research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of five fluorinated diphenidine derivatives

crossmark logo

aDepartment of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom, and bSchool of Science and Technology, Nottingham Trent University, Nottingham NG11, 8NS, United Kingdom
*Correspondence e-mail: r.mewis@mmu.ac.uk, o.sutcliffe@mmu.ac.uk

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 30 October 2024; accepted 11 February 2025; online 14 February 2025)

Diphenidine (1a), a dissociative anaesthetic, was first reported in 2013. Since then, a number of derivatives e.g. 2-methoxphenidine (1b) have been produced by clandestine laboratories and sold as research chemicals. Fluorinated diphenidines, namely, [1-(2,6-di­fluoro­phen­yl)-2-phenyl­eth­yl]di­methyl­aza­nium chloride, C16H18F2N+·Cl, (I), [1-(2,6-di­fluoro­phen­yl)-2-phenyl­eth­yl](eth­yl)aza­nium chloride di­chloro­methane hemisolvate, 2C16H18F2N+·2Cl·CH2Cl2, (II), tert-but­yl[1-(2,6-di­fluoro­phen­yl)-2-phenyl­eth­yl]aza­nium chloride, C18H22F2N+·Cl, (III), 1-[1-(2,6-di­fluoro­phen­yl)-2-phenyl­eth­yl]pyrrolidin-1-ium chloride, C18H20F2N+·Cl, (IV), and 1-[1-(2,3,4,5,6-penta­fluoro­phen­yl)-2-phenyl­eth­yl]piperidin-1-ium chloride, C19H19F5N+·Cl, (V), were synthesized and structurally characterized by 1H, 13C and 19F NMR spectroscopy, and single-crystal X-ray diffraction. All five structures exhibit hydrogen bonding between the quaternary amine hydrogen atoms and the chlorine. The N—H⋯Cl distances for (II) and (III) range from 2.21 to 2.31 Å, whereas (I), (IV) and (V) exhibit shorter N—H⋯Cl distances (2.07–2.20 Å). Compounds (IV) and (V) include pyrrolidine and piperidine rings, respectively; the pyrrolidine ring adopts an envelope conformation whereas the piperidine ring adopts a chair conformation. The crystal packing in compounds (I)–(V) is characterized by C—H⋯π inter­actions; no ππ inter­actions are observed.

1. Chemical context

Over the past two decades, there has been a significant increase in the number of new psychoactive substances (NPS) seized by law enforcement agencies globally (King, 2013[King, L. A. (2013). Novel Psychoactive Substances, edited by P. I. Dargan and D. M. Wood, pp. 3-27. Academic Press, Boston: Academic Press. doi: 10.1016/B978-0-12-415816-0.00001-8.]; UNODC, 2024[UNODC (2024). The Challenge of New Psychoactive Substances - A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html]). Current convention uses a functional ‘effect group’ categorization to define NPS within six broad overlapping groups: (i) synthetic cannabinoid receptor agonists; (ii) classic hallucinogens; (iii) stimulants; (iv) opioid receptor agonists; (v) sedatives/hypnotics and (vi) dissociatives (UNODC, 2024[UNODC (2024). The Challenge of New Psychoactive Substances - A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html]; Tettey et al., 2018[Tettey, J. N. A., Crean, C., Ifeagwu, S. C. & Raithelhuber, M. (2018). New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology, edited by H. H. Maurer & S. D. Brandt. pp. 51-67. Cham: Springer International Publishing. https://doi.org/10.1007/164_2018_127]; Shafi et al., 2020[Shafi A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. (2020). Ther. Adv. Psychopharmacol, 10, 2045125320967197. https://doi.org/10.1177/2045125320967197.]). NPS are assigned to a specific ‘effect group’ based on their chemical structure and psychopharmacological effects (UNODC, 2024[UNODC (2024). The Challenge of New Psychoactive Substances - A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html]; Tettey et al., 2018[Tettey, J. N. A., Crean, C., Ifeagwu, S. C. & Raithelhuber, M. (2018). New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology, edited by H. H. Maurer & S. D. Brandt. pp. 51-67. Cham: Springer International Publishing. https://doi.org/10.1007/164_2018_127]). 1,2-Di­aryl­ethamines are dissociative, psychoactive substances, which distort perceptions, produce feelings of detachment, and induce a state of anaesthesia by antagonizing ionotropic N-methyl-D-aspartate receptors (NMDAR) in the central nervous system (UNODC, 2024[UNODC (2024). The Challenge of New Psychoactive Substances - A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html]; Morris & Wallach, 2014[Morris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614-632.]).

The first of these dissociative anaesthetics was 1-(1,2-di­phenyl­eth­yl)piperidine (diphenidine, 1a) (Wallach et al., 2015[Wallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). Drug Test. Anal. 7, 358-367.]) reported in 2013 (Morris & Wallach, 2014[Morris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614-632.]), followed by 1-[1-(2-meth­oxy­phen­yl)-2-phenyl­eth­yl]piperidine (2-methox­phen­idine, 1b) (McLaughlin et al., 2016[McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98-109.]), which have both been marketed as ‘research chemicals’ and encountered in tablet or powder forms (UNODC, 2024[UNODC (2024). The Challenge of New Psychoactive Substances - A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html]; Wallach et al., 2015[Wallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). Drug Test. Anal. 7, 358-367.]; McLaughlin et al., 2016[McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98-109.]; Odoardi et al., 2016[Odoardi, S., Romolo, F. S. & Strano-Rossi, S. (2016). Forensic Sci. Int. 265, 116-120.]; Strano Rossi et al., 2014[Strano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar, G., Serpelloni, G. & Romolo, F. S. (2014). Rapid Commun. Mass Spectrom. 28, 1904-1916.]) or in combination with synthetic cannabinoids such as AB-CHMINACA, 5F-AMB (Hasegawa et al., 2015[Hasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). Forensic Toxicol. 33, 380-387, doi: 10.1007/s11419-015-0272-y.]) and 5F-AB-PINACA (Wurita et al., 2014[Wurita, A., Hasegawa, K., Minakata, K., Watanabe, K. & Suzuki, O. (2014). Forensic Toxicol.. 32, 331-337.]). Though both the supply and production of 1a, 1b and the recently disclosed 1-[1-(2-chloro­phen­yl)-2-phenyl­eth­yl]piperidine (2-chloro­diphenidine, 1c) (Wallach et al., 2016[Wallach, J., Kang, H., Colestock, T., Morris, H., Bortolotto, Z. A., Collingridge, G. L., Lodge, D., Halberstadt, A. L., Brandt, S. D. & Adejare, A. (2016). PLoS One, 11, e0157021.]; Sahai et al., 2018[Sahai, M. A., Davidson, C. N., Dutta, C. & Opacka-Juffry, J. (2018). Brain Sci. pp. 8.]), are now controlled in the United Kingdom by the 2016 Psychoactive Substances Act (Reuter & Pardo, 2017[Reuter, P. & Pardo, B. (2017). Addiction, 112, 25-31.]), the emergence of novel 1,2-di­aryl­ethyl­amine derivatives, such as the fluorinated compounds, (I)–(V), still raises considerable legal and analytical challenges in both the forensic identification and discrim­ination of these materials. This is due to the inference of diphenidine-based NPS in several fatalities in Europe (Morris & Wallach, 2014[Morris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614-632.]; Wallach et al., 2015[Wallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). Drug Test. Anal. 7, 358-367.], 2016[Wallach, J., Kang, H., Colestock, T., Morris, H., Bortolotto, Z. A., Collingridge, G. L., Lodge, D., Halberstadt, A. L., Brandt, S. D. & Adejare, A. (2016). PLoS One, 11, e0157021.]; McLaughlin et al., 2016[McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98-109.]; Strano Rossi et al., 2014[Strano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar, G., Serpelloni, G. & Romolo, F. S. (2014). Rapid Commun. Mass Spectrom. 28, 1904-1916.]; Hasegawa et al., 2015[Hasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). Forensic Toxicol. 33, 380-387, doi: 10.1007/s11419-015-0272-y.]; Wurita et al., 2014[Wurita, A., Hasegawa, K., Minakata, K., Watanabe, K. & Suzuki, O. (2014). Forensic Toxicol.. 32, 331-337.]; Sahai et al., 2018[Sahai, M. A., Davidson, C. N., Dutta, C. & Opacka-Juffry, J. (2018). Brain Sci. pp. 8.]; Reuter & Pardo, 2017[Reuter, P. & Pardo, B. (2017). Addiction, 112, 25-31.]; Elliott et al., 2015[Elliott, S. P., Brandt, S. D., Wallach, J., Morris, H. & Kavanagh, P. V. (2015). J. Anal. Toxicol. 39, 287-293.]; Helander et al., 2015[Helander, A., Beck, O. & Bäckberg, M. (2015). Clin. Toxicol. 53, 446-453.]; Hofer et al., 2014[Hofer, K. E., Degrandi, C., Müller, D. M., Zürrer-Härdi, U., Wahl, S., Rauber-Lüthy, C. & Ceschi, A. (2014). Clin. Toxicol. 52, 1288-1291.]), Asia (Hasegawa et al., 2015[Hasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). Forensic Toxicol. 33, 380-387, doi: 10.1007/s11419-015-0272-y.]; Minakata et al., 2016[Minakata, K., Yamagishi, I., Nozawa, H., Hasegawa, K., Gonmori, K., Suzuki, M., Wurita, A., Suzuki, O. & Watanabe, K. (2016). Forensic Toxicol. 34, 151-157.]; Kudo et al., 2015[Kudo, K., Usumoto, Y., Kikura-Hanajiri, R., Sameshima, N., Tsuji, A. & Ikeda, N. (2015). Leg. Med. 17, 421-426.]) and 1a being placed under inter­national control, within schedule II of the United Nations Convention on Psychotropic Substances (1971), on 14th April 2021 (UNODC, 2021[UNODC (2021). Resolution adopted by the Commission on 14th April 2021 - Inclusion of diphenidine in Schedule II of the Convention on Psychotropic Substances of 1971. Decision 64/6., 2021, https://www.unodcorg/documents/commissions/CND/Drug_Resolutions/2020-2029/2021/decision_64_6.pdf]).

[Scheme 1]

2. Structural commentary

Compound (I) (Fig. 1[link]) crystallizes in the monoclinic space group P21/c with a single mol­ecule in the asymmetric unit. The torsion angle between the two quaternary carbons of the phenyl rings and the bridging ethyl chain is 53.4 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Compound (II) (Fig. 2[link]) crystallizes in the I2/a space group. It consists of one mol­ecule in the asymmetric unit, as well as half of a single mol­ecule of di­chloro­methane (DCM). The terminal carbon of the ethyl group (C15, C15A) is disordered over two positions [0.707 (5):0.293 (5) occupancy]. The closest contact between one of the fluorine atoms of the 2,6-di­fluoro­phenyl ring and a hydrogen atom of DCM is 2.335 Å. The torsion angle for (II), as defined previously for (I), is −55.9 (2)°. The final non-cyclic aliphatic analogue, (III) (Fig. 3[link]), crystallizes in the monoclinic space group P21/c with a single formula unit in the asymmetric unit cell. The torsion angle is the largest of all the structures presented herein at 63.8 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The half mol­ecule of DCM present has been omitted.
[Figure 3]
Figure 3
The mol­ecular structure of (III), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Compound (IV) (Fig. 4[link]) crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules in the asymmetric unit. Torsion angles of −54.6 (3) and 58.9 (3)° are very similar to (I) and (III). The pyrrolidine ring present in the structure adopts an envelope conformation.

[Figure 4]
Figure 4
The mol­ecular structure of (IV), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one mol­ecule present in the asymmetric unit is shown.

Compound (V) (Fig. 5[link]) crystallizes in the monoclinic space group P21/c with a single mol­ecule in the asymmetric unit. The torsion angle defined is the smallest of the crystal structures presented at 47.3 (2)°. The piperidine ring is in the chair conformation. All five structures exhibit hydrogen bonding between the quaternary amine and the chlorine (Tables 1[link]–5[link][link][link][link]). The five structures can be split in to two groups; (II) and (III) both have two R groups attached to the amine whereas the remainder all possess three. The N—H⋯Cl distance for the former grouping range from 2.21 to 2.31 Å, with N—H—Cl angles of 151–168° (Tables 2[link] and 3[link]). Inter­estingly, in (II), a shorter N—H1A⋯Cl distance of 2.11 Å (compared to 2.30 Å for N—H1B⋯Cl) is observed to a symmetry-related [symmetry code: (i) [{1\over 2}] − x, [{3\over 2}] − y, [{1\over 2}] − z] Cl atom. The latter group, consisting of (I), (IV) and (V) exhibit shorter N—H⋯Cl distances (2.07–2.20 Å, Tables 1[link], 4[link] and 5[link]) as well as N—H—Cl angles that are all greater than 163°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1 0.93 (2) 2.08 (2) 3.0006 (17) 167.3 (19)

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl1 0.89 (2) 2.30 (2) 3.1417 (14) 156.0 (16)

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.92 (2) 2.21 (3) 3.115 (2) 167.7 (19)
N1—H1B⋯Cl1i 0.95 (2) 2.31 (2) 3.1684 (19) 151 (2)
Symmetry code: (i) [-x+1, -y+2, -z].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1′⋯Cl1 0.99 (1) 2.07 (2) 3.021 (5) 163 (6)
N2—H2⋯Cl2 0.98 (1) 2.08 (2) 3.052 (5) 169 (6)

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.85 (3) 2.20 (3) 3.051 (3) 178 (3)
[Figure 5]
Figure 5
The mol­ecular structure of (V), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

Mol­ecules of (I) exhibit no ππ inter­actions, as despite the unsubstituted phenyl rings being aligned when viewed along the c-axis direction, the shortest centroid–centroid distance is 7.947 Å [symmetry operation 1 + x, y, z]. Mol­ecules are linked together by C—H⋯π inter­actions; the distance of the centroid of the unsubstituted phenyl ring to the nearest aromatic protons of a substituted aromatic ring are 3.274 and 3.951 Å [Cg1⋯H4i = 3.274 Å and Cg1⋯H5i = 3.951 Å; Cg1 is the centroid of C9-C14 ring; symmetry code: (i) 1 + x, y, z]. Another C—H⋯π inter­action exists between the centroid of the difluorinated ring and a phenyl ring proton of a neighbouring mol­ecule [Cg2⋯H11ii = 2.982 Å; Cg2 is the centroid of the C2–C7 ring; symmetry code: (ii) 1 − x, y − [{1\over 2}], [{1\over 2}] − z].

Analysis of (II)–(V) reveals that these also exhibit no ππ inter­actions. Similarly to (I), they do exhibit weak C—H⋯π inter­actions with distances of 3.244–3.425, 3.427–3.744 and 2.929–3.459 Å for (II), (III) and (IV), respectively. between the nearest ring hydrogen of the difluorinated ring and that of the centroid of the nearest neighbouring phenyl ring. (II) also exhibits a C—H⋯π inter­action between the non-fluorinated phenyl rings of neighbouring mol­ecules [Cg3⋯H4iii = 2.969 Å; Cg3 is the centroid of ring C3–C8; symmetry code: (iii) −x, y − [{1\over 2}], [{1\over 2}] − z]. Similarly, (III) has the same inter­action [Cg4⋯H17iv = 3.785 Å and Cg4⋯H18iv = 4.105 Å; Cg4 is the centroid of ring C13–C18; symmetry code: (iv) −x, y − [{1\over 2}], z − [{1\over 2}]]. For (IV), the pyrrolidine ring exhibits two sets of C—H⋯π inter­actions to the phenyl [Cg5⋯H17Av = 3.349 Å and Cg5⋯H18Av = 3.417 Å; Cg5 is the centroid of ring C27–C32; symmetry code: (v) 1 − x, 2 − y, 1 − z] and difluorinated rings [Cg6⋯H33Avi = 4.179 Å and Cg6⋯H33Bvi = 4.068 Å; Cg6 is the centroid of ring C27–C32; symmetry code: (vi) 1 − x, 1 − y, 1 − z. For V, there is a C—H⋯π inter­action between a hydrogen atom of the piperidine ring and the penta­fluoro­phenyl ring [Cg7⋯H4Avii = 2.865 Å; Cg7 is the centroid of ring C14–C19; symmetry code: (vii) (x) −x, 1 − y, 1 − z]. This C—H⋯π inter­action is the shortest identified of the crystal structures presented. C—H⋯π inter­actions also exist between the two non-fluorinated phenyl rings of neighbouring mol­ecules [Cg8⋯H12viii = 3.550 Å and Cg8⋯H11viii = 3.748 Å; Cg8 is the centroid of ring C8–C13; symmetry code: (viii) −x, y, z] and between piperidine ring hydrogen atoms and non-fluorinated phenyl rings [Cg9⋯H1Bix = 3.220 Å and Cg9⋯H3Bix = 3.426 Å; Cg9 is the centroid of ring C8–C13; symmetry code: (ix) 1 − x, 1 − y, −z].

4. Database survey

A search of the Cambridge Structural Database (version 5.45, update in June 2024; Groom et al.; 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for phenidine deriv­atives resulted in four hits. All four hits are 2-methoxphenidine (1b) with a variety of solvates, some unknown (REBKOC; Jurásek et al., 2022[Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083.]), and bromo- and chloro-zincate ions (REBLOD and REBLIX; Jurásek et al., 2022[Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083.]). Entry FIDHIN (Jurásek et al., 2023[Jurásek, B., Fagan, P., Dolenský, B., Paškanová, N., Dobšíková, K., Raich, I., Jurok, R., Setnička, V., Kohout, M., Čejka, J. & Kuchař, M. (2023). New J. Chem. 47, 4543-4551.]) is the hydro­chloride salt of the R-isomer of 1b and as such is comparable to (V) due to the presence of a piperidine ring. Similar to (V), it has N—H⋯Cl distances of 2.120 and 2.123 Å (two mol­ecules in the asymmetric unit). The piperidine ring is the chair conformation, which is again directly comparable to (V). Entry REBKOC, mirrors that of FIDHIN except a chloro­form solvent mol­ecule is present in the asymmetric unit. It has an N—H—Cl distance of 2.209 Å and a Cl3C—H⋯A distance of 2.387 Å; the presence of this solvent mol­ecule has elongated the distance. The remaining two entries REBLOD and REBLIX (Jurásek et al., 2022[Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083.]) both possess ZnCl2Br42− and ZnCl2Br42− ions in the asymmetric unit cell. Again, the piperidine ring is in the chair conformation for both REBLOD and REBLIX.

5. Synthesis and crystallization

General method for di­aryl­ethyl­amine synthesis

All diphenidine derivatives and analogues were synthesized using an adaptation of the published method (Le Gall et al., 2009[Le Gall, E., Haurena, C., Sengmany, S., Martens, T. & Troupel, M. (2009). J. Org. Chem. 74, 7970-7973.]). The following modifications were applied to the published method: To zinc dust (2.0 g, 30 mmol) suspended in aceto­nitrile (40 mL), was added benzyl bromide (0.4 mL, 3.4 mmol) and trifluoro­acetic acid (0.2 mL). The resulting solution was stirred for 5 minutes and then benzyl bromide (3.0 mL, 25 mmol), the required amine (0.99 mL, 10 mmol) followed by the pre-requisite benzaldehyde (11 mmol), were introduced to the mixture, and the solution was stirred at room temperature for an additional 1 h. The resulting solution was poured into a saturated aqueous NH4Cl solution (150 mL) and extracted with di­chloro­methane (2 × 100 mL). The combined organic layers were dried (MgSO4) and concentrated in vacuo to give a crude yellowish oil. The oil was then dissolved in diethyl ether (150 mL) and concentrated sulfuric acid (0.75 mL) was added dropwise to the vigorously stirred solution. After five minutes, the precipitated ammonium salt was filtered, washed with diethyl ether (2 × 50 mL) and air dried for 5–10 minutes. The ammonium salt was re-dissolved in aqueous sodium hydroxide (5% w/v, 150 mL) and then extracted with di­chloro­methane (2 × 100 mL). The combined organic fractions were again dried (MgSO4) and concentrated in vacuo to give a yellow oil. The oil was dissolved in diethyl ether (200 mL), treated with hydrogen chloride (4 M in dioxane, 3.0 mL, 12 mmol) and left to stand for 5 minutes. The crystallized products were filtered and washed sequentially with the minimum amount of ice-cold acetone and if necessary an ice-cold mixture of ethyl acetate–diethyl ether (1:5) to afford the corresponding hydro­chloride salts as colourless to off-white powders.

(I) afforded 0.40 g (15%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from EtOAc/diethyl ether. 1H NMR (400 MHz, CD2Cl2): δ 7.4–7.5 (m, 1 H), 7.1–7.2 (m, 5 H), 7.0 (br. s, 1 H), 6.9 (br. s, 1 H), 4.9 (dd, J = 12.36, 2.75 Hz, 1 H), 4.0 (dd, J = 12.82, 3.66 Hz, 1 H), 3.6–3.7 (m, 1 H), 2.8 (br. s, 3 H), 2.7 (br. s., 3 H). 13C{1H} NMR (101 MHz, CD2Cl2): δ 162.5 (dd, J = 251.12, 7.67 Hz, C-F), 135.8, 133.6, 133.5, 133.4, 129.3, 129.1, 127.7, 113.5, 112.7, 107.0, 61.8, 43.0, 38.4, 34.7. 19F NMR (56 MHz, CD2Cl2): δ −111.21 (br. s, 2F). FT-IR (ATR, cm−1) 2306[RM1], 1624 (C=O), 1457 (C=C). M.p. = 385–387 K.

(II) afforded 2.24 g (64%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/diethyl ether. 1H NMR (400 MHz, DMSO-d6) δ 10.26 (br. s, 1H, NH), 9.18 (br. s, 1 H, NH), 7.02–7.20 (m, 7H, Ar-H), 7.50 (dd, 1H, J = 11.2, 4.2 Hz, Ar-H), 4.75 (m, 1H, NHCHCH2), 3.65 (dd, 1 H, J = 12.8, 4.8 Hz, NHCHCH2), 3.18 (m, 1 H, NHCHCH2), 2.95 (m, 2 H, NHCH2CH3), 1.28 (t, 3 H, J = 7.0 Hz, NHCH2CH3). 19F{1H} NMR (400 MHz, DMSO-d6) δ −113.68 (s, 2F); IR (ATR, cm−1): 2944 (C—H), 2670 (C—H), 1475 (C=C), 1202 (C—F). M.p. = 478 K.

(III) afforded 1.93 g (67%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from CHCl3/diethyl ether. 1H NMR (400 MHz, DMSO-d6) δ 10.3 (d, J = 9.16 Hz, 1 H), 8.9 (dd, J = 11.91, 5.04 Hz, 1 H), 7.4–7.5 (m, 1 H), 7.1–7.3 (m, 4 H), 7.0 (dd, J = 7.56, 2.06 Hz, 2 H), 6.9 (s, 1 H), 4.7 (dd, J = 11.68, 4.35 Hz, 1 H), 3.7 (dd, J = 12.82, 4.12 Hz, 1 H), 3.3–3.4 (m, 1 H), 1.4 (s, 9 H). 13C{1H} NMR (101 MHz, (CD3)2SO) δ 135.4, 132.2, 132.1, 132.0, 128.7, 128.2, 126.9, 112.5, 112.3, 111.8, 111.6, 111.4, 58.8, 49.4, 38.1, 25.3. 19F NMR (56 MHz, (CD3)2SO) δ −109.94 (br. s, 1F), −116.79 (br. s, 1F). FT-IR (ATR, cm−1) 2612, 1625, 1565, 1467; M.p. = 535–538 K.

(IV) afforded 2.22 g (77%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/diethyl ether. 1H NMR (400 MHz, CD2Cl2) δ 7.4 (tt, J = 8.47, 6.41 Hz, 1 H), 7.1–7.2 (m, 5 H), 7.0 (br. s., 1 H), 6.8 (br. s., 1 H), 4.9 (dd, J = 12.14, 3.89 Hz, 1 H), 3.9 (dd, J = 13.28, 4.58 Hz, 2 H), 3.6 (t, J = 12.59 Hz, 2 H), 2.9 (br. s., 1 H), 2.8 (br. s., 1 H), 2.2 (br. s., 5 H), 1.9 (br. s., 2 H). 13C{1H} NMR (101 MHz, CD2Cl2) δ 161.6 (dd, J = 250.16, 7.67 Hz) C—F, 136.0, 133.3, 133.2, 133.1, 129.2, 129.1, 127.6, 113.4, 112.5, 109.0, 108.8, 108.7, 59.9, 50.6, 35.9, 23.4, 23.2. 19F NMR (56 MHz, CD2Cl2) δ −108.10 (br. s, 1F), −114.18 (br. s, 1F). FT-IR (ATR, cm−1) 2352, 1623, 1460. M.p. = 486–488 K.

(V) afforded 1.55 g (52%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from CHCl3/diethyl ether. 1H NMR (400 MHz, CD2Cl2) δ 7.11–7.28 (m, 5 H), 4.90 (d, J = 12.36 Hz, 1 H), 4.23 (dd, J = 12.82, 3.66 Hz, 1 H), 3.80 (d, J = 11.45 Hz, 1 H), 3.44–3.55 (m, 2 H), 2.57–2.70 (m, 1 H), 2.48 (d, J = 9.62 Hz, 1 H), 2.24–2.38 (m, 1 H), 1.91 (t, J = 14.88 Hz, 2 H), 1.80 (d, J = 13.74 Hz, 1 H), 1.22–1.37 (m, 1 H). 13C{1H} NMR (101 MHz, CD2Cl2) δ 120.9, 115.0, 114.6, 113.5, 91.0, 48.2, 34.5, 19.2, 9.0, 8.9, 8.1. 19F NMR (56 MHz, CD2Cl2) δ −134.86, −139.28, −152.81 (t, J = 22.4 Hz), −162.69. FT-IR (ATR, cm−1) 2309, 1503, 1459. M.p. = 502–504 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) (1.5 for methyl groups). All structures were solved by direct methods. For (II) the terminal carbon of the ethyl group (C15, C15A), is disordered over two positions [0.707 (5):0.293 (5) occupancy]. All non H-atoms were refined anisotropically. The H atoms were placed in calculated positions, except for H1N1 (I), H1A and H1B (II), H1′ and H2 (IV) and H2 (V), which were all found. For (V), a DFIX instruction was applied to N1—H1′ and N2—H2 (fixed at 0.98 Å).

Table 6
Experimental details

  (I) (II) (III) (IV) (v)
Crystal data
Chemical formula C16H18F2N+·Cl 2C16H18F2N+·2Cl·CH2Cl2 C18H22F2N+·Cl C18H20F2N+·Cl C19H19F5N+·Cl
Mr 297.76 680.45 325.81 323.80 391.80
Crystal system, space group Monoclinic, P21/c Monoclinic, I2/a Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 123 123 123 123 123
a, b, c (Å) 7.9474 (3), 12.7652 (5), 15.3998 (7) 22.9963 (14), 7.8729 (5), 19.033 (1) 11.3115 (6), 10.5400 (5), 14.8039 (7) 8.1365 (4), 12.7421 (10), 16.0451 (8) 9.3155 (5), 22.2529 (13), 8.2699 (3)
α, β, γ (°) 90, 99.368 (4), 90 90, 92.130 (5), 90 90, 105.044 (5), 90 88.059 (5), 82.349 (4), 86.140 (5) 90, 90.165 (5), 90
V3) 1541.48 (11) 3443.5 (4) 1704.48 (15) 1644.42 (17) 1714.32 (15)
Z 4 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 0.39 0.24 0.25 0.28
Crystal size (mm) 0.5 × 0.4 × 0.2 0.3 × 0.2 × 0.1 0.4 × 0.2 × 0.1 0.5 × 0.4 × 0.3 0.2 × 0.1 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Analytical (CrysAlis PRO; Agilent 2014[Agilent (2014). CrysAlis PRO., Agilent Technologies, Yarnton, England.]) Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.884, 0.950 0.911, 0.962 0.944, 0.976 0.888, 0.928 0.967, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 6424, 2715, 2305 12738, 3034, 2813 7223, 3008, 2343 13277, 5775, 4892 5523, 2896, 2117
Rint 0.027 0.021 0.036 0.032 0.049
(sin θ/λ)max−1) 0.595 0.595 0.595 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 1.06 0.031, 0.077, 1.07 0.049, 0.095, 1.06 0.090, 0.206, 1.19 0.056, 0.123, 1.01
No. of reflections 2715 3034 3008 5775 2896
No. of parameters 186 224 210 403 239
No. of restraints 1 0 0 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.26 0.25, −0.22 0.22, −0.25 0.59, −0.34 0.30, −0.25
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO., Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2020[Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.]).

Supporting information


Computing details top

1-[1-(2,3,4,5,6-Pentafluorophenyl)-2-phenylethyl]piperidin-1-ium chloride (V) top
Crystal data top
C19H19F5N+·ClF(000) = 808
Mr = 391.80Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3155 (5) ÅCell parameters from 9843 reflections
b = 22.2529 (13) Åθ = 3.0–26.5°
c = 8.2699 (3) ŵ = 0.28 mm1
β = 90.165 (5)°T = 123 K
V = 1714.32 (15) Å3Block, colourless
Z = 40.2 × 0.1 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2117 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
scans in phi and ωθmax = 25.0°, θmin = 3.1°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 1011
Tmin = 0.967, Tmax = 0.986k = 1826
5523 measured reflectionsl = 89
2896 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3121P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2896 reflectionsΔρmax = 0.30 e Å3
239 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24269 (9)0.51019 (4)0.68922 (9)0.0315 (2)
F10.07331 (19)0.42667 (8)0.0555 (2)0.0327 (5)
F50.31205 (19)0.36912 (8)0.53597 (19)0.0307 (5)
F40.1190 (2)0.28212 (8)0.5801 (2)0.0404 (5)
F20.1166 (2)0.33964 (10)0.1010 (2)0.0474 (6)
F30.0977 (2)0.26613 (9)0.3625 (2)0.0492 (6)
C140.1989 (3)0.40279 (14)0.2969 (3)0.0218 (7)
C180.1081 (4)0.31807 (14)0.4497 (4)0.0281 (8)
C60.3167 (3)0.44932 (13)0.2723 (3)0.0215 (7)
H60.3955380.4381170.3488820.026*
C50.1334 (3)0.53469 (14)0.2445 (4)0.0256 (8)
H5A0.0550240.5052800.2607800.031*
H5B0.1481620.5396410.1267600.031*
C40.0922 (3)0.59416 (15)0.3182 (4)0.0308 (8)
H4A0.0705180.5882380.4342770.037*
H4B0.0039690.6091880.2647650.037*
C80.4205 (3)0.38395 (14)0.0529 (3)0.0246 (8)
C10.3883 (3)0.55697 (14)0.3002 (4)0.0267 (8)
H1A0.4770320.5415890.3516310.032*
H1B0.4074120.5626010.1834760.032*
C190.2066 (3)0.36364 (14)0.4273 (3)0.0229 (7)
C100.5654 (4)0.29493 (15)0.0849 (4)0.0320 (8)
H100.6411150.2743030.1385040.038*
C160.0118 (4)0.34743 (16)0.2098 (4)0.0310 (8)
C20.3486 (3)0.61639 (15)0.3748 (4)0.0286 (8)
H2A0.4272500.6455490.3571030.034*
H2B0.3361840.6112730.4928190.034*
N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)
C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)
H7A0.3146390.4646620.0234080.031*
H7B0.4712390.4724070.1010790.031*
C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)
C170.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)
C120.3791 (4)0.29713 (16)0.1148 (4)0.0327 (9)
H120.3271150.2779490.1991970.039*
C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)
H3A0.1820860.6782990.3580330.038*
H3B0.2253420.6504740.1859480.038*
C110.4883 (4)0.26676 (15)0.0364 (4)0.0315 (9)
H110.5103870.2265480.0658000.038*
C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)
H90.5860020.3727630.2098460.033*
C130.3452 (4)0.35548 (15)0.0706 (4)0.0303 (8)
H130.2700250.3761410.1250340.036*
H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0238 (5)0.0421 (5)0.0286 (4)0.0016 (4)0.0007 (4)0.0024 (4)
F10.0234 (11)0.0457 (12)0.0289 (9)0.0008 (10)0.0060 (8)0.0025 (8)
F50.0222 (11)0.0387 (12)0.0313 (9)0.0010 (9)0.0049 (8)0.0063 (8)
F40.0404 (13)0.0362 (12)0.0446 (11)0.0041 (10)0.0081 (10)0.0109 (9)
F20.0290 (12)0.0668 (15)0.0464 (11)0.0172 (11)0.0084 (10)0.0126 (10)
F30.0418 (14)0.0461 (13)0.0596 (13)0.0280 (12)0.0088 (11)0.0072 (10)
C140.0128 (17)0.0257 (17)0.0271 (16)0.0031 (15)0.0054 (14)0.0046 (13)
C180.030 (2)0.0277 (19)0.0271 (17)0.0013 (17)0.0061 (16)0.0021 (14)
C60.0123 (17)0.0248 (18)0.0273 (16)0.0005 (15)0.0013 (14)0.0005 (13)
C50.0143 (18)0.034 (2)0.0285 (16)0.0029 (16)0.0038 (14)0.0015 (14)
C40.0173 (19)0.039 (2)0.0362 (18)0.0073 (17)0.0046 (16)0.0018 (15)
C80.0188 (18)0.0282 (18)0.0268 (16)0.0001 (16)0.0079 (15)0.0034 (14)
C10.0140 (18)0.033 (2)0.0329 (18)0.0044 (16)0.0020 (15)0.0030 (14)
C190.0171 (18)0.0295 (19)0.0222 (16)0.0020 (16)0.0003 (14)0.0027 (14)
C100.027 (2)0.037 (2)0.0325 (18)0.0074 (18)0.0072 (16)0.0058 (16)
C160.0186 (19)0.044 (2)0.0302 (18)0.0056 (18)0.0010 (16)0.0122 (16)
C20.0187 (19)0.0299 (19)0.0373 (18)0.0037 (16)0.0022 (15)0.0005 (15)
N10.0128 (15)0.0278 (15)0.0220 (14)0.0014 (13)0.0002 (12)0.0023 (12)
C70.0196 (19)0.0291 (19)0.0288 (17)0.0010 (16)0.0056 (15)0.0031 (14)
C150.0213 (19)0.0306 (19)0.0207 (16)0.0004 (16)0.0025 (14)0.0021 (14)
C170.025 (2)0.0299 (19)0.042 (2)0.0084 (17)0.0106 (17)0.0100 (16)
C120.025 (2)0.043 (2)0.0299 (18)0.0082 (19)0.0031 (16)0.0075 (16)
C30.030 (2)0.0292 (19)0.0355 (18)0.0026 (17)0.0013 (17)0.0020 (15)
C110.035 (2)0.0279 (19)0.0321 (19)0.0015 (18)0.0110 (17)0.0003 (15)
C90.0194 (19)0.035 (2)0.0289 (17)0.0028 (16)0.0026 (15)0.0007 (14)
C130.0197 (19)0.043 (2)0.0284 (17)0.0030 (17)0.0048 (15)0.0011 (15)
Geometric parameters (Å, º) top
F1—C151.342 (3)C1—C21.506 (4)
F5—C191.335 (3)C1—N11.511 (4)
F4—C181.347 (3)C1—H1A0.9900
F2—C161.338 (4)C1—H1B0.9900
F3—C171.340 (4)C10—C91.383 (5)
C14—C151.388 (4)C10—C111.382 (5)
C14—C191.388 (4)C10—H100.9500
C14—C61.523 (4)C16—C171.374 (5)
C18—C171.364 (5)C16—C151.378 (4)
C18—C191.380 (4)C2—C31.523 (4)
C6—N11.515 (4)C2—H2A0.9900
C6—C71.538 (4)C2—H2B0.9900
C6—H61.0000N1—H10.85 (3)
C5—N11.502 (4)C7—H7A0.9900
C5—C41.507 (4)C7—H7B0.9900
C5—H5A0.9900C12—C111.381 (5)
C5—H5B0.9900C12—C131.386 (5)
C4—C31.521 (4)C12—H120.9500
C4—H4A0.9900C3—H3A0.9900
C4—H4B0.9900C3—H3B0.9900
C8—C91.385 (4)C11—H110.9500
C8—C131.390 (4)C9—H90.9500
C8—C71.512 (4)C13—H130.9500
C15—C14—C19115.9 (3)C1—C2—C3111.1 (3)
C15—C14—C6124.2 (3)C1—C2—H2A109.4
C19—C14—C6119.6 (3)C3—C2—H2A109.4
F4—C18—C17120.1 (3)C1—C2—H2B109.4
F4—C18—C19119.7 (3)C3—C2—H2B109.4
C17—C18—C19120.2 (3)H2A—C2—H2B108.0
N1—C6—C14112.0 (2)C5—N1—C1110.0 (2)
N1—C6—C7113.0 (2)C5—N1—C6116.4 (2)
C14—C6—C7113.3 (3)C1—N1—C6111.2 (2)
N1—C6—H6105.9C5—N1—H1111 (2)
C14—C6—H6105.9C1—N1—H1102 (2)
C7—C6—H6105.9C6—N1—H1105 (2)
N1—C5—C4110.0 (3)C8—C7—C6111.5 (2)
N1—C5—H5A109.7C8—C7—H7A109.3
C4—C5—H5A109.7C6—C7—H7A109.3
N1—C5—H5B109.7C8—C7—H7B109.3
C4—C5—H5B109.7C6—C7—H7B109.3
H5A—C5—H5B108.2H7A—C7—H7B108.0
C5—C4—C3112.2 (3)F1—C15—C16116.9 (3)
C5—C4—H4A109.2F1—C15—C14120.6 (3)
C3—C4—H4A109.2C16—C15—C14122.5 (3)
C5—C4—H4B109.2F3—C17—C18120.7 (3)
C3—C4—H4B109.2F3—C17—C16119.8 (3)
H4A—C4—H4B107.9C18—C17—C16119.5 (3)
C9—C8—C13118.6 (3)C11—C12—C13120.2 (3)
C9—C8—C7120.7 (3)C11—C12—H12119.9
C13—C8—C7120.6 (3)C13—C12—H12119.9
C2—C1—N1110.8 (2)C4—C3—C2109.3 (3)
C2—C1—H1A109.5C4—C3—H3A109.8
N1—C1—H1A109.5C2—C3—H3A109.8
C2—C1—H1B109.5C4—C3—H3B109.8
N1—C1—H1B109.5C2—C3—H3B109.8
H1A—C1—H1B108.1H3A—C3—H3B108.3
F5—C19—C18117.7 (3)C12—C11—C10119.9 (3)
F5—C19—C14120.2 (3)C12—C11—H11120.0
C18—C19—C14122.1 (3)C10—C11—H11120.0
C9—C10—C11119.6 (3)C10—C9—C8121.2 (3)
C9—C10—H10120.2C10—C9—H9119.4
C11—C10—H10120.2C8—C9—H9119.4
F2—C16—C17120.4 (3)C12—C13—C8120.4 (3)
F2—C16—C15119.8 (3)C12—C13—H13119.8
C17—C16—C15119.7 (3)C8—C13—H13119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.85 (3)2.20 (3)3.051 (3)178 (3)
[1-(2,6-Difluorophenyl)-2-phenylethyl]dimethylazanium chloride (I) top
Crystal data top
C16H18F2N+·ClF(000) = 624
Mr = 297.76Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9474 (3) ÅCell parameters from 8632 reflections
b = 12.7652 (5) Åθ = 3.0–26.6°
c = 15.3998 (7) ŵ = 0.26 mm1
β = 99.368 (4)°T = 123 K
V = 1541.48 (11) Å3Block, colourless
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2305 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
scans in phi and ωθmax = 25.0°, θmin = 3.1°
Absorption correction: analytical
(CrysAlisPro; Agilent 2014)
h = 99
Tmin = 0.884, Tmax = 0.950k = 1415
6424 measured reflectionsl = 1816
2715 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.7459P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2715 reflectionsΔρmax = 0.20 e Å3
186 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.8942 (2)0.41635 (15)0.29692 (12)0.0230 (4)
H8A0.9971470.4417070.3363030.028*
H8B0.9180770.3452000.2763920.028*
C30.4368 (2)0.45234 (14)0.28669 (13)0.0235 (4)
C70.5501 (2)0.30531 (14)0.22760 (13)0.0234 (4)
C20.5752 (2)0.38564 (13)0.28907 (12)0.0188 (4)
C140.8167 (2)0.45121 (15)0.13360 (13)0.0286 (5)
H140.8255730.3781770.1233700.034*
C60.4032 (2)0.29047 (16)0.16854 (13)0.0295 (5)
H60.3925550.2335450.1282820.035*
C100.8393 (2)0.59657 (15)0.23204 (13)0.0251 (4)
H100.8636560.6244510.2899210.030*
C50.2715 (2)0.36051 (17)0.16928 (14)0.0346 (5)
H50.1686210.3518660.1288760.042*
C120.7556 (3)0.62399 (16)0.07667 (14)0.0357 (5)
H120.7222850.6697880.0283050.043*
C110.7913 (3)0.66314 (15)0.16121 (14)0.0303 (5)
H110.7829970.7363120.1709460.036*
C40.2871 (2)0.44303 (17)0.22793 (14)0.0318 (5)
H40.1971220.4920470.2277890.038*
C130.7688 (3)0.51778 (16)0.06310 (14)0.0384 (5)
H130.7448510.4902170.0050990.046*
F10.45166 (14)0.53325 (8)0.34416 (8)0.0334 (3)
F20.68097 (14)0.23779 (8)0.22353 (8)0.0329 (3)
C10.7428 (2)0.41269 (14)0.34703 (11)0.0186 (4)
H10.7290730.4857860.3681480.022*
C90.8521 (2)0.48917 (14)0.21896 (12)0.0204 (4)
Cl11.14563 (7)0.36912 (4)0.51711 (4)0.03725 (17)
N10.7819 (2)0.34594 (12)0.42918 (10)0.0248 (4)
C150.6669 (3)0.37192 (17)0.49322 (14)0.0363 (5)
H15A0.7039250.3338840.5482990.055*
H15B0.5498870.3515570.4687820.055*
H15C0.6711820.4474440.5048010.055*
C160.7872 (3)0.23087 (15)0.41449 (14)0.0336 (5)
H16A0.6722290.2055410.3913140.050*
H16B0.8292920.1956650.4703570.050*
H16C0.8635110.2156100.3721270.050*
H1N10.893 (3)0.3638 (16)0.4538 (15)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0196 (9)0.0288 (10)0.0196 (10)0.0001 (8)0.0003 (8)0.0001 (8)
C30.0274 (10)0.0239 (10)0.0210 (10)0.0010 (8)0.0090 (8)0.0012 (8)
C70.0241 (10)0.0230 (9)0.0234 (10)0.0028 (8)0.0048 (8)0.0003 (8)
C20.0198 (9)0.0210 (9)0.0156 (9)0.0032 (7)0.0033 (7)0.0019 (8)
C140.0388 (12)0.0233 (10)0.0241 (11)0.0015 (9)0.0064 (9)0.0025 (9)
C60.0299 (11)0.0352 (11)0.0219 (11)0.0117 (9)0.0004 (9)0.0028 (9)
C100.0257 (10)0.0296 (10)0.0205 (11)0.0053 (8)0.0049 (8)0.0032 (9)
C50.0228 (10)0.0516 (14)0.0274 (12)0.0124 (10)0.0020 (9)0.0082 (11)
C120.0502 (13)0.0307 (11)0.0262 (12)0.0007 (10)0.0061 (10)0.0109 (10)
C110.0386 (12)0.0222 (10)0.0317 (12)0.0025 (9)0.0105 (9)0.0004 (9)
C40.0192 (10)0.0413 (12)0.0353 (13)0.0027 (9)0.0052 (9)0.0120 (10)
C130.0638 (15)0.0343 (12)0.0167 (11)0.0026 (11)0.0051 (10)0.0008 (9)
F10.0348 (6)0.0300 (6)0.0367 (7)0.0077 (5)0.0094 (5)0.0057 (5)
F20.0351 (6)0.0283 (6)0.0339 (7)0.0039 (5)0.0018 (5)0.0116 (5)
C10.0219 (9)0.0192 (9)0.0141 (9)0.0008 (7)0.0010 (7)0.0006 (8)
C90.0145 (9)0.0260 (10)0.0210 (10)0.0017 (7)0.0042 (7)0.0026 (8)
Cl10.0431 (3)0.0269 (3)0.0332 (3)0.0104 (2)0.0191 (2)0.0082 (2)
N10.0298 (9)0.0277 (9)0.0159 (8)0.0003 (7)0.0008 (7)0.0024 (7)
C150.0497 (13)0.0419 (12)0.0202 (11)0.0030 (10)0.0141 (10)0.0049 (10)
C160.0461 (13)0.0251 (10)0.0282 (12)0.0029 (9)0.0019 (10)0.0076 (9)
Geometric parameters (Å, º) top
C8—C91.512 (3)C5—C41.380 (3)
C8—C11.532 (3)C5—H50.9500
C8—H8A0.9900C12—C131.378 (3)
C8—H8B0.9900C12—C111.380 (3)
C3—F11.353 (2)C12—H120.9500
C3—C41.378 (3)C11—H110.9500
C3—C21.386 (3)C4—H40.9500
C7—F21.360 (2)C13—H130.9500
C7—C61.371 (3)C1—N11.515 (2)
C7—C21.388 (3)C1—H11.0000
C2—C11.518 (2)N1—C151.487 (3)
C14—C131.382 (3)N1—C161.488 (2)
C14—C91.386 (3)N1—H1N10.93 (2)
C14—H140.9500C15—H15A0.9800
C6—C51.378 (3)C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C10—C111.386 (3)C16—H16A0.9800
C10—C91.392 (3)C16—H16B0.9800
C10—H100.9500C16—H16C0.9800
C9—C8—C1109.13 (14)C3—C4—C5118.14 (19)
C9—C8—H8A109.9C3—C4—H4120.9
C1—C8—H8A109.9C5—C4—H4120.9
C9—C8—H8B109.9C12—C13—C14120.2 (2)
C1—C8—H8B109.9C12—C13—H13119.9
H8A—C8—H8B108.3C14—C13—H13119.9
F1—C3—C4118.01 (17)N1—C1—C2113.84 (14)
F1—C3—C2117.86 (16)N1—C1—C8111.51 (14)
C4—C3—C2124.11 (18)C2—C1—C8113.39 (15)
F2—C7—C6117.17 (17)N1—C1—H1105.8
F2—C7—C2118.28 (16)C2—C1—H1105.8
C6—C7—C2124.53 (18)C8—C1—H1105.8
C3—C2—C7114.24 (16)C14—C9—C10118.25 (17)
C3—C2—C1119.49 (16)C14—C9—C8121.50 (17)
C7—C2—C1125.73 (16)C10—C9—C8120.17 (17)
C13—C14—C9121.15 (18)C15—N1—C16110.90 (16)
C13—C14—H14119.4C15—N1—C1111.34 (14)
C9—C14—H14119.4C16—N1—C1115.81 (15)
C7—C6—C5118.07 (19)C15—N1—H1N1108.8 (14)
C7—C6—H6121.0C16—N1—H1N1104.7 (13)
C5—C6—H6121.0C1—N1—H1N1104.7 (14)
C11—C10—C9120.47 (18)N1—C15—H15A109.5
C11—C10—H10119.8N1—C15—H15B109.5
C9—C10—H10119.8H15A—C15—H15B109.5
C6—C5—C4120.89 (18)N1—C15—H15C109.5
C6—C5—H5119.6H15A—C15—H15C109.5
C4—C5—H5119.6H15B—C15—H15C109.5
C13—C12—C11119.35 (19)N1—C16—H16A109.5
C13—C12—H12120.3N1—C16—H16B109.5
C11—C12—H12120.3H16A—C16—H16B109.5
C12—C11—C10120.54 (18)N1—C16—H16C109.5
C12—C11—H11119.7H16A—C16—H16C109.5
C10—C11—H11119.7H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.93 (2)2.08 (2)3.0006 (17)167.3 (19)
1-[1-(2,6-Difluorophenyl)-2-phenylethyl]pyrrolidin-1-ium chloride (IV) top
Crystal data top
C18H20F2N+·ClZ = 4
Mr = 323.80F(000) = 680
Triclinic, P1Dx = 1.308 Mg m3
a = 8.1365 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7421 (10) ÅCell parameters from 9872 reflections
c = 16.0451 (8) Åθ = 3.0–25.4°
α = 88.059 (5)°µ = 0.25 mm1
β = 82.349 (4)°T = 123 K
γ = 86.140 (5)°Block, colourless
V = 1644.42 (17) Å30.5 × 0.4 × 0.3 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
scans in phi and ωθmax = 25.0°, θmin = 3.0°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 98
Tmin = 0.888, Tmax = 0.928k = 1515
13277 measured reflectionsl = 1919
5775 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.0143P)2 + 10.4102P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
5775 reflectionsΔρmax = 0.59 e Å3
403 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl21.11424 (18)0.86611 (11)0.52129 (8)0.0292 (3)
Cl10.6097 (2)0.63420 (11)1.00579 (9)0.0366 (4)
F10.3393 (4)0.7014 (3)0.6933 (2)0.0340 (8)
F20.0752 (4)0.4329 (3)0.8568 (2)0.0335 (8)
F30.9182 (4)0.7720 (3)0.2168 (2)0.0339 (8)
F40.5878 (4)1.0740 (3)0.3087 (2)0.0396 (9)
N20.8306 (6)0.8731 (4)0.4140 (3)0.0242 (10)
N10.3190 (6)0.6384 (4)0.9063 (3)0.0244 (10)
C270.7599 (6)0.9234 (4)0.2683 (3)0.0201 (11)
C90.2164 (6)0.5657 (4)0.7790 (3)0.0205 (11)
C280.6271 (7)0.9934 (4)0.2546 (3)0.0251 (12)
C10.3471 (6)0.5569 (4)0.8386 (3)0.0212 (11)
H10.3353480.4871060.8684860.025*
C211.0944 (6)1.0169 (4)0.2351 (3)0.0227 (11)
C190.8667 (6)0.9430 (4)0.3359 (3)0.0218 (11)
H190.8363361.0168170.3540390.026*
C30.5585 (6)0.4696 (4)0.7320 (3)0.0244 (12)
C201.0529 (7)0.9374 (4)0.3056 (3)0.0252 (12)
H20A1.1139490.9512120.3531170.030*
H20B1.0889970.8657680.2856320.030*
C140.0907 (7)0.4965 (4)0.7874 (3)0.0252 (12)
C320.7907 (7)0.8440 (4)0.2094 (3)0.0258 (12)
C110.1145 (8)0.6272 (5)0.6475 (4)0.0325 (14)
H110.1224640.6736720.5997570.039*
C221.1007 (7)1.1225 (5)0.2533 (4)0.0309 (13)
H221.0758321.1447020.3098030.037*
C20.5263 (7)0.5557 (4)0.7956 (3)0.0242 (12)
H2A0.5467950.6246270.7670390.029*
H2B0.6034360.5440260.8382680.029*
C251.1662 (7)1.0602 (5)0.0882 (4)0.0327 (14)
H251.1872921.0390350.0313900.039*
C100.2208 (7)0.6305 (4)0.7066 (3)0.0239 (12)
C80.5647 (7)0.3644 (5)0.7585 (4)0.0321 (13)
H80.5463270.3467850.8168860.038*
C360.6658 (7)0.8977 (5)0.4644 (4)0.0348 (14)
H36A0.5756980.9004540.4283800.042*
H36B0.6636200.9659880.4923460.042*
C150.1649 (8)0.6286 (5)0.9678 (4)0.0351 (14)
H15A0.1743750.5648761.0042240.042*
H15B0.0659450.6256380.9382750.042*
C330.8366 (8)0.7563 (5)0.4037 (4)0.0346 (14)
H33A0.9523970.7269240.3898660.042*
H33B0.7711350.7380880.3590650.042*
C261.1262 (7)0.9866 (4)0.1518 (3)0.0256 (12)
H261.1204890.9149880.1384230.031*
C310.6991 (8)0.8323 (5)0.1447 (4)0.0346 (14)
H310.7228860.7747320.1079810.042*
C130.0197 (7)0.4882 (5)0.7300 (4)0.0338 (14)
H130.1031750.4388790.7388460.041*
C50.6205 (8)0.4144 (6)0.5880 (4)0.0428 (16)
H50.6385390.4319370.5296060.051*
C290.5330 (8)0.9887 (5)0.1896 (4)0.0359 (15)
H290.4450571.0398100.1826900.043*
C170.2484 (8)0.8097 (5)0.9603 (4)0.0394 (15)
H17A0.1726250.8710720.9489400.047*
H17B0.3420170.8344030.9863020.047*
C300.5719 (8)0.9062 (6)0.1348 (4)0.0392 (16)
H300.5093370.9007380.0893990.047*
C70.5979 (7)0.2849 (5)0.7000 (4)0.0380 (15)
H70.5991350.2132080.7184530.046*
C241.1755 (8)1.1644 (5)0.1071 (4)0.0386 (15)
H241.2040761.2145930.0632870.046*
C231.1434 (8)1.1956 (5)0.1892 (4)0.0361 (14)
H231.1503551.2672400.2020270.043*
C180.3116 (8)0.7526 (4)0.8797 (4)0.0329 (14)
H18A0.2346060.7666230.8372070.040*
H18B0.4230280.7745390.8559500.040*
C120.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)
H120.0788130.5478760.6188260.047*
C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)
H40.5804210.5641530.6268640.037*
C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)
H60.6560590.2560250.5750200.058*
C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)
H35A0.5304900.7889340.5395720.057*
H35B0.6832470.8278420.5822050.057*
C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)
H16A0.2077720.7139901.0702220.050*
H16B0.0373910.7528371.0347250.050*
C340.7597 (9)0.7161 (6)0.4895 (4)0.0449 (17)
H34A0.8472560.6946740.5251120.054*
H34B0.6939190.6548930.4835130.054*
H1'0.397 (7)0.632 (5)0.948 (3)0.054*
H20.911 (6)0.875 (5)0.454 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0390 (8)0.0279 (7)0.0220 (7)0.0035 (6)0.0099 (6)0.0062 (5)
Cl10.0553 (10)0.0307 (8)0.0290 (8)0.0163 (7)0.0203 (7)0.0075 (6)
F10.041 (2)0.0338 (19)0.0285 (18)0.0134 (15)0.0076 (15)0.0094 (14)
F20.0333 (19)0.0309 (18)0.0360 (19)0.0100 (14)0.0017 (15)0.0077 (15)
F30.038 (2)0.0304 (18)0.0321 (19)0.0034 (15)0.0013 (15)0.0111 (14)
F40.034 (2)0.0281 (18)0.057 (2)0.0064 (15)0.0083 (17)0.0129 (16)
N20.028 (3)0.027 (2)0.016 (2)0.003 (2)0.0015 (19)0.0012 (19)
N10.031 (3)0.027 (2)0.016 (2)0.003 (2)0.0052 (19)0.0038 (19)
C270.023 (3)0.021 (3)0.017 (3)0.004 (2)0.002 (2)0.000 (2)
C90.022 (3)0.021 (3)0.018 (3)0.005 (2)0.002 (2)0.005 (2)
C280.023 (3)0.025 (3)0.027 (3)0.006 (2)0.002 (2)0.001 (2)
C10.026 (3)0.020 (3)0.018 (3)0.001 (2)0.006 (2)0.002 (2)
C210.015 (3)0.029 (3)0.024 (3)0.001 (2)0.001 (2)0.001 (2)
C190.026 (3)0.021 (3)0.018 (3)0.005 (2)0.003 (2)0.002 (2)
C30.020 (3)0.031 (3)0.023 (3)0.003 (2)0.001 (2)0.005 (2)
C200.026 (3)0.029 (3)0.022 (3)0.004 (2)0.006 (2)0.001 (2)
C140.023 (3)0.023 (3)0.030 (3)0.000 (2)0.003 (2)0.002 (2)
C320.027 (3)0.027 (3)0.022 (3)0.006 (2)0.002 (2)0.001 (2)
C110.043 (4)0.033 (3)0.024 (3)0.005 (3)0.015 (3)0.001 (2)
C220.031 (3)0.034 (3)0.028 (3)0.006 (3)0.002 (3)0.006 (3)
C20.023 (3)0.028 (3)0.022 (3)0.006 (2)0.005 (2)0.003 (2)
C250.032 (3)0.044 (4)0.021 (3)0.005 (3)0.002 (2)0.001 (3)
C100.024 (3)0.023 (3)0.025 (3)0.004 (2)0.002 (2)0.001 (2)
C80.020 (3)0.039 (3)0.037 (3)0.002 (2)0.003 (2)0.002 (3)
C360.027 (3)0.053 (4)0.024 (3)0.008 (3)0.004 (2)0.004 (3)
C150.038 (4)0.035 (3)0.029 (3)0.001 (3)0.008 (3)0.004 (3)
C330.045 (4)0.032 (3)0.028 (3)0.007 (3)0.007 (3)0.005 (3)
C260.023 (3)0.031 (3)0.024 (3)0.005 (2)0.003 (2)0.001 (2)
C310.036 (3)0.044 (4)0.025 (3)0.020 (3)0.003 (3)0.011 (3)
C130.025 (3)0.029 (3)0.049 (4)0.007 (2)0.010 (3)0.000 (3)
C50.038 (4)0.063 (5)0.026 (3)0.002 (3)0.004 (3)0.015 (3)
C290.030 (3)0.038 (4)0.042 (4)0.008 (3)0.016 (3)0.011 (3)
C170.044 (4)0.032 (3)0.043 (4)0.005 (3)0.007 (3)0.016 (3)
C300.035 (4)0.062 (4)0.026 (3)0.022 (3)0.013 (3)0.003 (3)
C70.027 (3)0.035 (3)0.050 (4)0.000 (3)0.002 (3)0.011 (3)
C240.037 (4)0.047 (4)0.031 (3)0.007 (3)0.002 (3)0.015 (3)
C230.034 (3)0.026 (3)0.048 (4)0.003 (3)0.002 (3)0.001 (3)
C180.046 (4)0.022 (3)0.031 (3)0.001 (3)0.005 (3)0.005 (2)
C120.033 (3)0.041 (4)0.049 (4)0.000 (3)0.024 (3)0.005 (3)
C40.029 (3)0.038 (3)0.026 (3)0.004 (3)0.000 (2)0.003 (3)
C60.031 (4)0.057 (5)0.056 (5)0.000 (3)0.008 (3)0.034 (4)
C350.045 (4)0.075 (5)0.023 (3)0.020 (4)0.001 (3)0.003 (3)
C160.046 (4)0.047 (4)0.031 (3)0.004 (3)0.001 (3)0.012 (3)
C340.047 (4)0.056 (4)0.034 (4)0.015 (3)0.009 (3)0.018 (3)
Geometric parameters (Å, º) top
F1—C101.357 (6)C3—C41.393 (8)
F2—C141.352 (6)C3—C21.510 (7)
F3—C321.353 (6)C14—C131.381 (8)
F4—C281.361 (6)C32—C311.373 (8)
N2—C361.491 (7)C11—C101.369 (8)
N2—C331.500 (7)C11—C121.393 (9)
N2—C191.520 (6)C22—C231.389 (8)
N1—C151.498 (7)C25—C241.381 (9)
N1—C181.502 (7)C25—C261.383 (8)
N1—C11.513 (6)C8—C71.394 (8)
C27—C281.390 (7)C36—C351.513 (9)
C27—C321.396 (7)C15—C161.515 (8)
C27—C191.513 (7)C33—C341.521 (8)
C9—C141.385 (7)C31—C301.373 (9)
C9—C101.400 (7)C13—C121.374 (9)
C9—C11.518 (7)C5—C41.378 (9)
C28—C291.378 (8)C5—C61.382 (10)
C1—C21.528 (7)C29—C301.386 (9)
C21—C261.391 (7)C17—C181.516 (8)
C21—C221.392 (8)C17—C161.550 (9)
C21—C201.513 (7)C7—C61.388 (10)
C19—C201.526 (7)C24—C231.375 (9)
C3—C81.392 (8)C35—C341.534 (10)
C36—N2—C33103.9 (4)F3—C32—C31117.2 (5)
C36—N2—C19114.4 (4)F3—C32—C27118.1 (5)
C33—N2—C19118.5 (4)C31—C32—C27124.8 (5)
C15—N1—C18103.7 (4)C10—C11—C12117.7 (5)
C15—N1—C1115.1 (4)C23—C22—C21120.2 (5)
C18—N1—C1118.3 (4)C3—C2—C1110.2 (4)
C28—C27—C32113.3 (5)C24—C25—C26120.2 (6)
C28—C27—C19120.6 (5)F1—C10—C11117.3 (5)
C32—C27—C19125.7 (5)F1—C10—C9118.0 (5)
C14—C9—C10113.8 (5)C11—C10—C9124.7 (5)
C14—C9—C1120.1 (5)C3—C8—C7120.4 (6)
C10—C9—C1125.5 (5)N2—C36—C35104.2 (5)
F4—C28—C29117.1 (5)N1—C15—C16103.7 (5)
F4—C28—C27117.7 (5)N2—C33—C34103.2 (5)
C29—C28—C27125.2 (5)C25—C26—C21120.3 (5)
N1—C1—C9113.3 (4)C30—C31—C32118.0 (6)
N1—C1—C2110.0 (4)C12—C13—C14118.2 (5)
C9—C1—C2114.7 (4)C4—C5—C6120.0 (6)
C26—C21—C22119.0 (5)C28—C29—C30117.2 (6)
C26—C21—C20121.1 (5)C18—C17—C16105.3 (5)
C22—C21—C20119.9 (5)C31—C30—C29121.4 (5)
C27—C19—N2113.2 (4)C6—C7—C8120.1 (6)
C27—C19—C20114.3 (4)C23—C24—C25120.0 (6)
N2—C19—C20110.0 (4)C24—C23—C22120.2 (6)
C8—C3—C4118.4 (5)N1—C18—C17104.2 (5)
C8—C3—C2120.3 (5)C13—C12—C11121.0 (5)
C4—C3—C2121.3 (5)C5—C4—C3121.4 (6)
C21—C20—C19111.0 (4)C5—C6—C7119.7 (6)
F2—C14—C13117.9 (5)C36—C35—C34105.5 (5)
F2—C14—C9117.6 (5)C15—C16—C17105.7 (5)
C13—C14—C9124.6 (5)C33—C34—C35105.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.99 (1)2.07 (2)3.021 (5)163 (6)
N2—H2···Cl20.98 (1)2.08 (2)3.052 (5)169 (6)
[1-(2,6-Difluorophenyl)-2-phenylethyl](ethyl)azanium chloride dichloromethane hemisolvate (II) top
Crystal data top
2C16H18F2N+·2Cl·CH2Cl2F(000) = 1416
Mr = 680.45Dx = 1.313 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 22.9963 (14) ÅCell parameters from 8967 reflections
b = 7.8729 (5) Åθ = 3.0–26.4°
c = 19.033 (1) ŵ = 0.39 mm1
β = 92.130 (5)°T = 123 K
V = 3443.5 (4) Å3Block, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
scans in phi and ωθmax = 25.0°, θmin = 3.3°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 2726
Tmin = 0.911, Tmax = 0.962k = 99
12738 measured reflectionsl = 2122
3034 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0343P)2 + 2.8401P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3034 reflectionsΔρmax = 0.25 e Å3
224 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.28641 (2)0.60990 (5)0.16223 (2)0.02972 (12)
Cl1S0.31326 (2)0.28821 (7)0.00859 (3)0.05486 (16)
F10.05520 (5)1.14129 (13)0.11535 (6)0.0466 (3)
F20.17656 (5)0.69870 (15)0.04908 (5)0.0570 (3)
N10.19574 (5)0.90437 (17)0.17878 (7)0.0248 (3)
C10.13169 (6)0.88167 (19)0.16264 (7)0.0251 (3)
H10.1105540.9670620.1910480.030*
C90.11629 (6)0.91562 (18)0.08602 (7)0.0242 (3)
C30.05036 (7)0.6689 (2)0.17558 (8)0.0308 (3)
C130.12414 (8)0.8489 (2)0.03848 (9)0.0391 (4)
H130.1402330.7798390.0737930.047*
C120.08611 (7)0.9784 (2)0.05562 (9)0.0392 (4)
H120.0755930.9994290.1035670.047*
C110.06315 (7)1.0777 (2)0.00420 (9)0.0369 (4)
H110.0372351.1681040.0160690.044*
C140.13806 (7)0.8227 (2)0.03156 (8)0.0326 (4)
C100.07854 (6)1.04341 (19)0.06485 (8)0.0288 (3)
C40.00903 (8)0.7455 (2)0.21652 (9)0.0399 (4)
H40.0211690.8205570.2533030.048*
C150.2196 (4)1.0751 (12)0.1558 (4)0.0316 (19)0.707 (5)
H15A0.1955081.1678140.1745570.038*0.707 (5)
H15B0.2176091.0825690.1038550.038*0.707 (5)
C80.03174 (8)0.5597 (2)0.12252 (9)0.0388 (4)
H80.0594360.5064160.0939850.047*
C20.11439 (7)0.7045 (2)0.18834 (9)0.0326 (4)
H2A0.1372510.6177670.1637630.039*
H2B0.1241340.6951730.2392960.039*
C70.02704 (9)0.5276 (3)0.11066 (10)0.0501 (5)
H70.0393280.4518870.0741760.060*
C50.04964 (8)0.7136 (3)0.20423 (11)0.0490 (5)
H50.0775440.7672770.2323790.059*
C60.06771 (8)0.6042 (3)0.15123 (11)0.0524 (5)
H60.1079700.5819690.1428160.063*
C160.28347 (10)1.0963 (3)0.18310 (13)0.0360 (7)0.707 (5)
H16A0.2856421.0819350.2342800.054*0.707 (5)
H16B0.2973861.2098920.1710320.054*0.707 (5)
H16C0.3078181.0104450.1612590.054*0.707 (5)
C1S0.2500000.4136 (3)0.0000000.0302 (5)
H1S10.2526170.4875650.0418260.036*0.5
H1S20.2473830.4875650.0418270.036*0.5
C16A0.1932 (3)1.2115 (7)0.1843 (3)0.0383 (18)0.293 (5)
H16D0.1555231.2209840.1587500.057*0.293 (5)
H16E0.2164921.3130580.1756410.057*0.293 (5)
H16F0.1868791.2014090.2347970.057*0.293 (5)
H1B0.2162 (8)0.819 (2)0.1612 (9)0.036 (5)*
H1A0.2010 (7)0.893 (2)0.2273 (10)0.034 (5)*
C15A0.2248 (10)1.057 (3)0.1594 (10)0.037 (6)0.293 (5)
H15C0.2273541.0609560.1076170.044*0.293 (5)
H15D0.2649501.0560100.1801530.044*0.293 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0298 (2)0.0380 (2)0.02123 (18)0.00784 (16)0.00001 (14)0.00054 (15)
Cl1S0.0491 (3)0.0558 (3)0.0581 (3)0.0262 (2)0.0191 (2)0.0251 (2)
F10.0486 (6)0.0405 (6)0.0507 (6)0.0214 (5)0.0023 (5)0.0013 (5)
F20.0669 (7)0.0629 (7)0.0402 (6)0.0416 (6)0.0113 (5)0.0158 (5)
N10.0261 (7)0.0268 (7)0.0211 (7)0.0025 (6)0.0028 (5)0.0011 (6)
C10.0246 (7)0.0264 (8)0.0239 (7)0.0019 (6)0.0022 (6)0.0004 (6)
C90.0217 (7)0.0253 (8)0.0254 (7)0.0011 (6)0.0027 (6)0.0023 (6)
C30.0340 (8)0.0268 (8)0.0313 (8)0.0038 (7)0.0044 (7)0.0103 (7)
C130.0366 (9)0.0524 (11)0.0280 (8)0.0036 (8)0.0014 (7)0.0061 (8)
C120.0325 (9)0.0556 (11)0.0287 (8)0.0121 (8)0.0080 (7)0.0119 (8)
C110.0271 (8)0.0381 (9)0.0448 (10)0.0028 (7)0.0082 (7)0.0179 (8)
C140.0301 (8)0.0358 (9)0.0314 (8)0.0074 (7)0.0057 (6)0.0028 (7)
C100.0242 (7)0.0266 (8)0.0356 (8)0.0002 (6)0.0009 (6)0.0031 (7)
C40.0433 (10)0.0393 (10)0.0372 (9)0.0060 (8)0.0029 (8)0.0050 (8)
C150.023 (2)0.030 (3)0.041 (3)0.011 (3)0.0100 (19)0.014 (2)
C80.0451 (10)0.0303 (9)0.0405 (10)0.0053 (8)0.0048 (8)0.0039 (7)
C20.0331 (9)0.0294 (8)0.0349 (9)0.0014 (7)0.0056 (7)0.0078 (7)
C70.0563 (12)0.0426 (11)0.0499 (11)0.0201 (9)0.0178 (9)0.0104 (9)
C50.0373 (10)0.0504 (11)0.0599 (12)0.0000 (9)0.0101 (9)0.0196 (10)
C60.0349 (10)0.0546 (12)0.0665 (13)0.0143 (9)0.0130 (9)0.0315 (11)
C160.0326 (14)0.0355 (14)0.0397 (14)0.0085 (10)0.0007 (10)0.0018 (10)
C1S0.0286 (11)0.0273 (11)0.0340 (12)0.0000.0070 (9)0.000
C16A0.040 (3)0.031 (3)0.043 (3)0.010 (3)0.010 (3)0.002 (3)
C15A0.053 (9)0.042 (8)0.015 (5)0.024 (5)0.009 (4)0.006 (5)
Geometric parameters (Å, º) top
Cl1S—C1S1.7606 (13)C3—C21.510 (2)
F1—C101.3580 (18)C13—C121.375 (3)
F2—C141.3516 (18)C13—C141.375 (2)
N1—C15A1.43 (2)C12—C111.374 (3)
N1—C11.5040 (19)C11—C101.375 (2)
N1—C151.522 (8)C4—C51.384 (3)
C1—C91.512 (2)C15—C161.550 (8)
C1—C21.535 (2)C8—C71.385 (3)
C9—C141.378 (2)C7—C61.374 (3)
C9—C101.379 (2)C5—C61.379 (3)
C3—C81.382 (2)C16A—C15A1.51 (2)
C3—C41.389 (2)
C15A—N1—C1120.8 (11)F2—C14—C9116.80 (14)
C1—N1—C15114.0 (4)C13—C14—C9124.89 (15)
N1—C1—C9111.62 (12)F1—C10—C11118.07 (14)
N1—C1—C2107.84 (12)F1—C10—C9117.92 (14)
C9—C1—C2114.45 (13)C11—C10—C9124.01 (15)
C14—C9—C10114.19 (14)C5—C4—C3120.64 (17)
C14—C9—C1123.60 (13)N1—C15—C16110.2 (7)
C10—C9—C1122.21 (13)C3—C8—C7120.44 (18)
C8—C3—C4118.70 (16)C3—C2—C1112.35 (13)
C8—C3—C2120.46 (15)C6—C7—C8120.56 (18)
C4—C3—C2120.84 (15)C6—C5—C4120.15 (19)
C12—C13—C14117.66 (16)C7—C6—C5119.51 (18)
C11—C12—C13120.75 (15)Cl1S—C1S—Cl1Si111.79 (12)
C12—C11—C10118.49 (15)N1—C15A—C16A111.2 (13)
F2—C14—C13118.30 (14)
Symmetry code: (i) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.89 (2)2.30 (2)3.1417 (14)156.0 (16)
tert-Butyl[1-(2,6-difluorophenyl)-2-phenylethyl]azanium chloride (III) top
Crystal data top
C18H22F2N+·ClF(000) = 688
Mr = 325.81Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3115 (6) ÅCell parameters from 8922 reflections
b = 10.5400 (5) Åθ = 3.0–26.2°
c = 14.8039 (7) ŵ = 0.24 mm1
β = 105.044 (5)°T = 123 K
V = 1704.48 (15) Å3Block, colourless
Z = 40.4 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2343 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
scans in phi and ωθmax = 25.0°, θmin = 3.3°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.944, Tmax = 0.976k = 812
7223 measured reflectionsl = 1712
3008 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5824P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3008 reflectionsΔρmax = 0.22 e Å3
210 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39037 (5)1.13981 (5)0.05585 (4)0.02430 (17)
F10.09857 (12)0.74034 (14)0.10106 (9)0.0339 (4)
F20.39994 (13)0.60187 (13)0.04167 (9)0.0323 (4)
N10.41820 (17)0.84575 (19)0.06664 (12)0.0173 (4)
C10.5951 (2)0.8889 (2)0.19595 (15)0.0253 (6)
H1C0.6486520.8629370.1567760.038*
H1D0.6366070.8735920.2618560.038*
H1E0.5760240.9793560.1864580.038*
C20.3904 (2)0.8518 (2)0.22761 (15)0.0266 (6)
H2A0.3676710.9410680.2152640.040*
H2B0.4312670.8408150.2941270.040*
H2C0.3165810.7990090.2110620.040*
C30.5069 (2)0.6716 (2)0.18050 (15)0.0264 (6)
H3A0.4307890.6225290.1682160.040*
H3B0.5557180.6550920.2444750.040*
H3C0.5535960.6464290.1361390.040*
C40.4769 (2)0.8122 (2)0.16915 (14)0.0193 (5)
C50.2864 (2)0.8140 (2)0.02029 (14)0.0186 (5)
H50.2346180.8670190.0509990.022*
C60.2527 (2)0.6777 (2)0.03035 (14)0.0185 (5)
C70.1596 (2)0.6448 (2)0.07147 (15)0.0233 (5)
C80.1273 (2)0.5219 (3)0.08481 (17)0.0325 (6)
H80.0647230.5042670.1151780.039*
C90.1874 (2)0.4250 (3)0.05328 (17)0.0352 (7)
H90.1662740.3394470.0619770.042*
C100.2784 (2)0.4506 (2)0.00904 (17)0.0313 (6)
H100.3199030.3840760.0133060.038*
C110.3068 (2)0.5751 (2)0.00151 (15)0.0234 (6)
C120.2600 (2)0.8573 (2)0.08193 (14)0.0213 (5)
H12A0.2904380.9449960.0842220.026*
H12B0.3044220.8016910.1159370.026*
C130.1247 (2)0.8529 (2)0.12948 (14)0.0207 (5)
C140.0489 (2)0.9493 (3)0.11500 (17)0.0332 (6)
H140.0823801.0184350.0753900.040*
C150.0752 (3)0.9463 (3)0.15751 (19)0.0444 (8)
H150.1263601.0131580.1470730.053*
C160.1250 (2)0.8465 (3)0.21498 (19)0.0415 (7)
H160.2103430.8445210.2441990.050*
C170.0509 (2)0.7503 (3)0.22978 (17)0.0368 (7)
H170.0847820.6814600.2694790.044*
C180.0738 (2)0.7533 (2)0.18684 (15)0.0274 (6)
H180.1246310.6859360.1970990.033*
H1A0.423 (2)0.933 (2)0.0648 (15)0.020 (6)*
H1B0.471 (2)0.818 (2)0.0302 (16)0.033 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0305 (3)0.0186 (3)0.0261 (3)0.0042 (3)0.0115 (2)0.0024 (3)
F10.0296 (8)0.0364 (9)0.0419 (8)0.0001 (7)0.0202 (7)0.0009 (7)
F20.0383 (9)0.0276 (8)0.0363 (8)0.0065 (7)0.0190 (7)0.0004 (7)
N10.0222 (11)0.0132 (11)0.0172 (10)0.0009 (10)0.0063 (8)0.0011 (9)
C10.0248 (14)0.0286 (15)0.0205 (12)0.0010 (12)0.0021 (10)0.0037 (11)
C20.0302 (14)0.0320 (15)0.0186 (12)0.0025 (13)0.0081 (10)0.0008 (11)
C30.0329 (15)0.0232 (14)0.0205 (12)0.0024 (12)0.0021 (10)0.0061 (11)
C40.0213 (13)0.0210 (12)0.0142 (11)0.0003 (11)0.0021 (9)0.0035 (10)
C50.0198 (13)0.0168 (12)0.0196 (12)0.0025 (11)0.0056 (9)0.0006 (10)
C60.0197 (13)0.0191 (12)0.0151 (11)0.0001 (11)0.0019 (9)0.0020 (10)
C70.0207 (13)0.0252 (14)0.0225 (12)0.0007 (12)0.0029 (10)0.0010 (11)
C80.0302 (15)0.0340 (16)0.0317 (14)0.0100 (13)0.0051 (11)0.0075 (13)
C90.0429 (17)0.0215 (15)0.0338 (15)0.0113 (14)0.0031 (12)0.0069 (12)
C100.0389 (16)0.0182 (13)0.0315 (14)0.0024 (13)0.0003 (12)0.0005 (12)
C110.0264 (14)0.0242 (14)0.0198 (12)0.0009 (12)0.0061 (10)0.0019 (11)
C120.0228 (13)0.0209 (13)0.0197 (11)0.0004 (11)0.0047 (9)0.0041 (11)
C130.0241 (13)0.0213 (13)0.0171 (11)0.0003 (12)0.0059 (9)0.0054 (11)
C140.0326 (16)0.0272 (15)0.0347 (14)0.0043 (13)0.0005 (12)0.0044 (12)
C150.0326 (17)0.0459 (19)0.0513 (18)0.0166 (15)0.0047 (13)0.0013 (16)
C160.0226 (15)0.052 (2)0.0457 (16)0.0001 (15)0.0015 (12)0.0001 (16)
C170.0356 (17)0.0408 (17)0.0305 (14)0.0099 (15)0.0024 (12)0.0106 (13)
C180.0272 (15)0.0280 (15)0.0278 (13)0.0015 (12)0.0086 (11)0.0018 (12)
Geometric parameters (Å, º) top
F1—C71.356 (3)C6—C71.390 (3)
F2—C111.367 (2)C7—C81.374 (3)
N1—C51.508 (3)C8—C91.374 (4)
N1—C41.532 (3)C8—H80.9500
N1—H1A0.92 (2)C9—C101.382 (4)
N1—H1B0.95 (2)C9—H90.9500
C1—C41.524 (3)C10—C111.369 (3)
C1—H1C0.9800C10—H100.9500
C1—H1D0.9800C12—C131.510 (3)
C1—H1E0.9800C12—H12A0.9900
C2—C41.523 (3)C12—H12B0.9900
C2—H2A0.9800C13—C181.379 (3)
C2—H2B0.9800C13—C141.382 (3)
C2—H2C0.9800C14—C151.381 (4)
C3—C41.520 (3)C14—H140.9500
C3—H3A0.9800C15—C161.377 (4)
C3—H3B0.9800C15—H150.9500
C3—H3C0.9800C16—C171.369 (4)
C5—C61.504 (3)C16—H160.9500
C5—C121.534 (3)C17—C181.389 (3)
C5—H51.0000C17—H170.9500
C6—C111.384 (3)C18—H180.9500
C5—N1—C4121.50 (16)F1—C7—C8118.5 (2)
C5—N1—H1A105.3 (14)F1—C7—C6117.6 (2)
C4—N1—H1A104.3 (14)C8—C7—C6123.9 (2)
C5—N1—H1B111.4 (14)C9—C8—C7118.6 (2)
C4—N1—H1B108.5 (15)C9—C8—H8120.7
H1A—N1—H1B104.2 (19)C7—C8—H8120.7
C4—C1—H1C109.5C8—C9—C10120.7 (2)
C4—C1—H1D109.5C8—C9—H9119.6
H1C—C1—H1D109.5C10—C9—H9119.6
C4—C1—H1E109.5C11—C10—C9117.8 (2)
H1C—C1—H1E109.5C11—C10—H10121.1
H1D—C1—H1E109.5C9—C10—H10121.1
C4—C2—H2A109.5F2—C11—C10118.5 (2)
C4—C2—H2B109.5F2—C11—C6116.5 (2)
H2A—C2—H2B109.5C10—C11—C6124.9 (2)
C4—C2—H2C109.5C13—C12—C5111.39 (17)
H2A—C2—H2C109.5C13—C12—H12A109.4
H2B—C2—H2C109.5C5—C12—H12A109.4
C4—C3—H3A109.5C13—C12—H12B109.4
C4—C3—H3B109.5C5—C12—H12B109.4
H3A—C3—H3B109.5H12A—C12—H12B108.0
C4—C3—H3C109.5C18—C13—C14118.6 (2)
H3A—C3—H3C109.5C18—C13—C12121.4 (2)
H3B—C3—H3C109.5C14—C13—C12120.0 (2)
C3—C4—C2111.26 (19)C15—C14—C13120.7 (3)
C3—C4—C1109.42 (19)C15—C14—H14119.7
C2—C4—C1110.85 (19)C13—C14—H14119.7
C3—C4—N1111.22 (18)C16—C15—C14120.2 (3)
C2—C4—N1108.81 (18)C16—C15—H15119.9
C1—C4—N1105.11 (17)C14—C15—H15119.9
C6—C5—N1114.40 (18)C17—C16—C15119.6 (3)
C6—C5—C12113.12 (18)C17—C16—H16120.2
N1—C5—C12107.39 (16)C15—C16—H16120.2
C6—C5—H5107.2C16—C17—C18120.1 (3)
N1—C5—H5107.2C16—C17—H17119.9
C12—C5—H5107.2C18—C17—H17119.9
C11—C6—C7114.0 (2)C13—C18—C17120.7 (2)
C11—C6—C5124.53 (19)C13—C18—H18119.6
C7—C6—C5121.5 (2)C17—C18—H18119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.92 (2)2.21 (3)3.115 (2)167.7 (19)
N1—H1B···Cl1i0.95 (2)2.31 (2)3.1684 (19)151 (2)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

We thank Manchester knowledge and drug exchange (MANDRAKE) for the preparation of the reference compounds, which were produced under Home Office licence (in accordance with Manchester Metropolitan University's Home Office license, Ref. No. 423023) requirements and agreed procedures.

References

First citationAgilent (2014). CrysAlis PRO., Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. P., Brandt, S. D., Wallach, J., Morris, H. & Kavanagh, P. V. (2015). J. Anal. Toxicol. 39, 287–293.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). Forensic Toxicol. 33, 380-387, doi: 10.1007/s11419-015-0272-y.  Google Scholar
First citationHelander, A., Beck, O. & Bäckberg, M. (2015). Clin. Toxicol. 53, 446–453.  CrossRef Google Scholar
First citationHofer, K. E., Degrandi, C., Müller, D. M., Zürrer-Härdi, U., Wahl, S., Rauber-Lüthy, C. & Ceschi, A. (2014). Clin. Toxicol. 52, 1288–1291.  CrossRef Google Scholar
First citationJurásek, B., Fagan, P., Dolenský, B., Paškanová, N., Dobšíková, K., Raich, I., Jurok, R., Setnička, V., Kohout, M., Čejka, J. & Kuchař, M. (2023). New J. Chem. 47, 4543–4551.  Google Scholar
First citationJurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083.  PubMed Google Scholar
First citationKing, L. A. (2013). Novel Psychoactive Substances, edited by P. I. Dargan and D. M. Wood, pp. 3-27. Academic Press, Boston: Academic Press. doi: 10.1016/B978-0-12-415816-0.00001-8.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKudo, K., Usumoto, Y., Kikura-Hanajiri, R., Sameshima, N., Tsuji, A. & Ikeda, N. (2015). Leg. Med. 17, 421–426.  CrossRef Google Scholar
First citationLe Gall, E., Haurena, C., Sengmany, S., Martens, T. & Troupel, M. (2009). J. Org. Chem. 74, 7970–7973.  CrossRef PubMed Google Scholar
First citationMcLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98–109.  CrossRef PubMed Google Scholar
First citationMinakata, K., Yamagishi, I., Nozawa, H., Hasegawa, K., Gonmori, K., Suzuki, M., Wurita, A., Suzuki, O. & Watanabe, K. (2016). Forensic Toxicol. 34, 151–157.  CrossRef Google Scholar
First citationMorris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614–632.  CrossRef PubMed Google Scholar
First citationOdoardi, S., Romolo, F. S. & Strano-Rossi, S. (2016). Forensic Sci. Int. 265, 116–120.  CrossRef PubMed Google Scholar
First citationReuter, P. & Pardo, B. (2017). Addiction, 112, 25–31.  CrossRef PubMed Google Scholar
First citationSahai, M. A., Davidson, C. N., Dutta, C. & Opacka-Juffry, J. (2018). Brain Sci. pp. 8.  Google Scholar
First citationShafi A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. (2020). Ther. Adv. Psychopharmacol, 10, 2045125320967197. https://doi.org/10.1177/2045125320967197.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar, G., Serpelloni, G. & Romolo, F. S. (2014). Rapid Commun. Mass Spectrom. 28, 1904–1916.  CrossRef PubMed Google Scholar
First citationTettey, J. N. A., Crean, C., Ifeagwu, S. C. & Raithelhuber, M. (2018). New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology, edited by H. H. Maurer & S. D. Brandt. pp. 51–67. Cham: Springer International Publishing. https://doi.org/10.1007/164_2018_127  Google Scholar
First citationUNODC (2021). Resolution adopted by the Commission on 14th April 2021 – Inclusion of diphenidine in Schedule II of the Convention on Psychotropic Substances of 1971. Decision 64/6., 2021, https://www.unodcorg/documents/commissions/CND/Drug_Resolutions/2020-2029/2021/decision_64_6.pdf  Google Scholar
First citationUNODC (2024). The Challenge of New Psychoactive Substances – A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html  Google Scholar
First citationWallach, J., Kang, H., Colestock, T., Morris, H., Bortolotto, Z. A., Collingridge, G. L., Lodge, D., Halberstadt, A. L., Brandt, S. D. & Adejare, A. (2016). PLoS One, 11, e0157021.  CrossRef PubMed Google Scholar
First citationWallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). Drug Test. Anal. 7, 358–367.  CrossRef PubMed Google Scholar
First citationWurita, A., Hasegawa, K., Minakata, K., Watanabe, K. & Suzuki, O. (2014). Forensic Toxicol.. 32, 331–337.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds