codes: (i) x+1/2, y1/2, z; (iii) x, y+1, z+1/2; (v) x1/2, y+1/2, z; (vi) x, y+2, z1/2.
 

Acknowledgements

This work has been supported by the Baku State University and RUDN University Strategic Academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit. The authors contributions are as follows: conceptualizations KNA and TH; methodology AMM and NGS; investigation VNK and KNA; writing (original draft) TH, AB and AMM; writing (review and editing of the manuscript) TH and NGS; visualization TH and AB; funding acquisition VNK, TH and NGS; resources TH, VNK and RMR; supervision AMM and TH.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to T. Hökelek).

References

First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKarimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A. M., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagiyev, F. N., Mamedov, I. G., Askerov, R., Taslimi, P. & Poustforoosh, A. (2022). ChemistrySelect, 7, e202202006.  Google Scholar
First citationNenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M., Atakishiyeva, G. T., Niyazova, A. A., Khrustalev, V. N., Shastin, A. V. & Tskhovrebov, A. G. (2023). Catalysts, 13, 1194.  CrossRef Google Scholar
First citationNiesen, D. B., Hessler, C. & Seeram, N. P. (2013). J. Berry Res. 3, 181–196.  CrossRef Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRzayev, R. & Khalilov, A. N. (2024). Chem. Rev. Lett. 7, 479–490.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.  Web of Science CrossRef Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds