

research communications
Synthesis and crystal structures of five fluorinated diphenidine derivatives
aDepartment of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom, and bSchool of Science and Technology, Nottingham Trent University, Nottingham NG11, 8NS, United Kingdom
*Correspondence e-mail: r.mewis@mmu.ac.uk, o.sutcliffe@mmu.ac.uk
Diphenidine (1a), a dissociative anaesthetic, was first reported in 2013. Since then, a number of derivatives e.g. 2-methoxphenidine (1b) have been produced by clandestine laboratories and sold as research chemicals. Fluorinated diphenidines, namely, [1-(2,6-difluorophenyl)-2-phenylethyl]dimethylazanium chloride, C16H18F2N+·Cl−, (I), [1-(2,6-difluorophenyl)-2-phenylethyl](ethyl)azanium chloride dichloromethane hemisolvate, 2C16H18F2N+·2Cl−·CH2Cl2, (II), tert-butyl[1-(2,6-difluorophenyl)-2-phenylethyl]azanium chloride, C18H22F2N+·Cl−, (III), 1-[1-(2,6-difluorophenyl)-2-phenylethyl]pyrrolidin-1-ium chloride, C18H20F2N+·Cl−, (IV), and 1-[1-(2,3,4,5,6-pentafluorophenyl)-2-phenylethyl]piperidin-1-ium chloride, C19H19F5N+·Cl−, (V), were synthesized and structurally characterized by 1H, 13C and 19F NMR spectroscopy, and single-crystal X-ray diffraction. All five structures exhibit hydrogen bonding between the quaternary amine hydrogen atoms and the chlorine. The N—H⋯Cl distances for (II) and (III) range from 2.21 to 2.31 Å, whereas (I), (IV) and (V) exhibit shorter N—H⋯Cl distances (2.07–2.20 Å). Compounds (IV) and (V) include pyrrolidine and piperidine rings, respectively; the pyrrolidine ring adopts an whereas the piperidine ring adopts a chair conformation. The crystal packing in compounds (I)–(V) is characterized by C—H⋯π interactions; no π–π interactions are observed.
Keywords: crystal structure; diphenidine; novel psychoactive substances.
1. Chemical context
Over the past two decades, there has been a significant increase in the number of new psychoactive substances (NPS) seized by law enforcement agencies globally (King, 2013; UNODC, 2024
). Current convention uses a functional ‘effect group’ categorization to define NPS within six broad overlapping groups: (i) synthetic cannabinoid receptor agonists; (ii) classic hallucinogens; (iii) stimulants; (iv) opioid receptor agonists; (v) sedatives/hypnotics and (vi) dissociatives (UNODC, 2024
; Tettey et al., 2018
; Shafi et al., 2020
). NPS are assigned to a specific ‘effect group’ based on their chemical structure and psychopharmacological effects (UNODC, 2024
; Tettey et al., 2018
). 1,2-Diarylethamines are dissociative, psychoactive substances, which distort perceptions, produce feelings of detachment, and induce a state of anaesthesia by antagonizing ionotropic N-methyl-D-aspartate receptors (NMDAR) in the central nervous system (UNODC, 2024
; Morris & Wallach, 2014
).
The first of these dissociative anaesthetics was 1-(1,2-diphenylethyl)piperidine (diphenidine, 1a) (Wallach et al., 2015) reported in 2013 (Morris & Wallach, 2014
), followed by 1-[1-(2-methoxyphenyl)-2-phenylethyl]piperidine (2-methoxphenidine, 1b) (McLaughlin et al., 2016
), which have both been marketed as ‘research chemicals’ and encountered in tablet or powder forms (UNODC, 2024
; Wallach et al., 2015
; McLaughlin et al., 2016
; Odoardi et al., 2016
; Strano Rossi et al., 2014
) or in combination with synthetic cannabinoids such as AB-CHMINACA, 5F-AMB (Hasegawa et al., 2015
) and 5F-AB-PINACA (Wurita et al., 2014
). Though both the supply and production of 1a, 1b and the recently disclosed 1-[1-(2-chlorophenyl)-2-phenylethyl]piperidine (2-chlorodiphenidine, 1c) (Wallach et al., 2016
; Sahai et al., 2018
), are now controlled in the United Kingdom by the 2016 Psychoactive Substances Act (Reuter & Pardo, 2017
), the emergence of novel 1,2-diarylethylamine derivatives, such as the fluorinated compounds, (I)–(V), still raises considerable legal and analytical challenges in both the forensic identification and discrimination of these materials. This is due to the inference of diphenidine-based NPS in several fatalities in Europe (Morris & Wallach, 2014
; Wallach et al., 2015
, 2016
; McLaughlin et al., 2016
; Strano Rossi et al., 2014
; Hasegawa et al., 2015
; Wurita et al., 2014
; Sahai et al., 2018
; Reuter & Pardo, 2017
; Elliott et al., 2015
; Helander et al., 2015
; Hofer et al., 2014
), Asia (Hasegawa et al., 2015
; Minakata et al., 2016
; Kudo et al., 2015
) and 1a being placed under international control, within schedule II of the United Nations Convention on Psychotropic Substances (1971), on 14th April 2021 (UNODC, 2021
).
2. Structural commentary
Compound (I) (Fig. 1) crystallizes in the monoclinic P21/c with a single molecule in the The torsion angle between the two quaternary carbons of the phenyl rings and the bridging ethyl chain is 53.4 (2)°.
![]() | Figure 1 The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. |
Compound (II) (Fig. 2) crystallizes in the I2/a It consists of one molecule in the as well as half of a single molecule of dichloromethane (DCM). The terminal carbon of the ethyl group (C15, C15A) is disordered over two positions [0.707 (5):0.293 (5) occupancy]. The closest contact between one of the fluorine atoms of the 2,6-difluorophenyl ring and a hydrogen atom of DCM is 2.335 Å. The torsion angle for (II), as defined previously for (I), is −55.9 (2)°. The final non-cyclic aliphatic analogue, (III) (Fig. 3
), crystallizes in the monoclinic P21/c with a single formula unit in the cell. The torsion angle is the largest of all the structures presented herein at 63.8 (2)°.
![]() | Figure 2 The molecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The half molecule of DCM present has been omitted. |
![]() | Figure 3 The molecular structure of (III), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. |
Compound (IV) (Fig. 4) crystallizes in the triclinic P
with two molecules in the Torsion angles of −54.6 (3) and 58.9 (3)° are very similar to (I) and (III). The pyrrolidine ring present in the structure adopts an envelope conformation.
![]() | Figure 4 The molecular structure of (IV), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one molecule present in the is shown. |
Compound (V) (Fig. 5) crystallizes in the monoclinic P21/c with a single molecule in the The torsion angle defined is the smallest of the crystal structures presented at 47.3 (2)°. The piperidine ring is in the chair conformation. All five structures exhibit hydrogen bonding between the quaternary amine and the chlorine (Tables 1
–5
). The five structures can be split in to two groups; (II) and (III) both have two R groups attached to the amine whereas the remainder all possess three. The N—H⋯Cl distance for the former grouping range from 2.21 to 2.31 Å, with N—H—Cl angles of 151–168° (Tables 2
and 3
). Interestingly, in (II), a shorter N—H1A⋯Cl distance of 2.11 Å (compared to 2.30 Å for N—H1B⋯Cl) is observed to a symmetry-related [symmetry code: (i)
− x,
− y,
− z] Cl atom. The latter group, consisting of (I), (IV) and (V) exhibit shorter N—H⋯Cl distances (2.07–2.20 Å, Tables 1
, 4
and 5
) as well as N—H—Cl angles that are all greater than 163°.
|
|
|
|
|
![]() | Figure 5 The molecular structure of (V), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. |
3. Supramolecular features
Molecules of (I) exhibit no π–π interactions, as despite the unsubstituted phenyl rings being aligned when viewed along the c-axis direction, the shortest centroid–centroid distance is 7.947 Å [symmetry operation 1 + x, y, z]. Molecules are linked together by C—H⋯π interactions; the distance of the centroid of the unsubstituted phenyl ring to the nearest aromatic protons of a substituted aromatic ring are 3.274 and 3.951 Å [Cg1⋯H4i = 3.274 Å and Cg1⋯H5i = 3.951 Å; Cg1 is the centroid of C9-C14 ring; symmetry code: (i) 1 + x, y, z]. Another C—H⋯π interaction exists between the centroid of the difluorinated ring and a phenyl ring proton of a neighbouring molecule [Cg2⋯H11ii = 2.982 Å; Cg2 is the centroid of the C2–C7 ring; symmetry code: (ii) 1 − x, y − ,
− z].
Analysis of (II)–(V) reveals that these also exhibit no π–π interactions. Similarly to (I), they do exhibit weak C—H⋯π interactions with distances of 3.244–3.425, 3.427–3.744 and 2.929–3.459 Å for (II), (III) and (IV), respectively. between the nearest ring hydrogen of the difluorinated ring and that of the centroid of the nearest neighbouring phenyl ring. (II) also exhibits a C—H⋯π interaction between the non-fluorinated phenyl rings of neighbouring molecules [Cg3⋯H4iii = 2.969 Å; Cg3 is the centroid of ring C3–C8; symmetry code: (iii) −x, y − ,
− z]. Similarly, (III) has the same interaction [Cg4⋯H17iv = 3.785 Å and Cg4⋯H18iv = 4.105 Å; Cg4 is the centroid of ring C13–C18; symmetry code: (iv) −x, y −
, z −
]. For (IV), the pyrrolidine ring exhibits two sets of C—H⋯π interactions to the phenyl [Cg5⋯H17Av = 3.349 Å and Cg5⋯H18Av = 3.417 Å; Cg5 is the centroid of ring C27–C32; symmetry code: (v) 1 − x, 2 − y, 1 − z] and difluorinated rings [Cg6⋯H33Avi = 4.179 Å and Cg6⋯H33Bvi = 4.068 Å; Cg6 is the centroid of ring C27–C32; symmetry code: (vi) 1 − x, 1 − y, 1 − z. For V, there is a C—H⋯π interaction between a hydrogen atom of the piperidine ring and the pentafluorophenyl ring [Cg7⋯H4Avii = 2.865 Å; Cg7 is the centroid of ring C14–C19; symmetry code: (vii) (x) −x, 1 − y, 1 − z]. This C—H⋯π interaction is the shortest identified of the crystal structures presented. C—H⋯π interactions also exist between the two non-fluorinated phenyl rings of neighbouring molecules [Cg8⋯H12viii = 3.550 Å and Cg8⋯H11viii = 3.748 Å; Cg8 is the centroid of ring C8–C13; symmetry code: (viii) −x, y, z] and between piperidine ring hydrogen atoms and non-fluorinated phenyl rings [Cg9⋯H1Bix = 3.220 Å and Cg9⋯H3Bix = 3.426 Å; Cg9 is the centroid of ring C8–C13; symmetry code: (ix) 1 − x, 1 − y, −z].
4. Database survey
A search of the Cambridge Structural Database (version 5.45, update in June 2024; Groom et al.; 2016) for phenidine derivatives resulted in four hits. All four hits are 2-methoxphenidine (1b) with a variety of solvates, some unknown (REBKOC; Jurásek et al., 2022
), and bromo- and chloro-zincate ions (REBLOD and REBLIX; Jurásek et al., 2022
). Entry FIDHIN (Jurásek et al., 2023
) is the hydrochloride salt of the R-isomer of 1b and as such is comparable to (V) due to the presence of a piperidine ring. Similar to (V), it has N—H⋯Cl distances of 2.120 and 2.123 Å (two molecules in the asymmetric unit). The piperidine ring is the chair conformation, which is again directly comparable to (V). Entry REBKOC, mirrors that of FIDHIN except a chloroform solvent molecule is present in the It has an N—H—Cl distance of 2.209 Å and a Cl3C—H⋯A distance of 2.387 Å; the presence of this solvent molecule has elongated the distance. The remaining two entries REBLOD and REBLIX (Jurásek et al., 2022
) both possess ZnCl2Br42− and ZnCl2Br42− ions in the cell. Again, the piperidine ring is in the chair conformation for both REBLOD and REBLIX.
5. Synthesis and crystallization
General method for diarylethylamine synthesis
All diphenidine derivatives and analogues were synthesized using an adaptation of the published method (Le Gall et al., 2009). The following modifications were applied to the published method: To zinc dust (2.0 g, 30 mmol) suspended in acetonitrile (40 mL), was added benzyl bromide (0.4 mL, 3.4 mmol) and trifluoroacetic acid (0.2 mL). The resulting solution was stirred for 5 minutes and then benzyl bromide (3.0 mL, 25 mmol), the required amine (0.99 mL, 10 mmol) followed by the pre-requisite benzaldehyde (11 mmol), were introduced to the mixture, and the solution was stirred at room temperature for an additional 1 h. The resulting solution was poured into a saturated aqueous NH4Cl solution (150 mL) and extracted with dichloromethane (2 × 100 mL). The combined organic layers were dried (MgSO4) and concentrated in vacuo to give a crude yellowish oil. The oil was then dissolved in diethyl ether (150 mL) and concentrated sulfuric acid (0.75 mL) was added dropwise to the vigorously stirred solution. After five minutes, the precipitated ammonium salt was filtered, washed with diethyl ether (2 × 50 mL) and air dried for 5–10 minutes. The ammonium salt was re-dissolved in aqueous sodium hydroxide (5% w/v, 150 mL) and then extracted with dichloromethane (2 × 100 mL). The combined organic fractions were again dried (MgSO4) and concentrated in vacuo to give a yellow oil. The oil was dissolved in diethyl ether (200 mL), treated with hydrogen chloride (4 M in dioxane, 3.0 mL, 12 mmol) and left to stand for 5 minutes. The crystallized products were filtered and washed sequentially with the minimum amount of ice-cold acetone and if necessary an ice-cold mixture of ethyl acetate–diethyl ether (1:5) to afford the corresponding hydrochloride salts as colourless to off-white powders.
(I) afforded 0.40 g (15%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from EtOAc/diethyl ether. 1H NMR (400 MHz, CD2Cl2): δ 7.4–7.5 (m, 1 H), 7.1–7.2 (m, 5 H), 7.0 (br. s, 1 H), 6.9 (br. s, 1 H), 4.9 (dd, J = 12.36, 2.75 Hz, 1 H), 4.0 (dd, J = 12.82, 3.66 Hz, 1 H), 3.6–3.7 (m, 1 H), 2.8 (br. s, 3 H), 2.7 (br. s., 3 H). 13C{1H} NMR (101 MHz, CD2Cl2): δ 162.5 (dd, J = 251.12, 7.67 Hz, C-F), 135.8, 133.6, 133.5, 133.4, 129.3, 129.1, 127.7, 113.5, 112.7, 107.0, 61.8, 43.0, 38.4, 34.7. 19F NMR (56 MHz, CD2Cl2): δ −111.21 (br. s, 2F). FT-IR (ATR, cm−1) 2306[RM1], 1624 (C=O), 1457 (C=C). M.p. = 385–387 K.
(II) afforded 2.24 g (64%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/diethyl ether. 1H NMR (400 MHz, DMSO-d6) δ 10.26 (br. s, 1H, NH), 9.18 (br. s, 1 H, NH), 7.02–7.20 (m, 7H, Ar-H), 7.50 (dd, 1H, J = 11.2, 4.2 Hz, Ar-H), 4.75 (m, 1H, NHCHCH2), 3.65 (dd, 1 H, J = 12.8, 4.8 Hz, NHCHCH2), 3.18 (m, 1 H, NHCHCH2), 2.95 (m, 2 H, NHCH2CH3), 1.28 (t, 3 H, J = 7.0 Hz, NHCH2CH3). 19F{1H} NMR (400 MHz, DMSO-d6) δ −113.68 (s, 2F); IR (ATR, cm−1): 2944 (C—H), 2670 (C—H), 1475 (C=C), 1202 (C—F). M.p. = 478 K.
(III) afforded 1.93 g (67%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from CHCl3/diethyl ether. 1H NMR (400 MHz, DMSO-d6) δ 10.3 (d, J = 9.16 Hz, 1 H), 8.9 (dd, J = 11.91, 5.04 Hz, 1 H), 7.4–7.5 (m, 1 H), 7.1–7.3 (m, 4 H), 7.0 (dd, J = 7.56, 2.06 Hz, 2 H), 6.9 (s, 1 H), 4.7 (dd, J = 11.68, 4.35 Hz, 1 H), 3.7 (dd, J = 12.82, 4.12 Hz, 1 H), 3.3–3.4 (m, 1 H), 1.4 (s, 9 H). 13C{1H} NMR (101 MHz, (CD3)2SO) δ 135.4, 132.2, 132.1, 132.0, 128.7, 128.2, 126.9, 112.5, 112.3, 111.8, 111.6, 111.4, 58.8, 49.4, 38.1, 25.3. 19F NMR (56 MHz, (CD3)2SO) δ −109.94 (br. s, 1F), −116.79 (br. s, 1F). FT-IR (ATR, cm−1) 2612, 1625, 1565, 1467; M.p. = 535–538 K.
(IV) afforded 2.22 g (77%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/diethyl ether. 1H NMR (400 MHz, CD2Cl2) δ 7.4 (tt, J = 8.47, 6.41 Hz, 1 H), 7.1–7.2 (m, 5 H), 7.0 (br. s., 1 H), 6.8 (br. s., 1 H), 4.9 (dd, J = 12.14, 3.89 Hz, 1 H), 3.9 (dd, J = 13.28, 4.58 Hz, 2 H), 3.6 (t, J = 12.59 Hz, 2 H), 2.9 (br. s., 1 H), 2.8 (br. s., 1 H), 2.2 (br. s., 5 H), 1.9 (br. s., 2 H). 13C{1H} NMR (101 MHz, CD2Cl2) δ 161.6 (dd, J = 250.16, 7.67 Hz) C—F, 136.0, 133.3, 133.2, 133.1, 129.2, 129.1, 127.6, 113.4, 112.5, 109.0, 108.8, 108.7, 59.9, 50.6, 35.9, 23.4, 23.2. 19F NMR (56 MHz, CD2Cl2) δ −108.10 (br. s, 1F), −114.18 (br. s, 1F). FT-IR (ATR, cm−1) 2352, 1623, 1460. M.p. = 486–488 K.
(V) afforded 1.55 g (52%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from CHCl3/diethyl ether. 1H NMR (400 MHz, CD2Cl2) δ 7.11–7.28 (m, 5 H), 4.90 (d, J = 12.36 Hz, 1 H), 4.23 (dd, J = 12.82, 3.66 Hz, 1 H), 3.80 (d, J = 11.45 Hz, 1 H), 3.44–3.55 (m, 2 H), 2.57–2.70 (m, 1 H), 2.48 (d, J = 9.62 Hz, 1 H), 2.24–2.38 (m, 1 H), 1.91 (t, J = 14.88 Hz, 2 H), 1.80 (d, J = 13.74 Hz, 1 H), 1.22–1.37 (m, 1 H). 13C{1H} NMR (101 MHz, CD2Cl2) δ 120.9, 115.0, 114.6, 113.5, 91.0, 48.2, 34.5, 19.2, 9.0, 8.9, 8.1. 19F NMR (56 MHz, CD2Cl2) δ −134.86, −139.28, −152.81 (t, J = 22.4 Hz), −162.69. FT-IR (ATR, cm−1) 2309, 1503, 1459. M.p. = 502–504 K.
6. Refinement
Crystal data, data collection and structure . Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) (1.5 for methyl groups). All structures were solved by For (II) the terminal carbon of the ethyl group (C15, C15A), is disordered over two positions [0.707 (5):0.293 (5) occupancy]. All non H-atoms were refined anisotropically. The H atoms were placed in calculated positions, except for H1N1 (I), H1A and H1B (II), H1′ and H2 (IV) and H2 (V), which were all found. For (V), a DFIX instruction was applied to N1—H1′ and N2—H2 (fixed at 0.98 Å).
|
Supporting information
https://doi.org/10.1107/S2056989025001288/ee2011sup1.cif
contains datablocks V, I, IV, II, III, global. DOI:Structure factors: contains datablock V. DOI: https://doi.org/10.1107/S2056989025001288/ee2011Vsup2.hkl
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001288/ee2011Isup3.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989025001288/ee2011IVsup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989025001288/ee2011IIsup5.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989025001288/ee2011IIIsup6.hkl
C19H19F5N+·Cl− | F(000) = 808 |
Mr = 391.80 | Dx = 1.518 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3155 (5) Å | Cell parameters from 9843 reflections |
b = 22.2529 (13) Å | θ = 3.0–26.5° |
c = 8.2699 (3) Å | µ = 0.28 mm−1 |
β = 90.165 (5)° | T = 123 K |
V = 1714.32 (15) Å3 | Block, colourless |
Z = 4 | 0.2 × 0.1 × 0.05 mm |
Oxford Diffraction Xcalibur diffractometer | 2117 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
scans in phi and ω | θmax = 25.0°, θmin = 3.1° |
Absorption correction: analytical (SADABS; Krause et al., 2015) | h = −10→11 |
Tmin = 0.967, Tmax = 0.986 | k = −18→26 |
5523 measured reflections | l = −8→9 |
2896 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3121P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2896 reflections | Δρmax = 0.30 e Å−3 |
239 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.24269 (9) | 0.51019 (4) | 0.68922 (9) | 0.0315 (2) | |
F1 | 0.07331 (19) | 0.42667 (8) | 0.0555 (2) | 0.0327 (5) | |
F5 | 0.31205 (19) | 0.36912 (8) | 0.53597 (19) | 0.0307 (5) | |
F4 | 0.1190 (2) | 0.28212 (8) | 0.5801 (2) | 0.0404 (5) | |
F2 | −0.1166 (2) | 0.33964 (10) | 0.1010 (2) | 0.0474 (6) | |
F3 | −0.0977 (2) | 0.26613 (9) | 0.3625 (2) | 0.0492 (6) | |
C14 | 0.1989 (3) | 0.40279 (14) | 0.2969 (3) | 0.0218 (7) | |
C18 | 0.1081 (4) | 0.31807 (14) | 0.4497 (4) | 0.0281 (8) | |
C6 | 0.3167 (3) | 0.44932 (13) | 0.2723 (3) | 0.0215 (7) | |
H6 | 0.395538 | 0.438117 | 0.348882 | 0.026* | |
C5 | 0.1334 (3) | 0.53469 (14) | 0.2445 (4) | 0.0256 (8) | |
H5A | 0.055024 | 0.505280 | 0.260780 | 0.031* | |
H5B | 0.148162 | 0.539641 | 0.126760 | 0.031* | |
C4 | 0.0922 (3) | 0.59416 (15) | 0.3182 (4) | 0.0308 (8) | |
H4A | 0.070518 | 0.588238 | 0.434277 | 0.037* | |
H4B | 0.003969 | 0.609188 | 0.264765 | 0.037* | |
C8 | 0.4205 (3) | 0.38395 (14) | 0.0529 (3) | 0.0246 (8) | |
C1 | 0.3883 (3) | 0.55697 (14) | 0.3002 (4) | 0.0267 (8) | |
H1A | 0.477032 | 0.541589 | 0.351631 | 0.032* | |
H1B | 0.407412 | 0.562601 | 0.183476 | 0.032* | |
C19 | 0.2066 (3) | 0.36364 (14) | 0.4273 (3) | 0.0229 (7) | |
C10 | 0.5654 (4) | 0.29493 (15) | 0.0849 (4) | 0.0320 (8) | |
H10 | 0.641115 | 0.274303 | 0.138504 | 0.038* | |
C16 | −0.0118 (4) | 0.34743 (16) | 0.2098 (4) | 0.0310 (8) | |
C2 | 0.3486 (3) | 0.61639 (15) | 0.3748 (4) | 0.0286 (8) | |
H2A | 0.427250 | 0.645549 | 0.357103 | 0.034* | |
H2B | 0.336184 | 0.611273 | 0.492819 | 0.034* | |
N1 | 0.2689 (3) | 0.51174 (11) | 0.3216 (3) | 0.0208 (6) | |
C7 | 0.3833 (3) | 0.44745 (14) | 0.1024 (3) | 0.0258 (8) | |
H7A | 0.314639 | 0.464662 | 0.023408 | 0.031* | |
H7B | 0.471239 | 0.472407 | 0.101079 | 0.031* | |
C15 | 0.0873 (3) | 0.39271 (14) | 0.1886 (3) | 0.0242 (8) | |
C17 | −0.0007 (4) | 0.30990 (15) | 0.3412 (4) | 0.0323 (9) | |
C12 | 0.3791 (4) | 0.29713 (16) | −0.1148 (4) | 0.0327 (9) | |
H12 | 0.327115 | 0.277949 | −0.199197 | 0.039* | |
C3 | 0.2103 (4) | 0.64091 (15) | 0.3016 (4) | 0.0317 (8) | |
H3A | 0.182086 | 0.678299 | 0.358033 | 0.038* | |
H3B | 0.225342 | 0.650474 | 0.185948 | 0.038* | |
C11 | 0.4883 (4) | 0.26676 (15) | −0.0364 (4) | 0.0315 (9) | |
H11 | 0.510387 | 0.226548 | −0.065800 | 0.038* | |
C9 | 0.5318 (3) | 0.35331 (15) | 0.1277 (4) | 0.0279 (8) | |
H9 | 0.586002 | 0.372763 | 0.209846 | 0.033* | |
C13 | 0.3452 (4) | 0.35548 (15) | −0.0706 (4) | 0.0303 (8) | |
H13 | 0.270025 | 0.376141 | −0.125034 | 0.036* | |
H1 | 0.261 (4) | 0.5105 (14) | 0.425 (4) | 0.038 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0238 (5) | 0.0421 (5) | 0.0286 (4) | 0.0016 (4) | 0.0007 (4) | 0.0024 (4) |
F1 | 0.0234 (11) | 0.0457 (12) | 0.0289 (9) | −0.0008 (10) | −0.0060 (8) | 0.0025 (8) |
F5 | 0.0222 (11) | 0.0387 (12) | 0.0313 (9) | −0.0010 (9) | −0.0049 (8) | 0.0063 (8) |
F4 | 0.0404 (13) | 0.0362 (12) | 0.0446 (11) | −0.0041 (10) | 0.0081 (10) | 0.0109 (9) |
F2 | 0.0290 (12) | 0.0668 (15) | 0.0464 (11) | −0.0172 (11) | −0.0084 (10) | −0.0126 (10) |
F3 | 0.0418 (14) | 0.0461 (13) | 0.0596 (13) | −0.0280 (12) | 0.0088 (11) | −0.0072 (10) |
C14 | 0.0128 (17) | 0.0257 (17) | 0.0271 (16) | 0.0031 (15) | 0.0054 (14) | −0.0046 (13) |
C18 | 0.030 (2) | 0.0277 (19) | 0.0271 (17) | 0.0013 (17) | 0.0061 (16) | 0.0021 (14) |
C6 | 0.0123 (17) | 0.0248 (18) | 0.0273 (16) | 0.0005 (15) | 0.0013 (14) | −0.0005 (13) |
C5 | 0.0143 (18) | 0.034 (2) | 0.0285 (16) | 0.0029 (16) | −0.0038 (14) | −0.0015 (14) |
C4 | 0.0173 (19) | 0.039 (2) | 0.0362 (18) | 0.0073 (17) | −0.0046 (16) | −0.0018 (15) |
C8 | 0.0188 (18) | 0.0282 (18) | 0.0268 (16) | −0.0001 (16) | 0.0079 (15) | 0.0034 (14) |
C1 | 0.0140 (18) | 0.033 (2) | 0.0329 (18) | −0.0044 (16) | 0.0020 (15) | 0.0030 (14) |
C19 | 0.0171 (18) | 0.0295 (19) | 0.0222 (16) | 0.0020 (16) | 0.0003 (14) | −0.0027 (14) |
C10 | 0.027 (2) | 0.037 (2) | 0.0325 (18) | 0.0074 (18) | 0.0072 (16) | 0.0058 (16) |
C16 | 0.0186 (19) | 0.044 (2) | 0.0302 (18) | −0.0056 (18) | 0.0010 (16) | −0.0122 (16) |
C2 | 0.0187 (19) | 0.0299 (19) | 0.0373 (18) | −0.0037 (16) | 0.0022 (15) | 0.0005 (15) |
N1 | 0.0128 (15) | 0.0278 (15) | 0.0220 (14) | −0.0014 (13) | −0.0002 (12) | 0.0023 (12) |
C7 | 0.0196 (19) | 0.0291 (19) | 0.0288 (17) | 0.0010 (16) | 0.0056 (15) | 0.0031 (14) |
C15 | 0.0213 (19) | 0.0306 (19) | 0.0207 (16) | 0.0004 (16) | 0.0025 (14) | −0.0021 (14) |
C17 | 0.025 (2) | 0.0299 (19) | 0.042 (2) | −0.0084 (17) | 0.0106 (17) | −0.0100 (16) |
C12 | 0.025 (2) | 0.043 (2) | 0.0299 (18) | −0.0082 (19) | 0.0031 (16) | −0.0075 (16) |
C3 | 0.030 (2) | 0.0292 (19) | 0.0355 (18) | 0.0026 (17) | 0.0013 (17) | 0.0020 (15) |
C11 | 0.035 (2) | 0.0279 (19) | 0.0321 (19) | 0.0015 (18) | 0.0110 (17) | −0.0003 (15) |
C9 | 0.0194 (19) | 0.035 (2) | 0.0289 (17) | −0.0028 (16) | 0.0026 (15) | −0.0007 (14) |
C13 | 0.0197 (19) | 0.043 (2) | 0.0284 (17) | 0.0030 (17) | 0.0048 (15) | 0.0011 (15) |
F1—C15 | 1.342 (3) | C1—C2 | 1.506 (4) |
F5—C19 | 1.335 (3) | C1—N1 | 1.511 (4) |
F4—C18 | 1.347 (3) | C1—H1A | 0.9900 |
F2—C16 | 1.338 (4) | C1—H1B | 0.9900 |
F3—C17 | 1.340 (4) | C10—C9 | 1.383 (5) |
C14—C15 | 1.388 (4) | C10—C11 | 1.382 (5) |
C14—C19 | 1.388 (4) | C10—H10 | 0.9500 |
C14—C6 | 1.523 (4) | C16—C17 | 1.374 (5) |
C18—C17 | 1.364 (5) | C16—C15 | 1.378 (4) |
C18—C19 | 1.380 (4) | C2—C3 | 1.523 (4) |
C6—N1 | 1.515 (4) | C2—H2A | 0.9900 |
C6—C7 | 1.538 (4) | C2—H2B | 0.9900 |
C6—H6 | 1.0000 | N1—H1 | 0.85 (3) |
C5—N1 | 1.502 (4) | C7—H7A | 0.9900 |
C5—C4 | 1.507 (4) | C7—H7B | 0.9900 |
C5—H5A | 0.9900 | C12—C11 | 1.381 (5) |
C5—H5B | 0.9900 | C12—C13 | 1.386 (5) |
C4—C3 | 1.521 (4) | C12—H12 | 0.9500 |
C4—H4A | 0.9900 | C3—H3A | 0.9900 |
C4—H4B | 0.9900 | C3—H3B | 0.9900 |
C8—C9 | 1.385 (4) | C11—H11 | 0.9500 |
C8—C13 | 1.390 (4) | C9—H9 | 0.9500 |
C8—C7 | 1.512 (4) | C13—H13 | 0.9500 |
C15—C14—C19 | 115.9 (3) | C1—C2—C3 | 111.1 (3) |
C15—C14—C6 | 124.2 (3) | C1—C2—H2A | 109.4 |
C19—C14—C6 | 119.6 (3) | C3—C2—H2A | 109.4 |
F4—C18—C17 | 120.1 (3) | C1—C2—H2B | 109.4 |
F4—C18—C19 | 119.7 (3) | C3—C2—H2B | 109.4 |
C17—C18—C19 | 120.2 (3) | H2A—C2—H2B | 108.0 |
N1—C6—C14 | 112.0 (2) | C5—N1—C1 | 110.0 (2) |
N1—C6—C7 | 113.0 (2) | C5—N1—C6 | 116.4 (2) |
C14—C6—C7 | 113.3 (3) | C1—N1—C6 | 111.2 (2) |
N1—C6—H6 | 105.9 | C5—N1—H1 | 111 (2) |
C14—C6—H6 | 105.9 | C1—N1—H1 | 102 (2) |
C7—C6—H6 | 105.9 | C6—N1—H1 | 105 (2) |
N1—C5—C4 | 110.0 (3) | C8—C7—C6 | 111.5 (2) |
N1—C5—H5A | 109.7 | C8—C7—H7A | 109.3 |
C4—C5—H5A | 109.7 | C6—C7—H7A | 109.3 |
N1—C5—H5B | 109.7 | C8—C7—H7B | 109.3 |
C4—C5—H5B | 109.7 | C6—C7—H7B | 109.3 |
H5A—C5—H5B | 108.2 | H7A—C7—H7B | 108.0 |
C5—C4—C3 | 112.2 (3) | F1—C15—C16 | 116.9 (3) |
C5—C4—H4A | 109.2 | F1—C15—C14 | 120.6 (3) |
C3—C4—H4A | 109.2 | C16—C15—C14 | 122.5 (3) |
C5—C4—H4B | 109.2 | F3—C17—C18 | 120.7 (3) |
C3—C4—H4B | 109.2 | F3—C17—C16 | 119.8 (3) |
H4A—C4—H4B | 107.9 | C18—C17—C16 | 119.5 (3) |
C9—C8—C13 | 118.6 (3) | C11—C12—C13 | 120.2 (3) |
C9—C8—C7 | 120.7 (3) | C11—C12—H12 | 119.9 |
C13—C8—C7 | 120.6 (3) | C13—C12—H12 | 119.9 |
C2—C1—N1 | 110.8 (2) | C4—C3—C2 | 109.3 (3) |
C2—C1—H1A | 109.5 | C4—C3—H3A | 109.8 |
N1—C1—H1A | 109.5 | C2—C3—H3A | 109.8 |
C2—C1—H1B | 109.5 | C4—C3—H3B | 109.8 |
N1—C1—H1B | 109.5 | C2—C3—H3B | 109.8 |
H1A—C1—H1B | 108.1 | H3A—C3—H3B | 108.3 |
F5—C19—C18 | 117.7 (3) | C12—C11—C10 | 119.9 (3) |
F5—C19—C14 | 120.2 (3) | C12—C11—H11 | 120.0 |
C18—C19—C14 | 122.1 (3) | C10—C11—H11 | 120.0 |
C9—C10—C11 | 119.6 (3) | C10—C9—C8 | 121.2 (3) |
C9—C10—H10 | 120.2 | C10—C9—H9 | 119.4 |
C11—C10—H10 | 120.2 | C8—C9—H9 | 119.4 |
F2—C16—C17 | 120.4 (3) | C12—C13—C8 | 120.4 (3) |
F2—C16—C15 | 119.8 (3) | C12—C13—H13 | 119.8 |
C17—C16—C15 | 119.7 (3) | C8—C13—H13 | 119.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.85 (3) | 2.20 (3) | 3.051 (3) | 178 (3) |
C16H18F2N+·Cl− | F(000) = 624 |
Mr = 297.76 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9474 (3) Å | Cell parameters from 8632 reflections |
b = 12.7652 (5) Å | θ = 3.0–26.6° |
c = 15.3998 (7) Å | µ = 0.26 mm−1 |
β = 99.368 (4)° | T = 123 K |
V = 1541.48 (11) Å3 | Block, colourless |
Z = 4 | 0.5 × 0.4 × 0.2 mm |
Oxford Diffraction Xcalibur diffractometer | 2305 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
scans in phi and ω | θmax = 25.0°, θmin = 3.1° |
Absorption correction: analytical (CrysAlisPro; Agilent 2014) | h = −9→9 |
Tmin = 0.884, Tmax = 0.950 | k = −14→15 |
6424 measured reflections | l = −18→16 |
2715 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0281P)2 + 0.7459P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2715 reflections | Δρmax = 0.20 e Å−3 |
186 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C8 | 0.8942 (2) | 0.41635 (15) | 0.29692 (12) | 0.0230 (4) | |
H8A | 0.997147 | 0.441707 | 0.336303 | 0.028* | |
H8B | 0.918077 | 0.345200 | 0.276392 | 0.028* | |
C3 | 0.4368 (2) | 0.45234 (14) | 0.28669 (13) | 0.0235 (4) | |
C7 | 0.5501 (2) | 0.30531 (14) | 0.22760 (13) | 0.0234 (4) | |
C2 | 0.5752 (2) | 0.38564 (13) | 0.28907 (12) | 0.0188 (4) | |
C14 | 0.8167 (2) | 0.45121 (15) | 0.13360 (13) | 0.0286 (5) | |
H14 | 0.825573 | 0.378177 | 0.123370 | 0.034* | |
C6 | 0.4032 (2) | 0.29047 (16) | 0.16854 (13) | 0.0295 (5) | |
H6 | 0.392555 | 0.233545 | 0.128282 | 0.035* | |
C10 | 0.8393 (2) | 0.59657 (15) | 0.23204 (13) | 0.0251 (4) | |
H10 | 0.863656 | 0.624451 | 0.289921 | 0.030* | |
C5 | 0.2715 (2) | 0.36051 (17) | 0.16928 (14) | 0.0346 (5) | |
H5 | 0.168621 | 0.351866 | 0.128876 | 0.042* | |
C12 | 0.7556 (3) | 0.62399 (16) | 0.07667 (14) | 0.0357 (5) | |
H12 | 0.722285 | 0.669788 | 0.028305 | 0.043* | |
C11 | 0.7913 (3) | 0.66314 (15) | 0.16121 (14) | 0.0303 (5) | |
H11 | 0.782997 | 0.736312 | 0.170946 | 0.036* | |
C4 | 0.2871 (2) | 0.44303 (17) | 0.22793 (14) | 0.0318 (5) | |
H4 | 0.197122 | 0.492047 | 0.227789 | 0.038* | |
C13 | 0.7688 (3) | 0.51778 (16) | 0.06310 (14) | 0.0384 (5) | |
H13 | 0.744851 | 0.490217 | 0.005099 | 0.046* | |
F1 | 0.45166 (14) | 0.53325 (8) | 0.34416 (8) | 0.0334 (3) | |
F2 | 0.68097 (14) | 0.23779 (8) | 0.22353 (8) | 0.0329 (3) | |
C1 | 0.7428 (2) | 0.41269 (14) | 0.34703 (11) | 0.0186 (4) | |
H1 | 0.729073 | 0.485786 | 0.368148 | 0.022* | |
C9 | 0.8521 (2) | 0.48917 (14) | 0.21896 (12) | 0.0204 (4) | |
Cl1 | 1.14563 (7) | 0.36912 (4) | 0.51711 (4) | 0.03725 (17) | |
N1 | 0.7819 (2) | 0.34594 (12) | 0.42918 (10) | 0.0248 (4) | |
C15 | 0.6669 (3) | 0.37192 (17) | 0.49322 (14) | 0.0363 (5) | |
H15A | 0.703925 | 0.333884 | 0.548299 | 0.055* | |
H15B | 0.549887 | 0.351557 | 0.468782 | 0.055* | |
H15C | 0.671182 | 0.447444 | 0.504801 | 0.055* | |
C16 | 0.7872 (3) | 0.23087 (15) | 0.41449 (14) | 0.0336 (5) | |
H16A | 0.672229 | 0.205541 | 0.391314 | 0.050* | |
H16B | 0.829292 | 0.195665 | 0.470357 | 0.050* | |
H16C | 0.863511 | 0.215610 | 0.372127 | 0.050* | |
H1N1 | 0.893 (3) | 0.3638 (16) | 0.4538 (15) | 0.039 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C8 | 0.0196 (9) | 0.0288 (10) | 0.0196 (10) | −0.0001 (8) | −0.0003 (8) | −0.0001 (8) |
C3 | 0.0274 (10) | 0.0239 (10) | 0.0210 (10) | −0.0010 (8) | 0.0090 (8) | 0.0012 (8) |
C7 | 0.0241 (10) | 0.0230 (9) | 0.0234 (10) | −0.0028 (8) | 0.0048 (8) | −0.0003 (8) |
C2 | 0.0198 (9) | 0.0210 (9) | 0.0156 (9) | −0.0032 (7) | 0.0033 (7) | 0.0019 (8) |
C14 | 0.0388 (12) | 0.0233 (10) | 0.0241 (11) | −0.0015 (9) | 0.0064 (9) | −0.0025 (9) |
C6 | 0.0299 (11) | 0.0352 (11) | 0.0219 (11) | −0.0117 (9) | −0.0004 (9) | −0.0028 (9) |
C10 | 0.0257 (10) | 0.0296 (10) | 0.0205 (11) | −0.0053 (8) | 0.0049 (8) | −0.0032 (9) |
C5 | 0.0228 (10) | 0.0516 (14) | 0.0274 (12) | −0.0124 (10) | −0.0020 (9) | 0.0082 (11) |
C12 | 0.0502 (13) | 0.0307 (11) | 0.0262 (12) | −0.0007 (10) | 0.0061 (10) | 0.0109 (10) |
C11 | 0.0386 (12) | 0.0222 (10) | 0.0317 (12) | −0.0025 (9) | 0.0105 (9) | −0.0004 (9) |
C4 | 0.0192 (10) | 0.0413 (12) | 0.0353 (13) | 0.0027 (9) | 0.0052 (9) | 0.0120 (10) |
C13 | 0.0638 (15) | 0.0343 (12) | 0.0167 (11) | −0.0026 (11) | 0.0051 (10) | 0.0008 (9) |
F1 | 0.0348 (6) | 0.0300 (6) | 0.0367 (7) | 0.0077 (5) | 0.0094 (5) | −0.0057 (5) |
F2 | 0.0351 (6) | 0.0283 (6) | 0.0339 (7) | 0.0039 (5) | 0.0018 (5) | −0.0116 (5) |
C1 | 0.0219 (9) | 0.0192 (9) | 0.0141 (9) | 0.0008 (7) | 0.0010 (7) | 0.0006 (8) |
C9 | 0.0145 (9) | 0.0260 (10) | 0.0210 (10) | −0.0017 (7) | 0.0042 (7) | 0.0026 (8) |
Cl1 | 0.0431 (3) | 0.0269 (3) | 0.0332 (3) | 0.0104 (2) | −0.0191 (2) | −0.0082 (2) |
N1 | 0.0298 (9) | 0.0277 (9) | 0.0159 (8) | −0.0003 (7) | 0.0008 (7) | 0.0024 (7) |
C15 | 0.0497 (13) | 0.0419 (12) | 0.0202 (11) | 0.0030 (10) | 0.0141 (10) | 0.0049 (10) |
C16 | 0.0461 (13) | 0.0251 (10) | 0.0282 (12) | 0.0029 (9) | 0.0019 (10) | 0.0076 (9) |
C8—C9 | 1.512 (3) | C5—C4 | 1.380 (3) |
C8—C1 | 1.532 (3) | C5—H5 | 0.9500 |
C8—H8A | 0.9900 | C12—C13 | 1.378 (3) |
C8—H8B | 0.9900 | C12—C11 | 1.380 (3) |
C3—F1 | 1.353 (2) | C12—H12 | 0.9500 |
C3—C4 | 1.378 (3) | C11—H11 | 0.9500 |
C3—C2 | 1.386 (3) | C4—H4 | 0.9500 |
C7—F2 | 1.360 (2) | C13—H13 | 0.9500 |
C7—C6 | 1.371 (3) | C1—N1 | 1.515 (2) |
C7—C2 | 1.388 (3) | C1—H1 | 1.0000 |
C2—C1 | 1.518 (2) | N1—C15 | 1.487 (3) |
C14—C13 | 1.382 (3) | N1—C16 | 1.488 (2) |
C14—C9 | 1.386 (3) | N1—H1N1 | 0.93 (2) |
C14—H14 | 0.9500 | C15—H15A | 0.9800 |
C6—C5 | 1.378 (3) | C15—H15B | 0.9800 |
C6—H6 | 0.9500 | C15—H15C | 0.9800 |
C10—C11 | 1.386 (3) | C16—H16A | 0.9800 |
C10—C9 | 1.392 (3) | C16—H16B | 0.9800 |
C10—H10 | 0.9500 | C16—H16C | 0.9800 |
C9—C8—C1 | 109.13 (14) | C3—C4—C5 | 118.14 (19) |
C9—C8—H8A | 109.9 | C3—C4—H4 | 120.9 |
C1—C8—H8A | 109.9 | C5—C4—H4 | 120.9 |
C9—C8—H8B | 109.9 | C12—C13—C14 | 120.2 (2) |
C1—C8—H8B | 109.9 | C12—C13—H13 | 119.9 |
H8A—C8—H8B | 108.3 | C14—C13—H13 | 119.9 |
F1—C3—C4 | 118.01 (17) | N1—C1—C2 | 113.84 (14) |
F1—C3—C2 | 117.86 (16) | N1—C1—C8 | 111.51 (14) |
C4—C3—C2 | 124.11 (18) | C2—C1—C8 | 113.39 (15) |
F2—C7—C6 | 117.17 (17) | N1—C1—H1 | 105.8 |
F2—C7—C2 | 118.28 (16) | C2—C1—H1 | 105.8 |
C6—C7—C2 | 124.53 (18) | C8—C1—H1 | 105.8 |
C3—C2—C7 | 114.24 (16) | C14—C9—C10 | 118.25 (17) |
C3—C2—C1 | 119.49 (16) | C14—C9—C8 | 121.50 (17) |
C7—C2—C1 | 125.73 (16) | C10—C9—C8 | 120.17 (17) |
C13—C14—C9 | 121.15 (18) | C15—N1—C16 | 110.90 (16) |
C13—C14—H14 | 119.4 | C15—N1—C1 | 111.34 (14) |
C9—C14—H14 | 119.4 | C16—N1—C1 | 115.81 (15) |
C7—C6—C5 | 118.07 (19) | C15—N1—H1N1 | 108.8 (14) |
C7—C6—H6 | 121.0 | C16—N1—H1N1 | 104.7 (13) |
C5—C6—H6 | 121.0 | C1—N1—H1N1 | 104.7 (14) |
C11—C10—C9 | 120.47 (18) | N1—C15—H15A | 109.5 |
C11—C10—H10 | 119.8 | N1—C15—H15B | 109.5 |
C9—C10—H10 | 119.8 | H15A—C15—H15B | 109.5 |
C6—C5—C4 | 120.89 (18) | N1—C15—H15C | 109.5 |
C6—C5—H5 | 119.6 | H15A—C15—H15C | 109.5 |
C4—C5—H5 | 119.6 | H15B—C15—H15C | 109.5 |
C13—C12—C11 | 119.35 (19) | N1—C16—H16A | 109.5 |
C13—C12—H12 | 120.3 | N1—C16—H16B | 109.5 |
C11—C12—H12 | 120.3 | H16A—C16—H16B | 109.5 |
C12—C11—C10 | 120.54 (18) | N1—C16—H16C | 109.5 |
C12—C11—H11 | 119.7 | H16A—C16—H16C | 109.5 |
C10—C11—H11 | 119.7 | H16B—C16—H16C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···Cl1 | 0.93 (2) | 2.08 (2) | 3.0006 (17) | 167.3 (19) |
C18H20F2N+·Cl− | Z = 4 |
Mr = 323.80 | F(000) = 680 |
Triclinic, P1 | Dx = 1.308 Mg m−3 |
a = 8.1365 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.7421 (10) Å | Cell parameters from 9872 reflections |
c = 16.0451 (8) Å | θ = 3.0–25.4° |
α = 88.059 (5)° | µ = 0.25 mm−1 |
β = 82.349 (4)° | T = 123 K |
γ = 86.140 (5)° | Block, colourless |
V = 1644.42 (17) Å3 | 0.5 × 0.4 × 0.3 mm |
Oxford Diffraction Xcalibur diffractometer | 4892 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
scans in phi and ω | θmax = 25.0°, θmin = 3.0° |
Absorption correction: analytical (SADABS; Krause et al., 2015) | h = −9→8 |
Tmin = 0.888, Tmax = 0.928 | k = −15→15 |
13277 measured reflections | l = −19→19 |
5775 independent reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.206 | w = 1/[σ2(Fo2) + (0.0143P)2 + 10.4102P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max < 0.001 |
5775 reflections | Δρmax = 0.59 e Å−3 |
403 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 1.11424 (18) | 0.86611 (11) | 0.52129 (8) | 0.0292 (3) | |
Cl1 | 0.6097 (2) | 0.63420 (11) | 1.00579 (9) | 0.0366 (4) | |
F1 | 0.3393 (4) | 0.7014 (3) | 0.6933 (2) | 0.0340 (8) | |
F2 | 0.0752 (4) | 0.4329 (3) | 0.8568 (2) | 0.0335 (8) | |
F3 | 0.9182 (4) | 0.7720 (3) | 0.2168 (2) | 0.0339 (8) | |
F4 | 0.5878 (4) | 1.0740 (3) | 0.3087 (2) | 0.0396 (9) | |
N2 | 0.8306 (6) | 0.8731 (4) | 0.4140 (3) | 0.0242 (10) | |
N1 | 0.3190 (6) | 0.6384 (4) | 0.9063 (3) | 0.0244 (10) | |
C27 | 0.7599 (6) | 0.9234 (4) | 0.2683 (3) | 0.0201 (11) | |
C9 | 0.2164 (6) | 0.5657 (4) | 0.7790 (3) | 0.0205 (11) | |
C28 | 0.6271 (7) | 0.9934 (4) | 0.2546 (3) | 0.0251 (12) | |
C1 | 0.3471 (6) | 0.5569 (4) | 0.8386 (3) | 0.0212 (11) | |
H1 | 0.335348 | 0.487106 | 0.868486 | 0.025* | |
C21 | 1.0944 (6) | 1.0169 (4) | 0.2351 (3) | 0.0227 (11) | |
C19 | 0.8667 (6) | 0.9430 (4) | 0.3359 (3) | 0.0218 (11) | |
H19 | 0.836336 | 1.016817 | 0.354039 | 0.026* | |
C3 | 0.5585 (6) | 0.4696 (4) | 0.7320 (3) | 0.0244 (12) | |
C20 | 1.0529 (7) | 0.9374 (4) | 0.3056 (3) | 0.0252 (12) | |
H20A | 1.113949 | 0.951212 | 0.353117 | 0.030* | |
H20B | 1.088997 | 0.865768 | 0.285632 | 0.030* | |
C14 | 0.0907 (7) | 0.4965 (4) | 0.7874 (3) | 0.0252 (12) | |
C32 | 0.7907 (7) | 0.8440 (4) | 0.2094 (3) | 0.0258 (12) | |
C11 | 0.1145 (8) | 0.6272 (5) | 0.6475 (4) | 0.0325 (14) | |
H11 | 0.122464 | 0.673672 | 0.599757 | 0.039* | |
C22 | 1.1007 (7) | 1.1225 (5) | 0.2533 (4) | 0.0309 (13) | |
H22 | 1.075832 | 1.144702 | 0.309803 | 0.037* | |
C2 | 0.5263 (7) | 0.5557 (4) | 0.7956 (3) | 0.0242 (12) | |
H2A | 0.546795 | 0.624627 | 0.767039 | 0.029* | |
H2B | 0.603436 | 0.544026 | 0.838268 | 0.029* | |
C25 | 1.1662 (7) | 1.0602 (5) | 0.0882 (4) | 0.0327 (14) | |
H25 | 1.187292 | 1.039035 | 0.031390 | 0.039* | |
C10 | 0.2208 (7) | 0.6305 (4) | 0.7066 (3) | 0.0239 (12) | |
C8 | 0.5647 (7) | 0.3644 (5) | 0.7585 (4) | 0.0321 (13) | |
H8 | 0.546327 | 0.346785 | 0.816886 | 0.038* | |
C36 | 0.6658 (7) | 0.8977 (5) | 0.4644 (4) | 0.0348 (14) | |
H36A | 0.575698 | 0.900454 | 0.428380 | 0.042* | |
H36B | 0.663620 | 0.965988 | 0.492346 | 0.042* | |
C15 | 0.1649 (8) | 0.6286 (5) | 0.9678 (4) | 0.0351 (14) | |
H15A | 0.174375 | 0.564876 | 1.004224 | 0.042* | |
H15B | 0.065945 | 0.625638 | 0.938275 | 0.042* | |
C33 | 0.8366 (8) | 0.7563 (5) | 0.4037 (4) | 0.0346 (14) | |
H33A | 0.952397 | 0.726924 | 0.389866 | 0.042* | |
H33B | 0.771135 | 0.738088 | 0.359065 | 0.042* | |
C26 | 1.1262 (7) | 0.9866 (4) | 0.1518 (3) | 0.0256 (12) | |
H26 | 1.120489 | 0.914988 | 0.138423 | 0.031* | |
C31 | 0.6991 (8) | 0.8323 (5) | 0.1447 (4) | 0.0346 (14) | |
H31 | 0.722886 | 0.774732 | 0.107981 | 0.042* | |
C13 | −0.0197 (7) | 0.4882 (5) | 0.7300 (4) | 0.0338 (14) | |
H13 | −0.103175 | 0.438879 | 0.738846 | 0.041* | |
C5 | 0.6205 (8) | 0.4144 (6) | 0.5880 (4) | 0.0428 (16) | |
H5 | 0.638539 | 0.431937 | 0.529606 | 0.051* | |
C29 | 0.5330 (8) | 0.9887 (5) | 0.1896 (4) | 0.0359 (15) | |
H29 | 0.445057 | 1.039810 | 0.182690 | 0.043* | |
C17 | 0.2484 (8) | 0.8097 (5) | 0.9603 (4) | 0.0394 (15) | |
H17A | 0.172625 | 0.871072 | 0.948940 | 0.047* | |
H17B | 0.342017 | 0.834403 | 0.986302 | 0.047* | |
C30 | 0.5719 (8) | 0.9062 (6) | 0.1348 (4) | 0.0392 (16) | |
H30 | 0.509337 | 0.900738 | 0.089399 | 0.047* | |
C7 | 0.5979 (7) | 0.2849 (5) | 0.7000 (4) | 0.0380 (15) | |
H7 | 0.599135 | 0.213208 | 0.718453 | 0.046* | |
C24 | 1.1755 (8) | 1.1644 (5) | 0.1071 (4) | 0.0386 (15) | |
H24 | 1.204076 | 1.214593 | 0.063287 | 0.046* | |
C23 | 1.1434 (8) | 1.1956 (5) | 0.1892 (4) | 0.0361 (14) | |
H23 | 1.150355 | 1.267240 | 0.202027 | 0.043* | |
C18 | 0.3116 (8) | 0.7526 (4) | 0.8797 (4) | 0.0329 (14) | |
H18A | 0.234606 | 0.766623 | 0.837207 | 0.040* | |
H18B | 0.423028 | 0.774539 | 0.855950 | 0.040* | |
C12 | −0.0056 (8) | 0.5533 (5) | 0.6597 (4) | 0.0390 (15) | |
H12 | −0.078813 | 0.547876 | 0.618826 | 0.047* | |
C4 | 0.5858 (7) | 0.4928 (5) | 0.6459 (4) | 0.0312 (13) | |
H4 | 0.580421 | 0.564153 | 0.626864 | 0.037* | |
C6 | 0.6290 (8) | 0.3101 (6) | 0.6148 (5) | 0.0487 (19) | |
H6 | 0.656059 | 0.256025 | 0.575020 | 0.058* | |
C35 | 0.6475 (9) | 0.8081 (6) | 0.5286 (4) | 0.0473 (18) | |
H35A | 0.530490 | 0.788934 | 0.539572 | 0.057* | |
H35B | 0.683247 | 0.827842 | 0.582205 | 0.057* | |
C16 | 0.1547 (9) | 0.7276 (5) | 1.0185 (4) | 0.0420 (16) | |
H16A | 0.207772 | 0.713990 | 1.070222 | 0.050* | |
H16B | 0.037391 | 0.752837 | 1.034725 | 0.050* | |
C34 | 0.7597 (9) | 0.7161 (6) | 0.4895 (4) | 0.0449 (17) | |
H34A | 0.847256 | 0.694674 | 0.525112 | 0.054* | |
H34B | 0.693919 | 0.654893 | 0.483513 | 0.054* | |
H1' | 0.397 (7) | 0.632 (5) | 0.948 (3) | 0.054* | |
H2 | 0.911 (6) | 0.875 (5) | 0.454 (3) | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0390 (8) | 0.0279 (7) | 0.0220 (7) | 0.0035 (6) | −0.0099 (6) | −0.0062 (5) |
Cl1 | 0.0553 (10) | 0.0307 (8) | 0.0290 (8) | −0.0163 (7) | −0.0203 (7) | 0.0075 (6) |
F1 | 0.041 (2) | 0.0338 (19) | 0.0285 (18) | −0.0134 (15) | −0.0076 (15) | 0.0094 (14) |
F2 | 0.0333 (19) | 0.0309 (18) | 0.0360 (19) | −0.0100 (14) | −0.0017 (15) | 0.0077 (15) |
F3 | 0.038 (2) | 0.0304 (18) | 0.0321 (19) | 0.0034 (15) | −0.0013 (15) | −0.0111 (14) |
F4 | 0.034 (2) | 0.0281 (18) | 0.057 (2) | 0.0064 (15) | −0.0083 (17) | −0.0129 (16) |
N2 | 0.028 (3) | 0.027 (2) | 0.016 (2) | −0.003 (2) | −0.0015 (19) | 0.0012 (19) |
N1 | 0.031 (3) | 0.027 (2) | 0.016 (2) | −0.003 (2) | −0.0052 (19) | −0.0038 (19) |
C27 | 0.023 (3) | 0.021 (3) | 0.017 (3) | −0.004 (2) | −0.002 (2) | 0.000 (2) |
C9 | 0.022 (3) | 0.021 (3) | 0.018 (3) | 0.005 (2) | −0.002 (2) | −0.005 (2) |
C28 | 0.023 (3) | 0.025 (3) | 0.027 (3) | −0.006 (2) | −0.002 (2) | −0.001 (2) |
C1 | 0.026 (3) | 0.020 (3) | 0.018 (3) | −0.001 (2) | −0.006 (2) | −0.002 (2) |
C21 | 0.015 (3) | 0.029 (3) | 0.024 (3) | −0.001 (2) | −0.001 (2) | −0.001 (2) |
C19 | 0.026 (3) | 0.021 (3) | 0.018 (3) | −0.005 (2) | −0.003 (2) | 0.002 (2) |
C3 | 0.020 (3) | 0.031 (3) | 0.023 (3) | −0.003 (2) | −0.001 (2) | −0.005 (2) |
C20 | 0.026 (3) | 0.029 (3) | 0.022 (3) | −0.004 (2) | −0.006 (2) | −0.001 (2) |
C14 | 0.023 (3) | 0.023 (3) | 0.030 (3) | 0.000 (2) | −0.003 (2) | −0.002 (2) |
C32 | 0.027 (3) | 0.027 (3) | 0.022 (3) | −0.006 (2) | 0.002 (2) | −0.001 (2) |
C11 | 0.043 (4) | 0.033 (3) | 0.024 (3) | 0.005 (3) | −0.015 (3) | 0.001 (2) |
C22 | 0.031 (3) | 0.034 (3) | 0.028 (3) | −0.006 (3) | −0.002 (3) | −0.006 (3) |
C2 | 0.023 (3) | 0.028 (3) | 0.022 (3) | −0.006 (2) | −0.005 (2) | −0.003 (2) |
C25 | 0.032 (3) | 0.044 (4) | 0.021 (3) | −0.005 (3) | 0.002 (2) | 0.001 (3) |
C10 | 0.024 (3) | 0.023 (3) | 0.025 (3) | −0.004 (2) | −0.002 (2) | −0.001 (2) |
C8 | 0.020 (3) | 0.039 (3) | 0.037 (3) | 0.002 (2) | −0.003 (2) | −0.002 (3) |
C36 | 0.027 (3) | 0.053 (4) | 0.024 (3) | −0.008 (3) | 0.004 (2) | −0.004 (3) |
C15 | 0.038 (4) | 0.035 (3) | 0.029 (3) | 0.001 (3) | 0.008 (3) | −0.004 (3) |
C33 | 0.045 (4) | 0.032 (3) | 0.028 (3) | −0.007 (3) | −0.007 (3) | 0.005 (3) |
C26 | 0.023 (3) | 0.031 (3) | 0.024 (3) | −0.005 (2) | −0.003 (2) | −0.001 (2) |
C31 | 0.036 (3) | 0.044 (4) | 0.025 (3) | −0.020 (3) | 0.003 (3) | −0.011 (3) |
C13 | 0.025 (3) | 0.029 (3) | 0.049 (4) | −0.007 (2) | −0.010 (3) | 0.000 (3) |
C5 | 0.038 (4) | 0.063 (5) | 0.026 (3) | 0.002 (3) | 0.004 (3) | −0.015 (3) |
C29 | 0.030 (3) | 0.038 (4) | 0.042 (4) | −0.008 (3) | −0.016 (3) | 0.011 (3) |
C17 | 0.044 (4) | 0.032 (3) | 0.043 (4) | 0.005 (3) | −0.007 (3) | −0.016 (3) |
C30 | 0.035 (4) | 0.062 (4) | 0.026 (3) | −0.022 (3) | −0.013 (3) | 0.003 (3) |
C7 | 0.027 (3) | 0.035 (3) | 0.050 (4) | 0.000 (3) | 0.002 (3) | −0.011 (3) |
C24 | 0.037 (4) | 0.047 (4) | 0.031 (3) | −0.007 (3) | −0.002 (3) | 0.015 (3) |
C23 | 0.034 (3) | 0.026 (3) | 0.048 (4) | −0.003 (3) | −0.002 (3) | −0.001 (3) |
C18 | 0.046 (4) | 0.022 (3) | 0.031 (3) | −0.001 (3) | −0.005 (3) | −0.005 (2) |
C12 | 0.033 (3) | 0.041 (4) | 0.049 (4) | 0.000 (3) | −0.024 (3) | −0.005 (3) |
C4 | 0.029 (3) | 0.038 (3) | 0.026 (3) | −0.004 (3) | 0.000 (2) | −0.003 (3) |
C6 | 0.031 (4) | 0.057 (5) | 0.056 (5) | 0.000 (3) | 0.008 (3) | −0.034 (4) |
C35 | 0.045 (4) | 0.075 (5) | 0.023 (3) | −0.020 (4) | 0.001 (3) | 0.003 (3) |
C16 | 0.046 (4) | 0.047 (4) | 0.031 (3) | 0.004 (3) | 0.001 (3) | −0.012 (3) |
C34 | 0.047 (4) | 0.056 (4) | 0.034 (4) | −0.015 (3) | −0.009 (3) | 0.018 (3) |
F1—C10 | 1.357 (6) | C3—C4 | 1.393 (8) |
F2—C14 | 1.352 (6) | C3—C2 | 1.510 (7) |
F3—C32 | 1.353 (6) | C14—C13 | 1.381 (8) |
F4—C28 | 1.361 (6) | C32—C31 | 1.373 (8) |
N2—C36 | 1.491 (7) | C11—C10 | 1.369 (8) |
N2—C33 | 1.500 (7) | C11—C12 | 1.393 (9) |
N2—C19 | 1.520 (6) | C22—C23 | 1.389 (8) |
N1—C15 | 1.498 (7) | C25—C24 | 1.381 (9) |
N1—C18 | 1.502 (7) | C25—C26 | 1.383 (8) |
N1—C1 | 1.513 (6) | C8—C7 | 1.394 (8) |
C27—C28 | 1.390 (7) | C36—C35 | 1.513 (9) |
C27—C32 | 1.396 (7) | C15—C16 | 1.515 (8) |
C27—C19 | 1.513 (7) | C33—C34 | 1.521 (8) |
C9—C14 | 1.385 (7) | C31—C30 | 1.373 (9) |
C9—C10 | 1.400 (7) | C13—C12 | 1.374 (9) |
C9—C1 | 1.518 (7) | C5—C4 | 1.378 (9) |
C28—C29 | 1.378 (8) | C5—C6 | 1.382 (10) |
C1—C2 | 1.528 (7) | C29—C30 | 1.386 (9) |
C21—C26 | 1.391 (7) | C17—C18 | 1.516 (8) |
C21—C22 | 1.392 (8) | C17—C16 | 1.550 (9) |
C21—C20 | 1.513 (7) | C7—C6 | 1.388 (10) |
C19—C20 | 1.526 (7) | C24—C23 | 1.375 (9) |
C3—C8 | 1.392 (8) | C35—C34 | 1.534 (10) |
C36—N2—C33 | 103.9 (4) | F3—C32—C31 | 117.2 (5) |
C36—N2—C19 | 114.4 (4) | F3—C32—C27 | 118.1 (5) |
C33—N2—C19 | 118.5 (4) | C31—C32—C27 | 124.8 (5) |
C15—N1—C18 | 103.7 (4) | C10—C11—C12 | 117.7 (5) |
C15—N1—C1 | 115.1 (4) | C23—C22—C21 | 120.2 (5) |
C18—N1—C1 | 118.3 (4) | C3—C2—C1 | 110.2 (4) |
C28—C27—C32 | 113.3 (5) | C24—C25—C26 | 120.2 (6) |
C28—C27—C19 | 120.6 (5) | F1—C10—C11 | 117.3 (5) |
C32—C27—C19 | 125.7 (5) | F1—C10—C9 | 118.0 (5) |
C14—C9—C10 | 113.8 (5) | C11—C10—C9 | 124.7 (5) |
C14—C9—C1 | 120.1 (5) | C3—C8—C7 | 120.4 (6) |
C10—C9—C1 | 125.5 (5) | N2—C36—C35 | 104.2 (5) |
F4—C28—C29 | 117.1 (5) | N1—C15—C16 | 103.7 (5) |
F4—C28—C27 | 117.7 (5) | N2—C33—C34 | 103.2 (5) |
C29—C28—C27 | 125.2 (5) | C25—C26—C21 | 120.3 (5) |
N1—C1—C9 | 113.3 (4) | C30—C31—C32 | 118.0 (6) |
N1—C1—C2 | 110.0 (4) | C12—C13—C14 | 118.2 (5) |
C9—C1—C2 | 114.7 (4) | C4—C5—C6 | 120.0 (6) |
C26—C21—C22 | 119.0 (5) | C28—C29—C30 | 117.2 (6) |
C26—C21—C20 | 121.1 (5) | C18—C17—C16 | 105.3 (5) |
C22—C21—C20 | 119.9 (5) | C31—C30—C29 | 121.4 (5) |
C27—C19—N2 | 113.2 (4) | C6—C7—C8 | 120.1 (6) |
C27—C19—C20 | 114.3 (4) | C23—C24—C25 | 120.0 (6) |
N2—C19—C20 | 110.0 (4) | C24—C23—C22 | 120.2 (6) |
C8—C3—C4 | 118.4 (5) | N1—C18—C17 | 104.2 (5) |
C8—C3—C2 | 120.3 (5) | C13—C12—C11 | 121.0 (5) |
C4—C3—C2 | 121.3 (5) | C5—C4—C3 | 121.4 (6) |
C21—C20—C19 | 111.0 (4) | C5—C6—C7 | 119.7 (6) |
F2—C14—C13 | 117.9 (5) | C36—C35—C34 | 105.5 (5) |
F2—C14—C9 | 117.6 (5) | C15—C16—C17 | 105.7 (5) |
C13—C14—C9 | 124.6 (5) | C33—C34—C35 | 105.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1′···Cl1 | 0.99 (1) | 2.07 (2) | 3.021 (5) | 163 (6) |
N2—H2···Cl2 | 0.98 (1) | 2.08 (2) | 3.052 (5) | 169 (6) |
2C16H18F2N+·2Cl−·CH2Cl2 | F(000) = 1416 |
Mr = 680.45 | Dx = 1.313 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 22.9963 (14) Å | Cell parameters from 8967 reflections |
b = 7.8729 (5) Å | θ = 3.0–26.4° |
c = 19.033 (1) Å | µ = 0.39 mm−1 |
β = 92.130 (5)° | T = 123 K |
V = 3443.5 (4) Å3 | Block, colourless |
Z = 4 | 0.3 × 0.2 × 0.1 mm |
Oxford Diffraction Xcalibur diffractometer | 2813 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
scans in phi and ω | θmax = 25.0°, θmin = 3.3° |
Absorption correction: analytical (SADABS; Krause et al., 2015) | h = −27→26 |
Tmin = 0.911, Tmax = 0.962 | k = −9→9 |
12738 measured reflections | l = −21→22 |
3034 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0343P)2 + 2.8401P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3034 reflections | Δρmax = 0.25 e Å−3 |
224 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.28641 (2) | 0.60990 (5) | 0.16223 (2) | 0.02972 (12) | |
Cl1S | 0.31326 (2) | 0.28821 (7) | 0.00859 (3) | 0.05486 (16) | |
F1 | 0.05520 (5) | 1.14129 (13) | 0.11535 (6) | 0.0466 (3) | |
F2 | 0.17656 (5) | 0.69870 (15) | 0.04908 (5) | 0.0570 (3) | |
N1 | 0.19574 (5) | 0.90437 (17) | 0.17878 (7) | 0.0248 (3) | |
C1 | 0.13169 (6) | 0.88167 (19) | 0.16264 (7) | 0.0251 (3) | |
H1 | 0.110554 | 0.967062 | 0.191048 | 0.030* | |
C9 | 0.11629 (6) | 0.91562 (18) | 0.08602 (7) | 0.0242 (3) | |
C3 | 0.05036 (7) | 0.6689 (2) | 0.17558 (8) | 0.0308 (3) | |
C13 | 0.12414 (8) | 0.8489 (2) | −0.03848 (9) | 0.0391 (4) | |
H13 | 0.140233 | 0.779839 | −0.073793 | 0.047* | |
C12 | 0.08611 (7) | 0.9784 (2) | −0.05562 (9) | 0.0392 (4) | |
H12 | 0.075593 | 0.999429 | −0.103567 | 0.047* | |
C11 | 0.06315 (7) | 1.0777 (2) | −0.00420 (9) | 0.0369 (4) | |
H11 | 0.037235 | 1.168104 | −0.016069 | 0.044* | |
C14 | 0.13806 (7) | 0.8227 (2) | 0.03156 (8) | 0.0326 (4) | |
C10 | 0.07854 (6) | 1.04341 (19) | 0.06485 (8) | 0.0288 (3) | |
C4 | 0.00903 (8) | 0.7455 (2) | 0.21652 (9) | 0.0399 (4) | |
H4 | 0.021169 | 0.820557 | 0.253303 | 0.048* | |
C15 | 0.2196 (4) | 1.0751 (12) | 0.1558 (4) | 0.0316 (19) | 0.707 (5) |
H15A | 0.195508 | 1.167814 | 0.174557 | 0.038* | 0.707 (5) |
H15B | 0.217609 | 1.082569 | 0.103855 | 0.038* | 0.707 (5) |
C8 | 0.03174 (8) | 0.5597 (2) | 0.12252 (9) | 0.0388 (4) | |
H8 | 0.059436 | 0.506416 | 0.093985 | 0.047* | |
C2 | 0.11439 (7) | 0.7045 (2) | 0.18834 (9) | 0.0326 (4) | |
H2A | 0.137251 | 0.617767 | 0.163763 | 0.039* | |
H2B | 0.124134 | 0.695173 | 0.239296 | 0.039* | |
C7 | −0.02704 (9) | 0.5276 (3) | 0.11066 (10) | 0.0501 (5) | |
H7 | −0.039328 | 0.451887 | 0.074176 | 0.060* | |
C5 | −0.04964 (8) | 0.7136 (3) | 0.20423 (11) | 0.0490 (5) | |
H5 | −0.077544 | 0.767277 | 0.232379 | 0.059* | |
C6 | −0.06771 (8) | 0.6042 (3) | 0.15123 (11) | 0.0524 (5) | |
H6 | −0.107970 | 0.581969 | 0.142816 | 0.063* | |
C16 | 0.28347 (10) | 1.0963 (3) | 0.18310 (13) | 0.0360 (7) | 0.707 (5) |
H16A | 0.285642 | 1.081935 | 0.234280 | 0.054* | 0.707 (5) |
H16B | 0.297386 | 1.209892 | 0.171032 | 0.054* | 0.707 (5) |
H16C | 0.307818 | 1.010445 | 0.161259 | 0.054* | 0.707 (5) |
C1S | 0.250000 | 0.4136 (3) | 0.000000 | 0.0302 (5) | |
H1S1 | 0.252617 | 0.487565 | −0.041826 | 0.036* | 0.5 |
H1S2 | 0.247383 | 0.487565 | 0.041827 | 0.036* | 0.5 |
C16A | 0.1932 (3) | 1.2115 (7) | 0.1843 (3) | 0.0383 (18) | 0.293 (5) |
H16D | 0.155523 | 1.220984 | 0.158750 | 0.057* | 0.293 (5) |
H16E | 0.216492 | 1.313058 | 0.175641 | 0.057* | 0.293 (5) |
H16F | 0.186879 | 1.201409 | 0.234797 | 0.057* | 0.293 (5) |
H1B | 0.2162 (8) | 0.819 (2) | 0.1612 (9) | 0.036 (5)* | |
H1A | 0.2010 (7) | 0.893 (2) | 0.2273 (10) | 0.034 (5)* | |
C15A | 0.2248 (10) | 1.057 (3) | 0.1594 (10) | 0.037 (6) | 0.293 (5) |
H15C | 0.227354 | 1.060956 | 0.107617 | 0.044* | 0.293 (5) |
H15D | 0.264950 | 1.056010 | 0.180153 | 0.044* | 0.293 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0298 (2) | 0.0380 (2) | 0.02123 (18) | 0.00784 (16) | 0.00001 (14) | −0.00054 (15) |
Cl1S | 0.0491 (3) | 0.0558 (3) | 0.0581 (3) | 0.0262 (2) | −0.0191 (2) | −0.0251 (2) |
F1 | 0.0486 (6) | 0.0405 (6) | 0.0507 (6) | 0.0214 (5) | 0.0023 (5) | −0.0013 (5) |
F2 | 0.0669 (7) | 0.0629 (7) | 0.0402 (6) | 0.0416 (6) | −0.0113 (5) | −0.0158 (5) |
N1 | 0.0261 (7) | 0.0268 (7) | 0.0211 (7) | 0.0025 (6) | −0.0028 (5) | 0.0011 (6) |
C1 | 0.0246 (7) | 0.0264 (8) | 0.0239 (7) | 0.0019 (6) | −0.0022 (6) | 0.0004 (6) |
C9 | 0.0217 (7) | 0.0253 (8) | 0.0254 (7) | −0.0011 (6) | −0.0027 (6) | 0.0023 (6) |
C3 | 0.0340 (8) | 0.0268 (8) | 0.0313 (8) | −0.0038 (7) | −0.0044 (7) | 0.0103 (7) |
C13 | 0.0366 (9) | 0.0524 (11) | 0.0280 (8) | −0.0036 (8) | −0.0014 (7) | −0.0061 (8) |
C12 | 0.0325 (9) | 0.0556 (11) | 0.0287 (8) | −0.0121 (8) | −0.0080 (7) | 0.0119 (8) |
C11 | 0.0271 (8) | 0.0381 (9) | 0.0448 (10) | −0.0028 (7) | −0.0082 (7) | 0.0179 (8) |
C14 | 0.0301 (8) | 0.0358 (9) | 0.0314 (8) | 0.0074 (7) | −0.0057 (6) | −0.0028 (7) |
C10 | 0.0242 (7) | 0.0266 (8) | 0.0356 (8) | 0.0002 (6) | 0.0009 (6) | 0.0031 (7) |
C4 | 0.0433 (10) | 0.0393 (10) | 0.0372 (9) | −0.0060 (8) | 0.0029 (8) | 0.0050 (8) |
C15 | 0.023 (2) | 0.030 (3) | 0.041 (3) | −0.011 (3) | −0.0100 (19) | 0.014 (2) |
C8 | 0.0451 (10) | 0.0303 (9) | 0.0405 (10) | −0.0053 (8) | −0.0048 (8) | 0.0039 (7) |
C2 | 0.0331 (9) | 0.0294 (8) | 0.0349 (9) | −0.0014 (7) | −0.0056 (7) | 0.0078 (7) |
C7 | 0.0563 (12) | 0.0426 (11) | 0.0499 (11) | −0.0201 (9) | −0.0178 (9) | 0.0104 (9) |
C5 | 0.0373 (10) | 0.0504 (11) | 0.0599 (12) | 0.0000 (9) | 0.0101 (9) | 0.0196 (10) |
C6 | 0.0349 (10) | 0.0546 (12) | 0.0665 (13) | −0.0143 (9) | −0.0130 (9) | 0.0315 (11) |
C16 | 0.0326 (14) | 0.0355 (14) | 0.0397 (14) | −0.0085 (10) | −0.0007 (10) | 0.0018 (10) |
C1S | 0.0286 (11) | 0.0273 (11) | 0.0340 (12) | 0.000 | −0.0070 (9) | 0.000 |
C16A | 0.040 (3) | 0.031 (3) | 0.043 (3) | −0.010 (3) | −0.010 (3) | −0.002 (3) |
C15A | 0.053 (9) | 0.042 (8) | 0.015 (5) | 0.024 (5) | −0.009 (4) | 0.006 (5) |
Cl1S—C1S | 1.7606 (13) | C3—C2 | 1.510 (2) |
F1—C10 | 1.3580 (18) | C13—C12 | 1.375 (3) |
F2—C14 | 1.3516 (18) | C13—C14 | 1.375 (2) |
N1—C15A | 1.43 (2) | C12—C11 | 1.374 (3) |
N1—C1 | 1.5040 (19) | C11—C10 | 1.375 (2) |
N1—C15 | 1.522 (8) | C4—C5 | 1.384 (3) |
C1—C9 | 1.512 (2) | C15—C16 | 1.550 (8) |
C1—C2 | 1.535 (2) | C8—C7 | 1.385 (3) |
C9—C14 | 1.378 (2) | C7—C6 | 1.374 (3) |
C9—C10 | 1.379 (2) | C5—C6 | 1.379 (3) |
C3—C8 | 1.382 (2) | C16A—C15A | 1.51 (2) |
C3—C4 | 1.389 (2) | ||
C15A—N1—C1 | 120.8 (11) | F2—C14—C9 | 116.80 (14) |
C1—N1—C15 | 114.0 (4) | C13—C14—C9 | 124.89 (15) |
N1—C1—C9 | 111.62 (12) | F1—C10—C11 | 118.07 (14) |
N1—C1—C2 | 107.84 (12) | F1—C10—C9 | 117.92 (14) |
C9—C1—C2 | 114.45 (13) | C11—C10—C9 | 124.01 (15) |
C14—C9—C10 | 114.19 (14) | C5—C4—C3 | 120.64 (17) |
C14—C9—C1 | 123.60 (13) | N1—C15—C16 | 110.2 (7) |
C10—C9—C1 | 122.21 (13) | C3—C8—C7 | 120.44 (18) |
C8—C3—C4 | 118.70 (16) | C3—C2—C1 | 112.35 (13) |
C8—C3—C2 | 120.46 (15) | C6—C7—C8 | 120.56 (18) |
C4—C3—C2 | 120.84 (15) | C6—C5—C4 | 120.15 (19) |
C12—C13—C14 | 117.66 (16) | C7—C6—C5 | 119.51 (18) |
C11—C12—C13 | 120.75 (15) | Cl1S—C1S—Cl1Si | 111.79 (12) |
C12—C11—C10 | 118.49 (15) | N1—C15A—C16A | 111.2 (13) |
F2—C14—C13 | 118.30 (14) |
Symmetry code: (i) −x+1/2, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl1 | 0.89 (2) | 2.30 (2) | 3.1417 (14) | 156.0 (16) |
C18H22F2N+·Cl− | F(000) = 688 |
Mr = 325.81 | Dx = 1.270 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3115 (6) Å | Cell parameters from 8922 reflections |
b = 10.5400 (5) Å | θ = 3.0–26.2° |
c = 14.8039 (7) Å | µ = 0.24 mm−1 |
β = 105.044 (5)° | T = 123 K |
V = 1704.48 (15) Å3 | Block, colourless |
Z = 4 | 0.4 × 0.2 × 0.1 mm |
Oxford Diffraction Xcalibur diffractometer | 2343 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
scans in phi and ω | θmax = 25.0°, θmin = 3.3° |
Absorption correction: analytical (SADABS; Krause et al., 2015) | h = −13→13 |
Tmin = 0.944, Tmax = 0.976 | k = −8→12 |
7223 measured reflections | l = −17→12 |
3008 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5824P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3008 reflections | Δρmax = 0.22 e Å−3 |
210 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.39037 (5) | 1.13981 (5) | 0.05585 (4) | 0.02430 (17) | |
F1 | 0.09857 (12) | 0.74034 (14) | 0.10106 (9) | 0.0339 (4) | |
F2 | 0.39994 (13) | 0.60187 (13) | −0.04167 (9) | 0.0323 (4) | |
N1 | 0.41820 (17) | 0.84575 (19) | 0.06664 (12) | 0.0173 (4) | |
C1 | 0.5951 (2) | 0.8889 (2) | 0.19595 (15) | 0.0253 (6) | |
H1C | 0.648652 | 0.862937 | 0.156776 | 0.038* | |
H1D | 0.636607 | 0.873592 | 0.261856 | 0.038* | |
H1E | 0.576024 | 0.979356 | 0.186458 | 0.038* | |
C2 | 0.3904 (2) | 0.8518 (2) | 0.22761 (15) | 0.0266 (6) | |
H2A | 0.367671 | 0.941068 | 0.215264 | 0.040* | |
H2B | 0.431267 | 0.840815 | 0.294127 | 0.040* | |
H2C | 0.316581 | 0.799009 | 0.211062 | 0.040* | |
C3 | 0.5069 (2) | 0.6716 (2) | 0.18050 (15) | 0.0264 (6) | |
H3A | 0.430789 | 0.622529 | 0.168216 | 0.040* | |
H3B | 0.555718 | 0.655092 | 0.244475 | 0.040* | |
H3C | 0.553596 | 0.646429 | 0.136139 | 0.040* | |
C4 | 0.4769 (2) | 0.8122 (2) | 0.16915 (14) | 0.0193 (5) | |
C5 | 0.2864 (2) | 0.8140 (2) | 0.02029 (14) | 0.0186 (5) | |
H5 | 0.234618 | 0.867019 | 0.050999 | 0.022* | |
C6 | 0.2527 (2) | 0.6777 (2) | 0.03035 (14) | 0.0185 (5) | |
C7 | 0.1596 (2) | 0.6448 (2) | 0.07147 (15) | 0.0233 (5) | |
C8 | 0.1273 (2) | 0.5219 (3) | 0.08481 (17) | 0.0325 (6) | |
H8 | 0.064723 | 0.504267 | 0.115178 | 0.039* | |
C9 | 0.1874 (2) | 0.4250 (3) | 0.05328 (17) | 0.0352 (7) | |
H9 | 0.166274 | 0.339447 | 0.061977 | 0.042* | |
C10 | 0.2784 (2) | 0.4506 (2) | 0.00904 (17) | 0.0313 (6) | |
H10 | 0.319903 | 0.384076 | −0.013306 | 0.038* | |
C11 | 0.3068 (2) | 0.5751 (2) | −0.00151 (15) | 0.0234 (6) | |
C12 | 0.2600 (2) | 0.8573 (2) | −0.08193 (14) | 0.0213 (5) | |
H12A | 0.290438 | 0.944996 | −0.084222 | 0.026* | |
H12B | 0.304422 | 0.801691 | −0.115937 | 0.026* | |
C13 | 0.1247 (2) | 0.8529 (2) | −0.12948 (14) | 0.0207 (5) | |
C14 | 0.0489 (2) | 0.9493 (3) | −0.11500 (17) | 0.0332 (6) | |
H14 | 0.082380 | 1.018435 | −0.075390 | 0.040* | |
C15 | −0.0752 (3) | 0.9463 (3) | −0.15751 (19) | 0.0444 (8) | |
H15 | −0.126360 | 1.013158 | −0.147073 | 0.053* | |
C16 | −0.1250 (2) | 0.8465 (3) | −0.21498 (19) | 0.0415 (7) | |
H16 | −0.210343 | 0.844521 | −0.244199 | 0.050* | |
C17 | −0.0509 (2) | 0.7503 (3) | −0.22978 (17) | 0.0368 (7) | |
H17 | −0.084782 | 0.681460 | −0.269479 | 0.044* | |
C18 | 0.0738 (2) | 0.7533 (2) | −0.18684 (15) | 0.0274 (6) | |
H18 | 0.124631 | 0.685936 | −0.197099 | 0.033* | |
H1A | 0.423 (2) | 0.933 (2) | 0.0648 (15) | 0.020 (6)* | |
H1B | 0.471 (2) | 0.818 (2) | 0.0302 (16) | 0.033 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0305 (3) | 0.0186 (3) | 0.0261 (3) | 0.0042 (3) | 0.0115 (2) | 0.0024 (3) |
F1 | 0.0296 (8) | 0.0364 (9) | 0.0419 (8) | 0.0001 (7) | 0.0202 (7) | 0.0009 (7) |
F2 | 0.0383 (9) | 0.0276 (8) | 0.0363 (8) | 0.0065 (7) | 0.0190 (7) | 0.0004 (7) |
N1 | 0.0222 (11) | 0.0132 (11) | 0.0172 (10) | 0.0009 (10) | 0.0063 (8) | 0.0011 (9) |
C1 | 0.0248 (14) | 0.0286 (15) | 0.0205 (12) | −0.0010 (12) | 0.0021 (10) | 0.0037 (11) |
C2 | 0.0302 (14) | 0.0320 (15) | 0.0186 (12) | −0.0025 (13) | 0.0081 (10) | −0.0008 (11) |
C3 | 0.0329 (15) | 0.0232 (14) | 0.0205 (12) | 0.0024 (12) | 0.0021 (10) | 0.0061 (11) |
C4 | 0.0213 (13) | 0.0210 (12) | 0.0142 (11) | 0.0003 (11) | 0.0021 (9) | 0.0035 (10) |
C5 | 0.0198 (13) | 0.0168 (12) | 0.0196 (12) | 0.0025 (11) | 0.0056 (9) | 0.0006 (10) |
C6 | 0.0197 (13) | 0.0191 (12) | 0.0151 (11) | 0.0001 (11) | 0.0019 (9) | 0.0020 (10) |
C7 | 0.0207 (13) | 0.0252 (14) | 0.0225 (12) | 0.0007 (12) | 0.0029 (10) | 0.0010 (11) |
C8 | 0.0302 (15) | 0.0340 (16) | 0.0317 (14) | −0.0100 (13) | 0.0051 (11) | 0.0075 (13) |
C9 | 0.0429 (17) | 0.0215 (15) | 0.0338 (15) | −0.0113 (14) | −0.0031 (12) | 0.0069 (12) |
C10 | 0.0389 (16) | 0.0182 (13) | 0.0315 (14) | 0.0024 (13) | −0.0003 (12) | −0.0005 (12) |
C11 | 0.0264 (14) | 0.0242 (14) | 0.0198 (12) | 0.0009 (12) | 0.0061 (10) | 0.0019 (11) |
C12 | 0.0228 (13) | 0.0209 (13) | 0.0197 (11) | 0.0004 (11) | 0.0047 (9) | 0.0041 (11) |
C13 | 0.0241 (13) | 0.0213 (13) | 0.0171 (11) | −0.0003 (12) | 0.0059 (9) | 0.0054 (11) |
C14 | 0.0326 (16) | 0.0272 (15) | 0.0347 (14) | 0.0043 (13) | −0.0005 (12) | −0.0044 (12) |
C15 | 0.0326 (17) | 0.0459 (19) | 0.0513 (18) | 0.0166 (15) | 0.0047 (13) | −0.0013 (16) |
C16 | 0.0226 (15) | 0.052 (2) | 0.0457 (16) | 0.0001 (15) | 0.0015 (12) | 0.0001 (16) |
C17 | 0.0356 (17) | 0.0408 (17) | 0.0305 (14) | −0.0099 (15) | 0.0024 (12) | −0.0106 (13) |
C18 | 0.0272 (15) | 0.0280 (15) | 0.0278 (13) | 0.0015 (12) | 0.0086 (11) | −0.0018 (12) |
F1—C7 | 1.356 (3) | C6—C7 | 1.390 (3) |
F2—C11 | 1.367 (2) | C7—C8 | 1.374 (3) |
N1—C5 | 1.508 (3) | C8—C9 | 1.374 (4) |
N1—C4 | 1.532 (3) | C8—H8 | 0.9500 |
N1—H1A | 0.92 (2) | C9—C10 | 1.382 (4) |
N1—H1B | 0.95 (2) | C9—H9 | 0.9500 |
C1—C4 | 1.524 (3) | C10—C11 | 1.369 (3) |
C1—H1C | 0.9800 | C10—H10 | 0.9500 |
C1—H1D | 0.9800 | C12—C13 | 1.510 (3) |
C1—H1E | 0.9800 | C12—H12A | 0.9900 |
C2—C4 | 1.523 (3) | C12—H12B | 0.9900 |
C2—H2A | 0.9800 | C13—C18 | 1.379 (3) |
C2—H2B | 0.9800 | C13—C14 | 1.382 (3) |
C2—H2C | 0.9800 | C14—C15 | 1.381 (4) |
C3—C4 | 1.520 (3) | C14—H14 | 0.9500 |
C3—H3A | 0.9800 | C15—C16 | 1.377 (4) |
C3—H3B | 0.9800 | C15—H15 | 0.9500 |
C3—H3C | 0.9800 | C16—C17 | 1.369 (4) |
C5—C6 | 1.504 (3) | C16—H16 | 0.9500 |
C5—C12 | 1.534 (3) | C17—C18 | 1.389 (3) |
C5—H5 | 1.0000 | C17—H17 | 0.9500 |
C6—C11 | 1.384 (3) | C18—H18 | 0.9500 |
C5—N1—C4 | 121.50 (16) | F1—C7—C8 | 118.5 (2) |
C5—N1—H1A | 105.3 (14) | F1—C7—C6 | 117.6 (2) |
C4—N1—H1A | 104.3 (14) | C8—C7—C6 | 123.9 (2) |
C5—N1—H1B | 111.4 (14) | C9—C8—C7 | 118.6 (2) |
C4—N1—H1B | 108.5 (15) | C9—C8—H8 | 120.7 |
H1A—N1—H1B | 104.2 (19) | C7—C8—H8 | 120.7 |
C4—C1—H1C | 109.5 | C8—C9—C10 | 120.7 (2) |
C4—C1—H1D | 109.5 | C8—C9—H9 | 119.6 |
H1C—C1—H1D | 109.5 | C10—C9—H9 | 119.6 |
C4—C1—H1E | 109.5 | C11—C10—C9 | 117.8 (2) |
H1C—C1—H1E | 109.5 | C11—C10—H10 | 121.1 |
H1D—C1—H1E | 109.5 | C9—C10—H10 | 121.1 |
C4—C2—H2A | 109.5 | F2—C11—C10 | 118.5 (2) |
C4—C2—H2B | 109.5 | F2—C11—C6 | 116.5 (2) |
H2A—C2—H2B | 109.5 | C10—C11—C6 | 124.9 (2) |
C4—C2—H2C | 109.5 | C13—C12—C5 | 111.39 (17) |
H2A—C2—H2C | 109.5 | C13—C12—H12A | 109.4 |
H2B—C2—H2C | 109.5 | C5—C12—H12A | 109.4 |
C4—C3—H3A | 109.5 | C13—C12—H12B | 109.4 |
C4—C3—H3B | 109.5 | C5—C12—H12B | 109.4 |
H3A—C3—H3B | 109.5 | H12A—C12—H12B | 108.0 |
C4—C3—H3C | 109.5 | C18—C13—C14 | 118.6 (2) |
H3A—C3—H3C | 109.5 | C18—C13—C12 | 121.4 (2) |
H3B—C3—H3C | 109.5 | C14—C13—C12 | 120.0 (2) |
C3—C4—C2 | 111.26 (19) | C15—C14—C13 | 120.7 (3) |
C3—C4—C1 | 109.42 (19) | C15—C14—H14 | 119.7 |
C2—C4—C1 | 110.85 (19) | C13—C14—H14 | 119.7 |
C3—C4—N1 | 111.22 (18) | C16—C15—C14 | 120.2 (3) |
C2—C4—N1 | 108.81 (18) | C16—C15—H15 | 119.9 |
C1—C4—N1 | 105.11 (17) | C14—C15—H15 | 119.9 |
C6—C5—N1 | 114.40 (18) | C17—C16—C15 | 119.6 (3) |
C6—C5—C12 | 113.12 (18) | C17—C16—H16 | 120.2 |
N1—C5—C12 | 107.39 (16) | C15—C16—H16 | 120.2 |
C6—C5—H5 | 107.2 | C16—C17—C18 | 120.1 (3) |
N1—C5—H5 | 107.2 | C16—C17—H17 | 119.9 |
C12—C5—H5 | 107.2 | C18—C17—H17 | 119.9 |
C11—C6—C7 | 114.0 (2) | C13—C18—C17 | 120.7 (2) |
C11—C6—C5 | 124.53 (19) | C13—C18—H18 | 119.6 |
C7—C6—C5 | 121.5 (2) | C17—C18—H18 | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.92 (2) | 2.21 (3) | 3.115 (2) | 167.7 (19) |
N1—H1B···Cl1i | 0.95 (2) | 2.31 (2) | 3.1684 (19) | 151 (2) |
Symmetry code: (i) −x+1, −y+2, −z. |
Acknowledgements
We thank Manchester knowledge and drug exchange (MANDRAKE) for the preparation of the reference compounds, which were produced under Home Office licence (in accordance with Manchester Metropolitan University's Home Office license, Ref. No. 423023) requirements and agreed procedures.
References
Agilent (2014). CrysAlis PRO., Agilent Technologies, Yarnton, England. Google Scholar
Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elliott, S. P., Brandt, S. D., Wallach, J., Morris, H. & Kavanagh, P. V. (2015). J. Anal. Toxicol. 39, 287–293. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). Forensic Toxicol. 33, 380-387, doi: 10.1007/s11419-015-0272-y. Google Scholar
Helander, A., Beck, O. & Bäckberg, M. (2015). Clin. Toxicol. 53, 446–453. CrossRef Google Scholar
Hofer, K. E., Degrandi, C., Müller, D. M., Zürrer-Härdi, U., Wahl, S., Rauber-Lüthy, C. & Ceschi, A. (2014). Clin. Toxicol. 52, 1288–1291. CrossRef Google Scholar
Jurásek, B., Fagan, P., Dolenský, B., Paškanová, N., Dobšíková, K., Raich, I., Jurok, R., Setnička, V., Kohout, M., Čejka, J. & Kuchař, M. (2023). New J. Chem. 47, 4543–4551. Google Scholar
Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083. PubMed Google Scholar
King, L. A. (2013). Novel Psychoactive Substances, edited by P. I. Dargan and D. M. Wood, pp. 3-27. Academic Press, Boston: Academic Press. doi: 10.1016/B978-0-12-415816-0.00001-8. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kudo, K., Usumoto, Y., Kikura-Hanajiri, R., Sameshima, N., Tsuji, A. & Ikeda, N. (2015). Leg. Med. 17, 421–426. CrossRef Google Scholar
Le Gall, E., Haurena, C., Sengmany, S., Martens, T. & Troupel, M. (2009). J. Org. Chem. 74, 7970–7973. CrossRef PubMed Google Scholar
McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98–109. CrossRef PubMed Google Scholar
Minakata, K., Yamagishi, I., Nozawa, H., Hasegawa, K., Gonmori, K., Suzuki, M., Wurita, A., Suzuki, O. & Watanabe, K. (2016). Forensic Toxicol. 34, 151–157. CrossRef Google Scholar
Morris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614–632. CrossRef PubMed Google Scholar
Odoardi, S., Romolo, F. S. & Strano-Rossi, S. (2016). Forensic Sci. Int. 265, 116–120. CrossRef PubMed Google Scholar
Reuter, P. & Pardo, B. (2017). Addiction, 112, 25–31. CrossRef PubMed Google Scholar
Sahai, M. A., Davidson, C. N., Dutta, C. & Opacka-Juffry, J. (2018). Brain Sci. pp. 8. Google Scholar
Shafi A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. (2020). Ther. Adv. Psychopharmacol, 10, 2045125320967197. https://doi.org/10.1177/2045125320967197. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar, G., Serpelloni, G. & Romolo, F. S. (2014). Rapid Commun. Mass Spectrom. 28, 1904–1916. CrossRef PubMed Google Scholar
Tettey, J. N. A., Crean, C., Ifeagwu, S. C. & Raithelhuber, M. (2018). New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology, edited by H. H. Maurer & S. D. Brandt. pp. 51–67. Cham: Springer International Publishing. https://doi.org/10.1007/164_2018_127 Google Scholar
UNODC (2021). Resolution adopted by the Commission on 14th April 2021 – Inclusion of diphenidine in Schedule II of the Convention on Psychotropic Substances of 1971. Decision 64/6., 2021, https://www.unodcorg/documents/commissions/CND/Drug_Resolutions/2020-2029/2021/decision_64_6.pdf Google Scholar
UNODC (2024). The Challenge of New Psychoactive Substances – A Technical Update. A Report from the Global SMART programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/en/scientists/the-challenge-of-new-psychoactive-substances.html Google Scholar
Wallach, J., Kang, H., Colestock, T., Morris, H., Bortolotto, Z. A., Collingridge, G. L., Lodge, D., Halberstadt, A. L., Brandt, S. D. & Adejare, A. (2016). PLoS One, 11, e0157021. CrossRef PubMed Google Scholar
Wallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). Drug Test. Anal. 7, 358–367. CrossRef PubMed Google Scholar
Wurita, A., Hasegawa, K., Minakata, K., Watanabe, K. & Suzuki, O. (2014). Forensic Toxicol.. 32, 331–337. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.