research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,9-Di­methyl-1,10-phenanthroline)bis­­[2-(pyridin-2-yl)phen­yl]iridium(III) hexa­fluoro­phosphate and (2,9-di­methyl-1,10-phenanthroline)bis­­[5-methyl-2-(pyridin-2-yl)phen­yl]iridium(III) hexa­fluoro­phosphate–di­ethyl ether–aceto­nitrile (1/0.61/0.78)

crossmark logo

aDepartment of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA, and bDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: creed@brockport.edu

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 14 June 2024; accepted 11 December 2024; online 14 January 2025)

The title compounds, [Ir(C14H12N2)(C11H8N)2]PF6 (1) and [Ir(C14H12N2)(C12H10N)2]PF6·0.61C2H10O·0.78CH3CN (2), crystallize in the space groups Pbca and P1, respectively, each structure containing one monocationic Ir complex and one PF6 anion in the asymmetric unit. The anion and solvent in compound 2 are disordered. The Ir—N(phenanthroline) bond lengths of ca. 2.21 Å indicate a greater steric effect of the 2,9-dimethyl-1,10-phenanthroline ligand compared to 1,10-phenanthroline. Both structures show offset parallel inter­molecular ππ inter­actions between the pyridine rings of the phenanthroline ligands, and that of 1 also exhibits similar inter­actions between the phenyl and pyridine rings of the phenyl­pyridine ligands.

1. Chemical context

Cyclo­metallated iridium complexes of the form [Ir(C^N)2(N^N)](PF6), where C^N and N^N are aromatic chelating ligands, have gained inter­est due to their long-lived luminescence and high photostability. These lumiphores have found application in optoelectronics, bioimaging, biosensing, and cancer treatments (Mills et al., 2018[Mills, I. N., Porras, J. A. & Bernhard, S. (2018). Acc. Chem. Res. 51, 352-364.]; Xu et al., 2021[Xu, J., Jiang, R., He, H., Ma, C. & Tang, Z. (2021). TrAC Trends Anal. Chem. 139, 116257.]; Berrones Reyes et al., 2021[Berrones Reyes, J., Kuimova, M. K. & Vilar, R. (2021). Curr. Opin. Chem. Biol. 61, 179-190.]; Ho et al., 2020[Ho, P.-Y., Ho, C.-L. & Wong, W.-Y. (2020). Coord. Chem. Rev. 413, 213267.]; Jing et al., 2024[Jing, S., Wu, X., Niu, D., Wang, J., Leung, C.-H. & Wang, W. (2024). Molecules, 29, 256.]). Understanding how changes to the coordination environment around the iridium metal center impact the structure of the mol­ecule is crucial, as structural changes influence the properties of these complexes. Modifications to iridium complexes have been shown to affect: emission energy, emission quantum yield, excited state lifetime, solubility, biomolecule selectivity, the strength of the inter­action with a biomolecule, and luminescence enhancement in the presence of a biomolecule (Mills et al., 2018[Mills, I. N., Porras, J. A. & Bernhard, S. (2018). Acc. Chem. Res. 51, 352-364.]; Ma et al., 2015[Ma, D. L., Zhang, Z., Wang, M., Lu, L., Zhong, H. J. & Leung, C. H. (2015). Chem. Biol. 22, 812-828.]; Lin et al., 2014[Lin, S., He, B., Shiu-Hin Chan, D., Hong Chan, P. W., Leung, C.-H. & Ma, D.-L. (2014). RSC Adv. 4, 54826-54831.]; He et al., 2013[He, H.-Z., Wang, M., Chan, D. S.-H., Leung, C.-H., Lin, X., Lin, J.-M. & Ma, D.-L. (2013). Methods, 64, 212-217.]; Castor et al., 2015[Castor, K. J., Metera, K. L., Tefashe, U. M., Serpell, C. J., Mauzeroll, J. & Sleiman, H. F. (2015). Inorg. Chem. 54, 6958-6967.]).

In this study, we examine the structures of compounds 1 and 2, whose iridium cations were previously investigated for their application in light-emitting electrochemical cells and G-quadruplex luminescent turn-on detection platforms (Moon & Choe, 2013[Moon, D. B. & Choe, Y. S. (2013). Mol. Cryst. Liq. Cryst. 584, 60-68.]; Ma et al., 2014[Ma, D.-L., Lin, S., Leung, K.-H., Zhong, H.-J., Liu, L.-J., Chan, D. S.-H., Bourdoncle, A., Mergny, J.-L., Wang, H.-M. D. & Leung, C.-H. (2014). Nanoscale 6, 8489-8494. https://doi. org/10.1039/C4NR00541D.]). Compound 1 was previously crystallized in the P21/c space group as a deuterated chloro­form solvate, 3 (Batsanov, 2017a[Batsanov, A. S. (2017a). CSD Communication (CCDC 1559136). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbdq4]). The cation of 1 was also crystallized with a different counter-ion (Ma et al., 2016[Ma, D., Zhang, C., Qiu, Y. & Duan, L. (2016). Chem. A Eur. J. 22, 15888-15895.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1 and 2 are shown in Figs. 1[link] and 2[link], while Tables 1[link] and 2[link] list bond lengths and angles involving the Ir atoms, for 1 and 2, respectively, and Table 3[link] compares these with the corresponding ones in 3 and in the fully unmethyl­ated analog, 4 (Batsanov, 2017b[Batsanov, A. S. (2017b). CSD Communication (CCDC 1559153). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbf8q]). The Ir—C (ca. 2.02 Å) and Ir—N(CN) (ca. 2.05 Å) bond lengths are similar across all four compounds, indicating methyl­ation at the 5-position of the phenyl­pyridine ligand does not have a steric impact. However, the Ir—N(NN) distances increase with methyl­ation at the 2- and 9-positions of the phenanthroline ligand, to ca. 2.21 Å in compounds 13, compared to ca. 2.14 Å in the unmethyl­ated reference compound 4. This is similar to other previously published compounds methyl­ated in the 2- and 9-positions (Graf et al., 2014[Graf, M., Gothe, Y., Metzler-Nolte, N., Czerwieniec, R. & Sünkel, K. (2014). J. Organomet. Chem. 765, 46-52.]; Graf, Böttcher et al., 2021[Graf, M., Böttcher, H.-C., Sünkel, K., Thavalingam, S., Metzler-Nolte, N. & Czerwieniec, R. (2021). Z. Anorg. Allge Chem. 647, 306-311.]). The steric impact of the methyl groups on Ir—N(NN) bond distances is unique to the 2- and 9-positions. Methyl­ation at any other position of the phenanthroline ligand results in Ir—N(NN) bond distances similar to those of 4 (Graf et al., 2020[Graf, M., Siegmund, D., Gothe, Y., Metzler-Nolte, N. & Sünkel, K. (2020). Z. Anorg. Allge Chem. 646, 665-669.]; Graf, Czerwieniec et al., 2021[Graf, M., Czerwieniec, R., Mayer, P. & Böttcher, H.-C. (2021). Inorg. Chim. Acta, 527, 120554.]). The steric impact of methyl­ation is also reflected in the bond angles displayed in Table 3[link]: the C—Ir—N(NN) bond angles in 13 are wider, while the C—Ir—C angles are narrower, than those in 4.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Ir1—N1 2.050 (2) Ir1—N4 2.212 (2)
Ir1—N2 2.044 (2) Ir1—C1 2.017 (2)
Ir1—N3 2.194 (2) Ir1—C12 2.012 (2)
       
N1—Ir1—N3 84.45 (8) C1—Ir1—N3 99.31 (9)
N1—Ir1—N4 95.28 (8) C1—Ir1—N4 174.88 (9)
N2—Ir1—N1 174.13 (8) C12—Ir1—N1 96.20 (10)
N2—Ir1—N3 99.10 (8) C12—Ir1—N2 80.36 (10)
N2—Ir1—N4 90.07 (8) C12—Ir1—N3 178.62 (9)
N3—Ir1—N4 77.38 (8) C12—Ir1—N4 101.33 (9)
C1—Ir1—N1 80.44 (9) C12—Ir1—C1 82.01 (10)
C1—Ir1—N2 94.33 (9)    

Table 2
Selected geometric parameters (Å, °) for 2[link]

Ir1—N1 2.050 (2) Ir1—N4 2.222 (2)
Ir1—N2 2.051 (2) Ir1—C1 2.018 (3)
Ir1—N3 2.226 (2) Ir1—C13 2.017 (3)
       
N1—Ir1—N2 171.61 (9) C1—Ir1—N3 101.51 (10)
N1—Ir1—N3 89.41 (9) C1—Ir1—N4 176.54 (10)
N1—Ir1—N4 96.50 (9) C13—Ir1—N1 93.12 (11)
N2—Ir1—N3 97.19 (9) C13—Ir1—N2 80.39 (11)
N2—Ir1—N4 90.07 (9) C13—Ir1—N3 177.26 (10)
N4—Ir1—N3 76.79 (9) C13—Ir1—N4 101.85 (10)
C1—Ir1—N1 80.42 (11) C13—Ir1—C1 79.97 (11)
C1—Ir1—N2 93.13 (11)    

Table 3
Selected bond lengths and angles (Å, °)

Complex Ir—C Ir—N(CN) Ir—N(NN) N(NN)—Ir—N(NN) C—Ir—N(NN) C—Ir—C
1 2.017 (2) 2.050 (2) 2.194 (2) 77.38 (8) 99.31 (9) 82.01 (10)
  2.012 (2) 2.044 (2) 2.212 (2)   101.33 (9)  
2 2.018 (3) 2.050 (2) 2.226 (2) 76.79 (9) 101.51 (10) 79.97 (11)
  2.017 (3) 2.051 (2) 2.222 (2)   101.85 (10)  
3a 2.010 (3) 2.032 (3) 2.193 (3) 76.99 (10) 102.86 (12) 83.22 (13)
  2.016 (3) 2.053 (3) 2.197 (3)   97.10 (12)  
4b 2.020 (3) 2.045 (3) 2.135 (2) 77.47 (9) 96.0 (1) 89.7 (1)
  2.008 (3) 2.041 (3) 2.150 (2)   96.8 (1)  
Notes: (a) Batsanov, 2017a[Batsanov, A. S. (2017a). CSD Communication (CCDC 1559136). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbdq4]; (b) Batsanov, 2017b[Batsanov, A. S. (2017b). CSD Communication (CCDC 1559153). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbf8q].
[Figure 1]
Figure 1
Anisotropic displacement ellipsoid plot of 1 drawn at the 50% probability level, with H atoms omitted. The PF6 anion has been shifted with symmetry operation[{1\over 2}] + x, y, [{1\over 2}] − z.
[Figure 2]
Figure 2
Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level. The minor component of the anion disorder, the solvent mol­ecules and all H atoms are omitted. The PF6 anion has been shifted with symmetry operation 1 − x, 1 − y, 1 − z.

3. Supra­molecular features

In the structures of 1 and 2 there are a number of C—H⋯F—P contacts (Tables 4[link] and 5[link]). Those with H⋯F distances shorter than the sum of the van der Waals radii (2.56 Å; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) are listed in Tables 4[link] and 5[link], respectively, for 1 and 2. These attractions are likely very weak, of the same order of energies as in van der Waals complexes (Howard et al., 1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613-12622.]).

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯F1i 0.95 2.39 3.243 (3) 150
C11—H11⋯F3i 0.95 2.46 3.229 (3) 138
C22—H22⋯F1 0.95 2.45 3.311 (3) 150
C27—H27⋯F2ii 0.95 2.36 3.192 (3) 146
C31—H31⋯F4iii 0.95 2.55 3.463 (3) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, -y+1, -z+1].

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯F2′ 0.95 2.54 3.270 (9) 134
C10—H10⋯F2 0.95 2.53 3.329 (5) 142
C11—H11⋯F6′ 0.95 2.53 3.373 (9) 149
C11—H11⋯F3 0.95 2.37 3.140 (5) 138
C22—H22⋯F6′i 0.95 2.51 3.272 (8) 138
C23—H23⋯F2i 0.95 2.32 3.194 (5) 152
C26—H26⋯F3ii 0.95 2.52 3.455 (5) 168
C33—H33⋯F5′iii 0.95 2.45 3.372 (8) 163
C37—H37B⋯F3′ii 0.98 2.37 3.330 (7) 165
C38—H38B⋯F5iii 0.98 2.42 3.393 (5) 171
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y, -z+1].

As might be expected for mol­ecules containing multiple arene rings, there are a number of inter­molecular ππ and C—H⋯π inter­actions. In 1, the pyridine ring N4/C29–C33 and its inversion (1 − x, 1 − y, 1 − z) equivalent display an offset parallel ππ inter­action, with a centroid–centroid distance of 3.903 (2) Å and a shift of 1.601 (5) Å (Fig. 3[link]). An approximately parallel [13.83 (9)° angle between planes] offset ππ inter­action occurs between the arene ring C1–C6 and the symmetry equivalent (−[{1\over 2}] + x, y, [{1\over 2}] − z) of the pyridine ring N1/C7–C11, with a centroid–centroid distance of 3.8490 (16) Å and a shift of 1.525 (5) Å. These inter­actions continue in two dimensions, forming sheets parallel to the (010) plane. There are also C—H⋯π inter­actions between these cations at H⋯ring distances of 2.8–3.0 Å.

[Figure 3]
Figure 3
Inter­molecular ππ and C—H⋯π inter­actions between cations of 1, related by symmetry operations −[{1\over 2}] + x, y, [{1\over 2}] − z and 1 − x, 1 − y, 1 − z. Other H atoms are omitted.

In 2, there is also a combination of offset parallel ππ and C—H⋯π inter­actions that link the cations in one dimension along the [010] direction (Fig. 4[link]). The pyridine ring N3/C25–C36 and its inversion (1 − x, 1 − y, 1 − z) equivalent have a centroid–centroid distance of 3.702 (2) Å and a shift of 1.515 (5) Å. The pyridine ring N4/C31–C35 and its inversion (1 − x, −y, 1 − z) equivalent have a centroid–centroid distance of 3.676 (2) Å and a shift of 1.478 (5) Å. Each pair of rings is exactly parallel due to symmetry. The C—H⋯π inter­actions are at H⋯ring distances of approximately 2.9 Å.

[Figure 4]
Figure 4
Inter­molecular ππ and C—H⋯π inter­actions between cations of 2, related by symmetry operations 1 − x, 1 − y, 1 − z and 1 − x, −y, 1 − z. Other H atoms are omitted.

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.45, Nov. 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that there are 129 entries for cations containing either Ir (121) or Rh (8) with one 1,10-phenanthroline and two phenyl­pyridine ligands, without regard to substitution of the ligands. If the phenanthroline ligand is restricted to having methyl groups in the 2- and 0-positions and no additional substitutions, then the number of hits drops to two: CSD refcodes IDAKUW (Ma et al., 2016[Ma, D., Zhang, C., Qiu, Y. & Duan, L. (2016). Chem. A Eur. J. 22, 15888-15895.]) and SAWKAF (3, Batsanov, 2017a[Batsanov, A. S. (2017a). CSD Communication (CCDC 1559136). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbdq4]). While both have the same cation as that of 1, the former has a different counter-ion, and the latter is a deutero­chloro­form solvate. If both phenyl­pyridine ligands are restricted to having methyl groups in the five position of the phenyl ring and no additional substitutions (as in 2), the number of hits is eight, which includes two Rh structures: CSD refcodes EFUVIM, EFUVOS (Graf et al., 2014[Graf, M., Gothe, Y., Metzler-Nolte, N., Czerwieniec, R. & Sünkel, K. (2014). J. Organomet. Chem. 765, 46-52.]), ETUXAU (Tripathy et al., 2016[Tripathy, S. K., De, U., Dehury, N., Laha, P., Panda, M. K., Kim, H. S. & Patra, S. (2016). Dalton Trans. 45, 15122-15136.]), GUVRAT, GUVREX (Graf et al., 2020[Graf, M., Siegmund, D., Gothe, Y., Metzler-Nolte, N. & Sünkel, K. (2020). Z. Anorg. Allge Chem. 646, 665-669.]), UNEZAR (Graf, Böttcher et al., 2021[Graf, M., Böttcher, H.-C., Sünkel, K., Thavalingam, S., Metzler-Nolte, N. & Czerwieniec, R. (2021). Z. Anorg. Allge Chem. 647, 306-311.]), XEYPOK (Graf et al., 2022[Graf, M., Böttcher, H.-C., Metzler-Nolte, N., Thavalingam, S. & Mayer, P. (2022). Z. Anorg. Allge Chem. 648, e202200206.]), and CAZVEI (Fu et al., 2022[Fu, C., Lv, Q., Fan, J., Wu, S., Lei, M., Zhang, X., Li, X., Zhou, W., Yu, Y., Ren, W., Zhao, C. & Liao, G. (2022). Eur. J. Med. Chem. 233, 114250.]).

5. Synthesis and crystallization

The syntheses of compounds 1 and 2 followed previously reported methods (Moon & Choe, 2013[Moon, D. B. & Choe, Y. S. (2013). Mol. Cryst. Liq. Cryst. 584, 60-68.]; Ma et al., 2014[Ma, D.-L., Lin, S., Leung, K.-H., Zhong, H.-J., Liu, L.-J., Chan, D. S.-H., Bourdoncle, A., Mergny, J.-L., Wang, H.-M. D. & Leung, C.-H. (2014). Nanoscale 6, 8489-8494. https://doi. org/10.1039/C4NR00541D.]). Orange block-shaped crystals of 1 were grown from a 5:1 mixture of di­chloro­methane and methanol layered with diethyl ether. Yellow plate-shaped crystals of 2 were obtained by vapor diffusion of diethyl ether into an aceto­nitrile solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. In 2, the PF6 anion was modeled as disordered over two positions with occupancies of 0.645 (6) and 0.355 (6). The disordered solvent was modeled as an overlap of a Et2O mol­ecule with a 0.610 (7) occupancy and two aceto­nitrile mol­ecules with 0.390 (7) occupancies. Analogous bond lengths and angles among the disordered species were restrained to be similar. Bond lengths for the aceto­nitriles mol­ecules were restrained toward ideal values. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

Table 6
Experimental details

  1 2
Crystal data
Chemical formula [Ir(C14H12N2)(C11H8N)2]PF6 [Ir(C14H12N2)(C12H10N)2]PF6·0.61C4H10O·0.78C2H3N
Mr 853.79 959.08
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 11.4130 (1), 17.1627 (1), 31.7109 (2) 9.17379 (7), 13.10065 (9), 16.55352 (14)
α, β, γ (°) 90, 90, 90 74.8888 (6), 78.9993 (7), 88.7599 (6)
V3) 6211.46 (8) 1884.53 (3)
Z 8 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 9.43 7.86
Crystal size (mm) 0.27 × 0.25 × 0.14 0.16 × 0.13 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.558, 1.000 0.509, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 101540, 6757, 6668 62414, 8074, 7770
Rint 0.042 0.058
(sin θ/λ)max−1) 0.640 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.16 0.026, 0.067, 1.04
No. of reflections 6757 8074
No. of parameters 436 624
No. of restraints 0 441
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.68 1.25, −1.04
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

All H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic/sp2, 0.99 Å for methyl­ene and 0.98 Å for methyl C atoms, and refined in a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the rest.

Supporting information


Computing details top

(2,9-Dimethyl-1,10-phenanthroline)bis[2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphate (1) top
Crystal data top
[Ir(C14H12N2)(C11H8N)2]PF6Dx = 1.826 Mg m3
Mr = 853.79Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 61784 reflections
a = 11.4130 (1) Åθ = 4.8–80.1°
b = 17.1627 (1) ŵ = 9.43 mm1
c = 31.7109 (2) ÅT = 100 K
V = 6211.46 (8) Å3Block, orange
Z = 80.27 × 0.25 × 0.14 mm
F(000) = 3344
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6757 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6668 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.0000 pixels mm-1θmax = 80.5°, θmin = 4.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2120
Tmin = 0.558, Tmax = 1.000l = 3940
101540 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0229P)2 + 11.8694P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.004
6757 reflectionsΔρmax = 1.12 e Å3
436 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.000151 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.51064 (2)0.49405 (2)0.35682 (2)0.01242 (5)
N10.64998 (18)0.54667 (12)0.32760 (6)0.0139 (4)
N20.36244 (18)0.44319 (13)0.38033 (6)0.0159 (4)
N30.63668 (18)0.40108 (12)0.37084 (6)0.0146 (4)
N40.56784 (19)0.52297 (13)0.42162 (6)0.0162 (4)
C10.4738 (2)0.46697 (15)0.29637 (7)0.0152 (5)
C20.3806 (2)0.42257 (15)0.28099 (8)0.0180 (5)
H20.3205290.4060730.2997150.022*
C30.3746 (2)0.40217 (16)0.23856 (8)0.0215 (5)
H30.3119150.3704170.2289200.026*
C40.4589 (3)0.42752 (16)0.21007 (8)0.0229 (5)
H40.4545880.4125150.1812800.027*
C50.5493 (2)0.47488 (16)0.22401 (8)0.0208 (5)
H50.6062280.4936180.2046480.025*
C60.5565 (2)0.49509 (13)0.26687 (8)0.0160 (5)
C70.6527 (2)0.54057 (14)0.28459 (8)0.0157 (5)
C80.7438 (2)0.57419 (15)0.26173 (8)0.0187 (5)
H80.7432290.5723990.2317880.022*
C90.8353 (2)0.61024 (15)0.28279 (8)0.0200 (5)
H90.8985270.6324590.2674460.024*
C100.8337 (2)0.61356 (15)0.32644 (8)0.0201 (5)
H100.8965650.6369510.3414670.024*
C110.7391 (2)0.58224 (15)0.34773 (8)0.0170 (5)
H110.7368950.5859210.3776060.020*
C120.3946 (2)0.57973 (15)0.34547 (8)0.0175 (5)
C130.4154 (2)0.65210 (16)0.32684 (8)0.0210 (5)
H130.4921690.6645520.3174750.025*
C140.3253 (3)0.70679 (17)0.32166 (9)0.0278 (6)
H140.3412830.7557100.3088780.033*
C150.2124 (3)0.68921 (18)0.33530 (9)0.0301 (7)
H150.1516130.7265690.3322500.036*
C160.1886 (3)0.61752 (18)0.35329 (8)0.0251 (6)
H160.1114990.6056140.3625960.030*
C170.2786 (2)0.56242 (16)0.35773 (7)0.0190 (5)
C180.2621 (2)0.48607 (16)0.37700 (8)0.0190 (5)
C190.1564 (2)0.45492 (18)0.39137 (8)0.0253 (6)
H190.0864450.4847070.3895810.030*
C200.1538 (2)0.38064 (19)0.40823 (9)0.0275 (6)
H200.0818770.3590620.4177960.033*
C210.2567 (3)0.33762 (17)0.41112 (8)0.0244 (6)
H210.2563650.2864350.4225250.029*
C220.3596 (2)0.37113 (15)0.39702 (8)0.0195 (5)
H220.4304970.3424100.3991720.023*
C230.6701 (2)0.34073 (14)0.34655 (8)0.0172 (5)
C240.7709 (2)0.29651 (16)0.35595 (8)0.0208 (5)
H240.7957560.2567810.3371080.025*
C250.8328 (2)0.31040 (16)0.39189 (9)0.0227 (5)
H250.9002640.2801760.3983060.027*
C260.7964 (2)0.36956 (16)0.41930 (8)0.0210 (5)
C270.8525 (2)0.38278 (19)0.45890 (9)0.0274 (6)
H270.9175960.3515820.4668790.033*
C280.8140 (3)0.4390 (2)0.48504 (9)0.0299 (7)
H280.8516340.4466140.5114510.036*
C290.7176 (2)0.48733 (17)0.47356 (8)0.0229 (6)
C300.6761 (3)0.54628 (19)0.50012 (8)0.0270 (6)
H300.7127310.5554310.5265660.032*
C310.5832 (2)0.59043 (17)0.48793 (8)0.0233 (5)
H310.5539310.6296980.5062370.028*
C320.5299 (2)0.57849 (16)0.44842 (8)0.0194 (5)
C330.6595 (2)0.47651 (16)0.43452 (8)0.0179 (5)
C340.6989 (2)0.41516 (15)0.40718 (8)0.0167 (5)
C350.5974 (2)0.31599 (15)0.30974 (9)0.0221 (5)
H35A0.5149570.3129520.3182460.033*
H35B0.6236510.2647460.2999210.033*
H35C0.6058280.3540520.2869030.033*
C360.4290 (3)0.63030 (17)0.43709 (9)0.0258 (6)
H36A0.4471450.6586240.4110670.039*
H36B0.4151520.6675790.4599630.039*
H36C0.3585630.5985540.4328260.039*
P10.56252 (6)0.18708 (4)0.44462 (2)0.02319 (15)
F10.53641 (16)0.21821 (10)0.39759 (5)0.0289 (4)
F20.58804 (17)0.15683 (15)0.49122 (6)0.0459 (5)
F30.69740 (15)0.17593 (10)0.43303 (5)0.0294 (4)
F40.58775 (18)0.27491 (12)0.45889 (6)0.0415 (5)
F50.42699 (16)0.19877 (14)0.45578 (6)0.0463 (5)
F60.5363 (2)0.10019 (11)0.42921 (8)0.0502 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01142 (7)0.01540 (7)0.01044 (7)0.00033 (3)0.00051 (3)0.00022 (3)
N10.0134 (9)0.0143 (9)0.0139 (9)0.0014 (7)0.0006 (7)0.0008 (7)
N20.0120 (9)0.0239 (11)0.0118 (9)0.0019 (8)0.0007 (7)0.0020 (8)
N30.0134 (9)0.0158 (10)0.0147 (10)0.0004 (8)0.0010 (8)0.0031 (8)
N40.0146 (10)0.0222 (10)0.0118 (9)0.0024 (8)0.0004 (8)0.0003 (8)
C10.0164 (11)0.0182 (12)0.0109 (11)0.0027 (9)0.0016 (9)0.0009 (9)
C20.0144 (11)0.0220 (12)0.0175 (12)0.0006 (9)0.0006 (9)0.0021 (10)
C30.0192 (12)0.0261 (13)0.0193 (13)0.0007 (10)0.0048 (10)0.0052 (10)
C40.0274 (14)0.0266 (13)0.0146 (12)0.0004 (11)0.0035 (10)0.0050 (10)
C50.0252 (13)0.0243 (13)0.0130 (12)0.0011 (11)0.0020 (10)0.0029 (10)
C60.0181 (13)0.0146 (11)0.0152 (12)0.0021 (9)0.0004 (10)0.0003 (8)
C70.0169 (11)0.0164 (11)0.0140 (11)0.0024 (9)0.0005 (9)0.0004 (9)
C80.0228 (12)0.0183 (12)0.0150 (11)0.0008 (10)0.0018 (10)0.0005 (9)
C90.0216 (13)0.0176 (12)0.0209 (12)0.0020 (10)0.0053 (10)0.0010 (10)
C100.0190 (12)0.0181 (12)0.0231 (13)0.0022 (10)0.0018 (10)0.0003 (10)
C110.0185 (12)0.0166 (12)0.0160 (11)0.0003 (9)0.0018 (10)0.0002 (9)
C120.0181 (12)0.0200 (12)0.0145 (11)0.0087 (10)0.0044 (9)0.0038 (9)
C130.0238 (13)0.0218 (13)0.0176 (12)0.0043 (10)0.0026 (10)0.0007 (10)
C140.0379 (16)0.0220 (13)0.0235 (13)0.0091 (12)0.0062 (12)0.0017 (11)
C150.0314 (15)0.0313 (15)0.0275 (15)0.0146 (12)0.0060 (12)0.0081 (12)
C160.0216 (14)0.0331 (15)0.0206 (13)0.0089 (12)0.0036 (10)0.0076 (11)
C170.0182 (13)0.0261 (14)0.0128 (11)0.0049 (10)0.0024 (9)0.0055 (9)
C180.0154 (12)0.0294 (14)0.0121 (11)0.0028 (10)0.0009 (9)0.0067 (10)
C190.0157 (12)0.0396 (16)0.0205 (13)0.0008 (11)0.0003 (10)0.0081 (11)
C200.0169 (13)0.0457 (17)0.0199 (13)0.0104 (12)0.0022 (10)0.0047 (12)
C210.0267 (14)0.0282 (14)0.0181 (12)0.0081 (11)0.0046 (11)0.0022 (10)
C220.0204 (12)0.0226 (13)0.0154 (12)0.0022 (10)0.0003 (10)0.0014 (9)
C230.0179 (12)0.0158 (11)0.0180 (11)0.0011 (9)0.0017 (10)0.0043 (9)
C240.0174 (12)0.0174 (12)0.0275 (14)0.0008 (10)0.0021 (10)0.0024 (10)
C250.0144 (12)0.0247 (13)0.0291 (14)0.0001 (10)0.0000 (10)0.0089 (11)
C260.0145 (12)0.0287 (14)0.0197 (12)0.0004 (10)0.0002 (10)0.0078 (10)
C270.0159 (12)0.0434 (17)0.0229 (14)0.0043 (12)0.0032 (10)0.0086 (12)
C280.0217 (14)0.0507 (19)0.0175 (13)0.0022 (13)0.0072 (11)0.0046 (12)
C290.0192 (13)0.0350 (15)0.0143 (12)0.0020 (11)0.0019 (10)0.0022 (10)
C300.0265 (14)0.0389 (17)0.0155 (13)0.0024 (13)0.0041 (10)0.0029 (11)
C310.0242 (13)0.0312 (14)0.0145 (12)0.0029 (11)0.0007 (10)0.0049 (10)
C320.0191 (12)0.0249 (13)0.0142 (11)0.0039 (10)0.0018 (10)0.0014 (10)
C330.0147 (11)0.0258 (13)0.0131 (11)0.0025 (10)0.0016 (9)0.0032 (10)
C340.0102 (11)0.0237 (12)0.0160 (11)0.0018 (9)0.0004 (9)0.0052 (9)
C350.0252 (13)0.0159 (12)0.0253 (13)0.0000 (10)0.0033 (11)0.0024 (10)
C360.0312 (15)0.0284 (14)0.0180 (13)0.0064 (12)0.0014 (11)0.0069 (11)
P10.0207 (3)0.0297 (4)0.0191 (3)0.0029 (3)0.0029 (3)0.0051 (3)
F10.0373 (9)0.0296 (9)0.0199 (8)0.0045 (8)0.0034 (7)0.0042 (7)
F20.0260 (9)0.0885 (17)0.0234 (9)0.0076 (10)0.0055 (7)0.0220 (10)
F30.0265 (8)0.0344 (9)0.0273 (8)0.0024 (7)0.0088 (7)0.0029 (7)
F40.0410 (11)0.0407 (11)0.0429 (11)0.0032 (9)0.0030 (9)0.0189 (9)
F50.0208 (9)0.0781 (15)0.0399 (11)0.0010 (9)0.0053 (8)0.0287 (10)
F60.0563 (13)0.0248 (10)0.0696 (15)0.0129 (9)0.0256 (12)0.0134 (10)
Geometric parameters (Å, º) top
Ir1—N12.050 (2)C16—C171.404 (4)
Ir1—N22.044 (2)C17—C181.458 (4)
Ir1—N32.194 (2)C18—C191.396 (4)
Ir1—N42.212 (2)C19—H190.9500
Ir1—C12.017 (2)C19—C201.383 (4)
Ir1—C122.012 (2)C20—H200.9500
N1—C71.368 (3)C20—C211.391 (4)
N1—C111.347 (3)C21—H210.9500
N2—C181.365 (3)C21—C221.381 (4)
N2—C221.346 (3)C22—H220.9500
N3—C231.346 (3)C23—C241.410 (4)
N3—C341.375 (3)C23—C351.494 (4)
N4—C321.348 (3)C24—H240.9500
N4—C331.378 (3)C24—C251.362 (4)
C1—C21.396 (3)C25—H250.9500
C1—C61.414 (4)C25—C261.400 (4)
C2—H20.9500C26—C271.428 (4)
C2—C31.392 (4)C26—C341.413 (3)
C3—H30.9500C27—H270.9500
C3—C41.389 (4)C27—C281.346 (4)
C4—H40.9500C28—H280.9500
C4—C51.386 (4)C28—C291.426 (4)
C5—H50.9500C29—C301.399 (4)
C5—C61.405 (3)C29—C331.416 (4)
C6—C71.460 (4)C30—H300.9500
C7—C81.393 (4)C30—C311.360 (4)
C8—H80.9500C31—H310.9500
C8—C91.385 (4)C31—C321.408 (4)
C9—H90.9500C32—C361.499 (4)
C9—C101.385 (4)C33—C341.436 (4)
C10—H100.9500C35—H35A0.9800
C10—C111.382 (4)C35—H35B0.9800
C11—H110.9500C35—H35C0.9800
C12—C131.396 (4)C36—H36A0.9800
C12—C171.411 (4)C36—H36B0.9800
C13—H130.9500C36—H36C0.9800
C13—C141.401 (4)P1—F11.6118 (17)
C14—H140.9500P1—F21.5932 (19)
C14—C151.392 (5)P1—F31.5943 (18)
C15—H150.9500P1—F41.600 (2)
C15—C161.383 (5)P1—F51.599 (2)
C16—H160.9500P1—F61.597 (2)
N1—Ir1—N384.45 (8)N2—C18—C17114.1 (2)
N1—Ir1—N495.28 (8)N2—C18—C19119.5 (3)
N2—Ir1—N1174.13 (8)C19—C18—C17126.3 (3)
N2—Ir1—N399.10 (8)C18—C19—H19120.1
N2—Ir1—N490.07 (8)C20—C19—C18119.9 (3)
N3—Ir1—N477.38 (8)C20—C19—H19120.1
C1—Ir1—N180.44 (9)C19—C20—H20120.1
C1—Ir1—N294.33 (9)C19—C20—C21119.8 (3)
C1—Ir1—N399.31 (9)C21—C20—H20120.1
C1—Ir1—N4174.88 (9)C20—C21—H21120.8
C12—Ir1—N196.20 (10)C22—C21—C20118.4 (3)
C12—Ir1—N280.36 (10)C22—C21—H21120.8
C12—Ir1—N3178.62 (9)N2—C22—C21122.0 (3)
C12—Ir1—N4101.33 (9)N2—C22—H22119.0
C12—Ir1—C182.01 (10)C21—C22—H22119.0
C7—N1—Ir1115.75 (16)N3—C23—C24121.6 (2)
C11—N1—Ir1124.85 (17)N3—C23—C35120.6 (2)
C11—N1—C7119.3 (2)C24—C23—C35117.7 (2)
C18—N2—Ir1115.82 (18)C23—C24—H24119.8
C22—N2—Ir1123.77 (18)C25—C24—C23120.4 (3)
C22—N2—C18120.4 (2)C25—C24—H24119.8
C23—N3—Ir1129.02 (17)C24—C25—H25120.3
C23—N3—C34117.9 (2)C24—C25—C26119.5 (2)
C34—N3—Ir1112.38 (16)C26—C25—H25120.3
C32—N4—Ir1130.48 (18)C25—C26—C27121.9 (3)
C32—N4—C33117.8 (2)C25—C26—C34117.8 (2)
C33—N4—Ir1111.72 (16)C34—C26—C27120.3 (3)
C2—C1—Ir1128.08 (19)C26—C27—H27119.7
C2—C1—C6117.6 (2)C28—C27—C26120.6 (3)
C6—C1—Ir1114.25 (18)C28—C27—H27119.7
C1—C2—H2119.6C27—C28—H28119.6
C3—C2—C1120.8 (2)C27—C28—C29120.8 (3)
C3—C2—H2119.6C29—C28—H28119.6
C2—C3—H3119.5C30—C29—C28121.9 (3)
C4—C3—C2121.0 (2)C30—C29—C33117.6 (3)
C4—C3—H3119.5C33—C29—C28120.5 (3)
C3—C4—H4120.3C29—C30—H30120.1
C5—C4—C3119.5 (2)C31—C30—C29119.7 (2)
C5—C4—H4120.3C31—C30—H30120.1
C4—C5—H5120.1C30—C31—H31119.7
C4—C5—C6119.8 (2)C30—C31—C32120.6 (3)
C6—C5—H5120.1C32—C31—H31119.7
C1—C6—C7115.5 (2)N4—C32—C31121.7 (3)
C5—C6—C1121.1 (2)N4—C32—C36121.0 (2)
C5—C6—C7123.2 (2)C31—C32—C36117.3 (2)
N1—C7—C6114.0 (2)N4—C33—C29122.6 (2)
N1—C7—C8120.3 (2)N4—C33—C34118.9 (2)
C8—C7—C6125.7 (2)C29—C33—C34118.5 (2)
C7—C8—H8120.1N3—C34—C26122.5 (2)
C9—C8—C7119.8 (2)N3—C34—C33118.2 (2)
C9—C8—H8120.1C26—C34—C33119.3 (2)
C8—C9—H9120.3C23—C35—H35A109.5
C10—C9—C8119.3 (2)C23—C35—H35B109.5
C10—C9—H9120.3C23—C35—H35C109.5
C9—C10—H10120.6H35A—C35—H35B109.5
C11—C10—C9118.8 (2)H35A—C35—H35C109.5
C11—C10—H10120.6H35B—C35—H35C109.5
N1—C11—C10122.3 (2)C32—C36—H36A109.5
N1—C11—H11118.8C32—C36—H36B109.5
C10—C11—H11118.8C32—C36—H36C109.5
C13—C12—Ir1127.9 (2)H36A—C36—H36B109.5
C13—C12—C17117.6 (2)H36A—C36—H36C109.5
C17—C12—Ir1114.48 (19)H36B—C36—H36C109.5
C12—C13—H13119.3F2—P1—F1179.64 (13)
C12—C13—C14121.4 (3)F2—P1—F389.89 (10)
C14—C13—H13119.3F2—P1—F490.67 (13)
C13—C14—H14120.1F2—P1—F590.71 (10)
C15—C14—C13119.8 (3)F2—P1—F690.78 (13)
C15—C14—H14120.1F3—P1—F190.29 (9)
C14—C15—H15119.9F3—P1—F490.26 (10)
C16—C15—C14120.2 (3)F3—P1—F5179.38 (11)
C16—C15—H15119.9F3—P1—F689.88 (12)
C15—C16—H16120.1F4—P1—F189.01 (11)
C15—C16—C17119.8 (3)F5—P1—F189.11 (10)
C17—C16—H16120.1F5—P1—F489.62 (12)
C12—C17—C18115.2 (2)F6—P1—F189.53 (11)
C16—C17—C12121.1 (3)F6—P1—F4178.54 (12)
C16—C17—C18123.6 (3)F6—P1—F590.23 (13)
Ir1—N1—C7—C61.7 (3)C13—C12—C17—C18180.0 (2)
Ir1—N1—C7—C8179.89 (18)C13—C14—C15—C161.1 (4)
Ir1—N1—C11—C10176.85 (19)C14—C15—C16—C170.0 (4)
Ir1—N2—C18—C171.2 (3)C15—C16—C17—C122.2 (4)
Ir1—N2—C18—C19178.51 (18)C15—C16—C17—C18178.8 (2)
Ir1—N2—C22—C21177.47 (19)C16—C17—C18—N2176.5 (2)
Ir1—N3—C23—C24165.04 (18)C16—C17—C18—C193.8 (4)
Ir1—N3—C23—C3518.1 (3)C17—C12—C13—C142.0 (4)
Ir1—N3—C34—C26170.57 (19)C17—C18—C19—C20178.6 (2)
Ir1—N3—C34—C3312.2 (3)C18—N2—C22—C210.3 (4)
Ir1—N4—C32—C31176.17 (19)C18—C19—C20—C210.6 (4)
Ir1—N4—C32—C363.6 (4)C19—C20—C21—C220.2 (4)
Ir1—N4—C33—C29175.2 (2)C20—C21—C22—N20.7 (4)
Ir1—N4—C33—C344.1 (3)C22—N2—C18—C17179.1 (2)
Ir1—C1—C2—C3173.0 (2)C22—N2—C18—C190.6 (4)
Ir1—C1—C6—C5173.9 (2)C23—N3—C34—C260.9 (3)
Ir1—C1—C6—C71.6 (3)C23—N3—C34—C33176.3 (2)
Ir1—C12—C13—C14178.8 (2)C23—C24—C25—C260.6 (4)
Ir1—C12—C17—C16177.60 (19)C24—C25—C26—C27175.1 (3)
Ir1—C12—C17—C180.7 (3)C24—C25—C26—C343.0 (4)
N1—C7—C8—C93.5 (4)C25—C26—C27—C28178.6 (3)
N2—C18—C19—C201.0 (4)C25—C26—C34—N33.0 (4)
N3—C23—C24—C254.8 (4)C25—C26—C34—C33179.8 (2)
N4—C33—C34—N35.6 (3)C26—C27—C28—C290.9 (5)
N4—C33—C34—C26177.1 (2)C27—C26—C34—N3175.2 (2)
C1—C2—C3—C42.2 (4)C27—C26—C34—C332.0 (4)
C1—C6—C7—N12.2 (3)C27—C28—C29—C30179.9 (3)
C1—C6—C7—C8179.8 (2)C27—C28—C29—C330.6 (5)
C2—C1—C6—C54.0 (4)C28—C29—C30—C31179.5 (3)
C2—C1—C6—C7179.5 (2)C28—C29—C33—N4178.3 (3)
C2—C3—C4—C51.0 (4)C28—C29—C33—C340.9 (4)
C3—C4—C5—C61.6 (4)C29—C30—C31—C321.4 (4)
C4—C5—C6—C10.9 (4)C29—C33—C34—N3175.1 (2)
C4—C5—C6—C7176.0 (2)C29—C33—C34—C262.2 (4)
C5—C6—C7—N1173.2 (2)C30—C29—C33—N42.1 (4)
C5—C6—C7—C84.8 (4)C30—C29—C33—C34178.6 (3)
C6—C1—C2—C34.6 (4)C30—C31—C32—N40.6 (4)
C6—C7—C8—C9174.4 (2)C30—C31—C32—C36179.2 (3)
C7—N1—C11—C100.4 (4)C32—N4—C33—C292.9 (4)
C7—C8—C9—C101.2 (4)C32—N4—C33—C34177.8 (2)
C8—C9—C10—C111.5 (4)C33—N4—C32—C311.5 (4)
C9—C10—C11—N11.9 (4)C33—N4—C32—C36178.7 (2)
C11—N1—C7—C6175.0 (2)C33—C29—C30—C310.1 (4)
C11—N1—C7—C83.2 (4)C34—N3—C23—C244.8 (3)
C12—C13—C14—C150.1 (4)C34—N3—C23—C35172.1 (2)
C12—C17—C18—N20.3 (3)C34—C26—C27—C280.5 (4)
C12—C17—C18—C19179.4 (2)C35—C23—C24—C25172.2 (2)
C13—C12—C17—C163.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···F1i0.952.393.243 (3)150
C11—H11···F3i0.952.463.229 (3)138
C22—H22···F10.952.453.311 (3)150
C27—H27···F2ii0.952.363.192 (3)146
C31—H31···F4iii0.952.553.463 (3)160
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z+1.
(2,9-Dimethyl-1,10-phenanthroline)bis[5-methyl-2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphate–diethyl ether–acetonitrile (1/0.61/0.78) (2) top
Crystal data top
[Ir(C14H12N2)(C12H10N)2]PF6·0.61C4H10O·0.78C2H3NZ = 2
Mr = 959.08F(000) = 954
Triclinic, P1Dx = 1.690 Mg m3
a = 9.17379 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.10065 (9) ÅCell parameters from 40596 reflections
c = 16.55352 (14) Åθ = 2.8–79.7°
α = 74.8888 (6)°µ = 7.86 mm1
β = 78.9993 (7)°T = 100 K
γ = 88.7599 (6)°Plate, yellow
V = 1884.53 (3) Å30.16 × 0.13 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
8074 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7770 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.058
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 2.8°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1616
Tmin = 0.509, Tmax = 1.000l = 2121
62414 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.883P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8074 reflectionsΔρmax = 1.25 e Å3
624 parametersΔρmin = 1.04 e Å3
441 restraintsExtinction correction: SHELXT2018/2 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00030 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The PF6 anion is modeled as disordered over two positions (0.645 (6):0.355 (6)). The solvent volume is modeled as a disordered mixture of one diethyl ether and two acetonitrile molecules (0.610 (7):0.390 (7)).

Analogous bond lengths and angles among the disordered species were restrained to be similar. Bond lengths for the acetonitriles molecules were restrained toward ideal values. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.56177 (2)0.31354 (2)0.30009 (2)0.01467 (5)
N10.7427 (3)0.40794 (19)0.29079 (15)0.0170 (5)
N20.3871 (3)0.22532 (18)0.29027 (15)0.0172 (4)
N30.4473 (3)0.36887 (19)0.41150 (15)0.0166 (4)
N40.6041 (3)0.18659 (19)0.41092 (15)0.0171 (4)
C10.5299 (3)0.4350 (2)0.20191 (18)0.0189 (5)
C20.4143 (3)0.4469 (2)0.15642 (18)0.0203 (6)
H20.3399880.3922790.1711120.024*
C30.4044 (3)0.5361 (2)0.09024 (19)0.0223 (6)
C40.5159 (4)0.6153 (2)0.0673 (2)0.0247 (6)
H40.5104920.6765580.0222530.030*
C50.6338 (4)0.6052 (2)0.1094 (2)0.0238 (6)
H50.7095080.6590430.0930050.029*
C60.6418 (3)0.5157 (2)0.17634 (18)0.0197 (5)
C70.7605 (3)0.4989 (2)0.22573 (18)0.0181 (5)
C80.8847 (3)0.5650 (2)0.2112 (2)0.0234 (6)
H80.8974160.6278000.1658660.028*
C90.9894 (3)0.5398 (3)0.2625 (2)0.0253 (6)
H91.0742580.5849260.2525670.030*
C100.9700 (3)0.4479 (3)0.3287 (2)0.0247 (6)
H101.0404610.4292000.3649840.030*
C110.8450 (3)0.3842 (2)0.34052 (19)0.0208 (6)
H110.8310690.3211030.3856160.025*
C120.2739 (4)0.5484 (3)0.0455 (2)0.0292 (7)
H12A0.2162370.4815340.0626740.044*
H12B0.3099960.5673500.0163660.044*
H12C0.2107030.6042410.0609790.044*
C130.6590 (3)0.2572 (2)0.20116 (18)0.0192 (5)
C140.8055 (3)0.2745 (2)0.15654 (19)0.0228 (6)
H140.8702600.3181470.1724690.027*
C150.8598 (4)0.2297 (3)0.0892 (2)0.0259 (6)
C160.7631 (4)0.1681 (3)0.0646 (2)0.0291 (7)
H160.7983470.1370790.0189510.035*
C170.6154 (4)0.1515 (2)0.1063 (2)0.0258 (6)
H170.5500030.1100250.0887890.031*
C180.5636 (3)0.1960 (2)0.17393 (18)0.0205 (6)
C190.4123 (3)0.1793 (2)0.22387 (18)0.0194 (5)
C200.2987 (4)0.1216 (2)0.2094 (2)0.0248 (6)
H200.3160230.0897290.1631590.030*
C210.1606 (4)0.1108 (3)0.2624 (2)0.0282 (7)
H210.0826580.0716900.2526960.034*
C220.1369 (3)0.1574 (3)0.3299 (2)0.0260 (6)
H220.0429620.1503300.3671560.031*
C230.2521 (3)0.2142 (2)0.34171 (19)0.0204 (6)
H230.2359590.2466330.3876280.024*
C241.0189 (4)0.2508 (3)0.0432 (2)0.0366 (8)
H24A1.0313190.3241480.0083880.055*
H24B1.0444980.2027730.0064320.055*
H24C1.0843470.2390710.0849670.055*
C250.3716 (3)0.4571 (2)0.41300 (19)0.0188 (5)
C260.3083 (3)0.4816 (2)0.4900 (2)0.0220 (6)
H260.2545930.5445570.4888370.026*
C270.3240 (3)0.4152 (2)0.5661 (2)0.0238 (6)
H270.2818850.4319710.6179650.029*
C280.4026 (3)0.3221 (2)0.56737 (19)0.0213 (6)
C290.4199 (4)0.2492 (3)0.64506 (19)0.0257 (6)
H290.3784770.2639020.6978090.031*
C300.4945 (4)0.1593 (3)0.64478 (19)0.0252 (6)
H300.5053590.1115310.6972440.030*
C310.5569 (3)0.1356 (2)0.56666 (19)0.0211 (6)
C320.6374 (3)0.0434 (2)0.5648 (2)0.0235 (6)
H320.6495160.0055890.6164060.028*
C330.6974 (3)0.0250 (2)0.4888 (2)0.0214 (6)
H330.7524920.0369080.4872340.026*
C340.6789 (3)0.0972 (2)0.41185 (19)0.0184 (5)
C350.5433 (3)0.2058 (2)0.48826 (18)0.0176 (5)
C360.4628 (3)0.3015 (2)0.48812 (17)0.0168 (5)
C370.3491 (4)0.5336 (2)0.3321 (2)0.0254 (6)
H37A0.4454880.5639330.2985700.038*
H37B0.2854370.5902490.3455230.038*
H37C0.3017240.4965750.2990360.038*
C380.7485 (4)0.0714 (2)0.3307 (2)0.0256 (6)
H38A0.6712130.0644100.2988400.038*
H38B0.8005040.0047440.3436380.038*
H38C0.8194840.1282520.2963380.038*
P1'0.9795 (7)0.2268 (5)0.5818 (4)0.0217 (17)0.355 (6)
F1'0.9384 (13)0.1109 (6)0.6391 (7)0.073 (3)0.355 (6)
F2'1.0224 (12)0.3426 (7)0.5227 (7)0.075 (3)0.355 (6)
F3'0.8153 (6)0.2633 (7)0.6055 (8)0.071 (3)0.355 (6)
F4'1.0268 (9)0.2623 (7)0.6577 (4)0.050 (2)0.355 (6)
F5'1.1447 (7)0.1957 (8)0.5518 (7)0.065 (3)0.355 (6)
F6'0.9316 (9)0.1941 (8)0.5040 (4)0.051 (2)0.355 (6)
C391.0653 (17)0.0694 (15)0.8577 (14)0.083 (4)0.610 (7)
H39A1.0655090.0212900.8211400.125*0.610 (7)
H39B1.0444490.0288520.9176080.125*0.610 (7)
H39C1.1626890.1055390.8445680.125*0.610 (7)
C400.9449 (9)0.1517 (6)0.8415 (5)0.0510 (19)0.610 (7)
H40A0.9525850.2043850.8738830.061*0.610 (7)
H40B0.9635050.1893390.7801100.061*0.610 (7)
O10.7975 (7)0.1062 (4)0.8654 (3)0.0537 (16)0.610 (7)
C410.6940 (18)0.1884 (13)0.8387 (14)0.072 (3)0.610 (7)
H41A0.7116610.2141010.7757990.087*0.610 (7)
H41B0.7049280.2489400.8627460.087*0.610 (7)
C420.5369 (11)0.1352 (9)0.8739 (7)0.056 (2)0.610 (7)
H42A0.5303440.0728230.8523770.083*0.610 (7)
H42B0.4618480.1855400.8550910.083*0.610 (7)
H42C0.5193840.1137490.9363170.083*0.610 (7)
N5'0.8946 (17)0.0117 (13)0.9021 (11)0.096 (5)0.390 (7)
N6'0.693 (3)0.205 (2)0.831 (3)0.105 (6)0.390 (7)
C39'1.0100 (19)0.0516 (19)0.8725 (15)0.055 (4)0.390 (7)
C40'1.1573 (18)0.1031 (13)0.8375 (15)0.103 (7)0.390 (7)
H40C1.1504020.1642710.7896520.154*0.390 (7)
H40D1.2264360.0527860.8176890.154*0.390 (7)
H40E1.1933310.1266540.8819520.154*0.390 (7)
C41'0.600 (3)0.144 (2)0.8690 (18)0.086 (5)0.390 (7)
C42'0.447 (3)0.1071 (19)0.9099 (18)0.129 (7)0.390 (7)
H42D0.3793340.1367280.8708530.193*0.390 (7)
H42E0.4178430.1299450.9623830.193*0.390 (7)
H42F0.4408500.0296780.9235060.193*0.390 (7)
P10.9720 (4)0.2211 (3)0.5773 (2)0.0221 (9)0.645 (6)
F10.8599 (5)0.1457 (3)0.6530 (2)0.0385 (10)0.645 (6)
F21.0832 (4)0.2965 (4)0.4991 (2)0.0412 (10)0.645 (6)
F30.8362 (4)0.2690 (3)0.5333 (3)0.0475 (12)0.645 (6)
F40.9609 (5)0.3118 (3)0.6251 (3)0.0410 (10)0.645 (6)
F51.1101 (5)0.1733 (3)0.6173 (4)0.0562 (15)0.645 (6)
F60.9824 (5)0.1322 (4)0.5268 (3)0.0537 (13)0.645 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01239 (7)0.01474 (7)0.01579 (7)0.00190 (4)0.00104 (4)0.00338 (4)
N10.0139 (11)0.0181 (11)0.0175 (11)0.0000 (9)0.0007 (9)0.0044 (9)
N20.0164 (11)0.0158 (11)0.0191 (11)0.0020 (9)0.0037 (9)0.0039 (9)
N30.0124 (10)0.0192 (11)0.0183 (11)0.0007 (9)0.0003 (9)0.0072 (9)
N40.0129 (11)0.0177 (11)0.0192 (11)0.0006 (9)0.0026 (9)0.0028 (9)
C10.0192 (13)0.0199 (13)0.0166 (12)0.0037 (11)0.0003 (10)0.0056 (10)
C20.0196 (14)0.0213 (14)0.0194 (13)0.0020 (11)0.0017 (11)0.0060 (11)
C30.0240 (15)0.0257 (15)0.0181 (13)0.0087 (12)0.0056 (11)0.0067 (11)
C40.0269 (16)0.0230 (14)0.0211 (14)0.0058 (12)0.0030 (12)0.0017 (11)
C50.0246 (15)0.0206 (14)0.0235 (14)0.0007 (11)0.0006 (12)0.0039 (11)
C60.0187 (14)0.0216 (14)0.0182 (13)0.0032 (11)0.0010 (11)0.0061 (11)
C70.0171 (13)0.0196 (13)0.0164 (12)0.0031 (10)0.0010 (10)0.0057 (10)
C80.0210 (14)0.0219 (14)0.0244 (14)0.0021 (11)0.0002 (11)0.0041 (11)
C90.0170 (14)0.0272 (15)0.0302 (16)0.0042 (11)0.0008 (12)0.0073 (13)
C100.0169 (14)0.0284 (15)0.0288 (15)0.0017 (11)0.0063 (12)0.0064 (12)
C110.0168 (13)0.0235 (14)0.0207 (13)0.0012 (11)0.0019 (11)0.0047 (11)
C120.0315 (17)0.0307 (16)0.0257 (15)0.0075 (13)0.0094 (13)0.0056 (13)
C130.0216 (14)0.0175 (13)0.0167 (12)0.0056 (11)0.0013 (11)0.0035 (10)
C140.0233 (15)0.0206 (14)0.0211 (14)0.0036 (11)0.0018 (11)0.0016 (11)
C150.0232 (15)0.0266 (15)0.0215 (14)0.0074 (12)0.0049 (12)0.0025 (12)
C160.0341 (18)0.0252 (15)0.0258 (15)0.0069 (13)0.0028 (13)0.0095 (13)
C170.0306 (17)0.0233 (14)0.0230 (14)0.0040 (12)0.0035 (12)0.0065 (12)
C180.0215 (14)0.0202 (13)0.0188 (13)0.0036 (11)0.0027 (11)0.0043 (11)
C190.0209 (14)0.0182 (13)0.0184 (13)0.0038 (11)0.0040 (11)0.0035 (10)
C200.0246 (15)0.0245 (15)0.0295 (15)0.0046 (12)0.0089 (12)0.0118 (12)
C210.0203 (15)0.0326 (17)0.0363 (17)0.0006 (12)0.0095 (13)0.0138 (14)
C220.0162 (14)0.0314 (16)0.0306 (16)0.0009 (12)0.0035 (12)0.0094 (13)
C230.0185 (14)0.0211 (13)0.0201 (13)0.0024 (11)0.0026 (11)0.0038 (11)
C240.0290 (18)0.045 (2)0.0305 (17)0.0073 (15)0.0062 (14)0.0103 (15)
C250.0126 (12)0.0208 (13)0.0232 (14)0.0013 (10)0.0026 (10)0.0066 (11)
C260.0155 (13)0.0254 (14)0.0273 (15)0.0020 (11)0.0002 (11)0.0140 (12)
C270.0203 (14)0.0283 (15)0.0237 (14)0.0007 (12)0.0013 (11)0.0121 (12)
C280.0178 (14)0.0255 (15)0.0212 (14)0.0012 (11)0.0012 (11)0.0085 (12)
C290.0283 (16)0.0321 (16)0.0160 (13)0.0029 (13)0.0007 (12)0.0084 (12)
C300.0281 (16)0.0278 (15)0.0171 (13)0.0032 (12)0.0045 (12)0.0006 (11)
C310.0168 (13)0.0226 (14)0.0235 (14)0.0020 (11)0.0054 (11)0.0036 (11)
C320.0230 (15)0.0209 (14)0.0253 (15)0.0007 (11)0.0095 (12)0.0003 (11)
C330.0165 (13)0.0168 (13)0.0298 (15)0.0014 (10)0.0076 (11)0.0021 (11)
C340.0131 (12)0.0160 (12)0.0245 (14)0.0004 (10)0.0036 (10)0.0025 (11)
C350.0164 (13)0.0188 (13)0.0173 (13)0.0034 (10)0.0024 (10)0.0045 (10)
C360.0147 (12)0.0175 (13)0.0163 (12)0.0024 (10)0.0014 (10)0.0020 (10)
C370.0274 (16)0.0254 (15)0.0251 (15)0.0117 (12)0.0066 (12)0.0095 (12)
C380.0254 (15)0.0228 (14)0.0254 (15)0.0097 (12)0.0021 (12)0.0035 (12)
P1'0.017 (3)0.019 (3)0.031 (3)0.0037 (18)0.007 (2)0.008 (2)
F1'0.073 (6)0.034 (4)0.101 (7)0.025 (4)0.053 (6)0.030 (4)
F2'0.076 (7)0.051 (5)0.087 (7)0.033 (5)0.045 (6)0.024 (5)
F3'0.019 (3)0.077 (5)0.140 (9)0.010 (3)0.006 (4)0.076 (6)
F4'0.044 (4)0.075 (6)0.040 (4)0.021 (4)0.004 (3)0.031 (4)
F5'0.023 (3)0.095 (6)0.099 (7)0.006 (4)0.004 (4)0.071 (6)
F6'0.040 (4)0.080 (6)0.033 (3)0.020 (4)0.009 (3)0.014 (4)
C390.076 (11)0.071 (9)0.092 (11)0.025 (8)0.012 (9)0.007 (8)
C400.066 (5)0.050 (4)0.036 (3)0.004 (4)0.009 (3)0.009 (3)
O10.087 (4)0.034 (3)0.044 (3)0.007 (2)0.018 (3)0.013 (2)
C410.072 (7)0.085 (7)0.075 (7)0.012 (6)0.012 (6)0.052 (6)
C420.054 (6)0.068 (5)0.052 (5)0.005 (5)0.005 (5)0.031 (4)
N5'0.112 (12)0.094 (10)0.091 (10)0.022 (9)0.031 (9)0.033 (8)
N6'0.094 (10)0.119 (12)0.100 (11)0.029 (10)0.003 (9)0.043 (10)
C39'0.058 (11)0.057 (9)0.049 (8)0.018 (8)0.001 (8)0.022 (7)
C40'0.078 (11)0.054 (9)0.124 (13)0.012 (8)0.052 (10)0.017 (9)
C41'0.086 (9)0.102 (9)0.078 (8)0.001 (9)0.005 (9)0.047 (7)
C42'0.144 (16)0.099 (13)0.142 (16)0.027 (13)0.007 (14)0.052 (12)
P10.0177 (15)0.0212 (15)0.0277 (15)0.0012 (10)0.0015 (11)0.0088 (11)
F10.043 (2)0.039 (2)0.0278 (16)0.0170 (17)0.0064 (16)0.0027 (15)
F20.030 (2)0.056 (3)0.0344 (18)0.0180 (18)0.0032 (15)0.0114 (17)
F30.0315 (19)0.044 (2)0.059 (3)0.0056 (15)0.0176 (18)0.0081 (19)
F40.041 (2)0.0363 (19)0.050 (2)0.0052 (16)0.0051 (17)0.0285 (18)
F50.036 (2)0.0312 (18)0.103 (4)0.0065 (15)0.041 (3)0.003 (2)
F60.042 (2)0.057 (3)0.073 (3)0.010 (2)0.003 (2)0.046 (3)
Geometric parameters (Å, º) top
Ir1—N12.050 (2)C26—H260.9500
Ir1—N22.051 (2)C26—C271.362 (5)
Ir1—N32.226 (2)C27—H270.9500
Ir1—N42.222 (2)C27—C281.401 (4)
Ir1—C12.018 (3)C28—C291.422 (4)
Ir1—C132.017 (3)C28—C361.414 (4)
N1—C71.371 (4)C29—H290.9500
N1—C111.343 (4)C29—C301.349 (5)
N2—C191.366 (4)C30—H300.9500
N2—C231.349 (4)C30—C311.420 (4)
N3—C251.339 (4)C31—C321.406 (4)
N3—C361.374 (4)C31—C351.407 (4)
N4—C341.343 (4)C32—H320.9500
N4—C351.380 (4)C32—C331.353 (5)
C1—C21.397 (4)C33—H330.9500
C1—C61.414 (4)C33—C341.412 (4)
C2—H20.9500C34—C381.492 (4)
C2—C31.393 (4)C35—C361.441 (4)
C3—C41.400 (5)C37—H37A0.9800
C3—C121.509 (4)C37—H37B0.9800
C4—H40.9500C37—H37C0.9800
C4—C51.382 (5)C38—H38A0.9800
C5—H50.9500C38—H38B0.9800
C5—C61.399 (4)C38—H38C0.9800
C6—C71.462 (4)P1'—F1'1.576 (6)
C7—C81.392 (4)P1'—F2'1.587 (6)
C8—H80.9500P1'—F3'1.579 (6)
C8—C91.380 (5)P1'—F4'1.583 (6)
C9—H90.9500P1'—F5'1.581 (6)
C9—C101.389 (4)P1'—F6'1.595 (6)
C10—H100.9500C39—H39A0.9800
C10—C111.386 (4)C39—H39B0.9800
C11—H110.9500C39—H39C0.9800
C12—H12A0.9800C39—C401.538 (17)
C12—H12B0.9800C40—H40A0.9900
C12—H12C0.9800C40—H40B0.9900
C13—C141.396 (4)C40—O11.431 (10)
C13—C181.408 (4)O1—C411.457 (18)
C14—H140.9500C41—H41A0.9900
C14—C151.396 (4)C41—H41B0.9900
C15—C161.395 (5)C41—C421.553 (17)
C15—C241.507 (5)C42—H42A0.9800
C16—H160.9500C42—H42B0.9800
C16—C171.392 (5)C42—H42C0.9800
C17—H170.9500N5'—C39'1.152 (9)
C17—C181.394 (4)N6'—C41'1.154 (10)
C18—C191.462 (4)C39'—C40'1.468 (9)
C19—C201.393 (4)C40'—H40C0.9800
C20—H200.9500C40'—H40D0.9800
C20—C211.383 (5)C40'—H40E0.9800
C21—H210.9500C41'—C42'1.471 (10)
C21—C221.387 (5)C42'—H42D0.9800
C22—H220.9500C42'—H42E0.9800
C22—C231.378 (4)C42'—H42F0.9800
C23—H230.9500P1—F11.585 (4)
C24—H24A0.9800P1—F21.600 (4)
C24—H24B0.9800P1—F31.597 (4)
C24—H24C0.9800P1—F41.582 (4)
C25—C261.409 (4)P1—F51.583 (4)
C25—C371.496 (4)P1—F61.593 (4)
N1—Ir1—N2171.61 (9)C26—C27—H27120.2
N1—Ir1—N389.41 (9)C26—C27—C28119.6 (3)
N1—Ir1—N496.50 (9)C28—C27—H27120.2
N2—Ir1—N397.19 (9)C27—C28—C29121.8 (3)
N2—Ir1—N490.07 (9)C27—C28—C36117.6 (3)
N4—Ir1—N376.79 (9)C36—C28—C29120.6 (3)
C1—Ir1—N180.42 (11)C28—C29—H29119.6
C1—Ir1—N293.13 (11)C30—C29—C28120.8 (3)
C1—Ir1—N3101.51 (10)C30—C29—H29119.6
C1—Ir1—N4176.54 (10)C29—C30—H30119.8
C13—Ir1—N193.12 (11)C29—C30—C31120.5 (3)
C13—Ir1—N280.39 (11)C31—C30—H30119.8
C13—Ir1—N3177.26 (10)C32—C31—C30121.5 (3)
C13—Ir1—N4101.85 (10)C32—C31—C35117.9 (3)
C13—Ir1—C179.97 (11)C35—C31—C30120.6 (3)
C7—N1—Ir1115.65 (19)C31—C32—H32120.3
C11—N1—Ir1124.8 (2)C33—C32—C31119.5 (3)
C11—N1—C7119.5 (2)C33—C32—H32120.3
C19—N2—Ir1115.46 (19)C32—C33—H33119.7
C23—N2—Ir1124.8 (2)C32—C33—C34120.5 (3)
C23—N2—C19119.7 (2)C34—C33—H33119.7
C25—N3—Ir1129.3 (2)N4—C34—C33121.8 (3)
C25—N3—C36117.9 (2)N4—C34—C38120.8 (3)
C36—N3—Ir1112.78 (18)C33—C34—C38117.3 (3)
C34—N4—Ir1129.1 (2)N4—C35—C31122.5 (3)
C34—N4—C35117.8 (2)N4—C35—C36118.4 (2)
C35—N4—Ir1113.05 (18)C31—C35—C36119.2 (3)
C2—C1—Ir1128.0 (2)N3—C36—C28122.7 (3)
C2—C1—C6117.5 (3)N3—C36—C35119.0 (2)
C6—C1—Ir1114.4 (2)C28—C36—C35118.3 (3)
C1—C2—H2118.9C25—C37—H37A109.5
C3—C2—C1122.2 (3)C25—C37—H37B109.5
C3—C2—H2118.9C25—C37—H37C109.5
C2—C3—C4118.8 (3)H37A—C37—H37B109.5
C2—C3—C12120.6 (3)H37A—C37—H37C109.5
C4—C3—C12120.6 (3)H37B—C37—H37C109.5
C3—C4—H4119.7C34—C38—H38A109.5
C5—C4—C3120.6 (3)C34—C38—H38B109.5
C5—C4—H4119.7C34—C38—H38C109.5
C4—C5—H5120.0H38A—C38—H38B109.5
C4—C5—C6120.0 (3)H38A—C38—H38C109.5
C6—C5—H5120.0H38B—C38—H38C109.5
C1—C6—C7115.2 (3)F1'—P1'—F2'179.0 (8)
C5—C6—C1120.8 (3)F1'—P1'—F3'91.8 (6)
C5—C6—C7124.0 (3)F1'—P1'—F4'92.1 (6)
N1—C7—C6114.2 (2)F1'—P1'—F5'91.4 (6)
N1—C7—C8119.9 (3)F1'—P1'—F6'89.3 (6)
C8—C7—C6126.0 (3)F2'—P1'—F6'89.9 (6)
C7—C8—H8119.9F3'—P1'—F2'88.9 (6)
C9—C8—C7120.3 (3)F3'—P1'—F4'91.7 (5)
C9—C8—H8119.9F3'—P1'—F5'176.1 (7)
C8—C9—H9120.2F3'—P1'—F6'87.9 (5)
C8—C9—C10119.5 (3)F4'—P1'—F2'88.7 (6)
C10—C9—H9120.2F4'—P1'—F6'178.6 (6)
C9—C10—H10120.9F5'—P1'—F2'87.8 (6)
C11—C10—C9118.2 (3)F5'—P1'—F4'90.4 (5)
C11—C10—H10120.9F5'—P1'—F6'90.0 (5)
N1—C11—C10122.7 (3)H39A—C39—H39B109.5
N1—C11—H11118.7H39A—C39—H39C109.5
C10—C11—H11118.7H39B—C39—H39C109.5
C3—C12—H12A109.5C40—C39—H39A109.5
C3—C12—H12B109.5C40—C39—H39B109.5
C3—C12—H12C109.5C40—C39—H39C109.5
H12A—C12—H12B109.5C39—C40—H40A108.9
H12A—C12—H12C109.5C39—C40—H40B108.9
H12B—C12—H12C109.5H40A—C40—H40B107.7
C14—C13—Ir1127.8 (2)O1—C40—C39113.2 (9)
C14—C13—C18117.8 (3)O1—C40—H40A108.9
C18—C13—Ir1114.4 (2)O1—C40—H40B108.9
C13—C14—H14119.0C40—O1—C41108.8 (7)
C13—C14—C15122.1 (3)O1—C41—H41A110.7
C15—C14—H14119.0O1—C41—H41B110.7
C14—C15—C24120.0 (3)O1—C41—C42105.4 (11)
C16—C15—C14118.7 (3)H41A—C41—H41B108.8
C16—C15—C24121.3 (3)C42—C41—H41A110.7
C15—C16—H16119.7C42—C41—H41B110.7
C17—C16—C15120.6 (3)C41—C42—H42A109.5
C17—C16—H16119.7C41—C42—H42B109.5
C16—C17—H17120.1C41—C42—H42C109.5
C16—C17—C18119.8 (3)H42A—C42—H42B109.5
C18—C17—H17120.1H42A—C42—H42C109.5
C13—C18—C19115.3 (3)H42B—C42—H42C109.5
C17—C18—C13120.9 (3)N5'—C39'—C40'178 (2)
C17—C18—C19123.7 (3)C39'—C40'—H40C109.5
N2—C19—C18114.3 (3)C39'—C40'—H40D109.5
N2—C19—C20119.9 (3)C39'—C40'—H40E109.5
C20—C19—C18125.8 (3)H40C—C40'—H40D109.5
C19—C20—H20120.1H40C—C40'—H40E109.5
C21—C20—C19119.9 (3)H40D—C40'—H40E109.5
C21—C20—H20120.1N6'—C41'—C42'156 (3)
C20—C21—H21120.2C41'—C42'—H42D109.5
C20—C21—C22119.5 (3)C41'—C42'—H42E109.5
C22—C21—H21120.2C41'—C42'—H42F109.5
C21—C22—H22120.6H42D—C42'—H42E109.5
C23—C22—C21118.7 (3)H42D—C42'—H42F109.5
C23—C22—H22120.6H42E—C42'—H42F109.5
N2—C23—C22122.2 (3)F1—P1—F2178.5 (3)
N2—C23—H23118.9F1—P1—F390.0 (3)
C22—C23—H23118.9F1—P1—F688.8 (3)
C15—C24—H24A109.5F3—P1—F289.0 (3)
C15—C24—H24B109.5F4—P1—F192.2 (3)
C15—C24—H24C109.5F4—P1—F288.9 (3)
H24A—C24—H24B109.5F4—P1—F390.2 (3)
H24A—C24—H24C109.5F4—P1—F591.4 (3)
H24B—C24—H24C109.5F4—P1—F6178.4 (4)
N3—C25—C26122.0 (3)F5—P1—F191.6 (3)
N3—C25—C37120.8 (3)F5—P1—F289.4 (3)
C26—C25—C37117.2 (3)F5—P1—F3177.7 (4)
C25—C26—H26119.9F5—P1—F689.8 (3)
C27—C26—C25120.3 (3)F6—P1—F290.1 (3)
C27—C26—H26119.9F6—P1—F388.6 (3)
Ir1—N1—C7—C63.0 (3)C14—C13—C18—C19179.1 (3)
Ir1—N1—C7—C8176.3 (2)C14—C15—C16—C170.0 (5)
Ir1—N1—C11—C10176.3 (2)C15—C16—C17—C180.6 (5)
Ir1—N2—C19—C183.4 (3)C16—C17—C18—C130.4 (5)
Ir1—N2—C19—C20177.2 (2)C16—C17—C18—C19177.3 (3)
Ir1—N2—C23—C22177.2 (2)C17—C18—C19—N2176.5 (3)
Ir1—N3—C25—C26178.4 (2)C17—C18—C19—C202.8 (5)
Ir1—N3—C25—C372.4 (4)C18—C13—C14—C152.7 (4)
Ir1—N3—C36—C28178.3 (2)C18—C19—C20—C21179.1 (3)
Ir1—N3—C36—C351.8 (3)C19—N2—C23—C220.1 (4)
Ir1—N4—C34—C33179.0 (2)C19—C20—C21—C220.2 (5)
Ir1—N4—C34—C380.2 (4)C20—C21—C22—C230.5 (5)
Ir1—N4—C35—C31180.0 (2)C21—C22—C23—N20.4 (5)
Ir1—N4—C35—C360.2 (3)C23—N2—C19—C18179.1 (2)
Ir1—C1—C2—C3179.1 (2)C23—N2—C19—C200.2 (4)
Ir1—C1—C6—C5179.6 (2)C24—C15—C16—C17178.4 (3)
Ir1—C1—C6—C70.9 (3)C25—N3—C36—C280.2 (4)
Ir1—C13—C14—C15179.4 (2)C25—N3—C36—C35179.8 (2)
Ir1—C13—C18—C17179.8 (2)C25—C26—C27—C280.4 (4)
Ir1—C13—C18—C192.7 (3)C26—C27—C28—C29178.8 (3)
N1—C7—C8—C90.5 (4)C26—C27—C28—C360.0 (4)
N2—C19—C20—C210.1 (5)C27—C28—C29—C30179.2 (3)
N3—C25—C26—C270.5 (4)C27—C28—C36—N30.2 (4)
N4—C35—C36—N31.1 (4)C27—C28—C36—C35179.7 (3)
N4—C35—C36—C28179.0 (2)C28—C29—C30—C310.2 (5)
C1—C2—C3—C41.6 (4)C29—C28—C36—N3179.1 (3)
C1—C2—C3—C12177.0 (3)C29—C28—C36—C350.8 (4)
C1—C6—C7—N11.4 (4)C29—C30—C31—C32178.8 (3)
C1—C6—C7—C8177.9 (3)C29—C30—C31—C350.6 (5)
C2—C1—C6—C51.8 (4)C30—C31—C32—C33178.7 (3)
C2—C1—C6—C7179.6 (2)C30—C31—C35—N4179.0 (3)
C2—C3—C4—C50.0 (5)C30—C31—C35—C361.1 (4)
C3—C4—C5—C60.6 (5)C31—C32—C33—C340.4 (4)
C4—C5—C6—C10.3 (4)C31—C35—C36—N3178.8 (2)
C4—C5—C6—C7178.8 (3)C31—C35—C36—C281.2 (4)
C5—C6—C7—N1177.2 (3)C32—C31—C35—N40.8 (4)
C5—C6—C7—C83.5 (5)C32—C31—C35—C36179.4 (3)
C6—C1—C2—C32.4 (4)C32—C33—C34—N41.1 (4)
C6—C7—C8—C9179.7 (3)C32—C33—C34—C38180.0 (3)
C7—N1—C11—C100.4 (4)C34—N4—C35—C310.2 (4)
C7—C8—C9—C100.0 (5)C34—N4—C35—C36180.0 (2)
C8—C9—C10—C110.3 (5)C35—N4—C34—C330.8 (4)
C9—C10—C11—N10.1 (5)C35—N4—C34—C38179.6 (3)
C11—N1—C7—C6180.0 (2)C35—C31—C32—C330.4 (4)
C11—N1—C7—C80.7 (4)C36—N3—C25—C260.2 (4)
C12—C3—C4—C5178.6 (3)C36—N3—C25—C37179.4 (3)
C13—C14—C15—C161.7 (5)C36—C28—C29—C300.3 (5)
C13—C14—C15—C24179.9 (3)C37—C25—C26—C27179.8 (3)
C13—C18—C19—N20.5 (4)C39—C40—O1—C41173.7 (13)
C13—C18—C19—C20179.8 (3)C40—O1—C41—C42175.2 (10)
C14—C13—C18—C172.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···F20.952.543.270 (9)134
C10—H10···F20.952.533.329 (5)142
C11—H11···F60.952.533.373 (9)149
C11—H11···F30.952.373.140 (5)138
C22—H22···F6i0.952.513.272 (8)138
C23—H23···F2i0.952.323.194 (5)152
C26—H26···F3ii0.952.523.455 (5)168
C33—H33···F5iii0.952.453.372 (8)163
C37—H37B···F3ii0.982.373.330 (7)165
C38—H38B···F5iii0.982.423.393 (5)171
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
Selected bond lengths and angles (Å, °) top
ComplexIr—CIr—N(CN)Ir—N(NN)N(NN)—Ir—N(NN)C—Ir—N(NN)C—Ir—C
12.017 (2)2.050 (2)2.194 (2)77.38 (8)99.31 (9)82.01 (10)
2.012 (2)2.044 (2)2.212 (2)101.33 (9)
22.018 (3)2.050 (2)2.226 (2)76.79 (9)101.51 (10)79.97 (11)
2.017 (3)2.051 (2)2.222 (2)101.85 (10)
3a2.010 (3)2.032 (3)2.193 (3)76.99 (10)102.86 (12)83.22 (13)
2.016 (3)2.053 (3)2.197 (3)97.10 (12)
4b2.020 (3)2.045 (3)2.135 (2)77.47 (9)96.0 (1)89.7 (1)
2.008 (3)2.041 (3)2.150 (2)96.8 (1)
Notes: (a) Batsanov, 2017a; (b) Batsanov, 2017b.
 

Acknowledgements

The authors would like to thank SUNY Brockport and the Brockport Foundation for financial support. We gratefully acknowledge the X-ray Crystallographic Facility of the Department of Chemistry at the University of Rochester for the XRD data. Instrument upgrade and local outreach was made possible through NSF grant CHE-0342508.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-0342508).

References

First citationBatsanov, A. S. (2017a). CSD Communication (CCDC 1559136). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbdq4  Google Scholar
First citationBatsanov, A. S. (2017b). CSD Communication (CCDC 1559153). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1pbf8q  Google Scholar
First citationBerrones Reyes, J., Kuimova, M. K. & Vilar, R. (2021). Curr. Opin. Chem. Biol. 61, 179–190.  Web of Science CrossRef PubMed Google Scholar
First citationCastor, K. J., Metera, K. L., Tefashe, U. M., Serpell, C. J., Mauzeroll, J. & Sleiman, H. F. (2015). Inorg. Chem. 54, 6958–6967.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, C., Lv, Q., Fan, J., Wu, S., Lei, M., Zhang, X., Li, X., Zhou, W., Yu, Y., Ren, W., Zhao, C. & Liao, G. (2022). Eur. J. Med. Chem. 233, 114250.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGraf, M., Böttcher, H.-C., Metzler–Nolte, N., Thavalingam, S. & Mayer, P. (2022). Z. Anorg. Allge Chem. 648, e202200206.  Web of Science CSD CrossRef Google Scholar
First citationGraf, M., Böttcher, H.-C., Sünkel, K., Thavalingam, S., Metzler–Nolte, N. & Czerwieniec, R. (2021). Z. Anorg. Allge Chem. 647, 306–311.  Web of Science CSD CrossRef Google Scholar
First citationGraf, M., Czerwieniec, R., Mayer, P. & Böttcher, H.-C. (2021). Inorg. Chim. Acta, 527, 120554.  Web of Science CSD CrossRef Google Scholar
First citationGraf, M., Gothe, Y., Metzler-Nolte, N., Czerwieniec, R. & Sünkel, K. (2014). J. Organomet. Chem. 765, 46–52.  Web of Science CSD CrossRef Google Scholar
First citationGraf, M., Siegmund, D., Gothe, Y., Metzler–Nolte, N. & Sünkel, K. (2020). Z. Anorg. Allge Chem. 646, 665–669.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, H.-Z., Wang, M., Chan, D. S.-H., Leung, C.-H., Lin, X., Lin, J.-M. & Ma, D.-L. (2013). Methods, 64, 212–217.  Web of Science CrossRef PubMed Google Scholar
First citationHo, P.-Y., Ho, C.-L. & Wong, W.-Y. (2020). Coord. Chem. Rev. 413, 213267.  Web of Science CrossRef Google Scholar
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613–12622.  CrossRef CAS Web of Science Google Scholar
First citationJing, S., Wu, X., Niu, D., Wang, J., Leung, C.-H. & Wang, W. (2024). Molecules, 29, 256.  Web of Science CrossRef PubMed Google Scholar
First citationLin, S., He, B., Shiu-Hin Chan, D., Hong Chan, P. W., Leung, C.-H. & Ma, D.-L. (2014). RSC Adv. 4, 54826–54831.  Web of Science CrossRef Google Scholar
First citationMa, D. L., Zhang, Z., Wang, M., Lu, L., Zhong, H. J. & Leung, C. H. (2015). Chem. Biol. 22, 812–828.  Web of Science CrossRef PubMed Google Scholar
First citationMa, D., Zhang, C., Qiu, Y. & Duan, L. (2016). Chem. A Eur. J. 22, 15888–15895.  Web of Science CSD CrossRef Google Scholar
First citationMa, D.-L., Lin, S., Leung, K.-H., Zhong, H.-J., Liu, L.-J., Chan, D. S.-H., Bourdoncle, A., Mergny, J.-L., Wang, H.-M. D. & Leung, C.-H. (2014). Nanoscale 6, 8489–8494. https://doi. org/10.1039/C4NR00541D.  Google Scholar
First citationMills, I. N., Porras, J. A. & Bernhard, S. (2018). Acc. Chem. Res. 51, 352–364.  Web of Science CrossRef PubMed Google Scholar
First citationMoon, D. B. & Choe, Y. S. (2013). Mol. Cryst. Liq. Cryst. 584, 60–68.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTripathy, S. K., De, U., Dehury, N., Laha, P., Panda, M. K., Kim, H. S. & Patra, S. (2016). Dalton Trans. 45, 15122–15136.  Web of Science CSD CrossRef PubMed Google Scholar
First citationXu, J., Jiang, R., He, H., Ma, C. & Tang, Z. (2021). TrAC Trends Anal. Chem. 139, 116257.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds