

research communications
H-pyrazole
of 1-[(4-chlorophenyl)diphenylylmethyl]-3-(trifluoromethyl)-1aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and dDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et
The title compound, C23H16ClF3N2, was synthesized from 3-(trifluoromethyl)-1H-pyrazole and chloro(4-chlorophenyl)methylene)dibenzene. The structure features intramolecular (Ph)C—H⋯N and intermolecular (Ph)C—H⋯F hydrogen bonds, as well as C—H⋯π-ring interactions between the phenyl and pyrazole rings.
Keywords: crystal structure; trifluoromethylpyrazole; trifluoromethyl; non-covalent interactions.
CCDC reference: 2422692
1. Chemical context
Pyrazoles and their derivatives are found in natural compounds and drugs, and are widely used in organic synthesis (Guseinov et al., 2006, 2024
; Küçükgüzel et al., 2015
; Pizzuti et al., 2014
). Similarly to (Mahmudov et al., 2011
), new pyrazole derivatives can also be used in crystal engineering as well as in the synthesis of coordination compounds for catalysis (Jlassi et al., 2014
; Ma et al., 2021
; Mac Leod et al., 2012
) and biological studies (Martins et al., 2017
). The hydrogen-bond acceptor ability of the pyrazole motif can be employed as a tool for crystal growth and design (Guseinov et al., 2017
, 2022
; Abdelhamid et al., 2011
; Afkhami et al., 2017
). We believe that the attachment of a trifluoromethyl group to the pyrazole ring can improve the functional properties of new derivative ligands or supramolecular synthons. In fact, trifluoromethylated pyrazoles are indispensable heterocyclic motifs that constitute the core of a variety of bioactive substrates and pharmaceuticals (Kumar et al., 2023
; Westphal et al., 2015
; Zhu et al., 2014
). Among them, the 3-trifluoromethylpyrazole scaffold is of great medicinal significance and is present in several drugs and bioactive molecules including celecoxib, mavacoxib (anti-inflammatory), razaxaban (anticoagulant), SC-560 (antitumor) and penthiopyrad (antifungal) (Davis et al., 2013
; Fang et al., 2020
; Liu et al., 2023
).
2. Structural commentary
The title molecule, 1, is shown in Fig. 1. The central carbon atom C5 exhibits a geometry close to ideal tetrahedral and with similar C5—C(Ph) bond lengths (Table 1
). The pyrazole ring geometry is unexceptional (Secrieru et al., 2020
). The phenyl rings show an irregular propeller conformation about the C5—N2 bond: the ring planes A, B and C are inclined to the C6/C12/C18 plane in the same sense by 43.15 (5), 70.58 (6) and 22.62 (6)°, respectively. These angles (φ) vary much more widely than in 1,1,1-triphenylethane or triphenylchloromethane (see Section 4), partly as a result of the presence of the pyrazole ring, which assumes a nearly eclipsed orientation with a C1—N2—C5—C18 torsion angle of 16.58 (18)°, and partly because of the intramolecular C17—H17⋯N1 hydrogen bond (Table 2
). It is noteworthy that the observed orientation of ring B (which shows the largest φ angle) is close to the simulated orientation (with φ = 64°) that would give the shortest H17⋯N1 distance. This can be seen as the proof that this contact is a stabilizing hydrogen bond, rather than an incidental effect of crystal packing.
|
|
![]() | Figure 1 Molecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level. The dotted line indicates the intramolecular hydrogen bond. |
3. Supramolecular features
The crystal packing is shown in Fig. 2. Molecules are linked into centrosymmetric dimers by pairs of C22—H⋯F2 hydrogen bonds (Table 2
, Fig. 3
). Neither the phenyl nor the pyrazole rings are involved in π–π stacking interactions; however, there are C—H⋯π-type interactions between rings contacting edge-to-face, at interplanar angles of 69.62 (6) to 78.68 (5)° and H⋯ring distances of 2.71–2.98 Å. Numerical details of hydoren bonds and C—H⋯π interactions are given in Table 2
.
![]() | Figure 2 Crystal packing of 1 (H atoms are omitted for clarity). |
![]() | Figure 3 Intermolecular hydrogen bonds in the structure of 1. Symmetry code: (i) −x + 2, −y + 1, −z + 1. |
4. Database survey
The propeller conformation of the CPh3 moiety in 1 can be compared with those in 1,1,1-triphenylethane (2) and triphenylchloromethane (3). In 2, the φ angles range from 41.3 to 55.3° at room temperature (TRPETN; Destro et al., 1980) and from 42.0 to 53.9° at 100 K (TRPETN01; Fronczek, 2014
). Three polymorphs of compound 3 have been reported: trigonal phase I and monoclinic phases II and III. Phase I (ZZZVTY12; Dunand & Gerdil, 1982
) contains three crystallographically non-equivalent molecules, each lying on a threefold axis and thus having a regular propeller conformation, with φ = 43.4, 47.0 and 51.0°. Phase II (ZZZVTY03; Kahr & Carter, 1992
) has three molecules per with φ varying from 38.2 to 59.0°, whereas phase III has five, with φ = 36.9–57.5° at 248 K (ZZZVTY04; Kahr & Carter, 1992
) and φ = 34.6–58.2° at 100 K (ZZZVTY13; Wang et al., 2013
).
5. Synthesis and crystallization
A mixture of 435 mg (3.2 mmol) of 3-(trifluoromethyl)-1H-pyrazole and 485 mg (3.5 mmol) of K2CO3 was dissolved in 20 mL of tetrahydrofuran and stirred at reflux for 10–15 minutes. Then 1.00 g (3.2 mmol) of chloro(4-chlorophenyl)methylene)dibenzene was added to the reaction mixture and continued to boil for 5 h. After completion of the reaction, tetrahydrofuran was removed under vacuum and 10 mL of diethyl ether were added to the obtained oily residue, which formed compound 1 as a solid product. Colourless prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.
Yield: 936 mg (71%); m.p. 355–360 K. Analysis calculated (%) for C23H16ClF3N2: C 66.92, H 3.91, N 6.79; found C 66.90, H 3.90, N 6.77. 1H NMR (300 MHz, CDCl3): 6.52–6.53 (1H, CF3CCH), 7.07–7.37 (10H, 2Ph, 4H, 4-ClPh, 1H, NCH). 13C NMR (75 MHz, CDCl3): 79.24, 103.19, 111.07, 127.93, 128.04, 128.30, 130.01, 131.65, 133.79, 134.05, 139.12, 141.17, 142.18. ESI-MS: 413.8 (M + H+).
6. Refinement
Crystal data, data collection and structure . H atoms were placed geometrically with C—H = 0.95 Å and included in the in the riding-motion model with Uiso(H) = 1.2Ueq(C), except H17 and H22 which were refined in an isotropic approximation. About 50 hkl data were missed due to collection via the spindle axis only.
|
Supporting information
CCDC reference: 2422692
https://doi.org/10.1107/S2056989025001185/zv2037sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001185/zv2037Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025001185/zv2037Isup3.cml
C23H16ClF3N2 | F(000) = 848 |
Mr = 412.83 | Dx = 1.427 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.12054 (10) Å | Cell parameters from 19127 reflections |
b = 8.93314 (6) Å | θ = 2.5–79.5° |
c = 17.75198 (15) Å | µ = 2.11 mm−1 |
β = 90.4278 (8)° | T = 100 K |
V = 1922.03 (3) Å3 | Prism, colorless |
Z = 4 | 0.18 × 0.11 × 0.06 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3917 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.026 |
ω scans | θmax = 79.8°, θmin = 3.7° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024) | h = −14→15 |
Tmin = 0.688, Tmax = 1.000 | k = −10→11 |
25542 measured reflections | l = −22→22 |
4102 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.056P)2 + 0.9694P] where P = (Fo2 + 2Fc2)/3 |
4102 reflections | (Δ/σ)max = 0.001 |
270 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.36774 (3) | 0.04033 (5) | 0.33222 (2) | 0.03673 (13) | |
F1 | 0.93996 (8) | −0.01654 (11) | 0.32090 (6) | 0.0377 (2) | |
F2 | 1.04152 (11) | 0.00747 (12) | 0.41780 (6) | 0.0499 (3) | |
F3 | 1.09493 (10) | 0.09519 (13) | 0.31067 (8) | 0.0583 (4) | |
N1 | 0.86043 (10) | 0.23237 (13) | 0.40816 (7) | 0.0227 (2) | |
N2 | 0.83992 (9) | 0.38039 (12) | 0.41539 (6) | 0.0201 (2) | |
C1 | 0.92135 (13) | 0.46447 (17) | 0.38471 (9) | 0.0290 (3) | |
H1 | 0.924180 | 0.570700 | 0.383099 | 0.035* | |
C2 | 0.99888 (13) | 0.36792 (18) | 0.35644 (9) | 0.0320 (3) | |
H2 | 1.065849 | 0.391975 | 0.331748 | 0.038* | |
C3 | 0.95659 (12) | 0.22665 (17) | 0.37235 (8) | 0.0244 (3) | |
C4 | 1.00804 (12) | 0.07923 (18) | 0.35536 (9) | 0.0280 (3) | |
C5 | 0.73785 (11) | 0.42950 (14) | 0.45553 (7) | 0.0190 (3) | |
C6 | 0.64342 (11) | 0.32991 (14) | 0.42577 (8) | 0.0192 (3) | |
C7 | 0.56995 (11) | 0.25784 (15) | 0.47346 (8) | 0.0213 (3) | |
H7 | 0.577978 | 0.269227 | 0.526420 | 0.026* | |
C8 | 0.48472 (12) | 0.16921 (16) | 0.44485 (8) | 0.0239 (3) | |
H8 | 0.434854 | 0.120859 | 0.477957 | 0.029* | |
C9 | 0.47364 (12) | 0.15249 (16) | 0.36766 (8) | 0.0245 (3) | |
C10 | 0.54608 (12) | 0.22183 (15) | 0.31846 (8) | 0.0239 (3) | |
H10 | 0.537938 | 0.209519 | 0.265557 | 0.029* | |
C11 | 0.63059 (11) | 0.30946 (14) | 0.34793 (8) | 0.0210 (3) | |
H11 | 0.680799 | 0.356557 | 0.314612 | 0.025* | |
C12 | 0.75251 (11) | 0.41134 (14) | 0.54147 (7) | 0.0198 (3) | |
C13 | 0.68273 (12) | 0.49156 (16) | 0.58885 (8) | 0.0242 (3) | |
H13 | 0.629103 | 0.556908 | 0.567554 | 0.029* | |
C14 | 0.69039 (13) | 0.47746 (17) | 0.66662 (8) | 0.0267 (3) | |
H14 | 0.642528 | 0.533415 | 0.698044 | 0.032* | |
C15 | 0.76794 (13) | 0.38167 (16) | 0.69848 (8) | 0.0261 (3) | |
H15 | 0.773672 | 0.371902 | 0.751657 | 0.031* | |
C16 | 0.83678 (13) | 0.30059 (16) | 0.65192 (8) | 0.0268 (3) | |
H16 | 0.889550 | 0.234290 | 0.673460 | 0.032* | |
C17 | 0.82977 (12) | 0.31486 (16) | 0.57365 (8) | 0.0239 (3) | |
H17 | 0.8794 (16) | 0.257 (2) | 0.5412 (11) | 0.028 (4)* | |
C18 | 0.72023 (11) | 0.59740 (14) | 0.43669 (7) | 0.0197 (3) | |
C19 | 0.64102 (12) | 0.64777 (15) | 0.38557 (8) | 0.0225 (3) | |
H19 | 0.591919 | 0.578336 | 0.362534 | 0.027* | |
C20 | 0.63317 (12) | 0.80002 (16) | 0.36787 (8) | 0.0248 (3) | |
H20 | 0.578844 | 0.833085 | 0.332791 | 0.030* | |
C21 | 0.70372 (13) | 0.90285 (15) | 0.40092 (8) | 0.0247 (3) | |
H21 | 0.699169 | 1.005792 | 0.387826 | 0.030* | |
C22 | 0.78131 (12) | 0.85427 (16) | 0.45345 (8) | 0.0256 (3) | |
H22 | 0.8306 (17) | 0.924 (2) | 0.4781 (11) | 0.031 (5)* | |
C23 | 0.78900 (12) | 0.70327 (16) | 0.47162 (8) | 0.0237 (3) | |
H23 | 0.841568 | 0.671365 | 0.508187 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0276 (2) | 0.0408 (2) | 0.0417 (2) | −0.00851 (14) | −0.00535 (16) | −0.01070 (16) |
F1 | 0.0353 (5) | 0.0348 (5) | 0.0429 (5) | 0.0067 (4) | −0.0064 (4) | −0.0102 (4) |
F2 | 0.0671 (8) | 0.0418 (6) | 0.0404 (6) | 0.0279 (5) | −0.0212 (5) | −0.0061 (5) |
F3 | 0.0413 (6) | 0.0447 (6) | 0.0894 (9) | 0.0068 (5) | 0.0370 (6) | −0.0065 (6) |
N1 | 0.0209 (6) | 0.0201 (5) | 0.0270 (6) | 0.0029 (4) | 0.0014 (4) | −0.0007 (4) |
N2 | 0.0195 (5) | 0.0188 (5) | 0.0219 (5) | 0.0014 (4) | 0.0009 (4) | 0.0017 (4) |
C1 | 0.0264 (7) | 0.0245 (7) | 0.0363 (8) | −0.0001 (5) | 0.0081 (6) | 0.0066 (6) |
C2 | 0.0256 (7) | 0.0317 (8) | 0.0390 (8) | 0.0017 (6) | 0.0107 (6) | 0.0070 (6) |
C3 | 0.0210 (6) | 0.0297 (7) | 0.0224 (6) | 0.0037 (5) | −0.0006 (5) | 0.0011 (5) |
C4 | 0.0227 (7) | 0.0322 (8) | 0.0290 (7) | 0.0053 (6) | 0.0007 (6) | −0.0013 (6) |
C5 | 0.0184 (6) | 0.0176 (6) | 0.0211 (6) | 0.0013 (5) | 0.0012 (5) | 0.0011 (5) |
C6 | 0.0185 (6) | 0.0149 (5) | 0.0241 (6) | 0.0029 (4) | −0.0003 (5) | 0.0009 (5) |
C7 | 0.0210 (6) | 0.0203 (6) | 0.0228 (6) | 0.0017 (5) | 0.0010 (5) | 0.0006 (5) |
C8 | 0.0205 (6) | 0.0219 (6) | 0.0294 (7) | 0.0004 (5) | 0.0035 (5) | 0.0011 (5) |
C9 | 0.0198 (6) | 0.0213 (6) | 0.0322 (7) | 0.0024 (5) | −0.0031 (5) | −0.0035 (5) |
C10 | 0.0256 (7) | 0.0229 (6) | 0.0230 (6) | 0.0053 (5) | −0.0030 (5) | −0.0018 (5) |
C11 | 0.0225 (6) | 0.0179 (6) | 0.0225 (6) | 0.0033 (5) | 0.0006 (5) | 0.0020 (5) |
C12 | 0.0197 (6) | 0.0180 (6) | 0.0217 (6) | −0.0022 (5) | −0.0006 (5) | 0.0020 (5) |
C13 | 0.0246 (7) | 0.0238 (6) | 0.0242 (7) | 0.0026 (5) | 0.0003 (5) | 0.0022 (5) |
C14 | 0.0278 (7) | 0.0278 (7) | 0.0246 (7) | 0.0011 (6) | 0.0030 (6) | −0.0007 (5) |
C15 | 0.0295 (7) | 0.0272 (7) | 0.0216 (6) | −0.0058 (6) | −0.0016 (5) | 0.0034 (5) |
C16 | 0.0286 (7) | 0.0247 (7) | 0.0270 (7) | 0.0017 (5) | −0.0044 (6) | 0.0055 (5) |
C17 | 0.0250 (7) | 0.0218 (6) | 0.0249 (7) | 0.0019 (5) | −0.0012 (5) | 0.0013 (5) |
C18 | 0.0207 (6) | 0.0174 (6) | 0.0210 (6) | 0.0010 (5) | 0.0017 (5) | 0.0014 (5) |
C19 | 0.0245 (6) | 0.0197 (6) | 0.0231 (6) | 0.0012 (5) | −0.0013 (5) | −0.0004 (5) |
C20 | 0.0288 (7) | 0.0211 (6) | 0.0245 (6) | 0.0037 (5) | −0.0024 (5) | 0.0027 (5) |
C21 | 0.0296 (7) | 0.0177 (6) | 0.0269 (7) | 0.0012 (5) | 0.0038 (6) | 0.0030 (5) |
C22 | 0.0272 (7) | 0.0211 (6) | 0.0284 (7) | −0.0042 (5) | 0.0005 (6) | −0.0006 (5) |
C23 | 0.0237 (7) | 0.0218 (6) | 0.0255 (6) | −0.0013 (5) | −0.0019 (5) | 0.0021 (5) |
Cl1—C9 | 1.7422 (14) | C10—C11 | 1.388 (2) |
F1—C4 | 1.3340 (18) | C11—H11 | 0.9500 |
F2—C4 | 1.3408 (18) | C12—C13 | 1.395 (2) |
F3—C4 | 1.3308 (19) | C12—C17 | 1.3920 (19) |
N1—N2 | 1.3517 (16) | C13—H13 | 0.9500 |
N1—C3 | 1.3328 (19) | C13—C14 | 1.389 (2) |
N2—C1 | 1.3575 (19) | C14—H14 | 0.9500 |
N2—C5 | 1.4981 (17) | C14—C15 | 1.388 (2) |
C1—H1 | 0.9500 | C15—H15 | 0.9500 |
C1—C2 | 1.373 (2) | C15—C16 | 1.384 (2) |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C2—C3 | 1.392 (2) | C16—C17 | 1.397 (2) |
C3—C4 | 1.489 (2) | C17—H17 | 0.98 (2) |
C5—C6 | 1.5400 (18) | C18—C19 | 1.3910 (19) |
C5—C12 | 1.5431 (18) | C18—C23 | 1.4021 (19) |
C5—C18 | 1.5511 (17) | C19—H19 | 0.9500 |
C6—C7 | 1.3911 (19) | C19—C20 | 1.3990 (19) |
C6—C11 | 1.4013 (18) | C20—H20 | 0.9500 |
C7—H7 | 0.9500 | C20—C21 | 1.383 (2) |
C7—C8 | 1.394 (2) | C21—H21 | 0.9500 |
C8—H8 | 0.9500 | C21—C22 | 1.389 (2) |
C8—C9 | 1.384 (2) | C22—H22 | 0.96 (2) |
C9—C10 | 1.389 (2) | C22—C23 | 1.390 (2) |
C10—H10 | 0.9500 | C23—H23 | 0.9500 |
C3—N1—N2 | 104.17 (11) | C6—C11—H11 | 119.3 |
N1—N2—C1 | 111.62 (12) | C10—C11—C6 | 121.41 (13) |
N1—N2—C5 | 118.99 (11) | C10—C11—H11 | 119.3 |
C1—N2—C5 | 129.37 (12) | C13—C12—C5 | 118.43 (12) |
N2—C1—H1 | 126.3 | C17—C12—C5 | 122.88 (12) |
N2—C1—C2 | 107.50 (13) | C17—C12—C13 | 118.66 (12) |
C2—C1—H1 | 126.3 | C12—C13—H13 | 119.5 |
C1—C2—H2 | 128.0 | C14—C13—C12 | 121.08 (13) |
C1—C2—C3 | 103.96 (13) | C14—C13—H13 | 119.5 |
C3—C2—H2 | 128.0 | C13—C14—H14 | 120.0 |
N1—C3—C2 | 112.75 (13) | C15—C14—C13 | 120.06 (14) |
N1—C3—C4 | 119.98 (13) | C15—C14—H14 | 120.0 |
C2—C3—C4 | 127.26 (14) | C14—C15—H15 | 120.4 |
F1—C4—F2 | 104.77 (13) | C16—C15—C14 | 119.25 (13) |
F1—C4—C3 | 113.68 (12) | C16—C15—H15 | 120.4 |
F2—C4—C3 | 112.33 (12) | C15—C16—H16 | 119.5 |
F3—C4—F1 | 106.56 (13) | C15—C16—C17 | 120.92 (13) |
F3—C4—F2 | 107.94 (13) | C17—C16—H16 | 119.5 |
F3—C4—C3 | 111.13 (13) | C12—C17—C16 | 120.02 (14) |
N2—C5—C6 | 106.37 (10) | C12—C17—H17 | 119.9 (11) |
N2—C5—C12 | 110.49 (10) | C16—C17—H17 | 120.1 (11) |
N2—C5—C18 | 107.06 (10) | C19—C18—C5 | 123.14 (12) |
C6—C5—C12 | 110.99 (11) | C19—C18—C23 | 118.39 (12) |
C6—C5—C18 | 112.58 (10) | C23—C18—C5 | 118.46 (11) |
C12—C5—C18 | 109.24 (10) | C18—C19—H19 | 119.8 |
C7—C6—C5 | 122.41 (12) | C18—C19—C20 | 120.43 (13) |
C7—C6—C11 | 118.22 (12) | C20—C19—H19 | 119.8 |
C11—C6—C5 | 119.36 (12) | C19—C20—H20 | 119.7 |
C6—C7—H7 | 119.4 | C21—C20—C19 | 120.65 (13) |
C6—C7—C8 | 121.14 (13) | C21—C20—H20 | 119.7 |
C8—C7—H7 | 119.4 | C20—C21—H21 | 120.3 |
C7—C8—H8 | 120.4 | C20—C21—C22 | 119.39 (13) |
C9—C8—C7 | 119.21 (13) | C22—C21—H21 | 120.3 |
C9—C8—H8 | 120.4 | C21—C22—H22 | 121.3 (12) |
C8—C9—Cl1 | 119.04 (12) | C21—C22—C23 | 120.19 (13) |
C8—C9—C10 | 121.16 (13) | C23—C22—H22 | 118.6 (12) |
C10—C9—Cl1 | 119.80 (11) | C18—C23—H23 | 119.6 |
C9—C10—H10 | 120.6 | C22—C23—C18 | 120.90 (13) |
C11—C10—C9 | 118.86 (13) | C22—C23—H23 | 119.6 |
C11—C10—H10 | 120.6 | ||
Cl1—C9—C10—C11 | −179.33 (10) | C5—C18—C23—C22 | 176.11 (13) |
N1—N2—C1—C2 | −0.28 (18) | C6—C5—C12—C13 | −81.65 (15) |
N1—N2—C5—C6 | −44.59 (14) | C6—C5—C12—C17 | 96.19 (15) |
N1—N2—C5—C12 | 75.97 (14) | C6—C5—C18—C19 | −12.64 (18) |
N1—N2—C5—C18 | −165.17 (11) | C6—C5—C18—C23 | 168.79 (12) |
N1—C3—C4—F1 | 51.16 (19) | C6—C7—C8—C9 | 0.3 (2) |
N1—C3—C4—F2 | −67.59 (18) | C7—C6—C11—C10 | 1.02 (19) |
N1—C3—C4—F3 | 171.36 (14) | C7—C8—C9—Cl1 | 179.45 (10) |
N2—N1—C3—C2 | 0.17 (16) | C7—C8—C9—C10 | 0.3 (2) |
N2—N1—C3—C4 | 178.79 (12) | C8—C9—C10—C11 | −0.2 (2) |
N2—C1—C2—C3 | 0.35 (18) | C9—C10—C11—C6 | −0.5 (2) |
N2—C5—C6—C7 | 131.58 (12) | C11—C6—C7—C8 | −0.89 (19) |
N2—C5—C6—C11 | −48.00 (15) | C12—C5—C6—C7 | 11.35 (17) |
N2—C5—C12—C13 | 160.59 (12) | C12—C5—C6—C11 | −168.23 (11) |
N2—C5—C12—C17 | −21.57 (17) | C12—C5—C18—C19 | −136.42 (13) |
N2—C5—C18—C19 | 103.91 (14) | C12—C5—C18—C23 | 45.01 (16) |
N2—C5—C18—C23 | −74.66 (14) | C12—C13—C14—C15 | −0.4 (2) |
C1—N2—C5—C6 | 137.16 (14) | C13—C12—C17—C16 | −0.4 (2) |
C1—N2—C5—C12 | −102.28 (16) | C13—C14—C15—C16 | −0.2 (2) |
C1—N2—C5—C18 | 16.58 (18) | C14—C15—C16—C17 | 0.5 (2) |
C1—C2—C3—N1 | −0.33 (18) | C15—C16—C17—C12 | −0.2 (2) |
C1—C2—C3—C4 | −178.83 (14) | C17—C12—C13—C14 | 0.7 (2) |
C2—C3—C4—F1 | −130.44 (16) | C18—C5—C6—C7 | −111.46 (14) |
C2—C3—C4—F2 | 110.81 (18) | C18—C5—C6—C11 | 68.96 (15) |
C2—C3—C4—F3 | −10.2 (2) | C18—C5—C12—C13 | 43.06 (16) |
C3—N1—N2—C1 | 0.07 (15) | C18—C5—C12—C17 | −139.10 (13) |
C3—N1—N2—C5 | −178.47 (11) | C18—C19—C20—C21 | −0.1 (2) |
C5—N2—C1—C2 | 178.07 (13) | C19—C18—C23—C22 | −2.5 (2) |
C5—C6—C7—C8 | 179.53 (12) | C19—C20—C21—C22 | −1.5 (2) |
C5—C6—C11—C10 | −179.39 (12) | C20—C21—C22—C23 | 1.0 (2) |
C5—C12—C13—C14 | 178.64 (13) | C21—C22—C23—C18 | 1.0 (2) |
C5—C12—C17—C16 | −178.24 (13) | C23—C18—C19—C20 | 2.1 (2) |
C5—C18—C19—C20 | −176.47 (13) |
Cg1, Cg2 and Cg3 are the centroids of the C12–17, C18–23 and C6–11 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···N1 | 0.98 (2) | 2.382 (19) | 3.0541 (19) | 125.1 (14) |
C22—H22···F2i | 0.96 (2) | 2.48 (2) | 3.3596 (18) | 151.6 (16) |
C2—H2···Cg1i | 0.95 | 2.96 | 3.6237 (17) | 128 |
C7—H7···Cg1 | 0.95 | 2.98 | 3.6784 (15) | 132 |
C8—H8···Cg2ii | 0.95 | 2.80 | 3.4721 (15) | 129 |
C13—H13···Cg3ii | 0.95 | 2.98 | 3.7873 (15) | 144 |
C21—H21···Cg3iii | 0.95 | 2.71 | 3.4928 (15) | 140 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z. |
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Davis, L. O. (2013). Org. Prep. Proced. Int. 45, 437–464. CrossRef CAS Google Scholar
Destro, R., Pilati, T. & Simonetta, M. (1980). Acta Cryst. B36, 2495–2497. CrossRef CAS IUCr Journals Google Scholar
Dunand, A. & Gerdil, R. (1982). Acta Cryst. B38, 570–575. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Fang, Z., Yin, H., Lin, L., Wen, S., Xie, L., Huang, Y. & Weng, Z. (2020). J. Org. Chem. 85, 8714–8722. CrossRef CAS PubMed Google Scholar
Fronczek, F. R. (2014). Private Communication (refcode TRPETN01) CCDC, Cambridge, England. https://doi.org/10.5517/cc11k9d9 Google Scholar
Guseinov, F. I., Çelikesir, S. T., Akkurt, M., Ovsyannikov, V. O., Ugrak, B. I., Lavrova, O. M., Samigullina, A. I. & Bhattarai, A. (2024). Acta Cryst. E80, 582–585. CrossRef IUCr Journals Google Scholar
Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898. Web of Science CSD CrossRef Google Scholar
Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327. Web of Science CSD CrossRef Google Scholar
Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947. CrossRef CAS Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550. Web of Science CSD CrossRef Google Scholar
Kahr, B. & Carter, R. L. (1992). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 219, 79–100. CrossRef CAS Google Scholar
Küçükgüzel, Ş. G., ŞG, & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786–815. Google Scholar
Kumar, A., Mathew, S., Jamali, M. F., Ahamad, S., Kant, R. & Mohanan, K. (2023). Adv. Synth. Catal. 365, 2218–2224. CrossRef CAS Google Scholar
Liu, R. H., Chai, G. L., Wang, X., Deng, H. Y. & Chang, J. (2023). J. Org. Chem. 88, 16566–16580. CrossRef CAS PubMed Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Pizzuti, L. G., Barschak, A. M., Stefanello, F. D., Farias, M., Lencina, C., Roesch-Ely, M., Cunico, W., Moura, S. & Pereira, C. (2014). Curr. Org. Chem. 18, 115–126. CrossRef CAS Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Secrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2020). Molecules, 25, 42. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, R., Dols, T., Lehmann, C. & Englert, U. (2013). Z. Anorg. Allg. Chem. 639, 1933–1939. CrossRef CAS Google Scholar
Westphal, M. V., Wolfstädter, B. T., Plancher, J. M., Gatfield, J. & Carreira, E. M. (2015). ChemMedChem, 10, 461–469. CrossRef CAS PubMed Google Scholar
Zhu, W., Wang, J., Wang, S., Gu, Z., Aceña, J. L., Izawa, K., Liu, H. & Soloshonok, V. A. (2014). J. Fluor. Chem. 167, 37–54. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.