research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of six complexes of phosphane chalcogenides R1R2R3PE (R = tert-butyl or iso­propyl, E = S or Se) with the metal halides MX2 (M = Pd or Pt, X = Cl or Br), two halochalcogenyl­phospho­nium derivatives (tBu2iPrPEBr)2[Pd2Br6] and one hydrolysis product

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 3 January 2025; accepted 28 January 2025; online 4 February 2025)

Phosphane chalcogenides and their metal complexes, Part 11. Part 10: Upmann et al. (2024e). Dedicated to Prof. Dr. Wolf-Walther du Mont on the occasion of his 80th birthday

The L2MX2 complexes 15 (1: L = tBuiPr2PSe, M = Pd, X = Cl; 2: L = tBu2iPrPSe, M = Pd, X = Cl; 3: L = tBu2iPrPSe, M = Pd, X = Br; 4: L = tBu2iPrPS, M = Pd, X = Br; 5: L = tBu2iPrPS, M = Pt, X = Cl) {systematic names: (tert-butyl­diiso­propyl­phosphine selenide-κSe)di­chlorido­palladium(II), [PdCl2(C10H23PSe)2] (1), (di-tert-butyl­iso­propyl­phosphine selenide-κSe)di­chloridopalladium(II), [PdCl2(C11H25PSe)2] (2), di­bromido­(di-tert-butyl­iso­propyl­phosphine selenide-κSe)palladium(II), [PdBr2(C11H25PSe)2] (3), di­bromido­(di-tert-butyl­iso­propyl­phosphine sulfide-κS)palladium(II), [PdBr2(C11H25PS)2] (4), di­chlorido­(di-tert-butyl­iso­propyl­phosphine sulfide-κS)palladium(II), [PdCl2(C11H25PS)2] (5)} all display a trans configuration with square-planar geometry at the metal atom. Compounds 2 and 3 are isotypic. The mol­ecules of 1 and 4 display crystallographic inversion symmetry; compound 5 involves two independent mol­ecules, each with inversion symmetry but with differing orientations of the tri­alkyl­phosphane groups. Chemically equivalent bond lengths all lie in narrow ranges, whereby the values for palladium and platinum compounds scarcely differ. Compound 6, (tBuiPr2PS)2Pd2Cl4 {systematic name: di-μ-chlorido-bis­[(tert-butyldiiso­propyl­phosphine sulfide-κS)chlorido­palladium(II)], [PdCl2(C10H23PS)2]}, is dinuclear with a central Pd2Cl2 ring, and displays crystallographic inversion symmetry. The bonds to the bridging are longer than those to the terminal chlorine atoms; the Pd—S bond is shorter than the M—S bonds in 4 and 5, reflecting the weaker trans influence of (bridging) chlorine compared to sulfur. Compounds 7 and 8, 2(tBu2iPrPEBr)+ [Pd2Br6]2− with E = S for 7 and Se for 8 {systematic names: (bromo­sulfan­yl)di-tert-butyl­iso­propyl­phosphanium di-μ-bromido-bis­[di­bromido­palladium(II)], (C11H25BrPS)2[Pd2Br6] (7) and (bromo­selan­yl)di-tert-butyl­iso­propyl­phosphanium di-μ-bromido-bis­[di­bromido­palladium(II)], (C11H25BrPS2)2[Pd2Br6], (8)}, were obtained by oxidizing the appropriate PdII precursors with elemental bromine; they are not isotypic. The ions are connected by very short halogen bonds Br⋯Br. For both compounds, two E⋯Br contacts further link the cations and anions to form ribbons. Compound 9 {systematic name: bis­[dimeth­yl(sulfanyl­idene)phosphin­ito-κSe]bis­(hy­droxy­diiso­propyl­phosphine selenide-κSe)palladium(II), [Pd(C6H14OP)2(C6H15OP)2], {(iPr2PSeO)2H}2Pd, is a hydrolysis product with inversion symmetry and contains an intra­molecular P—O⋯H—O—P group with a disordered hydrogen atom. Compounds 16 and 9 show few, if any, short inter­molecular contacts, although some H⋯M contacts are observed. A problem with atom-type assignment for structure refinement is discussed.

1. Chemical context

We are inter­ested in metal complexes of tri­alkyl­phosphane chalcogenide ligands R1R2R3PE (R = tert-butyl or isopropyl, E = S or Se; here we use the general abbreviation L for these ligands). In a recent series of papers in this journal (Upmann et al., 2024ae[Upmann, D., Bockfeld, D. & Jones, P. G. (2024e). Acta Cryst. E80, 1331-1341.][Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.][Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.][Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.][Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]; much introductory material is given in the first of these publications) we have reported on the gold(I) complexes LAuX (X = Cl or Br) and their oxidation with elemental bromine or the chlorine equivalent iodo­benzene dichloride, PhICl2. The two main series of products were the simple gold(III) complexes LAuX3 and the doubly oxidized halochalcogenyl­phospho­nium derivatives (R1R2R3PEX)[AuX4], corresponding to the addition of two or four halogen atom equivalents, respectively, per metal atom.

[Scheme 1]

We decided to extend our studies to palladium(II) or platinum(II) complexes L2MX2 (M = Pd or Pt) in the hope that these could be similarly oxidized to give M(IV) derivatives. Although the MII precursors L2MX2 proved to be generally accessible, all attempts to oxidize L2MCl2 using iodo­benzene dichloride led to immediate decomposition (with formation of a black precipitate), whereas bromine was too weak an oxidizing agent to convert MII to MIV, leading instead to only two isolable complexes (tBu2iPrPEBr)2(Pd2Br6), whereby the ratio of ligands L to palladium atoms thus changes from 2 to 1. The investigations were therefore not continued. Here we present the structures of four complexes L2PdX2 (14), one complex L2PtCl2 (5), one dinuclear complex (tBuiPr2PS)2Pd2Cl4 (6), the two bromo­chalcogenyl­phospho­nium derivatives (tBu2iPrPEBr)2(Pd2Br6) (7, E = S; 8, E = Se) and one hydrolysis product {(iPr2PSeO)2H}2Pd (9).

2. Structural commentary

All compounds crystallized solvent-free. Selected mol­ecular dimensions are given in Tables 1[link]–9[link][link][link][link][link][link][link][link]. The structures are shown in Figs. 1[link]–9[link][link][link][link][link][link][link][link], with ellipsoids at the 50% level. The dashed bonds in Figs. 7[link] and 8[link] correspond to short inter­ionic contacts that are discussed in Supra­molecular features. For simplicity we write the P—E bonds in the text as single bonds, although they are often written as double bonds P=E in older literature (and indeed in the scheme). Primes (’) are used to denote generalized or previously defined symmetry operators.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Pd1—Cl1 2.3099 (8) Se1—P1 2.1881 (9)
Pd1—Se1 2.4322 (4)    
       
Cl1—Pd1—Se1i 81.37 (2) C2—P1—Se1 114.92 (11)
Cl1—Pd1—Se1 98.63 (2) C1—P1—Se1 102.53 (11)
Se1i—Pd1—Se1 180.0 C3—P1—Se1 114.48 (12)
P1—Se1—Pd1 116.92 (3)    
Symmetry code: (i) [-x, -y+1, -z].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Pd1—Cl1 2.3100 (7) Pd1—Se2 2.4573 (4)
Pd1—Cl2 2.3169 (7) Se1—P1 2.1870 (8)
Pd1—Se1 2.4411 (4) Se2—P2 2.1936 (8)
       
Cl1—Pd1—Cl2 174.61 (3) P1—Se1—Pd1 107.78 (2)
Cl1—Pd1—Se1 86.97 (2) P2—Se2—Pd1 117.93 (3)
Cl2—Pd1—Se1 92.46 (2) C3—P1—Se1 109.18 (10)
Cl1—Pd1—Se2 99.50 (2) C2—P1—Se1 111.22 (9)
Cl2—Pd1—Se2 80.81 (2) C1—P1—Se1 103.40 (10)
Se1—Pd1—Se2 172.772 (14)    

Table 3
Selected geometric parameters (Å, °) for 3[link]

Pd1—Br1 2.4395 (5) Se1—P1 2.1890 (11)
Pd1—Se1 2.4416 (5) Se2—P2 2.1935 (12)
Pd1—Br2 2.4503 (5) P1—C3 1.847 (4)
Pd1—Se2 2.4628 (5)    
       
Br1—Pd1—Se1 86.332 (18) P1—Se1—Pd1 108.83 (3)
Br1—Pd1—Br2 172.66 (2) P2—Se2—Pd1 119.30 (4)
Se1—Pd1—Br2 92.395 (17) C3—P1—Se1 109.36 (14)
Br1—Pd1—Se2 100.149 (18) C2—P1—Se1 111.31 (13)
Se1—Pd1—Se2 172.54 (2) C1—P1—Se1 103.26 (14)
Br2—Pd1—Se2 80.706 (17)    

Table 4
Selected geometric parameters (Å, °) for 4[link]

Pd1—S1 2.3317 (6) S1—P1 2.0202 (10)
Pd1—Br1 2.4501 (3)    
       
S1i—Pd1—S1 180.0 P1—S1—Pd1 117.53 (4)
S1—Pd1—Br1 91.133 (17) C3—P1—S1 111.18 (10)
S1—Pd1—Br1i 88.867 (17) C2—P1—S1 111.32 (11)
Br1—Pd1—Br1i 180.0 C1—P1—S1 101.95 (11)
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 5
Selected geometric parameters (Å, °) for 5[link]

Pt1—Cl1 2.3129 (7) Pt2—S2 2.3278 (7)
Pt1—S1 2.3369 (7) S1—P1 2.0322 (10)
Pt2—Cl2 2.3070 (7) S2—P2 2.0323 (10)
       
Cl1—Pt1—Cl1i 180.0 P1—S1—Pt1 113.49 (3)
Cl1—Pt1—S1 87.04 (2) P2—S2—Pt2 113.27 (4)
Cl1—Pt1—S1i 92.96 (2) C3—P1—S1 108.40 (10)
S1—Pt1—S1i 180.0 C2—P1—S1 111.07 (10)
Cl2—Pt2—Cl2ii 180.0 C1—P1—S1 104.54 (10)
Cl2—Pt2—S2ii 89.24 (3) C5—P2—S2 110.77 (10)
Cl2—Pt2—S2 90.75 (3) C6—P2—S2 109.37 (10)
S2ii—Pt2—S2 180.0 C4—P2—S2 104.01 (10)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y, -z+1].

Table 6
Selected geometric parameters (Å, °) for 6[link]

Pd1—Cl1 2.2799 (6) Pd1—Cl2i 2.3623 (6)
Pd1—S1 2.2882 (6) S1—P1 2.0350 (7)
Pd1—Cl2 2.3349 (5)    
       
Cl1—Pd1—S1 93.95 (2) Pd1—Cl2—Pd1i 94.46 (2)
Cl1—Pd1—Cl2 175.53 (2) P1—S1—Pd1 107.34 (3)
S1—Pd1—Cl2 89.38 (2) C3—P1—S1 110.54 (7)
Cl1—Pd1—Cl2i 91.03 (2) C2—P1—S1 113.53 (7)
S1—Pd1—Cl2i 174.586 (19) C1—P1—S1 105.38 (8)
Cl2—Pd1—Cl2i 85.54 (2)    
Symmetry code: (i) [-x+1, -y, -z+1].

Table 7
Selected geometric parameters (Å, °) for 7[link]

Br1—S1 2.2027 (14) Pd1—Br2 2.4199 (6)
Br1—Br2 3.2387 (7) Pd1—Br3i 2.4447 (6)
P1—S1 2.0941 (18) Pd1—Br3 2.4514 (6)
Pd1—Br4 2.4131 (6)    
       
S1—Br1—Br2 175.04 (4) Br2—Pd1—Br3i 176.25 (2)
C2—P1—S1 107.50 (17) Br4—Pd1—Br3 177.07 (2)
C1—P1—S1 100.83 (16) Br2—Pd1—Br3 91.29 (2)
C3—P1—S1 109.19 (17) Br3i—Pd1—Br3 85.00 (2)
P1—S1—Br1 103.52 (7) Pd1—Br2—Br1 71.340 (18)
Br4—Pd1—Br2 91.64 (2) Pd1i—Br3—Pd1 95.00 (2)
Br4—Pd1—Br3i 92.07 (2)    
Symmetry code: (i) [-x, -y+1, -z+1].

Table 8
Selected geometric parameters (Å, °) for 8[link]

P1—Se1 2.2505 (8) Pd1—Br3 2.4413 (4)
Se1—Br1 2.3310 (4) Pd2—Br4 2.4157 (4)
Br1—Br2 3.2510 (5) Pd2—Br3 2.4562 (4)
Pd1—Br2 2.4218 (4)    
       
C2—P1—Se1 109.72 (10) Br3—Pd1—Br3i 85.785 (18)
C3—P1—Se1 109.24 (10) Br4i—Pd2—Br4 92.26 (2)
C1—P1—Se1 100.47 (10) Br4—Pd2—Br3i 176.053 (14)
P1—Se1—Br1 100.30 (2) Br4—Pd2—Br3 91.324 (11)
Se1—Br1—Br2 176.810 (16) Br3i—Pd2—Br3 85.139 (18)
Br2—Pd1—Br2i 92.495 (19) Pd1—Br2—Br1 75.133 (10)
Br2—Pd1—Br3 90.936 (11) Pd1—Br3—Pd2 94.538 (13)
Br2—Pd1—Br3i 175.531 (13)    
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 9
Selected geometric parameters (Å, °) for 9[link]

Pd1—Se1 2.4642 (2) Se2—P2 2.1863 (4)
Pd1—Se2 2.4662 (2) P1—O1 1.5340 (13)
Se1—P1 2.1894 (5) P2—O2 1.5287 (12)
       
Se1—Pd1—Se1i 180.0 Se2i—Pd1—Se2 180.0
Se1—Pd1—Se2i 82.184 (5) P1—Se1—Pd1 114.028 (13)
Se1—Pd1—Se2 97.817 (5) P2—Se2—Pd1 105.840 (13)
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecule of compound 1 in the crystal. Only the asymmetric unit is labelled.
[Figure 2]
Figure 2
The mol­ecule of compound 2 in the crystal.
[Figure 3]
Figure 3
The mol­ecule of compound 3 in the crystal.
[Figure 4]
Figure 4
The mol­ecule of compound 4 in the crystal. Only the asymmetric unit is labelled.
[Figure 5]
Figure 5
The two independent mol­ecules of compound 5 in the crystal. Each has inversion symmetry; only the asymmetric unit is labelled.
[Figure 6]
Figure 6
The mol­ecule of compound 6 in the crystal. Only the asymmetric unit is labelled.
[Figure 7]
Figure 7
The structure of compound 7 in the crystal. Only the asymmetric unit is labelled. Only the major sites of the disordered methyl groups are shown. The dashed lines indicate short Br⋯Br contacts.
[Figure 8]
Figure 8
The structure of compound 8 in the crystal. Only the asymmetric unit is labelled. The dashed lines indicate short Br⋯Br contacts.
[Figure 9]
Figure 9
The mol­ecule of compound 9 in the crystal. Only one position of the disordered bridging hydrogen atom is shown. Dashed lines indicate hydrogen bonds.

The simple L2MX2 complexes 15 (Figs. 1[link]–5[link][link][link][link]) all show the expected square-planar geometry at the metal atom. Despite the planarity, two of the four Se—Pd—X angles in 2 and in 3 differ by ca. 10° from the ideal 90°. The largest deviation from planarity for the metal atom and its four immediate neighbours E and X is observed for 3, with a mean deviation of 0.052 Å. The ligands adopt a trans configuration. Compounds 2 and 3 are isotypic. The mol­ecules of 1 and 4 display crystallographic inversion symmetry; compound 5 involves two independent mol­ecules, each with inversion symmetry. With one exception, one of the three torsion angles EE—P—Cn (omitting the metal atom as the central atom of a linear group), which all differ by ca. 120°, is close to ±180°, and this atom, belonging to a tert-butyl group, is given the lowest numbering (C1 or C4). The exception is the second independent mol­ecule of compound 5, for which all the torsion angles of this type are some 30° greater than for the first mol­ecule; the isopropyl groups are at C3 and C5 and thus formally change places in the rotational sequence (see Fig. 10[link]). Chemically equivalent bond lengths all lie in narrow ranges, whereby the values for palladium (14) and platinum (5) compounds scarcely differ. Average bond lengths for the ligands are P—S = 2.028 and P—Se = 2.190 Å; these are closely similar to those in the related gold(I) derivatives LAuX (2.037, 2.194 Å; Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]) and [L2Au][AuX4] (2.032, 2.193 Å; Upmann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]) but slightly shorter than the values of 2.060, 2.218 Å for the gold(III) series LAuX3 (Upmann et al., 2024b[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.]), probably reflecting a somewhat greater contribution of the resonance form with a purely single P—E bond in the latter. The bond angles P—EM were found to vary appreciably for the three series of gold compounds, with ranges of around 5° (and one outlier for tBu3PSAuCl3, attributed tentatively to steric effects), although the average values were consistently smaller for Se than for S derivatives. For compounds 15, the average P—EM angles are 114.8° and 114.2° for S and Se, respectively, several degrees higher than those for the gold compounds. Furthermore, the Se values range from 107–119° and differ by over 10° for the two independent P—Se—Pd bond angles of 2 and 3; perhaps this is in some way connected with the irregular Se—Pd—X angles in these compounds, but we can think of no simple reason for this. The MX bond lengths are closely similar, with averages of 2.311 Å for X = Cl (with no significant difference for the Pd and Pt derivatives) and 2.447 Å for X = Br; the same applies to the EX bond lengths, with averages of 2.332 Å for E = S and 2.447 Å for E = Se.

[Figure 10]
Figure 10
A least-squares fit of the two independent mol­ecules of compound 5, showing the mutual rotation of the alkyl groups. Mol­ecule 1 is green with dashed bonds; mol­ecule 2 is violet. Fitted atoms are labelled; their symmetry-equivalent atoms were also fitted. Hydrogen atoms are omitted.

The dinuclear complex 6 (Fig. 6[link]) has the composition L2Pd2Cl4 rather than the expected L2PdCl2 and displays crystallographic inversion symmetry (with the inversion centre at the centre of the four-membered ring). The bonds to the bridging chlorine atom Cl2 in the central Pd2Cl2 ring are, as expected, longer than those to the terminal atom Cl1, with lengths of 2.3623 (6) and 2.3349 (5) Å for the former and 2.2799 (6) Å for the latter. The Pd1—S1 bond is, at 2.2882 (6) Å, shorter than the M—S bonds in 4 and 5, reflecting the weaker trans influence of (bridging) chlorine compared to sulfur. The P1—S1—Pd1 angle of 107.34 (3)°, several degrees narrower than for 4 and 5, underlines the highly variable nature of the P—E—M angles in these compounds. This compound shows the shortest intra­molecular H⋯M contact, namely H22A⋯Pd1 = 2.52 Å.

Compounds 7 and 8, although differing only in the atom E, are not isotypic. The [Pd2Br6]2− dianion of compound 7 (Fig. 7[link]) displays crystallographic inversion symmetry, with the inversion centre at the centre of the four-membered ring, whereas the corresponding dianion of compound 8 (Fig. 8[link]) shows crystallographic twofold symmetry, with both Pd atoms lying on the twofold axis at 0.5, y, 0.25. Both anions are essentially planar, with mean deviations of 0.006 and 0.032 Å, respectively. Again, the bonds to the bridging bromine atoms in the central ring are longer than those to the terminal atoms, with average lengths of 2.448 and 2.417 Å, respectively. The halochalcogenyltri­alkyl­phospho­nium cations have P—E and E—Br bond lengths [7: P1—S1 = 2.0941 (7), S1—Br1 = 2.2027 (14); 8: P1—Se1 = 2.2505 (8), Se1—Br1 = 2.3310 (4) Å] that are closely similar to the average values (P—S = 2.095, P—Se = 2.248, S—Br = 2.200, Se—Br = 2.322 Å) for the same cations in the tetra­halogenidoaurate(III) salts, reported in Part 8 (Upmann et al., 2024c[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.]). The more variable P—E—Br angles, which correlated well with increasing steric bulk for the much more numerous gold derivatives, can best be compared to the derivatives with the same (tBu2iPrPEBr)+ cations; P1—S1—Br1 in 7 = 103.52 (7), P1—Se1—Br1 in 8 = 100.30 (2)°, compared to their [AuBr4] salts with 104.48 (6) and 101.91 (6)°, respectively.

The mol­ecule of compound 9 (Fig. 9[link]), which presumably arose under the influence of adventitious water, displays crystallographic inversion symmetry. As observed for 2 and 3 (see above), the two independent P—Se—Pd angles differ appreciably. The ‘half’ hydrogen atoms at O1 and O2 (see Refinement) are disordered; the oxygen atoms show no signs of disorder and the P—O bond lengths are effectively equal. The phospho­rus atoms are displaced to opposite sides of the coordination plane (defined by the atoms Pd1, Se1 and Se2), P1 by 0.8076 (5) and P2 by 1.9183 (5) Å. The torsion angle P1—Se1⋯Se2—P2 (omitting the Pd atom) is 83.83 (2)°. The short intra­molecular contact H32A⋯Pd1, 2.69 Å, is noteworthy.

3. Supra­molecular features

Tables 10[link]–18[link][link][link][link][link][link][link][link] list short contacts that might be inter­preted as ‘weak’ hydrogen bonds; these include some borderline cases that are not further discussed, together with short intra­molecular contacts, which may be regarded as a result of the steric crowding, and include contacts of the type H⋯M that are as short as 2.52 Å. In the packing diagrams, the labelling denotes atoms of the asymmetric unit.

Table 10
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 1.00 2.85 3.501 (4) 123
C31—H31A⋯Cl1 0.98 2.70 3.629 (4) 158
C21—H21B⋯Se1 0.98 3.07 3.547 (4) 112
C11—H11A⋯Se1 0.98 2.93 3.419 (4) 112
C12—H12C⋯Se1 0.98 3.05 3.574 (4) 115

Table 11
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯Se1 0.98 3.08 3.633 (3) 117
C12—H12C⋯Se1 0.98 2.72 3.282 (3) 117
C21—H21C⋯Cl1 0.98 2.77 3.741 (3) 170
C21—H21C⋯Se1 0.98 2.92 3.478 (3) 117
C3—H3⋯Cl2 1.00 2.77 3.608 (3) 142
C31—H31B⋯Se1 0.98 2.99 3.606 (3) 122
C41—H41C⋯Se2 0.98 3.08 3.632 (4) 117
C43—H43A⋯Se2 0.98 2.67 3.300 (4) 123
C5—H5⋯Cl1 1.00 2.83 3.484 (4) 124
C51—H51C⋯Cl1i 0.98 2.76 3.642 (3) 150
C52—H52B⋯Cl1 0.98 2.81 3.439 (4) 123
C52—H52B⋯Se2 0.98 2.97 3.507 (4) 116
C62—H62B⋯Se2 0.98 2.91 3.456 (4) 116
C62—H62C⋯Cl1 0.98 2.82 3.552 (4) 132
C63—H63A⋯Se1ii 0.98 3.05 3.948 (4) 153
C63—H63A⋯Pd1ii 0.98 2.87 3.793 (4) 158
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 12
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯Se1 0.98 3.07 3.630 (4) 117
C12—H12C⋯Se1 0.98 2.74 3.286 (5) 116
C21—H21C⋯Br1 0.98 2.88 3.843 (4) 168
C21—H21C⋯Se1 0.98 2.94 3.491 (4) 117
C22—H22A⋯Pd1 0.98 2.73 3.641 (4) 155
C3—H3⋯Br2 1.00 2.84 3.678 (4) 142
C31—H31B⋯Se1 0.98 3.00 3.612 (5) 122
C41—H41C⋯Se2 0.98 3.05 3.610 (6) 118
C43—H43A⋯Se2 0.98 2.70 3.307 (5) 120
C5—H5⋯Br1 1.00 2.90 3.588 (5) 127
C51—H51C⋯Br1i 0.98 2.87 3.706 (5) 144
C52—H52B⋯Br1 0.98 3.01 3.558 (6) 116
C52—H52B⋯Se2 0.98 2.96 3.545 (6) 120
C62—H62B⋯Se2 0.98 2.89 3.481 (6) 120
C62—H62C⋯Br1 0.98 3.03 3.678 (6) 124
C63—H63A⋯Se1ii 0.98 3.09 4.032 (6) 162
C63—H63A⋯Pd1ii 0.98 3.03 3.918 (6) 151
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 13
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1 1.00 2.81 3.638 (3) 140
C11—H11C⋯S1 0.98 2.63 3.132 (3) 112
C21—H21C⋯S1 0.98 2.85 3.366 (4) 114
C32—H32C⋯S1 0.98 3.02 3.567 (3) 117
C22—H22C⋯Pd1 0.98 2.87 3.778 (4) 154
C12—H12A⋯S1ii 0.98 2.95 3.443 (3) 112
C21—H21C⋯Br1i 0.98 2.82 3.782 (4) 168
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 14
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1i 1.00 2.61 3.382 (3) 134
C5—H6⋯Cl2 1.00 2.65 3.470 (3) 140
C41—H41A⋯S2 0.98 3.01 3.541 (3) 115
C42—H42C⋯S2 0.98 2.64 3.195 (3) 116
C63—H63B⋯Cl2ii 0.98 2.85 3.666 (3) 141
C63—H63B⋯S2 0.98 2.85 3.374 (3) 114
C12—H12A⋯S1 0.98 2.67 3.188 (3) 113
C23—H23B⋯Cl1 0.98 2.73 3.708 (4) 175
C23—H23B⋯S1 0.98 2.84 3.370 (3) 115
C32—H32B⋯S1 0.98 2.87 3.467 (3) 121
C22—H22C⋯Pt1i 0.98 2.77 3.691 (3) 156
C51—H51C⋯Pt2ii 0.98 2.64 3.475 (3) 143
C32—H32A⋯Cl2iii 0.98 2.76 3.716 (3) 165
C43—H43A⋯S1iv 0.98 2.98 3.779 (3) 139
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y, -z+1]; (iii) [x-1, y+1, z]; (iv) [-x+2, -y+1, -z+1].

Table 15
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1 1.00 2.74 3.466 (2) 130
C13—H13C⋯Cl1ii 0.98 2.95 3.893 (2) 162
C31—H31B⋯S1 0.98 2.93 3.523 (2) 120
C32—H32C⋯Cl1iii 0.98 2.89 3.728 (2) 144
C21—H21C⋯Cl2 0.98 2.90 3.844 (2) 161
C22—H22C⋯Cl2iv 0.98 2.99 3.960 (2) 172
C22—H22A⋯Pd1 0.98 2.52 3.383 (2) 147
C2—H2⋯Pd1v 1.00 3.09 3.688 (2) 120
C22—H22C⋯Pd1v 0.98 3.04 3.740 (2) 129
C21—H21A⋯Pd1v 0.98 3.16 3.784 (2) 123
Symmetry codes: (ii) [x-1, y+1, z]; (iii) [-x+1, -y, -z]; (iv) [-x, -y, -z+1]; (v) [x-1, y, z].

Table 16
Hydrogen-bond geometry (Å, °) for 7[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯Br4ii 0.98 3.04 4.005 (7) 167
C12—H12C⋯S1 0.98 3.03 3.547 (7) 114
C12—H12C⋯Br4iii 0.98 3.10 3.689 (6) 120
C13—H13B⋯S1 0.98 2.70 3.190 (7) 111
C2—H2⋯Br1 1.00 2.95 3.468 (5) 113
C2—H2⋯Br3i 1.00 3.12 3.928 (5) 139
C21—H21B⋯Br1 0.98 3.03 3.668 (6) 124
C21—H21B⋯S1 0.98 2.88 3.456 (6) 119
C21—H21B⋯Br3iv 0.98 3.10 3.968 (6) 149
C31—H31C⋯Br1 0.98 2.94 3.732 (11) 139
C33—H33B⋯S1 0.98 2.73 3.298 (10) 117
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x+1, y, z+1]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1].

Table 17
Hydrogen-bond geometry (Å, °) for 8[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯Se1 0.98 3.12 3.640 (3) 115
C13—H13B⋯Se1 0.98 2.61 3.181 (3) 117
C21—H21A⋯Br3 0.98 3.14 3.822 (3) 128
C21—H21B⋯Se1 0.98 2.90 3.511 (3) 121
C21—H21B⋯Br1 0.98 2.80 3.574 (3) 137
C31—H31B⋯Se1 0.98 3.16 3.740 (3) 119
C32—H32A⋯Se1 0.98 2.97 3.526 (3) 117
C32—H32A⋯Br1 0.98 2.85 3.452 (3) 120
C12—H12A⋯Br2ii 0.98 2.98 3.877 (3) 152
C12—H12C⋯Br3iii 0.98 3.04 4.009 (3) 170
C2—H2⋯Br3i 1.00 3.03 3.928 (3) 151
C32—H32C⋯Br2iv 0.98 2.95 3.885 (3) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) [x, -y+2, z+{\script{1\over 2}}].

Table 18
Hydrogen-bond geometry (Å, °) for 9[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2 0.78 (2) 1.63 (2) 2.4156 (17) 178 (4)
O2—H02⋯O1 0.78 (2) 1.64 (2) 2.4156 (17) 172 (5)
C11—H11B⋯Se1 0.98 2.95 3.4748 (18) 115
C21—H21A⋯O2ii 0.98 2.52 3.407 (2) 150
C32—H32C⋯Se2iii 0.98 3.13 3.8999 (17) 136
C41—H41B⋯Se2 0.98 2.94 3.4825 (18) 116
C42—H42A⋯Se1iv 0.98 2.98 3.8370 (19) 146
C32—H32A⋯Pd1 0.98 2.69 3.4897 (18) 139
Symmetry codes: (ii) [x-1, y, z]; (iii) [x+1, y, z]; (iv) [x, y+1, z].

In marked contrast to the various series of gold compounds, structures 16 and 9 show few short inter­molecular contacts (e.g. H⋯X or EX), presumably because of the increased steric effects of having two bulky ligands per mol­ecule rather than one. For compound 1, for instance, the methine hydrogen atoms, which were generally prolific in forming short contacts in the gold complexes, only form one such contact, which is intra­molecular (H2⋯Cl1= 2.85 Å), and this is also true for several of the other structures. The intra­molecular contact H31⋯Cl1′ is shorter, at 2.70 Å. The program XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]) found no inter­molecular contacts shorter than (sum of atomic radii + 1.7 Å), using the ‘PACK 1.7’ command, which deliberately ignores H⋯H contacts; it is probable that the packing is determined by a large number of weak van der Waals contacts such as H⋯H. Fig. 11[link] shows a layer of mol­ecules parallel to ([\overline{1}]01), which can be inter­preted as consisting of chains of mol­ecules parallel to [1[\overline{1}]1].

[Figure 11]
Figure 11
The packing of compound 1, tentatively inter­preted as a layer of mol­ecules parallel to ([\overline{1}]01). The view direction is perpendicular to the layer. All hydrogen atoms are omitted.

In compound 2, the hydrogen bond H51C⋯Cl1(1 − x, 1 − y, 1 − z) links the mol­ecules to form inversion-symmetric dimers (Fig. 12[link]). A further packing motif, the connection of mol­ecules by the three-centre contacts H63A⋯(Se1, Pd1) (x, [{3\over 2}] − y, −[{1\over 2}] + z), leads to ribbons of mol­ecules parallel to the c axis (Fig. 13[link]). The concept of hydrogen bonds H⋯M, where M is a noble metal, is well-established for M = Au (Schmidbaur et al., 2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]; Schmidbaur, 2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]), but we are not aware of any systematic survey for M = Pd or Pt. Compound 3 is isotypic to 2 and the packing motifs are therefore analogous.

[Figure 12]
Figure 12
The packing of compound 2, showing the formation of inversion-symmetric dimers via H⋯Cl contacts (dashed lines). The view direction is perpendicular to the bc plane.
[Figure 13]
Figure 13
The packing of compound 2, showing the short three-centre contacts H63A⋯(Pd1, Se1) (dashed lines). The view direction is parallel to the ac plane, and the region y ≃ 0.25 is depicted. Note that neighbouring mol­ecules are connected by the c glide operator and not by translation, despite their very similar orientation.

For compound 4, the packing involves no markedly short contacts, but may be inter­preted as a layer structure parallel to (10[\overline{1}]) (Fig. 14[link]) in which mol­ecules are connected by the borderline inter­action H12A⋯S1([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z). The latter contact should perhaps be regarded as an aid to inter­pretation of the pattern rather than a definite inter­action, a caveat that applies to several of the structures described here.

[Figure 14]
Figure 14
The packing of compound 4, inter­preted as a layer structure parallel to (10[\overline{1}]) involving H⋯S inter­actions (dashed lines). The view direction is perpendicular to the layer.

For compound 5, the contacts H32A⋯Cl2′(−1 + x, 1 + y, z) and the borderline H43A⋯S1(2 − x, 1 − y, 1 − z) combine to form layers parallel to the ab plane (Fig. 15[link]).

[Figure 15]
Figure 15
The packing of compound 5, inter­preted as a layer structure parallel to the ab plane in the region z ≃ 0.5. Dashed lines indicate H⋯Cl and H⋯S contacts. The view direction is perpendicular to the layer.

Compound 6 may be inter­preted as a layer structure parallel to the ac plane (Fig. 16[link]) involving the borderline contacts H32C⋯Cl1(1 − x, −y, −z) and H22C⋯Cl2(−1 + x, 1 + y, z) together with the trio of contacts (H2, H22C, H21A)⋯Pd1(−1 + x, y, z).

[Figure 16]
Figure 16
The packing of compound 6, inter­preted as a layer structure parallel to the ac plane in the region y ≃ 0. Dashed lines indicate H⋯Cl and H⋯Pd contacts. The view direction is perpendicular to the layer.

In compound 7, the cation and anion are connected by an extremely short halogen bond (for a review see Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]) Br1⋯Br2 of 3.2387 (7) Å, with a linear grouping S1—Br1⋯Br2 = 175.04 (3)° (Fig. 7[link]), which is approximately perpendicular to the coordination plane of the metal, with Pd1—Br2⋯Br1 = 71.34 (2)°. Analogous halogen bonds were common, but not ubiquitous, features of the corresponding AuIII derivatives (R1R2R3PEX)[AuX4] (Upmann et al., 2024c[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.]). The ions are further linked by the contacts S1⋯Br3 (1 − x, 1 − y, 1 − z) 3.5463 (14) Å and the rather longer S1⋯Br4(1 + x, y, z) = 3.8042 (14) Å, with P1—S1⋯Br′ angles of 116.90 (6) and 173.51 (7)°, respectively, to produce ribbons of residues parallel to the a axis (Fig. 17[link]). Despite the differing crystallographic symmetry, the packing of compound 8 is similar to that of 7, with the halogen bond Br1⋯Br2 [3.2510 (5) Å, with Se1—Br1⋯Br2 = 176.81 (2) and Pd1—Br2⋯Br1 = 75.133 (10)°; see Fig. 8[link]] and the Se⋯Br contacts Se1⋯Br4 and Se1⋯Br3 [3.5655 (5) and 3.6692 (5) Å, respectively, P—Se⋯Br′ angles of 167.14 (2) and 109.58 (2) Å, respectively, operator [{1\over 2}] − x, [{3\over 2}] − y, −z] combining to produce ribbons parallel to [101] (Fig. 18[link]).

[Figure 17]
Figure 17
The packing of compound 7, viewed parallel to the b axis in the region y ≃ 0.5. All hydrogen atoms are omitted. The dashed lines indicate Br⋯Br (thick) or Br⋯S (thin) contacts.
[Figure 18]
Figure 18
The packing of compound 8, showing two ribbons of residues running horizontally, The view direction is approximately perpendicular to (10[\overline{1}]), but was rotated slightly about the horizontal axis to minimize overlap of the ribbons. All hydrogen atoms are omitted. The dashed lines indicate Br⋯Br (thick) or Br⋯Se (thin) contacts. For clarity, the atom Br3 is represented by its equivalent Br3′.

The packing of compound 9, like those of 16, is almost featureless. The main pattern involves ribbons parallel to the a axis via the ‘weak’ hydrogen bond H21A⋯O2′ (Fig. 19[link]).

[Figure 19]
Figure 19
The packing of compound 9, viewed perpendicular to the ab plane in the region z ≃ 0. Dashed lines indicate the short contact H21A⋯O2.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2024.1.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for compounds containing the moiety (C3PE)2MX2, with E = S or Se, X = any halogen, M = Pd or Pt, and coordination number 2 for E, gave seven hits, of which six were unique; all had X = Cl and all but one had M = Pd. Only two involved monodentate phosphane chalcogenide ligands (three were bidentate and one tridentate), namely trans-di­chlorido­bis­(tri-isobutyl phosphane sulfide)­palladium(II) (Rich­ardson, 1985[Richardson, M. F. (1985). Acta Cryst. C41, 27-28.]; refcode COSWUC) and trans-bis­(di­ethyl­phenyl­phosphane sulfide)­dichlorido­palladium(II) (Satek et al., 1975[Satek, L. C., Ammon, H. L. & Stewart, J. M. (1975). Acta Cryst. B31, 2691-2693.]; EPPTPD). Both have crystallographic inversion symmetry, with Pd—S = 2.334 (1), Pd—Cl = 2.297 (1) and P—S = 2.014 (1) Å for the former and 2.350 (1), 2.302 (1) and 2.013 (2) Å, respectively, for the latter.

A search for the M2X4(E=PC3)2 core, as in 6, gave only one hit, namely Pd2Cl4(S=PCy2Ar), where Cy = cyclo­hexyl and Ar is a 1,4-dimeth­oxy-3-tri­meth­oxy­phenyl-2-naphthyl group (Miroslaw et al., 2023[Miroslaw, B., Dybala, I., Jasiński, R. & Demchuk, O. M. (2023). Inorganics, 11, https://doi. org/10.3390/inorganics11100399.]; ROGZEW). The bond lengths of the core are closely similar to those of 6.

Finally, a search for the [Pd2Br6]2− anion gave 22 hits with 24 independent anions. The terminal Pd—Br bond lengths were 2.369–2.438, av. 2.407 (11), and the bridging bonds were as expected significantly longer, at 2.423–2.513, av. 2.453 (13) Å.

5. Synthesis and crystallization

Full details of the preparations (including NMR data) are given in the PhD thesis of Upmann (2015[Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe, Dissertation, Technical University of Braunschweig, Braunschweig, Germany (ISBN: 978-3-8439-1972-2).]). Here we present three representative syntheses.

Compound 2: Palladium dichloride (95 mg, 0.5 mmol) was refluxed for 1 h in 25 mL of aceto­nitrile to give an orange solution. After cooling to r.t., tBu2iPrPSe (286 mg, 1.0 mmol) was added, causing an immediate colour change to reddish-brown. After stirring overnight, the solvent was removed in vacuo, the brown residue was washed with n-pentane (3 × 3 mL) and diethyl ether (2 × 3 mL) and dried in vacuo. The product was recrystallized from di­chloro­methane/n-pentane. 31P NMR (81 MHz, CDCl3): δ = 79.93 (singlet with P—Se satellites, JPSe = 577 Hz).

Compound 6: Palladium dichloride (454 mg, 2.6 mmol) was refluxed for 1 h in 100 mL of aceto­nitrile to give an orange solution. After cooling to r.t., tBuiPr2PS (1.057 g, 5.2 mmol) was added, causing an immediate colour change to brown. After stirring overnight, the solvent was removed in vacuo, the brown residue was washed with n-pentane (2 × 5 mL) and diethyl ether (2 × 5 mL) and dried in vacuo. 31P NMR (81 MHz, CDCl3): δ = 81.54 (s).

Compound 8: Compound 3 (103 mg, 0.1 mmol) was dissolved in 5 mL of di­chloro­methane. The solution was carefully overlayered with n-pentane, and two drops of elemental bromine were immediately added. Red crystals of 8 formed overnight. Elemental analysis: calculated: C 19.06, H 3.63. Found: C 18.79, H 3.77%. 31P NMR (81 MHz, CDCl3): δ = 83.77 (s). The solubility was too poor to detect P—Se coupling.

6. Refinement

Details of the measurements and refinements are given in Table 19[link]. Structures were refined anisotropically on F2. Methine hydrogens were included at calculated positions and refined using a riding model with C—H = 1.00 Å and Uiso(H) = 1.2 × Ueq(C). Methyl groups were refined, using the command ‘AFIX 137’, as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å, H—C—H = 109.5° and Uiso(H) = 1.5 × Ueq(C). This procedure, relying as it does on the location of electron-density maxima corresponding to the H-atom sites, is less reliable for heavy-atom structures, so that any postulated hydrogen bonds involving methyl hydrogen atoms (especially for the disordered methyl groups of compound 7) should be inter­preted with caution; however, clear maxima in the electron density were generally found.

Table 19
Experimental details

  1 2 3 4 5
Crystal data
Chemical formula [PdCl2(C10H23PSe)2] [PdCl2(C11H25PSe)2] [PdBr2(C11H25PSe)2] [PdBr2(C11H25PS)2] [PdCl2(C11H25PS)2]
Mr 683.73 711.78 800.70 706.90 706.67
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100 100 100 100
a, b, c (Å) 7.9312 (5), 8.5664 (6), 10.1483 (7) 15.3744 (4), 13.2969 (2), 16.0503 (3) 15.3561 (6), 13.4695 (4), 16.1371 (6) 7.8595 (3), 17.5019 (6), 10.6740 (3) 14.5283 (3), 14.4191 (3), 13.9428 (4)
α, β, γ (°) 88.993 (6), 88.010 (6), 77.063 (6) 90, 117.306 (3), 90 90, 116.558 (5), 90 90, 94.551 (3), 90 90, 94.571 (3), 90
V3) 671.55 (8) 2915.56 (12) 2985.6 (2) 1463.65 (9) 2911.53 (12)
Z 1 4 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.73 3.44 5.85 3.63 5.27
Crystal size (mm) 0.2 × 0.1 × 0.01 0.20 × 0.10 × 0.02 0.18 × 0.05 × 0.02 0.2 × 0.08 × 0.05 0.2 × 0.1 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).])
Tmin, Tmax 0.841, 1.000 0.713, 1.000 0.419, 0.892 0.865, 1.000 0.650, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20956, 3275, 2604 134870, 7231, 5841 120046, 7402, 5854 45160, 4422, 3832 79369, 8721, 6105
Rint 0.072 0.091 0.104 0.050 0.044
θ values (°) θmax = 28.3, θmin = 2.4 θmax = 28.3, θmin = 2.1 θmax = 28.3, θmin = 2.1 θmax = 30.9, θmin = 2.2 θmax = 30.9, θmin = 2.4
(sin θ/λ)max−1) 0.667 0.667 0.667 0.721 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.04 0.032, 0.068, 1.04 0.039, 0.083, 1.04 0.039, 0.065, 1.22 0.026, 0.055, 1.04
No. of reflections 3275 7231 7402 4422 8721
No. of parameters 131 278 278 141 281
No. of restraints 0 0 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −0.98 1.35, −0.78 2.68, −1.32 1.02, −0.70 1.14, −0.97
  6 7) 8 9
Crystal data
Chemical formula [PdCl2(C10H23PS)2] (C11H25BrPS)2[Pd2Br6] (C11H25BrPS2)2[Pd2Br6] [Pd(C6H14OP)2(C6H15OP)2]
Mr 767.23 1292.76 1386.56 956.82
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 100 100 100 100
a, b, c (Å) 6.9753 (4), 8.7642 (5), 13.0718 (7) 7.8691 (4), 22.7255 (8), 10.5879 (3) 19.3550 (6), 14.8165 (2), 16.3047 (5) 7.56435 (6), 10.09140 (9), 24.13960 (19)
α, β, γ (°) 88.930 (6), 78.488 (6), 79.804 (7) 90, 98.386 (3), 90 90, 125.957 (5), 90 90, 92.7641 (8), 90
V3) 770.56 (8) 1873.18 (13) 3784.8 (3) 1840.55 (3)
Z 1 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.76 9.70 11.42 4.66
Crystal size (mm) 0.17 × 0.06 × 0.02 0.2 × 0.1 × 0.01 0.2 × 0.06 × 0.02 0.10 × 0.08 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).])
Tmin, Tmax 0.754, 0.966 0.495, 1.000 0.327, 1.000 0.650, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 48215, 4550, 3905 52903, 4622, 3740 51432, 5622, 4433 86102, 5558, 4939
Rint 0.052 0.082 0.074 0.047
θ values (°) θmax = 30.8, θmin = 2.4 θmax = 28.3, θmin = 2.1 θmax = 30.9, θmin = 2.6 θmax = 30.9, θmin = 2.2
(sin θ/λ)max−1) 0.721 0.667 0.722 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.059, 1.05 0.042, 0.072, 1.11 0.031, 0.057, 1.04 0.022, 0.041, 1.07
No. of reflections 4550 4622 5622 5558
No. of parameters 143 196 172 185
No. of restraints 0 87 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.29, −0.58 0.71, −0.95 0.97, −1.02 0.47, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Exceptions and special features. For compound 6, two reflections with Δ/σ > 6 were omitted from the refinement; for compound 7, three reflections with Δ/σ = 7–13 were similarly omitted. For compound 7, the tert-butyl groups at C1 and C3 are disordered over two positions; the occupation factors of the isotropically refined minor components were 0.19 (1) at C1 and 0.20 (3) at C3. Appropriate restraints were applied to improve refinement stability; additionally, the isotropic U value of the minor component of C31 had to be fixed to prevent it becoming negative. The dimensions of disordered groups (especially the minor components) should always be inter­preted with caution. Only the major components were considered for the discussion and the figures. For compound 9, the hydrogen atom of the O—H⋯O moiety was refined on two alternative, half-occupied positions (the occupations were fixed; refining them led to values within 1σ of 0.5). There is no evidence (on the basis of U values or residual electron density) that the corresponding oxygen atoms are disordered, and the P—O bond lengths are effectively equal, so that localized P—O and P=O bonds are unlikely.

7. Some comments on the SFAC command

Users of SHELXL will be familiar with the SFAC command, which defines the element types (and implicitly the scattering factors) to be used for each atom in the refinement. Thus the command ‘SFAC C H P SE BR PD’ defines carbon to be element type 1, hydrogen 2, phospho­rus 3, etc., and these numbers are given explicitly for each atom in the refinement (coming immediately after the atom name), e.g.

BR1 5 0.275182 0.581682 0.432225 11.00000 0.01922 0.01540 0.03417 − 0.00115 0.01030 0.00275

where the atom type ‘BR’ is the fifth element of the SFAC command (in this section, long lines of computer text have been split into more than one line).

The commonest convention for a standard order of SFAC elements is: C, then H, then other elements in order of atomic number. However, another possibility is: C, then H, then other elements alphabetically. Clearly, the refinement results will be the same in both cases, as long as the SFAC element numbers are given correctly for each atom. The user can change the SFAC order if required, making sure to change the SFAC numbers accordingly; the obvious danger is that, if errors are made, atoms may be refined with the wrong scattering factors. This is usually recognized easily, because the results will be entirely, and often disastrously, wrong (e.g. in terms of divergent refinement, high R factors, impossibly high or low U values, or major features in the residual electron density). A typical example would be an amine complex of gold, for which the third SFAC element would usually be N according to atomic number but Au alphabetically; erroneously using the scattering factors of nitro­gen to refine a gold atom, or vice versa, would result in nonsense, although the program SHELXL would not give an explicit error message.

In this age of automation, SFAC commands are generally set automatically by the program systems. Thus the Rigaku OD CrysAlis PRO (Rigaku, OD, 2012[Rigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).]) system generates an INS file with an SFAC command corresponding to the ‘atomic number’ option. However, the Autochem option, which solves and refines the structure automatically during and after the data collection, using the Olex2 platform of SHELXL (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), employs the ‘alphabetic’ option (in the version 1.171.43.143a that we currently use). A common first step in refining a structure is thus to extract the atom information from the Olex2 RES file, edit it into the INS file and change the SFAC command or the element type numbers appropriately (if necessary; for many organic structures, e.g. those containing only C, H, N, O, P and S, there is no difference between the two options). Even experienced users occasionally forget to do this, but no permanent harm is done if the error is immediately recognized and corrected. Note added during finalization of the manuscript: Rigaku OD has informed us that the SFAC commands will be made consistent in the next version of the program, using the IUPAC recommendation for chemical formulae (Connelly & Damhus, 2005[Connelly, N. G. & Damhus, T. (2005). Editors. Nomenclature of Inorganic Chemistry, IUPAC Recommendations, Section IR-2.15.3.1, pp. 42-43. London: RSC Publications.]), the ‘alphabetic’ option, which was originally suggested by Hill (1900[Hill, E. A. (1900). J. Am. Chem. Soc. 22, 478-494.]).

The structures reported here were determined some years ago, in an era where SFAC commands were often set by hand, and were re-refined for publication, using the most recent version of SHELXL. When preparing the structure of compound 3 for publication, a curious feature was noticed in the generation of both the figures and the tables; for elements with two letters in the atom symbol, the second letter remained a capital, although both XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]) and the tables program CIFTAB (as implemented in various SHELX platforms) usually convert the second letter automatically to lower case.

checkCIF (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.] and references therein) gave no serious alerts of the type A or B; the solution to the conundrum was found in the list of ‘less serious’ alerts of type G:

PLAT017_ALERT_1_G Check Scattering Type Consistency of BR1 as SE

PLAT017_ALERT_1_G Check Scattering Type Consistency of BR2 as SE

PLAT017_ALERT_1_G Check Scattering Type Consistency of SE1 as BR

PLAT017_ALERT_1_G Check Scattering Type Consistency of SE2 as BR

These were generated because of corresponding inconsistencies in the CIF atom sites:

BR1 Se 0.27518 (3) 0.58168 (3) 0.43222 (3) 0.02212 (11) Uani 1 1 d . . . . .

BR2 Se 0.17265 (3) 0.91841 (3) 0.45811 (3) 0.01627 (10) Uani 1 1 d . . . . .

SE1 Br 0.08503 (3) 0.67520 (3) 0.45392 (3) 0.01664 (10) Uani 1 1 d . . . .

SE2 Br 0.35224 (3) 0.84539 (3) 0.42599 (3) 0.02206 (11) Uani 1 1 d . . . . .

The CIF atom list contains the explicit element symbols rather than the SFAC numbers, and it can thus be seen that the bromine atoms had been refined as selenium and vice versa, because the wrong SFAC numbers had been used in the refinement. Because the scattering factors of the two atom types, with atomic numbers 34 and 35, are not wildly different, the usual symptoms were not as obvious. The SFAC numbers were corrected and the refinement successfully completed. The R value thereby decreased only slightly (by ca. 0.2%), as did the residual electron density.

We conclude: (1) Even experienced users can make mistakes in the use of SFAC. (2) These errors are flagged by checkCIF, but only as ‘ALERT G’ (we feel that the severity should be upgraded to ‘ALERT B’ at least). Note added during finalization of the manuscript: The author of checkCIF, Professor A. L. Spek, has informed us that this change will soon be implemented. (3) Authors should check not only the serious A and B alerts, but also the ‘less serious’ alerts C and G; authors (and we include ourselves here!) have a natural tendency to screen the latter lists less conscientiously. (4) For reasons about which we do not speculate, such errors may be indicated by atom symbols with two capital letters when using XP or CIFTAB.

Supporting information


Computing details top

(tert-Butyldiisopropylphosphine selenide-κSe)dichloridopalladium(II) (1) top
Crystal data top
[PdCl2(C10H23PSe)2]Z = 1
Mr = 683.73F(000) = 344
Triclinic, P1Dx = 1.691 Mg m3
a = 7.9312 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5664 (6) ÅCell parameters from 4517 reflections
c = 10.1483 (7) Åθ = 2.4–29.3°
α = 88.993 (6)°µ = 3.73 mm1
β = 88.010 (6)°T = 100 K
γ = 77.063 (6)°Thin plate, dichroic yellow orange
V = 671.55 (8) Å30.2 × 0.1 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3275 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 1110
Tmin = 0.841, Tmax = 1.000l = 1313
20956 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4792P]
where P = (Fo2 + 2Fc2)/3
3275 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.98 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.0000000.5000000.0000000.01285 (10)
Se10.07012 (4)0.44262 (4)0.22978 (4)0.01727 (11)
P10.29069 (11)0.24483 (11)0.26911 (9)0.01228 (19)
Cl10.17759 (11)0.27541 (10)0.09307 (9)0.0190 (2)
C10.2805 (4)0.2272 (4)0.4510 (3)0.0147 (7)
H10.3853480.1457810.4776930.018*
C110.2856 (5)0.3841 (4)0.5188 (4)0.0203 (8)
H11A0.1800310.4646000.5000050.030*
H11B0.3867890.4223710.4855100.030*
H11C0.2932160.3659970.6142170.030*
C120.1217 (5)0.1681 (5)0.5024 (4)0.0201 (8)
H12A0.1201480.1644580.5989720.030*
H12B0.1270390.0605390.4685810.030*
H12C0.0164100.2413230.4724170.030*
C20.2789 (4)0.0519 (4)0.1971 (4)0.0165 (7)
H20.3279200.0525100.1049640.020*
C210.0930 (5)0.0285 (5)0.1851 (4)0.0223 (8)
H21A0.0961980.0729610.1409890.034*
H21B0.0255790.1171180.1334950.034*
H21C0.0390960.0265970.2733220.034*
C220.3941 (5)0.0906 (4)0.2679 (4)0.0230 (9)
H22A0.3513760.0964250.3592660.034*
H22B0.5133020.0763380.2672430.034*
H22C0.3910170.1898870.2225440.034*
C30.5088 (4)0.2865 (4)0.2197 (3)0.0158 (7)
C310.5749 (5)0.2080 (5)0.0875 (4)0.0213 (8)
H31A0.4863340.2411790.0213830.032*
H31B0.5998280.0911890.0979840.032*
H31C0.6807420.2413740.0585310.032*
C320.6447 (4)0.2221 (5)0.3233 (4)0.0221 (8)
H32A0.7568300.2420500.2932470.033*
H32B0.6549330.1066060.3354410.033*
H32C0.6090300.2764470.4071830.033*
C330.4890 (5)0.4678 (4)0.2038 (4)0.0229 (8)
H33A0.4426470.5206610.2863710.034*
H33B0.4094940.5076330.1327100.034*
H33C0.6022370.4911910.1819930.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00951 (19)0.0118 (2)0.0158 (2)0.00070 (14)0.00103 (14)0.00080 (15)
Se10.01435 (19)0.0168 (2)0.0165 (2)0.00561 (14)0.00110 (14)0.00058 (15)
P10.0096 (4)0.0118 (4)0.0143 (4)0.0003 (3)0.0011 (3)0.0002 (3)
Cl10.0177 (4)0.0153 (4)0.0202 (5)0.0042 (3)0.0011 (3)0.0009 (3)
C10.0154 (17)0.0149 (18)0.0130 (17)0.0015 (14)0.0004 (14)0.0022 (14)
C110.0192 (19)0.023 (2)0.0169 (19)0.0019 (16)0.0009 (15)0.0029 (15)
C120.0211 (19)0.022 (2)0.0168 (19)0.0048 (16)0.0016 (15)0.0004 (15)
C20.0150 (17)0.0149 (18)0.0175 (19)0.0008 (14)0.0014 (14)0.0003 (14)
C210.022 (2)0.024 (2)0.023 (2)0.0087 (16)0.0015 (16)0.0014 (16)
C220.026 (2)0.0118 (18)0.029 (2)0.0001 (15)0.0001 (17)0.0015 (16)
C30.0110 (17)0.0223 (19)0.0141 (18)0.0045 (14)0.0016 (13)0.0001 (14)
C310.0179 (19)0.027 (2)0.019 (2)0.0064 (16)0.0032 (15)0.0019 (16)
C320.0117 (17)0.030 (2)0.025 (2)0.0054 (16)0.0002 (15)0.0011 (17)
C330.024 (2)0.020 (2)0.026 (2)0.0088 (16)0.0010 (16)0.0018 (16)
Geometric parameters (Å, º) top
Pd1—Cl1i2.3099 (8)C2—H21.0000
Pd1—Cl12.3099 (8)C21—H21A0.9800
Pd1—Se1i2.4322 (4)C21—H21B0.9800
Pd1—Se12.4322 (4)C21—H21C0.9800
Se1—P12.1881 (9)C22—H22A0.9800
P1—C21.842 (4)C22—H22B0.9800
P1—C11.850 (3)C22—H22C0.9800
P1—C31.892 (3)C3—C331.532 (5)
C1—C111.530 (5)C3—C311.534 (5)
C1—C121.531 (5)C3—C321.538 (5)
C1—H11.0000C31—H31A0.9800
C11—H11A0.9800C31—H31B0.9800
C11—H11B0.9800C31—H31C0.9800
C11—H11C0.9800C32—H32A0.9800
C12—H12A0.9800C32—H32B0.9800
C12—H12B0.9800C32—H32C0.9800
C12—H12C0.9800C33—H33A0.9800
C2—C221.535 (5)C33—H33B0.9800
C2—C211.541 (5)C33—H33C0.9800
Cl1i—Pd1—Cl1180.0C2—C21—H21A109.5
Cl1i—Pd1—Se1i98.63 (2)C2—C21—H21B109.5
Cl1—Pd1—Se1i81.37 (2)H21A—C21—H21B109.5
Cl1i—Pd1—Se181.37 (2)C2—C21—H21C109.5
Cl1—Pd1—Se198.63 (2)H21A—C21—H21C109.5
Se1i—Pd1—Se1180.0H21B—C21—H21C109.5
P1—Se1—Pd1116.92 (3)C2—C22—H22A109.5
C2—P1—C1109.10 (16)C2—C22—H22B109.5
C2—P1—C3107.77 (16)H22A—C22—H22B109.5
C1—P1—C3107.62 (16)C2—C22—H22C109.5
C2—P1—Se1114.92 (11)H22A—C22—H22C109.5
C1—P1—Se1102.53 (11)H22B—C22—H22C109.5
C3—P1—Se1114.48 (12)C33—C3—C31108.2 (3)
C11—C1—C12109.5 (3)C33—C3—C32109.4 (3)
C11—C1—P1112.4 (2)C31—C3—C32108.1 (3)
C12—C1—P1112.7 (2)C33—C3—P1108.7 (2)
C11—C1—H1107.3C31—C3—P1110.8 (2)
C12—C1—H1107.3C32—C3—P1111.5 (2)
P1—C1—H1107.3C3—C31—H31A109.5
C1—C11—H11A109.5C3—C31—H31B109.5
C1—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C3—C31—H31C109.5
C1—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C3—C32—H32A109.5
C1—C12—H12A109.5C3—C32—H32B109.5
C1—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12B109.5C3—C32—H32C109.5
C1—C12—H12C109.5H32A—C32—H32C109.5
H12A—C12—H12C109.5H32B—C32—H32C109.5
H12B—C12—H12C109.5C3—C33—H33A109.5
C22—C2—C21111.5 (3)C3—C33—H33B109.5
C22—C2—P1112.1 (3)H33A—C33—H33B109.5
C21—C2—P1113.9 (2)C3—C33—H33C109.5
C22—C2—H2106.2H33A—C33—H33C109.5
C21—C2—H2106.2H33B—C33—H33C109.5
P1—C2—H2106.2
Cl1i—Pd1—Se1—P1169.36 (4)Se1—P1—C2—C22158.3 (2)
Cl1—Pd1—Se1—P110.64 (4)C1—P1—C2—C2184.0 (3)
Pd1—Se1—P1—C255.00 (14)C3—P1—C2—C21159.4 (3)
Pd1—Se1—P1—C1173.22 (11)Se1—P1—C2—C2130.5 (3)
Pd1—Se1—P1—C370.55 (13)C2—P1—C3—C33147.4 (3)
C2—P1—C1—C11178.8 (2)C1—P1—C3—C3395.1 (3)
C3—P1—C1—C1164.6 (3)Se1—P1—C3—C3318.2 (3)
Se1—P1—C1—C1156.5 (3)C2—P1—C3—C3128.6 (3)
C2—P1—C1—C1254.5 (3)C1—P1—C3—C31146.1 (3)
C3—P1—C1—C12171.2 (2)Se1—P1—C3—C31100.6 (2)
Se1—P1—C1—C1267.8 (2)C2—P1—C3—C3291.9 (3)
C1—P1—C2—C2243.8 (3)C1—P1—C3—C3225.7 (3)
C3—P1—C2—C2272.8 (3)Se1—P1—C3—C32138.9 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl11.002.853.501 (4)123
C31—H31A···Cl10.982.703.629 (4)158
C21—H21B···Se10.983.073.547 (4)112
C11—H11A···Se10.982.933.419 (4)112
C12—H12C···Se10.983.053.574 (4)115
(Di-tert-butylisopropylphosphine selenide-κSe)dichloridopalladium(II) (2) top
Crystal data top
[PdCl2(C11H25PSe)2]F(000) = 1440
Mr = 711.78Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.3744 (4) ÅCell parameters from 15039 reflections
b = 13.2969 (2) Åθ = 2.1–30.8°
c = 16.0503 (3) ŵ = 3.44 mm1
β = 117.306 (3)°T = 100 K
V = 2915.56 (12) Å3Plate, dichroic red orange
Z = 40.20 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7231 independent reflections
Radiation source: Enhance (Mo) X-ray Source5841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 1717
Tmin = 0.713, Tmax = 1.000l = 2121
134870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0234P)2 + 4.2293P]
where P = (Fo2 + 2Fc2)/3
7231 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.21631 (2)0.75350 (2)0.43474 (2)0.01454 (6)
Cl10.27119 (6)0.59216 (5)0.43300 (6)0.02429 (16)
Cl20.16916 (5)0.91456 (5)0.45175 (5)0.02071 (15)
Se10.08372 (2)0.67680 (2)0.45622 (2)0.01735 (7)
Se20.34701 (2)0.84936 (2)0.42322 (2)0.02034 (7)
P10.05382 (5)0.71107 (5)0.33209 (5)0.01336 (14)
P20.43631 (6)0.77169 (6)0.36886 (5)0.02029 (17)
C10.1433 (2)0.6199 (2)0.3408 (2)0.0179 (6)
C110.1219 (2)0.5134 (2)0.3182 (2)0.0234 (7)
H11A0.1607090.4646880.3329980.035*
H11B0.0521560.4985360.3558330.035*
H11C0.1393250.5089540.2514810.035*
C120.1301 (2)0.6188 (2)0.4422 (2)0.0257 (7)
H12A0.1767670.5715500.4464590.039*
H12B0.1418400.6863860.4591830.039*
H12C0.0631980.5977850.4851750.039*
C130.2503 (2)0.6480 (2)0.2754 (2)0.0259 (7)
H13A0.2601770.6516400.2106220.039*
H13B0.2651270.7134000.2939230.039*
H13C0.2937880.5967180.2798340.039*
C20.0416 (2)0.6943 (2)0.2212 (2)0.0176 (6)
C210.0215 (2)0.6025 (2)0.2280 (2)0.0228 (7)
H21A0.0310780.5986830.1717950.034*
H21B0.0114470.5413260.2329440.034*
H21C0.0851600.6086710.2836180.034*
C220.0092 (2)0.7880 (2)0.2074 (2)0.0205 (6)
H22A0.0705880.8000340.2643430.031*
H22B0.0337870.8464680.1946140.031*
H22C0.0232700.7769570.1543650.031*
C230.1426 (2)0.6809 (2)0.1351 (2)0.0222 (6)
H23A0.1345370.6796900.0779600.033*
H23B0.1853380.7369720.1319250.033*
H23C0.1719140.6174630.1407300.033*
C30.0861 (2)0.8448 (2)0.3365 (2)0.0173 (6)
H30.0291170.8839400.3395300.021*
C310.0912 (3)0.8716 (2)0.4271 (2)0.0264 (7)
H31A0.0880460.9447890.4350290.040*
H31B0.0359500.8405290.4806120.040*
H31C0.1527470.8465440.4234590.040*
C320.1759 (2)0.8883 (2)0.2515 (2)0.0241 (7)
H32A0.2351940.8542740.2449310.036*
H32B0.1685940.8779500.1945520.036*
H32C0.1809190.9605080.2609240.036*
C40.5372 (3)0.8675 (3)0.3899 (3)0.0310 (8)
C410.6073 (3)0.8667 (3)0.4940 (3)0.0420 (10)
H41A0.6558580.9202980.5083050.063*
H41B0.6406620.8015280.5112550.063*
H41C0.5707420.8777510.5296450.063*
C420.5944 (3)0.8430 (3)0.3349 (3)0.0440 (10)
H42A0.6451490.8940250.3483490.066*
H42B0.5494280.8427770.2675420.066*
H42C0.6250430.7767030.3537120.066*
C430.4951 (3)0.9741 (3)0.3629 (3)0.0359 (8)
H43A0.4539500.9892100.3933250.054*
H43B0.4555360.9783370.2947320.054*
H43C0.5487951.0227830.3835130.054*
C50.4908 (3)0.6542 (3)0.4317 (2)0.0287 (7)
H50.4382870.6023170.4024170.034*
C510.5791 (3)0.6127 (3)0.4210 (3)0.0400 (9)
H51A0.6360180.6563690.4548630.060*
H51B0.5630100.6110080.3544590.060*
H51C0.5943830.5445780.4469840.060*
C520.5152 (3)0.6556 (3)0.5356 (2)0.0375 (9)
H52A0.5351910.5880880.5620990.056*
H52B0.4573330.6764260.5418160.056*
H52C0.5687610.7030350.5693210.056*
C60.3601 (3)0.7436 (3)0.2415 (2)0.0294 (7)
C610.4087 (3)0.6709 (3)0.2026 (3)0.0425 (10)
H61A0.4190720.6060820.2349690.064*
H61B0.4718330.6983480.2125230.064*
H61C0.3664550.6612310.1353720.064*
C620.2628 (3)0.6983 (3)0.2264 (3)0.0362 (9)
H62A0.2226190.6836610.1595860.054*
H62B0.2283730.7461020.2472120.054*
H62C0.2750050.6358720.2625180.054*
C630.3368 (3)0.8428 (3)0.1851 (2)0.0372 (9)
H63A0.2896630.8296210.1196450.056*
H63B0.3971660.8703190.1876770.056*
H63C0.3089140.8913800.2121000.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01474 (11)0.01251 (10)0.01476 (11)0.00092 (8)0.00538 (9)0.00004 (8)
Cl10.0229 (4)0.0153 (3)0.0320 (4)0.0039 (3)0.0103 (3)0.0004 (3)
Cl20.0209 (4)0.0151 (3)0.0267 (4)0.0009 (3)0.0115 (3)0.0021 (3)
Se10.01708 (15)0.01778 (14)0.01473 (14)0.00054 (11)0.00516 (12)0.00452 (11)
Se20.02171 (16)0.01730 (15)0.02555 (17)0.00316 (12)0.01387 (14)0.00411 (12)
P10.0149 (4)0.0115 (3)0.0129 (3)0.0003 (3)0.0056 (3)0.0005 (3)
P20.0180 (4)0.0242 (4)0.0187 (4)0.0048 (3)0.0084 (3)0.0027 (3)
C10.0193 (15)0.0139 (14)0.0196 (15)0.0036 (11)0.0081 (13)0.0002 (11)
C110.0243 (17)0.0143 (14)0.0305 (18)0.0033 (12)0.0118 (15)0.0015 (12)
C120.0312 (18)0.0243 (16)0.0279 (17)0.0056 (13)0.0190 (16)0.0021 (13)
C130.0201 (16)0.0254 (16)0.0333 (18)0.0030 (13)0.0133 (15)0.0013 (14)
C20.0189 (15)0.0191 (15)0.0143 (14)0.0008 (11)0.0071 (12)0.0013 (11)
C210.0225 (16)0.0265 (17)0.0196 (16)0.0024 (13)0.0099 (14)0.0026 (13)
C220.0240 (16)0.0221 (15)0.0169 (15)0.0010 (12)0.0106 (13)0.0020 (12)
C230.0211 (16)0.0264 (16)0.0169 (15)0.0001 (13)0.0068 (13)0.0001 (12)
C30.0200 (15)0.0127 (13)0.0203 (15)0.0007 (11)0.0101 (13)0.0007 (11)
C310.0347 (19)0.0201 (16)0.0276 (17)0.0025 (14)0.0171 (16)0.0037 (13)
C320.0247 (17)0.0186 (15)0.0280 (17)0.0033 (13)0.0112 (15)0.0034 (13)
C40.0270 (18)0.0299 (18)0.039 (2)0.0024 (14)0.0177 (17)0.0086 (15)
C410.026 (2)0.040 (2)0.048 (2)0.0067 (16)0.0070 (18)0.0027 (18)
C420.038 (2)0.044 (2)0.062 (3)0.0066 (18)0.033 (2)0.011 (2)
C430.036 (2)0.0285 (19)0.046 (2)0.0031 (15)0.0219 (19)0.0064 (16)
C50.0279 (18)0.0256 (17)0.0322 (19)0.0050 (14)0.0134 (16)0.0062 (14)
C510.035 (2)0.034 (2)0.051 (2)0.0194 (17)0.0195 (19)0.0160 (18)
C520.036 (2)0.041 (2)0.031 (2)0.0045 (17)0.0115 (17)0.0150 (16)
C60.0308 (18)0.0340 (19)0.0226 (17)0.0049 (15)0.0116 (15)0.0014 (14)
C610.046 (2)0.049 (2)0.034 (2)0.0139 (19)0.0201 (19)0.0064 (18)
C620.030 (2)0.043 (2)0.0292 (19)0.0094 (17)0.0088 (16)0.0113 (16)
C630.044 (2)0.044 (2)0.0217 (18)0.0098 (18)0.0131 (17)0.0049 (16)
Geometric parameters (Å, º) top
Pd1—Cl12.3100 (7)C31—H31A0.9800
Pd1—Cl22.3169 (7)C31—H31B0.9800
Pd1—Se12.4411 (4)C31—H31C0.9800
Pd1—Se22.4573 (4)C32—H32A0.9800
Se1—P12.1870 (8)C32—H32B0.9800
Se2—P22.1936 (8)C32—H32C0.9800
P1—C31.856 (3)C4—C411.517 (5)
P1—C21.886 (3)C4—C431.535 (5)
P1—C11.887 (3)C4—C421.541 (5)
P2—C51.840 (3)C41—H41A0.9800
P2—C61.869 (3)C41—H41B0.9800
P2—C41.913 (4)C41—H41C0.9800
C1—C111.534 (4)C42—H42A0.9800
C1—C131.537 (4)C42—H42B0.9800
C1—C121.544 (4)C42—H42C0.9800
C11—H11A0.9800C43—H43A0.9800
C11—H11B0.9800C43—H43B0.9800
C11—H11C0.9800C43—H43C0.9800
C12—H12A0.9800C5—C521.532 (5)
C12—H12B0.9800C5—C511.547 (5)
C12—H12C0.9800C5—H51.0000
C13—H13A0.9800C51—H51A0.9800
C13—H13B0.9800C51—H51B0.9800
C13—H13C0.9800C51—H51C0.9800
C2—C211.532 (4)C52—H52A0.9800
C2—C221.540 (4)C52—H52B0.9800
C2—C231.543 (4)C52—H52C0.9800
C21—H21A0.9800C6—C611.520 (5)
C21—H21B0.9800C6—C621.524 (5)
C21—H21C0.9800C6—C631.547 (5)
C22—H22A0.9800C61—H61A0.9800
C22—H22B0.9800C61—H61B0.9800
C22—H22C0.9800C61—H61C0.9800
C23—H23A0.9800C62—H62A0.9800
C23—H23B0.9800C62—H62B0.9800
C23—H23C0.9800C62—H62C0.9800
C3—C311.534 (4)C63—H63A0.9800
C3—C321.541 (4)C63—H63B0.9800
C3—H31.0000C63—H63C0.9800
Cl1—Pd1—Cl2174.61 (3)H31A—C31—H31B109.5
Cl1—Pd1—Se186.97 (2)C3—C31—H31C109.5
Cl2—Pd1—Se192.46 (2)H31A—C31—H31C109.5
Cl1—Pd1—Se299.50 (2)H31B—C31—H31C109.5
Cl2—Pd1—Se280.81 (2)C3—C32—H32A109.5
Se1—Pd1—Se2172.772 (14)C3—C32—H32B109.5
P1—Se1—Pd1107.78 (2)H32A—C32—H32B109.5
P2—Se2—Pd1117.93 (3)C3—C32—H32C109.5
C3—P1—C2107.01 (13)H32A—C32—H32C109.5
C3—P1—C1113.37 (13)H32B—C32—H32C109.5
C2—P1—C1112.67 (13)C41—C4—C43108.2 (3)
C3—P1—Se1109.18 (10)C41—C4—C42109.0 (3)
C2—P1—Se1111.22 (9)C43—C4—C42108.1 (3)
C1—P1—Se1103.40 (10)C41—C4—P2107.4 (2)
C5—P2—C6109.22 (16)C43—C4—P2111.2 (2)
C5—P2—C4109.91 (16)C42—C4—P2112.8 (3)
C6—P2—C4112.17 (16)C4—C41—H41A109.5
C5—P2—Se2113.08 (11)C4—C41—H41B109.5
C6—P2—Se2109.66 (11)H41A—C41—H41B109.5
C4—P2—Se2102.73 (11)C4—C41—H41C109.5
C11—C1—C13109.9 (2)H41A—C41—H41C109.5
C11—C1—C12107.5 (2)H41B—C41—H41C109.5
C13—C1—C12107.7 (3)C4—C42—H42A109.5
C11—C1—P1109.5 (2)C4—C42—H42B109.5
C13—C1—P1112.4 (2)H42A—C42—H42B109.5
C12—C1—P1109.6 (2)C4—C42—H42C109.5
C1—C11—H11A109.5H42A—C42—H42C109.5
C1—C11—H11B109.5H42B—C42—H42C109.5
H11A—C11—H11B109.5C4—C43—H43A109.5
C1—C11—H11C109.5C4—C43—H43B109.5
H11A—C11—H11C109.5H43A—C43—H43B109.5
H11B—C11—H11C109.5C4—C43—H43C109.5
C1—C12—H12A109.5H43A—C43—H43C109.5
C1—C12—H12B109.5H43B—C43—H43C109.5
H12A—C12—H12B109.5C52—C5—C51109.6 (3)
C1—C12—H12C109.5C52—C5—P2114.2 (2)
H12A—C12—H12C109.5C51—C5—P2116.3 (2)
H12B—C12—H12C109.5C52—C5—H5105.2
C1—C13—H13A109.5C51—C5—H5105.2
C1—C13—H13B109.5P2—C5—H5105.2
H13A—C13—H13B109.5C5—C51—H51A109.5
C1—C13—H13C109.5C5—C51—H51B109.5
H13A—C13—H13C109.5H51A—C51—H51B109.5
H13B—C13—H13C109.5C5—C51—H51C109.5
C21—C2—C22107.9 (2)H51A—C51—H51C109.5
C21—C2—C23108.4 (2)H51B—C51—H51C109.5
C22—C2—C23109.5 (2)C5—C52—H52A109.5
C21—C2—P1111.1 (2)C5—C52—H52B109.5
C22—C2—P1108.51 (19)H52A—C52—H52B109.5
C23—C2—P1111.4 (2)C5—C52—H52C109.5
C2—C21—H21A109.5H52A—C52—H52C109.5
C2—C21—H21B109.5H52B—C52—H52C109.5
H21A—C21—H21B109.5C61—C6—C62108.3 (3)
C2—C21—H21C109.5C61—C6—C63109.1 (3)
H21A—C21—H21C109.5C62—C6—C63107.3 (3)
H21B—C21—H21C109.5C61—C6—P2113.4 (3)
C2—C22—H22A109.5C62—C6—P2109.3 (2)
C2—C22—H22B109.5C63—C6—P2109.3 (2)
H22A—C22—H22B109.5C6—C61—H61A109.5
C2—C22—H22C109.5C6—C61—H61B109.5
H22A—C22—H22C109.5H61A—C61—H61B109.5
H22B—C22—H22C109.5C6—C61—H61C109.5
C2—C23—H23A109.5H61A—C61—H61C109.5
C2—C23—H23B109.5H61B—C61—H61C109.5
H23A—C23—H23B109.5C6—C62—H62A109.5
C2—C23—H23C109.5C6—C62—H62B109.5
H23A—C23—H23C109.5H62A—C62—H62B109.5
H23B—C23—H23C109.5C6—C62—H62C109.5
C31—C3—C32109.7 (2)H62A—C62—H62C109.5
C31—C3—P1112.9 (2)H62B—C62—H62C109.5
C32—C3—P1118.2 (2)C6—C63—H63A109.5
C31—C3—H3104.9C6—C63—H63B109.5
C32—C3—H3104.9H63A—C63—H63B109.5
P1—C3—H3104.9C6—C63—H63C109.5
C3—C31—H31A109.5H63A—C63—H63C109.5
C3—C31—H31B109.5H63B—C63—H63C109.5
Cl1—Pd1—Se1—P1115.18 (3)C1—P1—C3—C3159.3 (3)
Cl2—Pd1—Se1—P170.19 (3)Se1—P1—C3—C3155.4 (2)
Cl1—Pd1—Se2—P220.17 (3)C2—P1—C3—C3254.2 (3)
Cl2—Pd1—Se2—P2165.29 (3)C1—P1—C3—C3270.6 (3)
Pd1—Se1—P1—C374.49 (10)Se1—P1—C3—C32174.7 (2)
Pd1—Se1—P1—C243.37 (10)C5—P2—C4—C4145.7 (3)
Pd1—Se1—P1—C1164.54 (9)C6—P2—C4—C41167.4 (2)
Pd1—Se2—P2—C553.52 (13)Se2—P2—C4—C4174.9 (2)
Pd1—Se2—P2—C668.63 (12)C5—P2—C4—C43163.9 (2)
Pd1—Se2—P2—C4171.93 (11)C6—P2—C4—C4374.4 (3)
C3—P1—C1—C11169.5 (2)Se2—P2—C4—C4343.3 (3)
C2—P1—C1—C1147.7 (2)C5—P2—C4—C4274.4 (3)
Se1—P1—C1—C1172.4 (2)C6—P2—C4—C4247.3 (3)
C3—P1—C1—C1347.0 (3)Se2—P2—C4—C42165.0 (2)
C2—P1—C1—C1374.7 (2)C6—P2—C5—C52154.2 (3)
Se1—P1—C1—C13165.09 (19)C4—P2—C5—C5282.4 (3)
C3—P1—C1—C1272.8 (2)Se2—P2—C5—C5231.8 (3)
C2—P1—C1—C12165.5 (2)C6—P2—C5—C5176.6 (3)
Se1—P1—C1—C1245.3 (2)C4—P2—C5—C5146.9 (3)
C3—P1—C2—C21158.0 (2)Se2—P2—C5—C51161.0 (2)
C1—P1—C2—C2176.8 (2)C5—P2—C6—C6143.2 (3)
Se1—P1—C2—C2138.8 (2)C4—P2—C6—C6178.9 (3)
C3—P1—C2—C2239.5 (2)Se2—P2—C6—C61167.7 (2)
C1—P1—C2—C22164.73 (19)C5—P2—C6—C6277.6 (3)
Se1—P1—C2—C2279.7 (2)C4—P2—C6—C62160.2 (2)
C3—P1—C2—C2381.1 (2)Se2—P2—C6—C6246.8 (3)
C1—P1—C2—C2344.2 (2)C5—P2—C6—C63165.2 (2)
Se1—P1—C2—C23159.75 (18)C4—P2—C6—C6343.1 (3)
C2—P1—C3—C31175.8 (2)Se2—P2—C6—C6370.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Se10.983.083.633 (3)117
C12—H12C···Se10.982.723.282 (3)117
C21—H21C···Cl10.982.773.741 (3)170
C21—H21C···Se10.982.923.478 (3)117
C3—H3···Cl21.002.773.608 (3)142
C31—H31B···Se10.982.993.606 (3)122
C41—H41C···Se20.983.083.632 (4)117
C43—H43A···Se20.982.673.300 (4)123
C5—H5···Cl11.002.833.484 (4)124
C51—H51C···Cl1i0.982.763.642 (3)150
C52—H52B···Cl10.982.813.439 (4)123
C52—H52B···Se20.982.973.507 (4)116
C62—H62B···Se20.982.913.456 (4)116
C62—H62C···Cl10.982.823.552 (4)132
C63—H63A···Se1ii0.983.053.948 (4)153
C63—H63A···Pd1ii0.982.873.793 (4)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2.
Dibromido(di-tert-butylisopropylphosphine selenide-κSe)palladium(II) (3) top
Crystal data top
[PdBr2(C11H25PSe)2]F(000) = 1584
Mr = 800.70Dx = 1.781 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.3561 (6) ÅCell parameters from 11858 reflections
b = 13.4695 (4) Åθ = 2.1–30.8°
c = 16.1371 (6) ŵ = 5.85 mm1
β = 116.558 (5)°T = 100 K
V = 2985.6 (2) Å3Plate, dichroic orange yellow
Z = 40.18 × 0.05 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7402 independent reflections
Radiation source: fine-focus sealed tube5854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 1717
Tmin = 0.419, Tmax = 0.892l = 2121
120046 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0262P)2 + 9.8278P]
where P = (Fo2 + 2Fc2)/3
7402 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 2.68 e Å3
0 restraintsΔρmin = 1.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.21918 (2)0.75073 (2)0.43434 (2)0.01287 (7)
Br10.27518 (3)0.58168 (3)0.43222 (3)0.02354 (11)
Br20.17265 (3)0.91841 (3)0.45811 (3)0.01765 (9)
Se10.08502 (3)0.67520 (3)0.45392 (3)0.01525 (9)
Se20.35225 (3)0.84539 (3)0.42600 (3)0.02064 (10)
P10.05189 (7)0.71084 (8)0.33294 (7)0.0120 (2)
P20.44090 (8)0.77472 (9)0.36726 (8)0.0192 (2)
C10.1407 (3)0.6195 (3)0.3414 (3)0.0182 (9)
C110.1193 (3)0.5150 (3)0.3172 (3)0.0240 (10)
H11A0.1568400.4661560.3328980.036*
H11B0.0496590.5008100.3525190.036*
H11C0.1377870.5114470.2507670.036*
C120.1279 (3)0.6164 (4)0.4421 (3)0.0257 (10)
H12A0.1754270.5703680.4458690.039*
H12B0.1382520.6829630.4606100.039*
H12C0.0618990.5939310.4836850.039*
C130.2468 (3)0.6477 (4)0.2783 (3)0.0261 (10)
H13A0.2565850.6527860.2141770.039*
H13B0.2615270.7116890.2980980.039*
H13C0.2901320.5965870.2824830.039*
C20.0403 (3)0.6968 (3)0.2225 (3)0.0161 (8)
C210.0218 (3)0.6064 (3)0.2255 (3)0.0207 (9)
H21A0.0308840.6046830.1691730.031*
H21B0.0111400.5456540.2295740.031*
H21C0.0854170.6112260.2798420.031*
C220.0110 (3)0.7902 (3)0.2100 (3)0.0200 (9)
H22A0.0731630.7995980.2652120.030*
H22B0.0305080.8484000.2013910.030*
H22C0.0228350.7818990.1555870.030*
C230.1407 (3)0.6866 (4)0.1375 (3)0.0223 (9)
H23A0.1324140.6878640.0807290.033*
H23B0.1825750.7418590.1367220.033*
H23C0.1707130.6236660.1412510.033*
C30.0841 (3)0.8417 (3)0.3399 (3)0.0160 (8)
H30.0274670.8808200.3427190.019*
C310.0892 (4)0.8665 (4)0.4308 (3)0.0270 (10)
H31A0.0865660.9386820.4393880.041*
H31B0.0340740.8357100.4829640.041*
H31C0.1502800.8409840.4278940.041*
C320.1734 (3)0.8863 (3)0.2577 (3)0.0235 (10)
H32A0.2323440.8514600.2507260.035*
H32B0.1658690.8788960.2008510.035*
H32C0.1788650.9568970.2693060.035*
C40.5400 (3)0.8700 (4)0.3894 (4)0.0290 (11)
C410.6093 (4)0.8676 (5)0.4926 (4)0.0457 (15)
H41A0.6564640.9218320.5077200.069*
H41B0.6438570.8039250.5081910.069*
H41C0.5721090.8753520.5281700.069*
C420.5960 (5)0.8510 (5)0.3324 (5)0.0551 (17)
H42A0.6420490.9053790.3423080.083*
H42B0.5500020.8472800.2664780.083*
H42C0.6317090.7882330.3519250.083*
C430.4983 (4)0.9747 (4)0.3662 (4)0.0401 (13)
H43A0.4606520.9890640.4002970.060*
H43B0.4558550.9796730.2994790.060*
H43C0.5516661.0226340.3838090.060*
C50.4953 (3)0.6558 (3)0.4234 (3)0.0241 (10)
H50.4417910.6058980.3949960.029*
C510.5784 (4)0.6157 (4)0.4052 (4)0.0397 (14)
H51A0.6370910.6555260.4395500.060*
H51B0.5599360.6195230.3387620.060*
H51C0.5913910.5464340.4256040.060*
C520.5245 (4)0.6523 (4)0.5272 (3)0.0385 (13)
H52A0.5381560.5834560.5489870.058*
H52B0.4711590.6782180.5385510.058*
H52C0.5828480.6928220.5606110.058*
C60.3644 (4)0.7522 (4)0.2406 (3)0.0287 (11)
C610.4136 (5)0.6876 (5)0.1969 (4)0.0529 (18)
H61A0.4279360.6223480.2269770.079*
H61B0.4743230.7191510.2049130.079*
H61C0.3702280.6795860.1307340.079*
C620.2698 (4)0.7024 (5)0.2255 (4)0.0472 (15)
H62A0.2271240.6966040.1589510.071*
H62B0.2374280.7423200.2544500.071*
H62C0.2836320.6360840.2534880.071*
C630.3361 (4)0.8524 (4)0.1882 (4)0.0455 (15)
H63A0.2857660.8411350.1247480.068*
H63B0.3936300.8818760.1864180.068*
H63C0.3111190.8975750.2200920.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01204 (15)0.01246 (14)0.01323 (14)0.00053 (11)0.00486 (12)0.00056 (12)
Br10.0192 (2)0.0154 (2)0.0342 (3)0.00275 (17)0.0103 (2)0.00115 (18)
Br20.0166 (2)0.01380 (19)0.0229 (2)0.00086 (16)0.00917 (17)0.00232 (16)
Se10.0140 (2)0.0174 (2)0.01274 (19)0.00010 (16)0.00447 (16)0.00418 (16)
Se20.0205 (2)0.0203 (2)0.0266 (2)0.00533 (18)0.01539 (19)0.00853 (18)
P10.0118 (5)0.0126 (5)0.0118 (5)0.0001 (4)0.0054 (4)0.0009 (4)
P20.0163 (5)0.0234 (6)0.0195 (6)0.0023 (4)0.0094 (5)0.0018 (4)
C10.018 (2)0.015 (2)0.022 (2)0.0022 (17)0.0094 (18)0.0017 (17)
C110.025 (2)0.014 (2)0.036 (3)0.0052 (18)0.016 (2)0.0000 (19)
C120.028 (3)0.030 (3)0.028 (2)0.003 (2)0.020 (2)0.005 (2)
C130.018 (2)0.025 (2)0.034 (3)0.0013 (19)0.011 (2)0.001 (2)
C20.016 (2)0.020 (2)0.0115 (19)0.0045 (17)0.0054 (16)0.0004 (16)
C210.022 (2)0.024 (2)0.016 (2)0.0012 (18)0.0093 (19)0.0020 (17)
C220.018 (2)0.029 (2)0.013 (2)0.0025 (18)0.0063 (17)0.0001 (17)
C230.018 (2)0.029 (2)0.016 (2)0.0013 (19)0.0037 (18)0.0045 (18)
C30.018 (2)0.014 (2)0.016 (2)0.0003 (16)0.0069 (17)0.0009 (16)
C310.033 (3)0.022 (2)0.031 (3)0.005 (2)0.019 (2)0.001 (2)
C320.023 (2)0.018 (2)0.028 (2)0.0042 (18)0.011 (2)0.0040 (18)
C40.021 (2)0.031 (3)0.040 (3)0.000 (2)0.018 (2)0.002 (2)
C410.025 (3)0.045 (4)0.046 (3)0.013 (3)0.003 (3)0.007 (3)
C420.044 (4)0.056 (4)0.082 (5)0.005 (3)0.044 (4)0.000 (4)
C430.034 (3)0.034 (3)0.053 (4)0.002 (2)0.020 (3)0.013 (3)
C50.025 (2)0.025 (2)0.024 (2)0.0012 (19)0.013 (2)0.0006 (19)
C510.035 (3)0.042 (3)0.045 (3)0.024 (3)0.020 (3)0.019 (3)
C520.045 (3)0.039 (3)0.031 (3)0.002 (3)0.016 (3)0.008 (2)
C60.028 (3)0.039 (3)0.019 (2)0.005 (2)0.010 (2)0.002 (2)
C610.050 (4)0.078 (5)0.026 (3)0.023 (3)0.013 (3)0.009 (3)
C620.045 (4)0.061 (4)0.031 (3)0.015 (3)0.013 (3)0.015 (3)
C630.045 (4)0.046 (4)0.031 (3)0.013 (3)0.004 (3)0.004 (3)
Geometric parameters (Å, º) top
Pd1—Br12.4395 (5)C31—H31A0.9800
Pd1—Se12.4416 (5)C31—H31B0.9800
Pd1—Br22.4503 (5)C31—H31C0.9800
Pd1—Se22.4628 (5)C32—H32A0.9800
Se1—P12.1890 (11)C32—H32B0.9800
Se2—P22.1935 (12)C32—H32C0.9800
P1—C31.847 (4)C4—C411.524 (7)
P1—C21.879 (4)C4—C431.524 (7)
P1—C11.886 (4)C4—C421.536 (7)
P2—C51.846 (5)C41—H41A0.9800
P2—C61.871 (5)C41—H41B0.9800
P2—C41.899 (5)C41—H41C0.9800
C1—C111.534 (6)C42—H42A0.9800
C1—C131.534 (6)C42—H42B0.9800
C1—C121.549 (6)C42—H42C0.9800
C11—H11A0.9800C43—H43A0.9800
C11—H11B0.9800C43—H43B0.9800
C11—H11C0.9800C43—H43C0.9800
C12—H12A0.9800C5—C521.529 (6)
C12—H12B0.9800C5—C511.530 (6)
C12—H12C0.9800C5—H51.0000
C13—H13A0.9800C51—H51A0.9800
C13—H13B0.9800C51—H51B0.9800
C13—H13C0.9800C51—H51C0.9800
C2—C211.534 (6)C52—H52A0.9800
C2—C221.544 (6)C52—H52B0.9800
C2—C231.544 (6)C52—H52C0.9800
C21—H21A0.9800C6—C611.517 (7)
C21—H21B0.9800C6—C621.517 (7)
C21—H21C0.9800C6—C631.549 (7)
C22—H22A0.9800C61—H61A0.9800
C22—H22B0.9800C61—H61B0.9800
C22—H22C0.9800C61—H61C0.9800
C23—H23A0.9800C62—H62A0.9800
C23—H23B0.9800C62—H62B0.9800
C23—H23C0.9800C62—H62C0.9800
C3—C321.541 (6)C63—H63A0.9800
C3—C311.541 (6)C63—H63B0.9800
C3—H31.0000C63—H63C0.9800
Br1—Pd1—Se186.332 (18)H31A—C31—H31B109.5
Br1—Pd1—Br2172.66 (2)C3—C31—H31C109.5
Se1—Pd1—Br292.395 (17)H31A—C31—H31C109.5
Br1—Pd1—Se2100.149 (18)H31B—C31—H31C109.5
Se1—Pd1—Se2172.54 (2)C3—C32—H32A109.5
Br2—Pd1—Se280.706 (17)C3—C32—H32B109.5
P1—Se1—Pd1108.83 (3)H32A—C32—H32B109.5
P2—Se2—Pd1119.30 (4)C3—C32—H32C109.5
C3—P1—C2107.14 (19)H32A—C32—H32C109.5
C3—P1—C1113.37 (19)H32B—C32—H32C109.5
C2—P1—C1112.42 (19)C41—C4—C43107.5 (5)
C3—P1—Se1109.36 (14)C41—C4—C42110.3 (5)
C2—P1—Se1111.31 (13)C43—C4—C42107.1 (5)
C1—P1—Se1103.26 (14)C41—C4—P2107.4 (3)
C5—P2—C6108.7 (2)C43—C4—P2111.4 (3)
C5—P2—C4110.2 (2)C42—C4—P2113.0 (4)
C6—P2—C4112.0 (2)C4—C41—H41A109.5
C5—P2—Se2113.36 (14)C4—C41—H41B109.5
C6—P2—Se2109.52 (16)H41A—C41—H41B109.5
C4—P2—Se2103.04 (16)C4—C41—H41C109.5
C11—C1—C13110.1 (4)H41A—C41—H41C109.5
C11—C1—C12107.5 (4)H41B—C41—H41C109.5
C13—C1—C12107.5 (4)C4—C42—H42A109.5
C11—C1—P1109.7 (3)C4—C42—H42B109.5
C13—C1—P1112.2 (3)H42A—C42—H42B109.5
C12—C1—P1109.7 (3)C4—C42—H42C109.5
C1—C11—H11A109.5H42A—C42—H42C109.5
C1—C11—H11B109.5H42B—C42—H42C109.5
H11A—C11—H11B109.5C4—C43—H43A109.5
C1—C11—H11C109.5C4—C43—H43B109.5
H11A—C11—H11C109.5H43A—C43—H43B109.5
H11B—C11—H11C109.5C4—C43—H43C109.5
C1—C12—H12A109.5H43A—C43—H43C109.5
C1—C12—H12B109.5H43B—C43—H43C109.5
H12A—C12—H12B109.5C52—C5—C51109.8 (4)
C1—C12—H12C109.5C52—C5—P2114.3 (3)
H12A—C12—H12C109.5C51—C5—P2116.4 (3)
H12B—C12—H12C109.5C52—C5—H5105.0
C1—C13—H13A109.5C51—C5—H5105.0
C1—C13—H13B109.5P2—C5—H5105.0
H13A—C13—H13B109.5C5—C51—H51A109.5
C1—C13—H13C109.5C5—C51—H51B109.5
H13A—C13—H13C109.5H51A—C51—H51B109.5
H13B—C13—H13C109.5C5—C51—H51C109.5
C21—C2—C22107.8 (3)H51A—C51—H51C109.5
C21—C2—C23108.5 (3)H51B—C51—H51C109.5
C22—C2—C23108.8 (3)C5—C52—H52A109.5
C21—C2—P1111.7 (3)C5—C52—H52B109.5
C22—C2—P1108.2 (3)H52A—C52—H52B109.5
C23—C2—P1111.7 (3)C5—C52—H52C109.5
C2—C21—H21A109.5H52A—C52—H52C109.5
C2—C21—H21B109.5H52B—C52—H52C109.5
H21A—C21—H21B109.5C61—C6—C62108.2 (5)
C2—C21—H21C109.5C61—C6—C63108.7 (5)
H21A—C21—H21C109.5C62—C6—C63106.5 (5)
H21B—C21—H21C109.5C61—C6—P2113.6 (4)
C2—C22—H22A109.5C62—C6—P2109.6 (3)
C2—C22—H22B109.5C63—C6—P2110.0 (4)
H22A—C22—H22B109.5C6—C61—H61A109.5
C2—C22—H22C109.5C6—C61—H61B109.5
H22A—C22—H22C109.5H61A—C61—H61B109.5
H22B—C22—H22C109.5C6—C61—H61C109.5
C2—C23—H23A109.5H61A—C61—H61C109.5
C2—C23—H23B109.5H61B—C61—H61C109.5
H23A—C23—H23B109.5C6—C62—H62A109.5
C2—C23—H23C109.5C6—C62—H62B109.5
H23A—C23—H23C109.5H62A—C62—H62B109.5
H23B—C23—H23C109.5C6—C62—H62C109.5
C32—C3—C31109.2 (4)H62A—C62—H62C109.5
C32—C3—P1118.6 (3)H62B—C62—H62C109.5
C31—C3—P1113.2 (3)C6—C63—H63A109.5
C32—C3—H3104.8C6—C63—H63B109.5
C31—C3—H3104.8H63A—C63—H63B109.5
P1—C3—H3104.8C6—C63—H63C109.5
C3—C31—H31A109.5H63A—C63—H63C109.5
C3—C31—H31B109.5H63B—C63—H63C109.5
Br1—Pd1—Se1—P1116.19 (3)C1—P1—C3—C3270.6 (4)
Br2—Pd1—Se1—P171.05 (3)Se1—P1—C3—C32174.8 (3)
Br1—Pd1—Se2—P223.37 (4)C2—P1—C3—C31176.0 (3)
Br2—Pd1—Se2—P2164.03 (4)C1—P1—C3—C3159.4 (4)
Pd1—Se1—P1—C374.90 (14)Se1—P1—C3—C3155.2 (3)
Pd1—Se1—P1—C243.29 (15)C5—P2—C4—C4147.9 (4)
Pd1—Se1—P1—C1164.12 (14)C6—P2—C4—C41169.0 (4)
Pd1—Se2—P2—C554.43 (18)Se2—P2—C4—C4173.4 (4)
Pd1—Se2—P2—C667.15 (18)C5—P2—C4—C43165.3 (4)
Pd1—Se2—P2—C4173.53 (16)C6—P2—C4—C4373.5 (4)
C3—P1—C1—C11169.6 (3)Se2—P2—C4—C4344.1 (4)
C2—P1—C1—C1147.9 (4)C5—P2—C4—C4274.0 (4)
Se1—P1—C1—C1172.2 (3)C6—P2—C4—C4247.1 (5)
C3—P1—C1—C1347.0 (4)Se2—P2—C4—C42164.7 (4)
C2—P1—C1—C1374.7 (4)C6—P2—C5—C52156.7 (4)
Se1—P1—C1—C13165.2 (3)C4—P2—C5—C5280.3 (4)
C3—P1—C1—C1272.5 (3)Se2—P2—C5—C5234.6 (4)
C2—P1—C1—C12165.8 (3)C6—P2—C5—C5173.6 (4)
Se1—P1—C1—C1245.7 (3)C4—P2—C5—C5149.4 (4)
C3—P1—C2—C21158.5 (3)Se2—P2—C5—C51164.3 (3)
C1—P1—C2—C2176.3 (3)C5—P2—C6—C6145.5 (5)
Se1—P1—C2—C2138.9 (3)C4—P2—C6—C6176.5 (5)
C3—P1—C2—C2240.0 (3)Se2—P2—C6—C61169.9 (4)
C1—P1—C2—C22165.2 (3)C5—P2—C6—C6275.6 (4)
Se1—P1—C2—C2279.5 (3)C4—P2—C6—C62162.4 (4)
C3—P1—C2—C2379.7 (3)Se2—P2—C6—C6248.7 (4)
C1—P1—C2—C2345.5 (4)C5—P2—C6—C63167.7 (4)
Se1—P1—C2—C23160.8 (3)C4—P2—C6—C6345.7 (4)
C2—P1—C3—C3254.0 (4)Se2—P2—C6—C6368.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Se10.983.073.630 (4)117
C12—H12C···Se10.982.743.286 (5)116
C21—H21C···Br10.982.883.843 (4)168
C21—H21C···Se10.982.943.491 (4)117
C22—H22A···Pd10.982.733.641 (4)155
C3—H3···Br21.002.843.678 (4)142
C31—H31B···Se10.983.003.612 (5)122
C41—H41C···Se20.983.053.610 (6)118
C43—H43A···Se20.982.703.307 (5)120
C5—H5···Br11.002.903.588 (5)127
C51—H51C···Br1i0.982.873.706 (5)144
C52—H52B···Br10.983.013.558 (6)116
C52—H52B···Se20.982.963.545 (6)120
C62—H62B···Se20.982.893.481 (6)120
C62—H62C···Br10.983.033.678 (6)124
C63—H63A···Se1ii0.983.094.032 (6)162
C63—H63A···Pd1ii0.983.033.918 (6)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2.
Dibromido(di-tert-butylisopropylphosphine sulfide-κS)palladium(II) (4) top
Crystal data top
[PdBr2(C11H25PS)2]F(000) = 720
Mr = 706.90Dx = 1.604 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8595 (3) ÅCell parameters from 9329 reflections
b = 17.5019 (6) Åθ = 2.2–30.8°
c = 10.6740 (3) ŵ = 3.63 mm1
β = 94.551 (3)°T = 100 K
V = 1463.65 (9) Å3Prism, red
Z = 20.2 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4422 independent reflections
Radiation source: Enhance (Mo) X-ray Source3832 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.050
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
h = 1011
Tmin = 0.865, Tmax = 1.000k = 2524
45160 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0106P)2 + 2.7056P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.70 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.5000000.5000000.5000000.01288 (6)
Br10.42664 (4)0.43715 (2)0.69362 (2)0.02184 (7)
S10.50672 (9)0.61904 (4)0.59836 (6)0.01631 (13)
P10.69438 (9)0.63805 (4)0.73533 (6)0.01672 (14)
C10.6766 (5)0.74449 (17)0.7604 (3)0.0303 (7)
C20.9064 (4)0.6062 (3)0.6863 (3)0.0394 (9)
C30.6566 (4)0.58401 (15)0.8794 (2)0.0177 (5)
H30.6438190.5295790.8517620.021*
C110.4869 (5)0.76795 (18)0.7592 (3)0.0370 (9)
H11A0.4790140.8229160.7753060.055*
H11B0.4327260.7397060.8246490.055*
H11C0.4285340.7561050.6769390.055*
C120.7681 (5)0.76860 (19)0.8859 (3)0.0360 (8)
H12A0.7675530.8244550.8924520.054*
H12B0.8861870.7502040.8908190.054*
H12C0.7091100.7466140.9549750.054*
C130.7540 (6)0.7875 (2)0.6522 (3)0.0526 (12)
H13A0.8759930.7756690.6529910.079*
H13B0.7390780.8426260.6630400.079*
H13C0.6961570.7715080.5717180.079*
C210.9235 (5)0.6266 (3)0.5471 (3)0.0556 (13)
H21A1.0313940.6063050.5209800.083*
H21B0.9219070.6822580.5371760.083*
H21C0.8281030.6041910.4949190.083*
C220.9172 (5)0.5191 (3)0.6991 (4)0.0543 (13)
H22A0.9140520.5048920.7877210.082*
H22B1.0240070.5010080.6679530.082*
H22C0.8202670.4956590.6499150.082*
C231.0582 (5)0.6450 (3)0.7640 (4)0.0599 (14)
H23A1.0531690.6326490.8531710.090*
H23B1.0510070.7005310.7526090.090*
H23C1.1660530.6264190.7352310.090*
C310.7987 (4)0.58306 (19)0.9882 (3)0.0278 (7)
H31A0.7636060.5503791.0561430.042*
H31B0.8182210.6351411.0199000.042*
H31C0.9042170.5630720.9576190.042*
C320.4866 (4)0.60471 (18)0.9302 (3)0.0262 (6)
H32A0.4937430.6562220.9662130.039*
H32B0.4607380.5679970.9953510.039*
H32C0.3959900.6032160.8616260.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01454 (13)0.01546 (12)0.00854 (12)0.00066 (11)0.00023 (9)0.00076 (10)
Br10.03258 (17)0.02237 (13)0.01082 (12)0.00486 (12)0.00328 (11)0.00052 (10)
S10.0192 (3)0.0167 (3)0.0125 (3)0.0023 (2)0.0020 (2)0.0014 (2)
P10.0159 (3)0.0239 (3)0.0104 (3)0.0046 (3)0.0015 (3)0.0018 (3)
C10.050 (2)0.0214 (14)0.0183 (14)0.0136 (14)0.0064 (14)0.0016 (11)
C20.0112 (15)0.086 (3)0.0220 (16)0.0006 (16)0.0038 (12)0.0152 (17)
C30.0209 (14)0.0188 (12)0.0136 (12)0.0014 (10)0.0019 (10)0.0009 (10)
C110.061 (3)0.0201 (15)0.0269 (17)0.0095 (15)0.0133 (16)0.0059 (12)
C120.055 (2)0.0295 (16)0.0225 (16)0.0164 (16)0.0039 (15)0.0035 (13)
C130.089 (3)0.044 (2)0.0234 (17)0.041 (2)0.0055 (19)0.0074 (15)
C210.029 (2)0.119 (4)0.0205 (17)0.021 (2)0.0115 (15)0.021 (2)
C220.030 (2)0.095 (4)0.037 (2)0.035 (2)0.0038 (16)0.022 (2)
C230.0173 (18)0.132 (5)0.031 (2)0.013 (2)0.0039 (15)0.020 (2)
C310.0313 (18)0.0345 (17)0.0164 (14)0.0034 (13)0.0056 (12)0.0003 (12)
C320.0258 (16)0.0356 (17)0.0181 (14)0.0023 (13)0.0077 (12)0.0040 (12)
Geometric parameters (Å, º) top
Pd1—S1i2.3317 (6)C12—H12B0.9800
Pd1—S12.3317 (6)C12—H12C0.9800
Pd1—Br12.4501 (3)C13—H13A0.9800
Pd1—Br1i2.4501 (3)C13—H13B0.9800
S1—P12.0202 (10)C13—H13C0.9800
P1—C31.849 (3)C21—H21A0.9800
P1—C21.871 (3)C21—H21B0.9800
P1—C11.889 (3)C21—H21C0.9800
C1—C121.529 (4)C22—H22A0.9800
C1—C131.544 (5)C22—H22B0.9800
C1—C111.546 (5)C22—H22C0.9800
C2—C221.532 (6)C23—H23A0.9800
C2—C211.544 (5)C23—H23B0.9800
C2—C231.555 (5)C23—H23C0.9800
C3—C321.525 (4)C31—H31A0.9800
C3—C311.546 (4)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800
S1i—Pd1—S1180.0C1—C12—H12C109.5
S1i—Pd1—Br188.867 (17)H12A—C12—H12C109.5
S1—Pd1—Br191.133 (17)H12B—C12—H12C109.5
S1i—Pd1—Br1i91.133 (17)C1—C13—H13A109.5
S1—Pd1—Br1i88.867 (17)C1—C13—H13B109.5
Br1—Pd1—Br1i180.0H13A—C13—H13B109.5
P1—S1—Pd1117.53 (4)C1—C13—H13C109.5
C3—P1—C2106.59 (16)H13A—C13—H13C109.5
C3—P1—C1111.60 (13)H13B—C13—H13C109.5
C2—P1—C1114.28 (18)C2—C21—H21A109.5
C3—P1—S1111.18 (10)C2—C21—H21B109.5
C2—P1—S1111.32 (11)H21A—C21—H21B109.5
C1—P1—S1101.95 (11)C2—C21—H21C109.5
C12—C1—C13109.6 (3)H21A—C21—H21C109.5
C12—C1—C11108.6 (3)H21B—C21—H21C109.5
C13—C1—C11107.6 (3)C2—C22—H22A109.5
C12—C1—P1111.2 (2)C2—C22—H22B109.5
C13—C1—P1109.7 (2)H22A—C22—H22B109.5
C11—C1—P1110.0 (2)C2—C22—H22C109.5
C22—C2—C21108.0 (3)H22A—C22—H22C109.5
C22—C2—C23110.7 (4)H22B—C22—H22C109.5
C21—C2—C23106.9 (3)C2—C23—H23A109.5
C22—C2—P1108.4 (3)C2—C23—H23B109.5
C21—C2—P1110.3 (3)H23A—C23—H23B109.5
C23—C2—P1112.5 (3)C2—C23—H23C109.5
C32—C3—C31109.7 (2)H23A—C23—H23C109.5
C32—C3—P1112.16 (19)H23B—C23—H23C109.5
C31—C3—P1118.4 (2)C3—C31—H31A109.5
C32—C3—H3105.1C3—C31—H31B109.5
C31—C3—H3105.1H31A—C31—H31B109.5
P1—C3—H3105.1C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5
Br1—Pd1—S1—P167.56 (4)C1—P1—C2—C22167.0 (2)
Br1i—Pd1—S1—P1112.44 (4)S1—P1—C2—C2278.1 (3)
Pd1—S1—P1—C372.48 (10)C3—P1—C2—C21161.3 (3)
Pd1—S1—P1—C246.20 (16)C1—P1—C2—C2174.9 (3)
Pd1—S1—P1—C1168.46 (11)S1—P1—C2—C2139.9 (3)
C3—P1—C1—C1243.8 (3)C3—P1—C2—C2379.4 (3)
C2—P1—C1—C1277.2 (3)C1—P1—C2—C2344.3 (4)
S1—P1—C1—C12162.6 (2)S1—P1—C2—C23159.2 (3)
C3—P1—C1—C13165.2 (2)C2—P1—C3—C32179.9 (2)
C2—P1—C1—C1344.2 (3)C1—P1—C3—C3254.5 (3)
S1—P1—C1—C1376.0 (3)S1—P1—C3—C3258.6 (2)
C3—P1—C1—C1176.6 (2)C2—P1—C3—C3150.6 (3)
C2—P1—C1—C11162.3 (2)C1—P1—C3—C3174.8 (3)
S1—P1—C1—C1142.1 (2)S1—P1—C3—C31172.08 (19)
C3—P1—C2—C2243.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br11.002.813.638 (3)140
C11—H11C···S10.982.633.132 (3)112
C21—H21C···S10.982.853.366 (4)114
C32—H32C···S10.983.023.567 (3)117
C22—H22C···Pd10.982.873.778 (4)154
C12—H12A···S1ii0.982.953.443 (3)112
C21—H21C···Br1i0.982.823.782 (4)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
Dichlorido(di-tert-butylisopropylphosphine sulfide-κS)palladium(II) (5) top
Crystal data top
[PdCl2(C11H25PS)2]F(000) = 1424
Mr = 706.67Dx = 1.612 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.5283 (3) ÅCell parameters from 16523 reflections
b = 14.4191 (3) Åθ = 2.4–30.8°
c = 13.9428 (4) ŵ = 5.27 mm1
β = 94.571 (3)°T = 100 K
V = 2911.53 (12) Å3Plate, orange
Z = 40.2 × 0.1 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
8721 independent reflections
Radiation source: Enhance (Mo) X-ray Source6105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.4°
ω scansh = 2019
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 2020
Tmin = 0.650, Tmax = 1.000l = 1919
79369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0154P)2 + 5.0893P]
where P = (Fo2 + 2Fc2)/3
8721 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.97 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.5000000.01098 (4)
Pt21.0000000.0000000.5000000.01384 (4)
Cl10.63902 (5)0.51548 (5)0.43147 (5)0.01956 (14)
Cl21.11830 (6)0.09779 (5)0.46453 (7)0.0331 (2)
S10.46640 (5)0.65107 (5)0.44755 (5)0.01454 (13)
S21.10486 (5)0.11932 (5)0.53673 (5)0.02066 (15)
P10.36073 (5)0.65824 (5)0.34317 (5)0.01255 (13)
P21.15656 (5)0.17568 (5)0.41869 (5)0.01434 (14)
C10.3559 (2)0.78408 (19)0.3069 (2)0.0168 (6)
C20.3820 (2)0.5802 (2)0.2395 (2)0.0210 (6)
C30.2543 (2)0.6187 (2)0.3944 (2)0.0213 (6)
H30.2683690.5541650.4174520.026*
C110.4342 (2)0.8074 (2)0.2434 (2)0.0241 (7)
H11A0.4343720.8741860.2306510.036*
H11B0.4247010.7735860.1824190.036*
H11C0.4934340.7891670.2765440.036*
C120.3691 (2)0.8452 (2)0.3974 (2)0.0259 (7)
H12A0.4294430.8321180.4312960.039*
H12B0.3202670.8316390.4399640.039*
H12C0.3660550.9106820.3787250.039*
C130.2617 (2)0.8088 (2)0.2546 (2)0.0249 (7)
H13A0.2643920.8714110.2276560.037*
H13B0.2138720.8064240.3002970.037*
H13C0.2468810.7642370.2025630.037*
C210.3226 (3)0.6059 (2)0.1473 (2)0.0356 (9)
H21A0.3387720.6684090.1268480.053*
H21B0.2571880.6041250.1597420.053*
H21C0.3339410.5614170.0963450.053*
C220.3590 (3)0.4801 (2)0.2688 (2)0.0285 (8)
H22A0.3760030.4369670.2188220.043*
H22B0.2926680.4750230.2761900.043*
H22C0.3936880.4647810.3298780.043*
C230.4838 (2)0.5823 (2)0.2187 (2)0.0293 (8)
H23A0.4945950.5367500.1686490.044*
H23B0.5223720.5672680.2774710.044*
H23C0.4996470.6444010.1965020.044*
C310.1662 (2)0.6095 (3)0.3268 (3)0.0405 (10)
H31A0.1179570.5795610.3610930.061*
H31B0.1791360.5719370.2709160.061*
H31C0.1453160.6712820.3053210.061*
C320.2342 (2)0.6725 (2)0.4846 (2)0.0312 (8)
H32A0.2059010.7322440.4659980.047*
H32B0.2919720.6832190.5242450.047*
H32C0.1917730.6367160.5213830.047*
C41.28268 (19)0.1938 (2)0.4566 (2)0.0179 (6)
C51.1497 (2)0.0919 (2)0.3175 (2)0.0208 (6)
H61.1715300.0314380.3461560.025*
C61.0935 (2)0.2867 (2)0.3861 (2)0.0211 (6)
C411.3291 (2)0.0980 (2)0.4566 (2)0.0260 (7)
H41A1.2943990.0542730.4936650.039*
H41B1.3925480.1028960.4859210.039*
H41C1.3301140.0757180.3903010.039*
C421.2955 (2)0.2306 (2)0.5602 (2)0.0249 (7)
H42A1.2669350.2920090.5632320.037*
H42B1.3615450.2353290.5801150.037*
H42C1.2661610.1880090.6032420.037*
C431.3306 (2)0.2614 (2)0.3912 (2)0.0218 (6)
H43A1.3972650.2612360.4089710.033*
H43B1.3062190.3240940.3990790.033*
H43C1.3189240.2420320.3239900.033*
C511.0518 (2)0.0737 (2)0.2732 (2)0.0285 (7)
H51A1.0512470.0172430.2340460.043*
H51B1.0311310.1263760.2325130.043*
H51C1.0101130.0659210.3245170.043*
C521.2114 (2)0.1109 (2)0.2353 (2)0.0292 (7)
H52A1.1936010.1700010.2044980.044*
H52B1.2039860.0608100.1878540.044*
H52C1.2760580.1140290.2612250.044*
C611.1185 (2)0.3602 (2)0.4628 (2)0.0289 (7)
H61A1.1077280.3354110.5264140.043*
H61B1.0799980.4153510.4498820.043*
H61C1.1837010.3771190.4614020.043*
C621.1152 (2)0.3226 (2)0.2865 (2)0.0290 (7)
H62A1.1820920.3295780.2846360.043*
H62B1.0851090.3827330.2743790.043*
H62C1.0920810.2782240.2370030.043*
C630.9891 (2)0.2686 (2)0.3848 (3)0.0300 (8)
H63A0.9554850.3263050.3693230.045*
H63B0.9742420.2464720.4482000.045*
H63C0.9711470.2216260.3361240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00922 (7)0.01024 (7)0.01332 (7)0.00095 (5)0.00001 (5)0.00139 (5)
Pt20.01099 (7)0.01107 (7)0.02000 (8)0.00090 (6)0.00461 (5)0.00118 (6)
Cl10.0139 (3)0.0204 (3)0.0250 (4)0.0013 (3)0.0052 (3)0.0077 (3)
Cl20.0249 (4)0.0179 (4)0.0592 (6)0.0054 (3)0.0209 (4)0.0058 (4)
S10.0135 (3)0.0108 (3)0.0187 (3)0.0019 (2)0.0024 (3)0.0010 (3)
S20.0246 (4)0.0211 (4)0.0165 (4)0.0097 (3)0.0029 (3)0.0013 (3)
P10.0142 (3)0.0103 (3)0.0129 (3)0.0006 (3)0.0003 (3)0.0010 (3)
P20.0141 (3)0.0145 (3)0.0144 (3)0.0025 (3)0.0010 (3)0.0012 (3)
C10.0220 (15)0.0108 (12)0.0178 (14)0.0014 (11)0.0019 (11)0.0013 (10)
C20.0367 (18)0.0136 (13)0.0118 (14)0.0033 (12)0.0031 (12)0.0010 (11)
C30.0146 (14)0.0235 (15)0.0255 (16)0.0009 (12)0.0011 (12)0.0105 (12)
C110.0313 (17)0.0137 (13)0.0280 (17)0.0000 (12)0.0070 (14)0.0079 (12)
C120.0398 (19)0.0119 (13)0.0254 (16)0.0015 (13)0.0001 (14)0.0030 (12)
C130.0270 (17)0.0228 (15)0.0249 (16)0.0072 (13)0.0021 (13)0.0068 (13)
C210.062 (3)0.0232 (17)0.0197 (17)0.0024 (17)0.0091 (16)0.0039 (13)
C220.047 (2)0.0134 (14)0.0229 (16)0.0028 (13)0.0073 (15)0.0033 (12)
C230.047 (2)0.0210 (16)0.0223 (16)0.0117 (15)0.0161 (15)0.0023 (13)
C310.0197 (17)0.048 (2)0.051 (2)0.0112 (16)0.0102 (16)0.0242 (19)
C320.0258 (17)0.0306 (18)0.039 (2)0.0119 (14)0.0170 (15)0.0122 (15)
C40.0146 (14)0.0179 (13)0.0210 (15)0.0035 (11)0.0007 (11)0.0037 (11)
C50.0227 (15)0.0208 (14)0.0189 (15)0.0034 (12)0.0016 (12)0.0017 (12)
C60.0209 (15)0.0171 (14)0.0253 (16)0.0016 (12)0.0013 (12)0.0041 (12)
C410.0201 (16)0.0212 (15)0.0363 (19)0.0014 (12)0.0003 (13)0.0049 (13)
C420.0234 (16)0.0271 (16)0.0235 (16)0.0078 (13)0.0021 (13)0.0007 (13)
C430.0180 (15)0.0239 (15)0.0239 (16)0.0060 (12)0.0037 (12)0.0012 (12)
C510.0283 (18)0.0338 (18)0.0226 (17)0.0085 (14)0.0027 (13)0.0063 (14)
C520.0323 (18)0.0345 (18)0.0218 (17)0.0049 (15)0.0077 (14)0.0071 (14)
C610.0359 (19)0.0190 (15)0.0321 (18)0.0069 (14)0.0042 (15)0.0009 (13)
C620.0306 (18)0.0266 (17)0.0296 (18)0.0050 (14)0.0019 (14)0.0124 (14)
C630.0187 (16)0.0340 (19)0.037 (2)0.0052 (14)0.0026 (14)0.0068 (15)
Geometric parameters (Å, º) top
Pt1—Cl12.3129 (7)C23—H23B0.9800
Pt1—Cl1i2.3129 (7)C23—H23C0.9800
Pt1—S12.3369 (7)C31—H31A0.9800
Pt1—S1i2.3369 (7)C31—H31B0.9800
Pt2—Cl22.3070 (7)C31—H31C0.9800
Pt2—Cl2ii2.3070 (7)C32—H32A0.9800
Pt2—S2ii2.3278 (7)C32—H32B0.9800
Pt2—S22.3278 (7)C32—H32C0.9800
S1—P12.0322 (10)C4—C421.536 (4)
S2—P22.0323 (10)C4—C411.537 (4)
P1—C31.844 (3)C4—C431.539 (4)
P1—C21.877 (3)C5—C511.528 (4)
P1—C11.883 (3)C5—C521.535 (4)
P2—C51.854 (3)C5—H61.0000
P2—C61.882 (3)C6—C611.530 (4)
P2—C41.884 (3)C6—C621.537 (4)
C1—C111.533 (4)C6—C631.538 (4)
C1—C121.539 (4)C41—H41A0.9800
C1—C131.541 (4)C41—H41B0.9800
C2—C231.530 (5)C41—H41C0.9800
C2—C211.536 (4)C42—H42A0.9800
C2—C221.543 (4)C42—H42B0.9800
C3—C321.526 (4)C42—H42C0.9800
C3—C311.533 (4)C43—H43A0.9800
C3—H31.0000C43—H43B0.9800
C11—H11A0.9800C43—H43C0.9800
C11—H11B0.9800C51—H51A0.9800
C11—H11C0.9800C51—H51B0.9800
C12—H12A0.9800C51—H51C0.9800
C12—H12B0.9800C52—H52A0.9800
C12—H12C0.9800C52—H52B0.9800
C13—H13A0.9800C52—H52C0.9800
C13—H13B0.9800C61—H61A0.9800
C13—H13C0.9800C61—H61B0.9800
C21—H21A0.9800C61—H61C0.9800
C21—H21B0.9800C62—H62A0.9800
C21—H21C0.9800C62—H62B0.9800
C22—H22A0.9800C62—H62C0.9800
C22—H22B0.9800C63—H63A0.9800
C22—H22C0.9800C63—H63B0.9800
C23—H23A0.9800C63—H63C0.9800
Cl1—Pt1—Cl1i180.0H23A—C23—H23C109.5
Cl1—Pt1—S187.04 (2)H23B—C23—H23C109.5
Cl1i—Pt1—S192.96 (2)C3—C31—H31A109.5
Cl1—Pt1—S1i92.96 (2)C3—C31—H31B109.5
Cl1i—Pt1—S1i87.04 (2)H31A—C31—H31B109.5
S1—Pt1—S1i180.0C3—C31—H31C109.5
Cl2—Pt2—Cl2ii180.0H31A—C31—H31C109.5
Cl2—Pt2—S2ii89.24 (3)H31B—C31—H31C109.5
Cl2ii—Pt2—S2ii90.76 (3)C3—C32—H32A109.5
Cl2—Pt2—S290.75 (3)C3—C32—H32B109.5
Cl2ii—Pt2—S289.25 (3)H32A—C32—H32B109.5
S2ii—Pt2—S2180.0C3—C32—H32C109.5
P1—S1—Pt1i113.49 (3)H32A—C32—H32C109.5
P1—S1—Pt1113.49 (3)H32B—C32—H32C109.5
P2—S2—Pt2ii113.27 (4)C42—C4—C41106.9 (2)
P2—S2—Pt2113.27 (4)C42—C4—C43108.1 (2)
C3—P1—C2107.91 (14)C41—C4—C43110.5 (2)
C3—P1—C1112.81 (13)C42—C4—P2110.7 (2)
C2—P1—C1112.08 (13)C41—C4—P2107.03 (19)
C3—P1—S1108.40 (10)C43—C4—P2113.4 (2)
C2—P1—S1111.07 (10)C51—C5—C52108.0 (3)
C1—P1—S1104.54 (10)C51—C5—P2114.3 (2)
C5—P2—C6112.01 (14)C52—C5—P2116.9 (2)
C5—P2—C4107.21 (13)C51—C5—H6105.5
C6—P2—C4113.18 (13)C52—C5—H6105.5
C5—P2—S2110.77 (10)P2—C5—H6105.5
C6—P2—S2109.37 (10)C61—C6—C62110.1 (3)
C4—P2—S2104.01 (10)C61—C6—C63107.7 (3)
C11—C1—C12107.4 (2)C62—C6—C63108.6 (3)
C11—C1—C13110.3 (2)C61—C6—P2109.7 (2)
C12—C1—C13107.7 (2)C62—C6—P2112.0 (2)
C11—C1—P1110.65 (19)C63—C6—P2108.6 (2)
C12—C1—P1109.38 (19)C4—C41—H41A109.5
C13—C1—P1111.2 (2)C4—C41—H41B109.5
C23—C2—C21108.9 (3)H41A—C41—H41B109.5
C23—C2—C22107.6 (3)C4—C41—H41C109.5
C21—C2—C22109.1 (3)H41A—C41—H41C109.5
C23—C2—P1110.8 (2)H41B—C41—H41C109.5
C21—C2—P1112.6 (2)C4—C42—H42A109.5
C22—C2—P1107.7 (2)C4—C42—H42B109.5
C32—C3—C31110.2 (3)H42A—C42—H42B109.5
C32—C3—P1112.6 (2)C4—C42—H42C109.5
C31—C3—P1118.2 (2)H42A—C42—H42C109.5
C32—C3—H3104.9H42B—C42—H42C109.5
C31—C3—H3104.9C4—C43—H43A109.5
P1—C3—H3104.9C4—C43—H43B109.5
C1—C11—H11A109.5H43A—C43—H43B109.5
C1—C11—H11B109.5C4—C43—H43C109.5
H11A—C11—H11B109.5H43A—C43—H43C109.5
C1—C11—H11C109.5H43B—C43—H43C109.5
H11A—C11—H11C109.5C5—C51—H51A109.5
H11B—C11—H11C109.5C5—C51—H51B109.5
C1—C12—H12A109.5H51A—C51—H51B109.5
C1—C12—H12B109.5C5—C51—H51C109.5
H12A—C12—H12B109.5H51A—C51—H51C109.5
C1—C12—H12C109.5H51B—C51—H51C109.5
H12A—C12—H12C109.5C5—C52—H52A109.5
H12B—C12—H12C109.5C5—C52—H52B109.5
C1—C13—H13A109.5H52A—C52—H52B109.5
C1—C13—H13B109.5C5—C52—H52C109.5
H13A—C13—H13B109.5H52A—C52—H52C109.5
C1—C13—H13C109.5H52B—C52—H52C109.5
H13A—C13—H13C109.5C6—C61—H61A109.5
H13B—C13—H13C109.5C6—C61—H61B109.5
C2—C21—H21A109.5H61A—C61—H61B109.5
C2—C21—H21B109.5C6—C61—H61C109.5
H21A—C21—H21B109.5H61A—C61—H61C109.5
C2—C21—H21C109.5H61B—C61—H61C109.5
H21A—C21—H21C109.5C6—C62—H62A109.5
H21B—C21—H21C109.5C6—C62—H62B109.5
C2—C22—H22A109.5H62A—C62—H62B109.5
C2—C22—H22B109.5C6—C62—H62C109.5
H22A—C22—H22B109.5H62A—C62—H62C109.5
C2—C22—H22C109.5H62B—C62—H62C109.5
H22A—C22—H22C109.5C6—C63—H63A109.5
H22B—C22—H22C109.5C6—C63—H63B109.5
C2—C23—H23A109.5H63A—C63—H63B109.5
C2—C23—H23B109.5C6—C63—H63C109.5
H23A—C23—H23B109.5H63A—C63—H63C109.5
C2—C23—H23C109.5H63B—C63—H63C109.5
Cl1—Pt1—S1—P1112.78 (4)C1—P1—C2—C22165.1 (2)
Cl1i—Pt1—S1—P167.22 (4)S1—P1—C2—C2278.4 (2)
Cl2—Pt2—S2—P273.29 (5)C2—P1—C3—C32175.4 (2)
Cl2ii—Pt2—S2—P2106.71 (5)C1—P1—C3—C3260.2 (2)
Pt1i—S1—P1—C364.50 (11)S1—P1—C3—C3255.1 (2)
Pt1—S1—P1—C364.50 (11)C2—P1—C3—C3154.3 (3)
Pt1i—S1—P1—C253.88 (11)C1—P1—C3—C3170.1 (3)
Pt1—S1—P1—C253.88 (11)S1—P1—C3—C31174.7 (2)
Pt1i—S1—P1—C1174.95 (9)C5—P2—C4—C42158.5 (2)
Pt1—S1—P1—C1174.95 (9)C6—P2—C4—C4277.5 (2)
Pt2ii—S2—P2—C524.15 (12)S2—P2—C4—C4241.1 (2)
Pt2—S2—P2—C524.15 (12)C5—P2—C4—C4142.4 (2)
Pt2ii—S2—P2—C699.77 (11)C6—P2—C4—C41166.4 (2)
Pt2—S2—P2—C699.77 (11)S2—P2—C4—C4175.0 (2)
Pt2ii—S2—P2—C4139.04 (10)C5—P2—C4—C4379.8 (2)
Pt2—S2—P2—C4139.04 (10)C6—P2—C4—C4344.2 (3)
C3—P1—C1—C11166.3 (2)S2—P2—C4—C43162.85 (19)
C2—P1—C1—C1144.2 (3)C6—P2—C5—C5151.5 (3)
S1—P1—C1—C1176.2 (2)C4—P2—C5—C51176.3 (2)
C3—P1—C1—C1275.6 (2)S2—P2—C5—C5170.9 (2)
C2—P1—C1—C12162.3 (2)C6—P2—C5—C5276.0 (3)
S1—P1—C1—C1241.9 (2)C4—P2—C5—C5248.7 (3)
C3—P1—C1—C1343.2 (2)S2—P2—C5—C52161.6 (2)
C2—P1—C1—C1378.8 (2)C5—P2—C6—C61167.8 (2)
S1—P1—C1—C13160.78 (18)C4—P2—C6—C6146.5 (3)
C3—P1—C2—C23157.8 (2)S2—P2—C6—C6169.0 (2)
C1—P1—C2—C2377.4 (2)C5—P2—C6—C6245.2 (3)
S1—P1—C2—C2339.1 (2)C4—P2—C6—C6276.1 (3)
C3—P1—C2—C2180.1 (3)S2—P2—C6—C62168.44 (19)
C1—P1—C2—C2144.7 (3)C5—P2—C6—C6374.7 (2)
S1—P1—C2—C21161.3 (2)C4—P2—C6—C63164.0 (2)
C3—P1—C2—C2240.3 (2)S2—P2—C6—C6348.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1i1.002.613.382 (3)134
C5—H6···Cl21.002.653.470 (3)140
C41—H41A···S20.983.013.541 (3)115
C42—H42C···S20.982.643.195 (3)116
C63—H63B···Cl2ii0.982.853.666 (3)141
C63—H63B···S20.982.853.374 (3)114
C12—H12A···S10.982.673.188 (3)113
C23—H23B···Cl10.982.733.708 (4)175
C23—H23B···S10.982.843.370 (3)115
C32—H32B···S10.982.873.467 (3)121
C22—H22C···Pt1i0.982.773.691 (3)156
C51—H51C···Pt2ii0.982.643.475 (3)143
C32—H32A···Cl2iii0.982.763.716 (3)165
C43—H43A···S1iv0.982.983.779 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x1, y+1, z; (iv) x+2, y+1, z+1.
Di-µ-chlorido-bis[(tert-butyldiisopropylphosphine sulfide-κS)chloridopalladium(II)] (6) top
Crystal data top
[PdCl2(C10H23PS)2]Z = 1
Mr = 767.23F(000) = 388
Triclinic, P1Dx = 1.653 Mg m3
a = 6.9753 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7642 (5) ÅCell parameters from 13225 reflections
c = 13.0718 (7) Åθ = 2.4–30.8°
α = 88.930 (6)°µ = 1.76 mm1
β = 78.488 (6)°T = 100 K
γ = 79.804 (7)°Plate, dichroic yellow orange
V = 770.56 (8) Å30.17 × 0.06 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4550 independent reflections
Radiation source: fine-focus sealed tube3905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.1419 pixels mm-1θmax = 30.8°, θmin = 2.4°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 1212
Tmin = 0.754, Tmax = 0.966l = 1818
48215 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.022P)2 + 0.6436P]
where P = (Fo2 + 2Fc2)/3
4550 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.51394 (2)0.06683 (2)0.37430 (2)0.01336 (5)
Cl10.65368 (8)0.04335 (6)0.21405 (4)0.02082 (12)
Cl20.39202 (8)0.16888 (6)0.54318 (4)0.01794 (11)
S10.42186 (8)0.30672 (6)0.30898 (4)0.01541 (11)
P10.18827 (8)0.29587 (6)0.23938 (4)0.01113 (10)
C10.0763 (3)0.5020 (2)0.22052 (17)0.0176 (4)
C20.0026 (3)0.1987 (2)0.31853 (16)0.0139 (4)
H20.1179750.2128020.2823970.017*
C30.2721 (3)0.1824 (3)0.11670 (16)0.0165 (4)
H30.3194660.0745710.1384640.020*
C110.1990 (4)0.5677 (3)0.12441 (19)0.0261 (5)
H11A0.1507390.6792610.1207260.039*
H11B0.1852540.5158200.0611470.039*
H11C0.3391520.5497530.1300530.039*
C120.0766 (4)0.6024 (3)0.31521 (19)0.0246 (5)
H12A0.2138510.6083680.3192030.037*
H12B0.0129940.5560720.3790200.037*
H12C0.0030330.7068620.3079810.037*
C130.1395 (3)0.5133 (3)0.2055 (2)0.0241 (5)
H13A0.2208960.4803550.2691840.036*
H13B0.1416330.4460130.1468140.036*
H13C0.1929870.6207780.1907770.036*
C210.0800 (3)0.2700 (3)0.42818 (17)0.0210 (5)
H21A0.1722180.2085340.4686720.032*
H21B0.1492810.3765380.4231020.032*
H21C0.0319670.2706460.4629860.032*
C220.0679 (3)0.0233 (3)0.32575 (19)0.0204 (5)
H22A0.1804710.0046400.3615670.031*
H22B0.1094620.0226400.2552990.031*
H22C0.0410550.0239000.3649920.031*
C310.4524 (4)0.2273 (3)0.04244 (17)0.0232 (5)
H31A0.5175040.1401190.0052060.035*
H31B0.5464910.2531510.0830880.035*
H31C0.4084210.3174340.0020140.035*
C320.1047 (4)0.1677 (3)0.05945 (18)0.0245 (5)
H32A0.0584870.2680830.0302220.037*
H32B0.0058300.1353170.1085730.037*
H32C0.1543960.0902280.0029030.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01149 (8)0.01694 (8)0.01083 (8)0.00036 (6)0.00233 (6)0.00143 (6)
Cl10.0223 (3)0.0237 (3)0.0129 (2)0.0047 (2)0.0027 (2)0.0012 (2)
Cl20.0195 (3)0.0189 (2)0.0127 (2)0.0027 (2)0.00211 (19)0.00072 (19)
S10.0153 (2)0.0168 (2)0.0159 (2)0.00509 (19)0.0054 (2)0.00214 (19)
P10.0129 (2)0.0110 (2)0.0095 (2)0.00207 (19)0.00224 (19)0.00125 (18)
C10.0202 (11)0.0124 (9)0.0198 (11)0.0021 (8)0.0039 (9)0.0026 (8)
C20.0140 (9)0.0145 (9)0.0138 (9)0.0047 (8)0.0027 (8)0.0035 (7)
C30.0194 (10)0.0164 (10)0.0126 (9)0.0011 (8)0.0021 (8)0.0016 (8)
C110.0326 (13)0.0190 (11)0.0254 (12)0.0050 (10)0.0032 (10)0.0121 (9)
C120.0314 (13)0.0139 (10)0.0273 (12)0.0015 (9)0.0046 (10)0.0050 (9)
C130.0214 (11)0.0178 (11)0.0334 (13)0.0005 (9)0.0101 (10)0.0029 (10)
C210.0189 (11)0.0273 (12)0.0162 (10)0.0076 (9)0.0010 (9)0.0007 (9)
C220.0210 (11)0.0157 (10)0.0264 (12)0.0062 (9)0.0076 (9)0.0070 (9)
C310.0250 (12)0.0272 (12)0.0140 (10)0.0026 (10)0.0021 (9)0.0013 (9)
C320.0259 (12)0.0311 (13)0.0176 (11)0.0040 (10)0.0073 (9)0.0046 (9)
Geometric parameters (Å, º) top
Pd1—Cl12.2799 (6)C11—H11C0.9800
Pd1—S12.2882 (6)C12—H12A0.9800
Pd1—Cl22.3349 (5)C12—H12B0.9800
Pd1—Cl2i2.3623 (6)C12—H12C0.9800
S1—P12.0350 (7)C13—H13A0.9800
P1—C31.839 (2)C13—H13B0.9800
P1—C21.841 (2)C13—H13C0.9800
P1—C11.870 (2)C21—H21A0.9800
C1—C121.532 (3)C21—H21B0.9800
C1—C111.536 (3)C21—H21C0.9800
C1—C131.542 (3)C22—H22A0.9800
C2—C211.530 (3)C22—H22B0.9800
C2—C221.536 (3)C22—H22C0.9800
C2—H21.0000C31—H31A0.9800
C3—C321.531 (3)C31—H31B0.9800
C3—C311.534 (3)C31—H31C0.9800
C3—H31.0000C32—H32A0.9800
C11—H11A0.9800C32—H32B0.9800
C11—H11B0.9800C32—H32C0.9800
Cl1—Pd1—S193.95 (2)H11B—C11—H11C109.5
Cl1—Pd1—Cl2175.53 (2)C1—C12—H12A109.5
S1—Pd1—Cl289.38 (2)C1—C12—H12B109.5
Cl1—Pd1—Cl2i91.03 (2)H12A—C12—H12B109.5
S1—Pd1—Cl2i174.586 (19)C1—C12—H12C109.5
Cl2—Pd1—Cl2i85.54 (2)H12A—C12—H12C109.5
Pd1—Cl2—Pd1i94.46 (2)H12B—C12—H12C109.5
P1—S1—Pd1107.34 (3)C1—C13—H13A109.5
C3—P1—C2105.26 (10)C1—C13—H13B109.5
C3—P1—C1113.34 (10)H13A—C13—H13B109.5
C2—P1—C1108.97 (10)C1—C13—H13C109.5
C3—P1—S1110.54 (7)H13A—C13—H13C109.5
C2—P1—S1113.53 (7)H13B—C13—H13C109.5
C1—P1—S1105.38 (8)C2—C21—H21A109.5
C12—C1—C11107.57 (19)C2—C21—H21B109.5
C12—C1—C13108.94 (19)H21A—C21—H21B109.5
C11—C1—C13109.29 (19)C2—C21—H21C109.5
C12—C1—P1110.55 (15)H21A—C21—H21C109.5
C11—C1—P1110.01 (15)H21B—C21—H21C109.5
C13—C1—P1110.41 (15)C2—C22—H22A109.5
C21—C2—C22109.89 (18)C2—C22—H22B109.5
C21—C2—P1112.98 (15)H22A—C22—H22B109.5
C22—C2—P1112.56 (15)C2—C22—H22C109.5
C21—C2—H2107.0H22A—C22—H22C109.5
C22—C2—H2107.0H22B—C22—H22C109.5
P1—C2—H2107.0C3—C31—H31A109.5
C32—C3—C31111.67 (18)C3—C31—H31B109.5
C32—C3—P1113.93 (15)H31A—C31—H31B109.5
C31—C3—P1115.39 (16)C3—C31—H31C109.5
C32—C3—H3104.9H31A—C31—H31C109.5
C31—C3—H3104.9H31B—C31—H31C109.5
P1—C3—H3104.9C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
S1—Pd1—Cl2—Pd1i178.13 (2)C2—P1—C1—C1337.80 (18)
Cl2i—Pd1—Cl2—Pd1i0.0S1—P1—C1—C13159.96 (14)
Cl1—Pd1—S1—P173.01 (3)C3—P1—C2—C21175.65 (16)
Cl2—Pd1—S1—P1109.98 (3)C1—P1—C2—C2162.49 (18)
Pd1—S1—P1—C372.23 (8)S1—P1—C2—C2154.62 (17)
Pd1—S1—P1—C245.78 (8)C3—P1—C2—C2250.45 (18)
Pd1—S1—P1—C1164.96 (7)C1—P1—C2—C22172.32 (15)
C3—P1—C1—C12160.34 (16)S1—P1—C2—C2270.58 (16)
C2—P1—C1—C1282.83 (18)C2—P1—C3—C3256.71 (18)
S1—P1—C1—C1239.34 (17)C1—P1—C3—C3262.28 (19)
C3—P1—C1—C1141.68 (19)S1—P1—C3—C32179.67 (14)
C2—P1—C1—C11158.51 (16)C2—P1—C3—C31172.15 (16)
S1—P1—C1—C1179.32 (16)C1—P1—C3—C3168.86 (19)
C3—P1—C1—C1379.03 (18)S1—P1—C3—C3149.19 (18)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl11.002.743.466 (2)130
C13—H13C···Cl1ii0.982.953.893 (2)162
C31—H31B···S10.982.933.523 (2)120
C32—H32C···Cl1iii0.982.893.728 (2)144
C21—H21C···Cl20.982.903.844 (2)161
C22—H22C···Cl2iv0.982.993.960 (2)172
C22—H22A···Pd10.982.523.383 (2)147
C2—H2···Pd1v1.003.093.688 (2)120
C22—H22C···Pd1v0.983.043.740 (2)129
C21—H21A···Pd1v0.983.163.784 (2)123
Symmetry codes: (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1, y, z.
(Bromosulfanyl)di-tert-butylisopropylphosphanium di-µ-bromido-bis[dibromidopalladium(II)] (7) top
Crystal data top
(C11H25BrPS)2[Pd2Br6]F(000) = 1232
Mr = 1292.76Dx = 2.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8691 (4) ÅCell parameters from 8375 reflections
b = 22.7255 (8) Åθ = 2.1–29.2°
c = 10.5879 (3) ŵ = 9.70 mm1
β = 98.386 (3)°T = 100 K
V = 1873.18 (13) Å3Plate, red
Z = 20.2 × 0.1 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4622 independent reflections
Radiation source: Enhance (Mo) X-ray Source3740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 3030
Tmin = 0.495, Tmax = 1.000l = 1414
52903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0177P)2 + 6.208P]
where P = (Fo2 + 2Fc2)/3
4622 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.71 e Å3
87 restraintsΔρmin = 0.95 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.39593 (7)0.61750 (2)0.46899 (5)0.02308 (12)
P10.43599 (16)0.63574 (5)0.78836 (12)0.0152 (3)
S10.57414 (17)0.64827 (6)0.63578 (12)0.0201 (3)
Pd10.00182 (5)0.56159 (2)0.39219 (3)0.01429 (9)
Br20.14330 (7)0.58219 (2)0.21071 (5)0.02152 (12)
Br30.13664 (6)0.46495 (2)0.42182 (5)0.01861 (12)
Br40.14636 (7)0.65550 (2)0.37175 (5)0.02252 (12)
C10.6145 (6)0.6373 (2)0.9272 (4)0.0195 (10)
C110.5461 (9)0.6149 (4)1.0480 (6)0.0291 (19)0.806 (14)
H11A0.5165410.5731071.0377420.044*0.806 (14)
H11B0.4435940.6373661.0605950.044*0.806 (14)
H11C0.6348020.6199821.1224080.044*0.806 (14)
C120.6801 (10)0.7008 (3)0.9529 (7)0.030 (2)0.806 (14)
H12A0.7846840.7002381.0157760.046*0.806 (14)
H12B0.5917600.7242070.9860830.046*0.806 (14)
H12C0.7056360.7183640.8732160.046*0.806 (14)
C130.7632 (9)0.5987 (4)0.9015 (7)0.028 (2)0.806 (14)
H13A0.8490080.5967820.9783820.042*0.806 (14)
H13B0.8156680.6154590.8311110.042*0.806 (14)
H13C0.7208260.5590440.8784540.042*0.806 (14)
C11'0.749 (3)0.6836 (11)0.902 (3)0.026 (8)*0.194 (14)
H11D0.7826450.6767780.8176980.040*0.194 (14)
H11E0.6991080.7230870.9045230.040*0.194 (14)
H11F0.8499140.6804700.9675950.040*0.194 (14)
C12'0.708 (4)0.5767 (8)0.931 (3)0.019 (7)*0.194 (14)
H12D0.7481620.5696310.8486420.028*0.194 (14)
H12E0.8069850.5769530.9989900.028*0.194 (14)
H12F0.6287020.5453470.9471100.028*0.194 (14)
C13'0.556 (4)0.6455 (14)1.0569 (19)0.022 (8)*0.194 (14)
H13D0.4711880.6152731.0689420.033*0.194 (14)
H13E0.6553000.6419401.1241710.033*0.194 (14)
H13F0.5044940.6845571.0610980.033*0.194 (14)
C20.3250 (6)0.5645 (2)0.7640 (5)0.0189 (10)
H20.2408420.5692850.6843050.023*
C210.4409 (7)0.5136 (2)0.7369 (6)0.0305 (13)
H21A0.5181080.5034660.8150750.046*
H21B0.5088070.5252600.6705030.046*
H21C0.3700960.4793600.7077900.046*
C220.2171 (9)0.5480 (3)0.8679 (6)0.0408 (16)
H22A0.1555130.5111740.8445750.061*
H22B0.1341990.5793870.8763820.061*
H22C0.2925510.5427830.9493740.061*
C30.2742 (7)0.6967 (2)0.7887 (5)0.0249 (12)
C310.1155 (13)0.6835 (5)0.6871 (9)0.030 (2)0.80 (3)
H31A0.0294230.7144530.6892400.045*0.80 (3)
H31B0.0661270.6454100.7057240.045*0.80 (3)
H31C0.1510040.6821830.6021360.045*0.80 (3)
C320.2141 (15)0.7059 (6)0.9180 (7)0.039 (3)0.80 (3)
H32A0.3095120.7209900.9792740.059*0.80 (3)
H32B0.1747930.6683120.9488540.059*0.80 (3)
H32C0.1192690.7342530.9089650.059*0.80 (3)
C330.3548 (12)0.7548 (3)0.7488 (14)0.044 (3)0.80 (3)
H33A0.2679820.7860200.7407520.066*0.80 (3)
H33B0.3961500.7492280.6667320.066*0.80 (3)
H33C0.4511650.7658870.8138720.066*0.80 (3)
C31'0.167 (4)0.6839 (16)0.897 (3)0.020*0.20 (3)
H31D0.1109100.6454450.8827460.030*0.20 (3)
H31E0.2426630.6835350.9793500.030*0.20 (3)
H31F0.0794890.7144850.8981180.030*0.20 (3)
C32'0.363 (4)0.7560 (10)0.808 (4)0.029 (10)*0.20 (3)
H32D0.4414940.7557910.8890560.044*0.20 (3)
H32E0.4280900.7635690.7377040.044*0.20 (3)
H32F0.2766910.7869280.8103990.044*0.20 (3)
C33'0.148 (5)0.693 (2)0.664 (2)0.022 (10)*0.20 (3)
H33D0.0949620.6540670.6560330.033*0.20 (3)
H33E0.0590800.7231900.6638990.033*0.20 (3)
H33F0.2104800.6998310.5912040.033*0.20 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0307 (3)0.0269 (3)0.0112 (2)0.0003 (2)0.0017 (2)0.0001 (2)
P10.0203 (6)0.0153 (6)0.0102 (6)0.0004 (5)0.0028 (5)0.0005 (5)
S10.0269 (7)0.0211 (7)0.0129 (6)0.0055 (5)0.0049 (5)0.0007 (5)
Pd10.01969 (19)0.01357 (18)0.00967 (18)0.00020 (14)0.00232 (14)0.00032 (14)
Br20.0287 (3)0.0237 (3)0.0133 (2)0.0017 (2)0.0067 (2)0.0026 (2)
Br30.0251 (3)0.0171 (2)0.0154 (2)0.0045 (2)0.0088 (2)0.00110 (19)
Br40.0297 (3)0.0163 (3)0.0210 (3)0.0049 (2)0.0020 (2)0.0014 (2)
C10.026 (3)0.021 (3)0.011 (2)0.006 (2)0.001 (2)0.0004 (19)
C110.029 (4)0.042 (5)0.015 (3)0.009 (4)0.001 (3)0.003 (3)
C120.037 (4)0.028 (4)0.025 (4)0.010 (3)0.000 (3)0.003 (3)
C130.022 (4)0.044 (5)0.016 (4)0.005 (3)0.003 (3)0.004 (3)
C20.022 (3)0.021 (3)0.013 (2)0.006 (2)0.001 (2)0.000 (2)
C210.034 (3)0.016 (3)0.039 (4)0.000 (2)0.000 (3)0.002 (2)
C220.054 (4)0.041 (4)0.031 (3)0.024 (3)0.016 (3)0.011 (3)
C30.028 (3)0.024 (3)0.023 (3)0.010 (2)0.004 (2)0.001 (2)
C310.036 (5)0.032 (5)0.021 (4)0.013 (4)0.004 (4)0.007 (4)
C320.045 (6)0.049 (7)0.023 (4)0.019 (5)0.003 (4)0.010 (4)
C330.071 (6)0.017 (4)0.046 (7)0.007 (3)0.014 (5)0.003 (4)
Geometric parameters (Å, º) top
Br1—S12.2027 (14)C2—C211.525 (7)
Br1—Br23.2387 (7)C2—C221.531 (7)
P1—C21.840 (5)C2—H21.0000
P1—C11.879 (5)C21—H21A0.9800
P1—C31.881 (5)C21—H21B0.9800
P1—S12.0941 (18)C21—H21C0.9800
Pd1—Br42.4131 (6)C22—H22A0.9800
Pd1—Br22.4199 (6)C22—H22B0.9800
Pd1—Br3i2.4447 (6)C22—H22C0.9800
Pd1—Br32.4514 (6)C3—C32'1.518 (14)
C1—C131.518 (7)C3—C321.527 (8)
C1—C13'1.522 (14)C3—C33'1.536 (14)
C1—C11'1.542 (14)C3—C31'1.549 (14)
C1—C121.544 (7)C3—C331.550 (8)
C1—C111.545 (7)C3—C311.554 (8)
C1—C12'1.562 (13)C31—H31A0.9800
C11—H11A0.9800C31—H31B0.9800
C11—H11B0.9800C31—H31C0.9800
C11—H11C0.9800C32—H32A0.9800
C12—H12A0.9800C32—H32B0.9800
C12—H12B0.9800C32—H32C0.9800
C12—H12C0.9800C33—H33A0.9800
C13—H13A0.9800C33—H33B0.9800
C13—H13B0.9800C33—H33C0.9800
C13—H13C0.9800C31'—H31D0.9800
C11'—H11D0.9800C31'—H31E0.9800
C11'—H11E0.9800C31'—H31F0.9800
C11'—H11F0.9800C32'—H32D0.9800
C12'—H12D0.9800C32'—H32E0.9800
C12'—H12E0.9800C32'—H32F0.9800
C12'—H12F0.9800C33'—H33D0.9800
C13'—H13D0.9800C33'—H33E0.9800
C13'—H13E0.9800C33'—H33F0.9800
C13'—H13F0.9800
S1—Br1—Br2175.04 (4)C21—C2—P1114.2 (4)
C2—P1—C1114.3 (2)C22—C2—P1114.6 (4)
C2—P1—C3109.9 (2)C21—C2—H2105.3
C1—P1—C3114.4 (2)C22—C2—H2105.3
C2—P1—S1107.50 (17)P1—C2—H2105.3
C1—P1—S1100.83 (16)C2—C21—H21A109.5
C3—P1—S1109.19 (17)C2—C21—H21B109.5
P1—S1—Br1103.52 (7)H21A—C21—H21B109.5
Br4—Pd1—Br291.64 (2)C2—C21—H21C109.5
Br4—Pd1—Br3i92.07 (2)H21A—C21—H21C109.5
Br2—Pd1—Br3i176.25 (2)H21B—C21—H21C109.5
Br4—Pd1—Br3177.07 (2)C2—C22—H22A109.5
Br2—Pd1—Br391.29 (2)C2—C22—H22B109.5
Br3i—Pd1—Br385.00 (2)H22A—C22—H22B109.5
Pd1—Br2—Br171.340 (18)C2—C22—H22C109.5
Pd1i—Br3—Pd195.00 (2)H22A—C22—H22C109.5
C13'—C1—C11'112.2 (14)H22B—C22—H22C109.5
C13—C1—C12109.0 (5)C32'—C3—C33'113.0 (18)
C13—C1—C11109.1 (5)C32'—C3—C31'110.8 (15)
C12—C1—C11108.1 (5)C33'—C3—C31'106.1 (16)
C13'—C1—C12'106.8 (14)C32—C3—C33108.7 (5)
C11'—C1—C12'105.9 (13)C32—C3—C31108.9 (6)
C13—C1—P1110.9 (4)C33—C3—C31107.2 (6)
C13'—C1—P1114.8 (12)C32'—C3—P1110.8 (15)
C11'—C1—P1109.3 (11)C32—C3—P1113.6 (4)
C12—C1—P1110.4 (4)C33'—C3—P1108.1 (19)
C11—C1—P1109.3 (4)C31'—C3—P1107.7 (12)
C12'—C1—P1107.4 (11)C33—C3—P1108.9 (4)
C1—C11—H11A109.5C31—C3—P1109.4 (5)
C1—C11—H11B109.5C3—C31—H31A109.5
H11A—C11—H11B109.5C3—C31—H31B109.5
C1—C11—H11C109.5H31A—C31—H31B109.5
H11A—C11—H11C109.5C3—C31—H31C109.5
H11B—C11—H11C109.5H31A—C31—H31C109.5
C1—C12—H12A109.5H31B—C31—H31C109.5
C1—C12—H12B109.5C3—C32—H32A109.5
H12A—C12—H12B109.5C3—C32—H32B109.5
C1—C12—H12C109.5H32A—C32—H32B109.5
H12A—C12—H12C109.5C3—C32—H32C109.5
H12B—C12—H12C109.5H32A—C32—H32C109.5
C1—C13—H13A109.5H32B—C32—H32C109.5
C1—C13—H13B109.5C3—C33—H33A109.5
H13A—C13—H13B109.5C3—C33—H33B109.5
C1—C13—H13C109.5H33A—C33—H33B109.5
H13A—C13—H13C109.5C3—C33—H33C109.5
H13B—C13—H13C109.5H33A—C33—H33C109.5
C1—C11'—H11D109.5H33B—C33—H33C109.5
C1—C11'—H11E109.5C3—C31'—H31D109.5
H11D—C11'—H11E109.5C3—C31'—H31E109.5
C1—C11'—H11F109.5H31D—C31'—H31E109.5
H11D—C11'—H11F109.5C3—C31'—H31F109.5
H11E—C11'—H11F109.5H31D—C31'—H31F109.5
C1—C12'—H12D109.5H31E—C31'—H31F109.5
C1—C12'—H12E109.5C3—C32'—H32D109.5
H12D—C12'—H12E109.5C3—C32'—H32E109.5
C1—C12'—H12F109.5H32D—C32'—H32E109.5
H12D—C12'—H12F109.5C3—C32'—H32F109.5
H12E—C12'—H12F109.5H32D—C32'—H32F109.5
C1—C13'—H13D109.5H32E—C32'—H32F109.5
C1—C13'—H13E109.5C3—C33'—H33D109.5
H13D—C13'—H13E109.5C3—C33'—H33E109.5
C1—C13'—H13F109.5H33D—C33'—H33E109.5
H13D—C13'—H13F109.5C3—C33'—H33F109.5
H13E—C13'—H13F109.5H33D—C33'—H33F109.5
C21—C2—C22111.0 (5)H33E—C33'—H33F109.5
C2—P1—S1—Br141.39 (18)C1—P1—C2—C2160.8 (4)
C1—P1—S1—Br1161.38 (15)C3—P1—C2—C21169.0 (4)
C3—P1—S1—Br177.83 (18)S1—P1—C2—C2150.2 (4)
Br4—Pd1—Br2—Br195.390 (19)C1—P1—C2—C2268.8 (5)
Br3—Pd1—Br2—Br184.823 (19)C3—P1—C2—C2261.4 (5)
Br2—Pd1—Br3—Pd1i179.44 (2)S1—P1—C2—C22179.8 (4)
Br3i—Pd1—Br3—Pd1i0.0C2—P1—C3—C32'179.8 (19)
C2—P1—C1—C1368.1 (5)C1—P1—C3—C32'50.0 (19)
C3—P1—C1—C13163.9 (5)S1—P1—C3—C32'62.1 (19)
S1—P1—C1—C1346.9 (5)C2—P1—C3—C3283.8 (8)
C2—P1—C1—C13'80.4 (14)C1—P1—C3—C3246.4 (8)
C3—P1—C1—C13'47.6 (14)S1—P1—C3—C32158.5 (7)
S1—P1—C1—C13'164.6 (14)C2—P1—C3—C33'55.5 (17)
C2—P1—C1—C11'152.6 (14)C1—P1—C3—C33'174.4 (17)
C3—P1—C1—C11'79.4 (14)S1—P1—C3—C33'62.2 (17)
S1—P1—C1—C11'37.6 (14)C2—P1—C3—C31'58.8 (17)
C2—P1—C1—C12171.1 (4)C1—P1—C3—C31'71.4 (17)
C3—P1—C1—C1243.1 (5)S1—P1—C3—C31'176.5 (16)
S1—P1—C1—C1274.0 (4)C2—P1—C3—C33155.0 (6)
C2—P1—C1—C1152.3 (5)C1—P1—C3—C3374.8 (7)
C3—P1—C1—C1175.7 (5)S1—P1—C3—C3337.3 (7)
S1—P1—C1—C11167.3 (4)C2—P1—C3—C3138.2 (7)
C2—P1—C1—C12'38.2 (13)C1—P1—C3—C31168.4 (6)
C3—P1—C1—C12'166.2 (13)S1—P1—C3—C3179.5 (6)
S1—P1—C1—C12'76.8 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···Br4ii0.983.044.005 (7)167
C12—H12C···S10.983.033.547 (7)114
C12—H12C···Br4iii0.983.103.689 (6)120
C13—H13B···S10.982.703.190 (7)111
C2—H2···Br11.002.953.468 (5)113
C2—H2···Br3i1.003.123.928 (5)139
C21—H21B···Br10.983.033.668 (6)124
C21—H21B···S10.982.883.456 (6)119
C21—H21B···Br3iv0.983.103.968 (6)149
C31—H31C···Br10.982.943.732 (11)139
C33—H33B···S10.982.733.298 (10)117
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+1.
(Bromoselanyl)di-tert-butylisopropylphosphanium di-µ-bromido-bis[dibromidopalladium(II)] (8) top
Crystal data top
(C11H25BrPS2)2[Pd2Br6]F(000) = 2608
Mr = 1386.56Dx = 2.433 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.3550 (6) ÅCell parameters from 7808 reflections
b = 14.8165 (2) Åθ = 2.6–30.8°
c = 16.3047 (5) ŵ = 11.42 mm1
β = 125.957 (5)°T = 100 K
V = 3784.8 (3) Å3Prism, red
Z = 40.2 × 0.06 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5622 independent reflections
Radiation source: Enhance (Mo) X-ray Source4433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.6°
ω scansh = 2627
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 2021
Tmin = 0.327, Tmax = 1.000l = 2323
51432 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0187P)2]
where P = (Fo2 + 2Fc2)/3
5622 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.02 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.22849 (5)0.77872 (5)0.24438 (6)0.00853 (16)
Se10.16673 (2)0.87965 (2)0.11698 (2)0.01074 (7)
Br10.28206 (2)0.91565 (2)0.11317 (2)0.01416 (8)
C10.13164 (18)0.7218 (2)0.2202 (2)0.0114 (6)
C110.1540 (2)0.6693 (2)0.3137 (2)0.0195 (7)
H11A0.1713020.7115900.3688290.029*
H11B0.2010900.6276090.3349060.029*
H11C0.1040490.6350070.2971630.029*
C120.09563 (19)0.6565 (2)0.1310 (2)0.0145 (7)
H12A0.0434840.6284290.1159000.022*
H12B0.1379630.6095960.1486050.022*
H12C0.0823970.6897110.0713680.022*
C130.06286 (19)0.7918 (2)0.1920 (2)0.0154 (7)
H13A0.0133850.7616670.1820440.023*
H13B0.0454040.8223960.1292510.023*
H13C0.0857540.8362810.2466580.023*
C20.29749 (19)0.7020 (2)0.2326 (2)0.0119 (6)
H20.3517080.7358640.2604640.014*
C210.2632 (2)0.6766 (2)0.1232 (2)0.0164 (7)
H21A0.3085430.6475980.1229180.025*
H21B0.2440190.7312440.0813870.025*
H21C0.2150560.6348150.0955590.025*
C220.3232 (2)0.6161 (2)0.2967 (2)0.0180 (7)
H22A0.2738400.5757780.2666460.027*
H22B0.3432040.6320820.3657240.027*
H22C0.3691430.5854330.2988610.027*
C30.29514 (19)0.8399 (2)0.3681 (2)0.0121 (6)
C310.2387 (2)0.8964 (2)0.3853 (2)0.0167 (7)
H31A0.2056570.8564150.3980840.025*
H31B0.1996690.9331410.3250670.025*
H31C0.2746280.9360490.4439400.025*
C320.3559 (2)0.9036 (2)0.3639 (2)0.0160 (7)
H32A0.3224660.9477620.3094030.024*
H32B0.3913680.8683620.3507770.024*
H32C0.3926490.9352510.4287250.024*
C330.3513 (2)0.7756 (2)0.4582 (2)0.0201 (8)
H33A0.3811250.8100130.5215900.030*
H33B0.3932800.7465270.4515190.030*
H33C0.3154000.7294650.4588230.030*
Pd10.5000000.86021 (2)0.2500000.00908 (7)
Pd20.5000000.61741 (2)0.2500000.01122 (8)
Br20.44677 (2)0.97324 (2)0.11858 (2)0.01413 (7)
Br30.45642 (2)0.73949 (2)0.12672 (2)0.01349 (7)
Br40.45006 (2)0.50442 (2)0.11976 (3)0.01982 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0104 (4)0.0066 (4)0.0094 (4)0.0001 (3)0.0062 (3)0.0001 (3)
Se10.01218 (15)0.00876 (16)0.01024 (15)0.00039 (12)0.00600 (13)0.00079 (12)
Br10.01752 (16)0.01363 (17)0.01470 (16)0.00296 (13)0.01135 (14)0.00010 (13)
C10.0094 (14)0.0096 (16)0.0147 (16)0.0003 (12)0.0068 (13)0.0013 (12)
C110.0223 (18)0.0178 (19)0.0210 (18)0.0002 (14)0.0142 (16)0.0059 (14)
C120.0120 (16)0.0117 (17)0.0179 (17)0.0019 (12)0.0077 (14)0.0014 (13)
C130.0136 (16)0.0163 (18)0.0155 (17)0.0002 (13)0.0081 (14)0.0000 (13)
C20.0115 (15)0.0105 (16)0.0147 (16)0.0001 (12)0.0083 (13)0.0029 (12)
C210.0205 (17)0.0141 (18)0.0214 (18)0.0018 (13)0.0161 (15)0.0031 (14)
C220.0181 (17)0.0145 (18)0.0221 (18)0.0049 (13)0.0123 (15)0.0060 (14)
C30.0132 (16)0.0124 (17)0.0101 (15)0.0019 (12)0.0064 (13)0.0018 (12)
C310.0175 (17)0.0179 (19)0.0161 (17)0.0039 (13)0.0106 (15)0.0057 (13)
C320.0177 (17)0.0160 (18)0.0150 (17)0.0059 (13)0.0101 (14)0.0061 (13)
C330.0200 (18)0.022 (2)0.0098 (16)0.0001 (14)0.0042 (14)0.0014 (14)
Pd10.01055 (16)0.00756 (17)0.00919 (16)0.0000.00583 (14)0.000
Pd20.01087 (16)0.00836 (17)0.01348 (17)0.0000.00661 (14)0.000
Br20.01631 (16)0.01205 (17)0.01485 (16)0.00145 (12)0.00962 (13)0.00405 (12)
Br30.01799 (16)0.01008 (16)0.01034 (15)0.00096 (12)0.00716 (13)0.00139 (12)
Br40.02289 (18)0.01048 (17)0.01998 (18)0.00065 (13)0.00918 (15)0.00316 (13)
Geometric parameters (Å, º) top
P1—C21.848 (3)C22—H22A0.9800
P1—C31.870 (3)C22—H22B0.9800
P1—C11.875 (3)C22—H22C0.9800
P1—Se12.2505 (8)C3—C311.528 (4)
Se1—Br12.3310 (4)C3—C331.540 (4)
Br1—Br23.2510 (5)C3—C321.542 (4)
C1—C111.529 (4)C31—H31A0.9800
C1—C131.530 (4)C31—H31B0.9800
C1—C121.532 (4)C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
C13—H13A0.9800Pd1—Br22.4218 (4)
C13—H13B0.9800Pd1—Br2i2.4218 (4)
C13—H13C0.9800Pd1—Br32.4413 (4)
C2—C221.533 (4)Pd1—Br3i2.4413 (4)
C2—C211.541 (4)Pd2—Br4i2.4157 (4)
C2—H21.0000Pd2—Br42.4157 (4)
C21—H21A0.9800Pd2—Br3i2.4562 (4)
C21—H21B0.9800Pd2—Br32.4562 (4)
C21—H21C0.9800
C2—P1—C3109.11 (14)C2—C22—H22A109.5
C2—P1—C1113.31 (14)C2—C22—H22B109.5
C3—P1—C1114.58 (14)H22A—C22—H22B109.5
C2—P1—Se1109.72 (10)C2—C22—H22C109.5
C3—P1—Se1109.24 (10)H22A—C22—H22C109.5
C1—P1—Se1100.47 (10)H22B—C22—H22C109.5
P1—Se1—Br1100.30 (2)C31—C3—C33110.1 (3)
Se1—Br1—Br2176.810 (16)C31—C3—C32108.6 (3)
C11—C1—C13109.4 (3)C33—C3—C32106.9 (3)
C11—C1—C12109.3 (3)C31—C3—P1110.4 (2)
C13—C1—C12108.2 (2)C33—C3—P1112.5 (2)
C11—C1—P1110.9 (2)C32—C3—P1108.0 (2)
C13—C1—P1110.1 (2)C3—C31—H31A109.5
C12—C1—P1108.9 (2)C3—C31—H31B109.5
C1—C11—H11A109.5H31A—C31—H31B109.5
C1—C11—H11B109.5C3—C31—H31C109.5
H11A—C11—H11B109.5H31A—C31—H31C109.5
C1—C11—H11C109.5H31B—C31—H31C109.5
H11A—C11—H11C109.5C3—C32—H32A109.5
H11B—C11—H11C109.5C3—C32—H32B109.5
C1—C12—H12A109.5H32A—C32—H32B109.5
C1—C12—H12B109.5C3—C32—H32C109.5
H12A—C12—H12B109.5H32A—C32—H32C109.5
C1—C12—H12C109.5H32B—C32—H32C109.5
H12A—C12—H12C109.5C3—C33—H33A109.5
H12B—C12—H12C109.5C3—C33—H33B109.5
C1—C13—H13A109.5H33A—C33—H33B109.5
C1—C13—H13B109.5C3—C33—H33C109.5
H13A—C13—H13B109.5H33A—C33—H33C109.5
C1—C13—H13C109.5H33B—C33—H33C109.5
H13A—C13—H13C109.5Br2—Pd1—Br2i92.495 (19)
H13B—C13—H13C109.5Br2—Pd1—Br390.936 (11)
C22—C2—C21109.5 (3)Br2i—Pd1—Br3175.531 (13)
C22—C2—P1113.9 (2)Br2—Pd1—Br3i175.531 (13)
C21—C2—P1115.1 (2)Br2i—Pd1—Br3i90.936 (11)
C22—C2—H2105.8Br3—Pd1—Br3i85.785 (18)
C21—C2—H2105.8Br4i—Pd2—Br492.26 (2)
P1—C2—H2105.8Br4i—Pd2—Br3i91.326 (11)
C2—C21—H21A109.5Br4—Pd2—Br3i176.053 (14)
C2—C21—H21B109.5Br4i—Pd2—Br3176.054 (14)
H21A—C21—H21B109.5Br4—Pd2—Br391.324 (11)
C2—C21—H21C109.5Br3i—Pd2—Br385.139 (18)
H21A—C21—H21C109.5Pd1—Br2—Br175.133 (10)
H21B—C21—H21C109.5Pd1—Br3—Pd294.538 (13)
C2—P1—Se1—Br142.39 (11)Se1—P1—C2—C22164.30 (19)
C3—P1—Se1—Br177.19 (11)C3—P1—C2—C21156.3 (2)
C1—P1—Se1—Br1161.98 (10)C1—P1—C2—C2174.7 (3)
C2—P1—C1—C1180.0 (2)Se1—P1—C2—C2136.6 (2)
C3—P1—C1—C1146.1 (3)C2—P1—C3—C31174.0 (2)
Se1—P1—C1—C11163.1 (2)C1—P1—C3—C3145.8 (3)
C2—P1—C1—C13158.8 (2)Se1—P1—C3—C3166.0 (2)
C3—P1—C1—C1375.1 (2)C2—P1—C3—C3350.5 (3)
Se1—P1—C1—C1341.9 (2)C1—P1—C3—C3377.8 (3)
C2—P1—C1—C1240.3 (2)Se1—P1—C3—C33170.4 (2)
C3—P1—C1—C12166.4 (2)C2—P1—C3—C3267.3 (2)
Se1—P1—C1—C1276.6 (2)C1—P1—C3—C32164.4 (2)
C3—P1—C2—C2276.0 (3)Se1—P1—C3—C3252.6 (2)
C1—P1—C2—C2252.9 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···Se10.983.123.640 (3)115
C13—H13B···Se10.982.613.181 (3)117
C21—H21A···Br30.983.143.822 (3)128
C21—H21B···Se10.982.903.511 (3)121
C21—H21B···Br10.982.803.574 (3)137
C31—H31B···Se10.983.163.740 (3)119
C32—H32A···Se10.982.973.526 (3)117
C32—H32A···Br10.982.853.452 (3)120
C12—H12A···Br2ii0.982.983.877 (3)152
C12—H12C···Br3iii0.983.044.009 (3)170
C2—H2···Br3i1.003.033.928 (3)151
C32—H32C···Br2iv0.982.953.885 (3)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x+1/2, y+3/2, z; (iv) x, y+2, z+1/2.
Bis[dimethyl(sulfanylidene)phosphinito-κSe]\ bis(hydroxydiisopropylphosphine selenide-κSe)palladium(II) (9) top
Crystal data top
[Pd(C6H14OP)2(C6H15OP)2]F(000) = 952
Mr = 956.82Dx = 1.726 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.56435 (6) ÅCell parameters from 28620 reflections
b = 10.09140 (9) Åθ = 2.2–30.8°
c = 24.13960 (19) ŵ = 4.66 mm1
β = 92.7641 (8)°T = 100 K
V = 1840.55 (3) Å3Plate, dichroic orange yellow
Z = 20.10 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5558 independent reflections
Radiation source: Enhance (Mo) X-ray Source4939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2012)
k = 1414
Tmin = 0.650, Tmax = 1.000l = 3434
86102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: mixed
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0132P)2 + 1.1714P]
where P = (Fo2 + 2Fc2)/3
5558 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.54 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.5000000.5000000.0000000.01153 (4)
Se10.57000 (2)0.38861 (2)0.08922 (2)0.01535 (4)
Se20.41580 (2)0.71744 (2)0.03720 (2)0.01366 (4)
P10.43798 (6)0.47524 (4)0.15938 (2)0.01456 (8)
P20.65706 (5)0.79940 (4)0.07727 (2)0.01312 (8)
O10.49525 (18)0.61413 (12)0.17883 (5)0.0217 (3)
H010.569 (4)0.653 (3)0.1640 (15)0.012 (10)*0.5
O20.72157 (16)0.73009 (12)0.13081 (5)0.0173 (2)
H020.651 (5)0.686 (4)0.1445 (17)0.026 (12)*0.5
C10.4898 (2)0.36446 (17)0.21777 (7)0.0185 (3)
H10.4447590.2737580.2081550.022*
C20.1998 (2)0.47669 (19)0.14275 (8)0.0233 (4)
H20.1844510.5076990.1034630.028*
C30.8443 (2)0.80181 (17)0.03261 (7)0.0183 (3)
H30.9445340.8454920.0541130.022*
C40.6011 (2)0.97035 (16)0.09352 (7)0.0165 (3)
H40.5606101.0162680.0584550.020*
C110.6902 (2)0.3574 (2)0.22936 (8)0.0276 (4)
H11A0.7365330.4466330.2368500.041*
H11B0.7460320.3203660.1969940.041*
H11C0.7163960.3006560.2616700.041*
C120.3978 (3)0.4140 (2)0.26924 (7)0.0251 (4)
H12A0.4442680.3657690.3020420.038*
H12B0.2700590.3987630.2643150.038*
H12C0.4204370.5089560.2741800.038*
C210.1008 (3)0.5759 (2)0.17752 (10)0.0403 (5)
H21A0.0209280.5853620.1622030.061*
H21B0.1605720.6619830.1768560.061*
H21C0.0990580.5440470.2158460.061*
C220.1194 (2)0.3383 (2)0.14410 (8)0.0287 (4)
H22A0.1168930.3078570.1826010.043*
H22B0.1910260.2772680.1229510.043*
H22C0.0015390.3407900.1276010.043*
C310.8062 (2)0.88557 (19)0.01933 (7)0.0233 (4)
H31A0.9116580.8881410.0413470.035*
H31B0.7749740.9758460.0084770.035*
H31C0.7075270.8464270.0414690.035*
C320.9062 (2)0.66192 (19)0.01842 (8)0.0224 (4)
H32A0.8170950.6192470.0064200.034*
H32B0.9224300.6098460.0525530.034*
H32C1.0187260.6671260.0000340.034*
C410.4514 (2)0.97368 (18)0.13373 (8)0.0231 (4)
H41A0.4889560.9276200.1680460.035*
H41B0.3467700.9296460.1167670.035*
H41C0.4224351.0659260.1421690.035*
C420.7641 (2)1.04303 (18)0.11869 (8)0.0248 (4)
H42A0.7310211.1335330.1286630.037*
H42B0.8561721.0460520.0915270.037*
H42C0.8090620.9959240.1519580.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01300 (8)0.01194 (8)0.00948 (8)0.00030 (6)0.00123 (6)0.00009 (6)
Se10.01935 (8)0.01597 (8)0.01067 (8)0.00335 (6)0.00021 (6)0.00170 (6)
Se20.01356 (7)0.01384 (8)0.01338 (8)0.00039 (6)0.00162 (6)0.00140 (6)
P10.01670 (19)0.0150 (2)0.01200 (19)0.00073 (16)0.00040 (15)0.00122 (16)
P20.01415 (19)0.01285 (19)0.01223 (19)0.00036 (15)0.00065 (15)0.00012 (15)
O10.0318 (7)0.0181 (6)0.0155 (6)0.0043 (5)0.0057 (5)0.0010 (5)
O20.0192 (6)0.0159 (6)0.0164 (6)0.0012 (5)0.0035 (5)0.0032 (5)
C10.0223 (8)0.0198 (8)0.0134 (8)0.0003 (7)0.0018 (6)0.0035 (6)
C20.0184 (8)0.0296 (10)0.0216 (9)0.0059 (7)0.0011 (7)0.0001 (8)
C30.0144 (7)0.0222 (9)0.0183 (8)0.0026 (6)0.0003 (6)0.0024 (7)
C40.0209 (8)0.0127 (8)0.0157 (8)0.0006 (6)0.0002 (6)0.0006 (6)
C110.0257 (9)0.0415 (12)0.0155 (9)0.0067 (8)0.0017 (7)0.0058 (8)
C120.0282 (9)0.0324 (11)0.0149 (8)0.0012 (8)0.0048 (7)0.0030 (8)
C210.0283 (11)0.0401 (13)0.0526 (14)0.0160 (10)0.0014 (10)0.0102 (11)
C220.0185 (9)0.0387 (11)0.0290 (10)0.0051 (8)0.0022 (7)0.0067 (9)
C310.0249 (9)0.0251 (9)0.0203 (9)0.0038 (7)0.0058 (7)0.0011 (7)
C320.0153 (8)0.0265 (9)0.0255 (9)0.0027 (7)0.0005 (7)0.0061 (8)
C410.0270 (9)0.0212 (9)0.0215 (9)0.0032 (7)0.0055 (7)0.0036 (7)
C420.0278 (9)0.0164 (9)0.0299 (10)0.0041 (7)0.0030 (8)0.0042 (7)
Geometric parameters (Å, º) top
Pd1—Se12.4642 (2)C4—H41.0000
Pd1—Se1i2.4642 (2)C11—H11A0.9800
Pd1—Se2i2.4662 (2)C11—H11B0.9800
Pd1—Se22.4662 (2)C11—H11C0.9800
Se1—P12.1894 (5)C12—H12A0.9800
Se2—P22.1863 (4)C12—H12B0.9800
P1—O11.5340 (13)C12—H12C0.9800
P1—C11.8267 (17)C21—H21A0.9800
P1—C21.8272 (18)C21—H21B0.9800
P2—O21.5287 (12)C21—H21C0.9800
P2—C31.8213 (17)C22—H22A0.9800
P2—C41.8234 (17)C22—H22B0.9800
O1—H010.782 (18)C22—H22C0.9800
O2—H020.778 (19)C31—H31A0.9800
C1—C111.530 (2)C31—H31B0.9800
C1—C121.536 (2)C31—H31C0.9800
C1—H11.0000C32—H32A0.9800
C2—C221.524 (3)C32—H32B0.9800
C2—C211.526 (3)C32—H32C0.9800
C2—H21.0000C41—H41A0.9800
C3—C311.528 (2)C41—H41B0.9800
C3—C321.531 (2)C41—H41C0.9800
C3—H31.0000C42—H42A0.9800
C4—C411.527 (2)C42—H42B0.9800
C4—C421.534 (2)C42—H42C0.9800
Se1—Pd1—Se1i180.0C1—C11—H11B109.5
Se1—Pd1—Se2i82.184 (5)H11A—C11—H11B109.5
Se1i—Pd1—Se2i97.816 (5)C1—C11—H11C109.5
Se1—Pd1—Se297.817 (5)H11A—C11—H11C109.5
Se1i—Pd1—Se282.183 (5)H11B—C11—H11C109.5
Se2i—Pd1—Se2180.0C1—C12—H12A109.5
P1—Se1—Pd1114.028 (13)C1—C12—H12B109.5
P2—Se2—Pd1105.840 (13)H12A—C12—H12B109.5
O1—P1—C1106.03 (8)C1—C12—H12C109.5
O1—P1—C2108.72 (8)H12A—C12—H12C109.5
C1—P1—C2110.31 (8)H12B—C12—H12C109.5
O1—P1—Se1117.97 (5)C2—C21—H21A109.5
C1—P1—Se1105.29 (6)C2—C21—H21B109.5
C2—P1—Se1108.36 (6)H21A—C21—H21B109.5
O2—P2—C3106.31 (7)C2—C21—H21C109.5
O2—P2—C4108.60 (7)H21A—C21—H21C109.5
C3—P2—C4108.05 (8)H21B—C21—H21C109.5
O2—P2—Se2115.25 (5)C2—C22—H22A109.5
C3—P2—Se2113.56 (6)C2—C22—H22B109.5
C4—P2—Se2104.81 (6)H22A—C22—H22B109.5
P1—O1—H01121 (3)C2—C22—H22C109.5
P2—O2—H02115 (3)H22A—C22—H22C109.5
C11—C1—C12110.52 (15)H22B—C22—H22C109.5
C11—C1—P1110.08 (12)C3—C31—H31A109.5
C12—C1—P1109.65 (12)C3—C31—H31B109.5
C11—C1—H1108.8H31A—C31—H31B109.5
C12—C1—H1108.8C3—C31—H31C109.5
P1—C1—H1108.8H31A—C31—H31C109.5
C22—C2—C21112.48 (17)H31B—C31—H31C109.5
C22—C2—P1112.23 (13)C3—C32—H32A109.5
C21—C2—P1112.91 (14)C3—C32—H32B109.5
C22—C2—H2106.2H32A—C32—H32B109.5
C21—C2—H2106.2C3—C32—H32C109.5
P1—C2—H2106.2H32A—C32—H32C109.5
C31—C3—C32111.96 (15)H32B—C32—H32C109.5
C31—C3—P2111.82 (12)C4—C41—H41A109.5
C32—C3—P2112.02 (12)C4—C41—H41B109.5
C31—C3—H3106.9H41A—C41—H41B109.5
C32—C3—H3106.9C4—C41—H41C109.5
P2—C3—H3106.9H41A—C41—H41C109.5
C41—C4—C42110.11 (15)H41B—C41—H41C109.5
C41—C4—P2110.15 (12)C4—C42—H42A109.5
C42—C4—P2110.32 (12)C4—C42—H42B109.5
C41—C4—H4108.7H42A—C42—H42B109.5
C42—C4—H4108.7C4—C42—H42C109.5
P2—C4—H4108.7H42A—C42—H42C109.5
C1—C11—H11A109.5H42B—C42—H42C109.5
Se2i—Pd1—Se1—P1156.179 (15)C1—P1—C2—C2242.75 (16)
Se2—Pd1—Se1—P123.820 (15)Se1—P1—C2—C2272.03 (14)
Se1—Pd1—Se2—P265.789 (13)O1—P1—C2—C2130.21 (17)
Se1i—Pd1—Se2—P2114.210 (13)C1—P1—C2—C2185.66 (17)
Pd1—Se1—P1—O168.57 (6)Se1—P1—C2—C21159.57 (14)
Pd1—Se1—P1—C1173.44 (6)O2—P2—C3—C31172.02 (12)
Pd1—Se1—P1—C255.41 (7)C4—P2—C3—C3155.61 (14)
Pd1—Se2—P2—O270.31 (6)Se2—P2—C3—C3160.20 (13)
Pd1—Se2—P2—C352.68 (6)O2—P2—C3—C3261.36 (13)
Pd1—Se2—P2—C4170.38 (6)C4—P2—C3—C32177.78 (12)
O1—P1—C1—C1165.74 (14)Se2—P2—C3—C3266.41 (13)
C2—P1—C1—C11176.72 (13)O2—P2—C4—C4161.77 (13)
Se1—P1—C1—C1160.02 (13)C3—P2—C4—C41176.69 (12)
O1—P1—C1—C1256.06 (14)Se2—P2—C4—C4161.91 (12)
C2—P1—C1—C1261.48 (15)O2—P2—C4—C4260.00 (14)
Se1—P1—C1—C12178.17 (11)C3—P2—C4—C4254.92 (14)
O1—P1—C2—C22158.62 (13)Se2—P2—C4—C42176.32 (11)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O20.78 (2)1.63 (2)2.4156 (17)178 (4)
O2—H02···O10.78 (2)1.64 (2)2.4156 (17)172 (5)
C11—H11B···Se10.982.953.4748 (18)115
C21—H21A···O2ii0.982.523.407 (2)150
C32—H32C···Se2iii0.983.133.8999 (17)136
C41—H41B···Se20.982.943.4825 (18)116
C42—H42A···Se1iv0.982.983.8370 (19)146
C32—H32A···Pd10.982.693.4897 (18)139
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support. We also express gratitude to Professor A. L. Spek for providing the crystallographic community with the essential checking tool checkCIF and for maintaining and improving this program on a regular basis; to Dr Ma­thias Meyer (Rigaku OD) for helpful discussions; and to both for their patience in dealing with users' comments.

References

First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationConnelly, N. G. & Damhus, T. (2005). Editors. Nomenclature of Inorganic Chemistry, IUPAC Recommendations, Section IR-2.15.3.1, pp. 42–43. London: RSC Publications.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHill, E. A. (1900). J. Am. Chem. Soc. 22, 478–494.  CrossRef CAS Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationMiroslaw, B., Dybala, I., Jasiński, R. & Demchuk, O. M. (2023). Inorganics, 11, https://doi. org/10.3390/inorganics11100399.  Google Scholar
First citationRichardson, M. F. (1985). Acta Cryst. C41, 27–28.  CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2012). CrysAlis PRO, Version 1.171.35.21 (and earlier versions for which we do not give separate references). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and Agilent Technologies).  Google Scholar
First citationSatek, L. C., Ammon, H. L. & Stewart, J. M. (1975). Acta Cryst. B31, 2691–2693.  CrossRef CAS IUCr Journals Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe, Dissertation, Technical University of Braunschweig, Braunschweig, Germany (ISBN: 978-3-8439-1972-2).  Google Scholar
First citationUpmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34–49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355–369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087–1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D. & Jones, P. G. (2024e). Acta Cryst. E80, 1331–1341.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds