research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(4-chloro­phen­yl)di­phenylyl­meth­yl]-3-(tri­fluoro­meth­yl)-1H-pyrazole

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and dDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 11 November 2024; accepted 10 February 2025; online 18 February 2025)

The title compound, C23H16ClF3N2, was synthesized from 3-(tri­fluoro­meth­yl)-1H-pyrazole and chloro­(4-chloro­phen­yl)methyl­ene)di­benzene. The structure features intra­molecular (Ph)C—H⋯N and inter­molecular (Ph)C—H⋯F hydrogen bonds, as well as C—H⋯π-ring inter­actions between the phenyl and pyrazole rings.

1. Chemical context

Pyrazoles and their derivatives are found in natural compounds and drugs, and are widely used in organic synthesis (Guseinov et al., 2006[Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943-947.], 2024[Guseinov, F. I., Çelikesir, S. T., Akkurt, M., Ovsyannikov, V. O., Ugrak, B. I., Lavrova, O. M., Samigullina, A. I. & Bhattarai, A. (2024). Acta Cryst. E80, 582-585.]; Küçükgüzel et al., 2015[Küçükgüzel, Ş. G., ŞG, & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786-815.]; Pizzuti et al., 2014[Pizzuti, L. G., Barschak, A. M., Stefanello, F. D., Farias, M., Lencina, C., Roesch-Ely, M., Cunico, W., Moura, S. & Pereira, C. (2014). Curr. Org. Chem. 18, 115-126.]). Similarly to hydrazones (Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.]), new pyrazole derivatives can also be used in crystal engineering as well as in the synthesis of coordination compounds for catalysis (Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]; Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]) and biological studies (Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]). The hydrogen-bond acceptor ability of the pyrazole motif can be employed as a tool for crystal growth and design (Guseinov et al., 2017[Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.], 2022[Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Afkhami et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]). We believe that the attachment of a tri­fluoro­methyl group to the pyrazole ring can improve the functional properties of new derivative ligands or supra­molecular synthons. In fact, tri­fluoro­methyl­ated pyrazoles are indispensable heterocyclic motifs that constitute the core of a variety of bioactive substrates and pharmaceuticals (Kumar et al., 2023[Kumar, A., Mathew, S., Jamali, M. F., Ahamad, S., Kant, R. & Mohanan, K. (2023). Adv. Synth. Catal. 365, 2218-2224.]; Westphal et al., 2015[Westphal, M. V., Wolfstädter, B. T., Plancher, J. M., Gatfield, J. & Carreira, E. M. (2015). ChemMedChem, 10, 461-469.]; Zhu et al., 2014[Zhu, W., Wang, J., Wang, S., Gu, Z., Aceña, J. L., Izawa, K., Liu, H. & Soloshonok, V. A. (2014). J. Fluor. Chem. 167, 37-54.]). Among them, the 3-tri­fluoro­methyl­pyrazole scaffold is of great medicinal significance and is present in several drugs and bioactive mol­ecules including celecoxib, mavacoxib (anti-inflammatory), razaxaban (anti­coagulant), SC-560 (anti­tumor) and penthio­pyrad (anti­fungal) (Davis et al., 2013[Davis, L. O. (2013). Org. Prep. Proced. Int. 45, 437-464.]; Fang et al., 2020[Fang, Z., Yin, H., Lin, L., Wen, S., Xie, L., Huang, Y. & Weng, Z. (2020). J. Org. Chem. 85, 8714-8722.]; Liu et al., 2023[Liu, R. H., Chai, G. L., Wang, X., Deng, H. Y. & Chang, J. (2023). J. Org. Chem. 88, 16566-16580.]).

[Scheme 1]

2. Structural commentary

The title mol­ecule, 1, is shown in Fig. 1[link]. The central carbon atom C5 exhibits a geometry close to ideal tetra­hedral and with similar C5—C(Ph) bond lengths (Table 1[link]). The pyrazole ring geometry is unexceptional (Secrieru et al., 2020[Secrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2020). Molecules, 25, 42.]). The phenyl rings show an irregular propeller conformation about the C5—N2 bond: the ring planes A, B and C are inclined to the C6/C12/C18 plane in the same sense by 43.15 (5), 70.58 (6) and 22.62 (6)°, respectively. These angles (φ) vary much more widely than in 1,1,1-tri­phenyl­ethane or tri­phenyl­chloro­methane (see Section 4), partly as a result of the presence of the pyrazole ring, which assumes a nearly eclipsed orientation with a C1—N2—C5—C18 torsion angle of 16.58 (18)°, and partly because of the intra­molecular C17—H17⋯N1 hydrogen bond (Table 2[link]). It is noteworthy that the observed orientation of ring B (which shows the largest φ angle) is close to the simulated orientation (with φ = 64°) that would give the shortest H17⋯N1 distance. This can be seen as the proof that this contact is a stabilizing hydrogen bond, rather than an incidental effect of crystal packing.

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.3517 (16) C1—C2 1.373 (2)
N1—C3 1.3328 (19) C5—C6 1.5400 (18)
N2—C1 1.3575 (19) C5—C12 1.5431 (18)
N2—C5 1.4981 (17) C5—C18 1.5511 (17)
       
N2—C5—C6 106.37 (10) C6—C5—C12 110.99 (11)
N2—C5—C12 110.49 (10) C6—C5—C18 112.58 (10)
N2—C5—C18 107.06 (10) C12—C5—C18 109.24 (10)

Table 2
Hydrogen-bond geometry and C—H⋯π interaction parameters (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1 0.98 (2) 2.382 (19) 3.0541 (19) 125.1 (14)
C22—H22⋯F2i 0.96 (2) 2.48 (2) 3.3596 (18) 151.6 (16)
C2—H2⋯Cg1i 0.95 2.96 3.6237 (17) 128
C7—H7⋯Cg1 0.95 2.98 3.6784 (15) 132
C8—H8⋯Cg2ii 0.95 2.80 3.4721 (15) 129
C13—H13⋯Cg3ii 0.95 2.98 3.7873 (15) 144
C21—H21⋯Cg3iii 0.95 2.71 3.4928 (15) 140
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, y+1, z].
[Figure 1]
Figure 1
Mol­ecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level. The dotted line indicates the intra­molecular hydrogen bond.

3. Supra­molecular features

The crystal packing is shown in Fig. 2[link]. Mol­ecules are linked into centrosymmetric dimers by pairs of C22—H⋯F2 hydrogen bonds (Table 2[link], Fig. 3[link]). Neither the phenyl nor the pyrazole rings are involved in ππ stacking inter­actions; however, there are C—H⋯π-type inter­actions between rings contacting edge-to-face, at inter­planar angles of 69.62 (6) to 78.68 (5)° and H⋯ring distances of 2.71–2.98 Å. Numerical details of hydoren bonds and C—H⋯π inter­actions are given in Table 2[link].

[Figure 2]
Figure 2
Crystal packing of 1 (H atoms are omitted for clarity).
[Figure 3]
Figure 3
Inter­molecular hydrogen bonds in the structure of 1. Symmetry code: (i) −x + 2, −y + 1, −z + 1.

4. Database survey

The propeller conformation of the CPh3 moiety in 1 can be compared with those in 1,1,1-tri­phenyl­ethane (2) and tri­phenyl­chloro­methane (3). In 2, the φ angles range from 41.3 to 55.3° at room temperature (TRPETN; Destro et al., 1980[Destro, R., Pilati, T. & Simonetta, M. (1980). Acta Cryst. B36, 2495-2497.]) and from 42.0 to 53.9° at 100 K (TRPETN01; Fronczek, 2014[Fronczek, F. R. (2014). Private Communication (refcode TRPETN01) CCDC, Cambridge, England. https://doi.org/10.5517/cc11k9d9]). Three polymorphs of compound 3 have been reported: trigonal phase I and monoclinic phases II and III. Phase I (ZZZVTY12; Dunand & Gerdil, 1982[Dunand, A. & Gerdil, R. (1982). Acta Cryst. B38, 570-575.]) contains three crystallographically non-equivalent mol­ecules, each lying on a threefold axis and thus having a regular propeller conformation, with φ = 43.4, 47.0 and 51.0°. Phase II (ZZZVTY03; Kahr & Carter, 1992[Kahr, B. & Carter, R. L. (1992). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 219, 79-100.]) has three mol­ecules per asymmetric unit, with φ varying from 38.2 to 59.0°, whereas phase III has five, with φ = 36.9–57.5° at 248 K (ZZZVTY04; Kahr & Carter, 1992[Kahr, B. & Carter, R. L. (1992). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 219, 79-100.]) and φ = 34.6–58.2° at 100 K (ZZZVTY13; Wang et al., 2013[Wang, R., Dols, T., Lehmann, C. & Englert, U. (2013). Z. Anorg. Allg. Chem. 639, 1933-1939.]).

5. Synthesis and crystallization

A mixture of 435 mg (3.2 mmol) of 3-(tri­fluoro­meth­yl)-1H-pyrazole and 485 mg (3.5 mmol) of K2CO3 was dissolved in 20 mL of tetra­hydro­furan and stirred at reflux for 10–15 minutes. Then 1.00 g (3.2 mmol) of chloro­(4-chloro­phen­yl)methyl­ene)di­benzene was added to the reaction mixture and continued to boil for 5 h. After completion of the reaction, tetra­hydro­furan was removed under vacuum and 10 mL of diethyl ether were added to the obtained oily residue, which formed compound 1 as a solid product. Colourless prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of an aceto­nitrile solution.

Yield: 936 mg (71%); m.p. 355–360 K. Analysis calculated (%) for C23H16ClF3N2: C 66.92, H 3.91, N 6.79; found C 66.90, H 3.90, N 6.77. 1H NMR (300 MHz, CDCl3): 6.52–6.53 (1H, CF3CCH), 7.07–7.37 (10H, 2Ph, 4H, 4-ClPh, 1H, NCH). 13C NMR (75 MHz, CDCl3): 79.24, 103.19, 111.07, 127.93, 128.04, 128.30, 130.01, 131.65, 133.79, 134.05, 139.12, 141.17, 142.18. ESI-MS: 413.8 (M + H+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed geometrically with C—H = 0.95 Å and included in the refinement in the riding-motion model with Uiso(H) = 1.2Ueq(C), except H17 and H22 which were refined in an isotropic approximation. About 50 hkl data were missed due to collection via the spindle axis only.

Table 3
Experimental details

Crystal data
Chemical formula C23H16ClF3N2
Mr 412.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.12054 (10), 8.93314 (6), 17.75198 (15)
β (°) 90.4278 (8)
V3) 1922.03 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.11
Crystal size (mm) 0.18 × 0.11 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.688, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25542, 4102, 3917
Rint 0.026
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.07
No. of reflections 4102
No. of parameters 270
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.] and Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

Supporting information


Computing details top

1-[(4-Chlorophenyl)diphenylmethyl]-3-(trifluoromethyl)-1H-pyrazole top
Crystal data top
C23H16ClF3N2F(000) = 848
Mr = 412.83Dx = 1.427 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.12054 (10) ÅCell parameters from 19127 reflections
b = 8.93314 (6) Åθ = 2.5–79.5°
c = 17.75198 (15) ŵ = 2.11 mm1
β = 90.4278 (8)°T = 100 K
V = 1922.03 (3) Å3Prism, colorless
Z = 40.18 × 0.11 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3917 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.026
ω scansθmax = 79.8°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2024)
h = 1415
Tmin = 0.688, Tmax = 1.000k = 1011
25542 measured reflectionsl = 2222
4102 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.9694P]
where P = (Fo2 + 2Fc2)/3
4102 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36774 (3)0.04033 (5)0.33222 (2)0.03673 (13)
F10.93996 (8)0.01654 (11)0.32090 (6)0.0377 (2)
F21.04152 (11)0.00747 (12)0.41780 (6)0.0499 (3)
F31.09493 (10)0.09519 (13)0.31067 (8)0.0583 (4)
N10.86043 (10)0.23237 (13)0.40816 (7)0.0227 (2)
N20.83992 (9)0.38039 (12)0.41539 (6)0.0201 (2)
C10.92135 (13)0.46447 (17)0.38471 (9)0.0290 (3)
H10.9241800.5707000.3830990.035*
C20.99888 (13)0.36792 (18)0.35644 (9)0.0320 (3)
H21.0658490.3919750.3317480.038*
C30.95659 (12)0.22665 (17)0.37235 (8)0.0244 (3)
C41.00804 (12)0.07923 (18)0.35536 (9)0.0280 (3)
C50.73785 (11)0.42950 (14)0.45553 (7)0.0190 (3)
C60.64342 (11)0.32991 (14)0.42577 (8)0.0192 (3)
C70.56995 (11)0.25784 (15)0.47346 (8)0.0213 (3)
H70.5779780.2692270.5264200.026*
C80.48472 (12)0.16921 (16)0.44485 (8)0.0239 (3)
H80.4348540.1208590.4779570.029*
C90.47364 (12)0.15249 (16)0.36766 (8)0.0245 (3)
C100.54608 (12)0.22183 (15)0.31846 (8)0.0239 (3)
H100.5379380.2095190.2655570.029*
C110.63059 (11)0.30946 (14)0.34793 (8)0.0210 (3)
H110.6807990.3565570.3146120.025*
C120.75251 (11)0.41134 (14)0.54147 (7)0.0198 (3)
C130.68273 (12)0.49156 (16)0.58885 (8)0.0242 (3)
H130.6291030.5569080.5675540.029*
C140.69039 (13)0.47746 (17)0.66662 (8)0.0267 (3)
H140.6425280.5334150.6980440.032*
C150.76794 (13)0.38167 (16)0.69848 (8)0.0261 (3)
H150.7736720.3719020.7516570.031*
C160.83678 (13)0.30059 (16)0.65192 (8)0.0268 (3)
H160.8895500.2342900.6734600.032*
C170.82977 (12)0.31486 (16)0.57365 (8)0.0239 (3)
H170.8794 (16)0.257 (2)0.5412 (11)0.028 (4)*
C180.72023 (11)0.59740 (14)0.43669 (7)0.0197 (3)
C190.64102 (12)0.64777 (15)0.38557 (8)0.0225 (3)
H190.5919190.5783360.3625340.027*
C200.63317 (12)0.80002 (16)0.36787 (8)0.0248 (3)
H200.5788440.8330850.3327910.030*
C210.70372 (13)0.90285 (15)0.40092 (8)0.0247 (3)
H210.6991691.0057920.3878260.030*
C220.78131 (12)0.85427 (16)0.45345 (8)0.0256 (3)
H220.8306 (17)0.924 (2)0.4781 (11)0.031 (5)*
C230.78900 (12)0.70327 (16)0.47162 (8)0.0237 (3)
H230.8415680.6713650.5081870.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0276 (2)0.0408 (2)0.0417 (2)0.00851 (14)0.00535 (16)0.01070 (16)
F10.0353 (5)0.0348 (5)0.0429 (5)0.0067 (4)0.0064 (4)0.0102 (4)
F20.0671 (8)0.0418 (6)0.0404 (6)0.0279 (5)0.0212 (5)0.0061 (5)
F30.0413 (6)0.0447 (6)0.0894 (9)0.0068 (5)0.0370 (6)0.0065 (6)
N10.0209 (6)0.0201 (5)0.0270 (6)0.0029 (4)0.0014 (4)0.0007 (4)
N20.0195 (5)0.0188 (5)0.0219 (5)0.0014 (4)0.0009 (4)0.0017 (4)
C10.0264 (7)0.0245 (7)0.0363 (8)0.0001 (5)0.0081 (6)0.0066 (6)
C20.0256 (7)0.0317 (8)0.0390 (8)0.0017 (6)0.0107 (6)0.0070 (6)
C30.0210 (6)0.0297 (7)0.0224 (6)0.0037 (5)0.0006 (5)0.0011 (5)
C40.0227 (7)0.0322 (8)0.0290 (7)0.0053 (6)0.0007 (6)0.0013 (6)
C50.0184 (6)0.0176 (6)0.0211 (6)0.0013 (5)0.0012 (5)0.0011 (5)
C60.0185 (6)0.0149 (5)0.0241 (6)0.0029 (4)0.0003 (5)0.0009 (5)
C70.0210 (6)0.0203 (6)0.0228 (6)0.0017 (5)0.0010 (5)0.0006 (5)
C80.0205 (6)0.0219 (6)0.0294 (7)0.0004 (5)0.0035 (5)0.0011 (5)
C90.0198 (6)0.0213 (6)0.0322 (7)0.0024 (5)0.0031 (5)0.0035 (5)
C100.0256 (7)0.0229 (6)0.0230 (6)0.0053 (5)0.0030 (5)0.0018 (5)
C110.0225 (6)0.0179 (6)0.0225 (6)0.0033 (5)0.0006 (5)0.0020 (5)
C120.0197 (6)0.0180 (6)0.0217 (6)0.0022 (5)0.0006 (5)0.0020 (5)
C130.0246 (7)0.0238 (6)0.0242 (7)0.0026 (5)0.0003 (5)0.0022 (5)
C140.0278 (7)0.0278 (7)0.0246 (7)0.0011 (6)0.0030 (6)0.0007 (5)
C150.0295 (7)0.0272 (7)0.0216 (6)0.0058 (6)0.0016 (5)0.0034 (5)
C160.0286 (7)0.0247 (7)0.0270 (7)0.0017 (5)0.0044 (6)0.0055 (5)
C170.0250 (7)0.0218 (6)0.0249 (7)0.0019 (5)0.0012 (5)0.0013 (5)
C180.0207 (6)0.0174 (6)0.0210 (6)0.0010 (5)0.0017 (5)0.0014 (5)
C190.0245 (6)0.0197 (6)0.0231 (6)0.0012 (5)0.0013 (5)0.0004 (5)
C200.0288 (7)0.0211 (6)0.0245 (6)0.0037 (5)0.0024 (5)0.0027 (5)
C210.0296 (7)0.0177 (6)0.0269 (7)0.0012 (5)0.0038 (6)0.0030 (5)
C220.0272 (7)0.0211 (6)0.0284 (7)0.0042 (5)0.0005 (6)0.0006 (5)
C230.0237 (7)0.0218 (6)0.0255 (6)0.0013 (5)0.0019 (5)0.0021 (5)
Geometric parameters (Å, º) top
Cl1—C91.7422 (14)C10—C111.388 (2)
F1—C41.3340 (18)C11—H110.9500
F2—C41.3408 (18)C12—C131.395 (2)
F3—C41.3308 (19)C12—C171.3920 (19)
N1—N21.3517 (16)C13—H130.9500
N1—C31.3328 (19)C13—C141.389 (2)
N2—C11.3575 (19)C14—H140.9500
N2—C51.4981 (17)C14—C151.388 (2)
C1—H10.9500C15—H150.9500
C1—C21.373 (2)C15—C161.384 (2)
C2—H20.9500C16—H160.9500
C2—C31.392 (2)C16—C171.397 (2)
C3—C41.489 (2)C17—H170.98 (2)
C5—C61.5400 (18)C18—C191.3910 (19)
C5—C121.5431 (18)C18—C231.4021 (19)
C5—C181.5511 (17)C19—H190.9500
C6—C71.3911 (19)C19—C201.3990 (19)
C6—C111.4013 (18)C20—H200.9500
C7—H70.9500C20—C211.383 (2)
C7—C81.394 (2)C21—H210.9500
C8—H80.9500C21—C221.389 (2)
C8—C91.384 (2)C22—H220.96 (2)
C9—C101.389 (2)C22—C231.390 (2)
C10—H100.9500C23—H230.9500
C3—N1—N2104.17 (11)C6—C11—H11119.3
N1—N2—C1111.62 (12)C10—C11—C6121.41 (13)
N1—N2—C5118.99 (11)C10—C11—H11119.3
C1—N2—C5129.37 (12)C13—C12—C5118.43 (12)
N2—C1—H1126.3C17—C12—C5122.88 (12)
N2—C1—C2107.50 (13)C17—C12—C13118.66 (12)
C2—C1—H1126.3C12—C13—H13119.5
C1—C2—H2128.0C14—C13—C12121.08 (13)
C1—C2—C3103.96 (13)C14—C13—H13119.5
C3—C2—H2128.0C13—C14—H14120.0
N1—C3—C2112.75 (13)C15—C14—C13120.06 (14)
N1—C3—C4119.98 (13)C15—C14—H14120.0
C2—C3—C4127.26 (14)C14—C15—H15120.4
F1—C4—F2104.77 (13)C16—C15—C14119.25 (13)
F1—C4—C3113.68 (12)C16—C15—H15120.4
F2—C4—C3112.33 (12)C15—C16—H16119.5
F3—C4—F1106.56 (13)C15—C16—C17120.92 (13)
F3—C4—F2107.94 (13)C17—C16—H16119.5
F3—C4—C3111.13 (13)C12—C17—C16120.02 (14)
N2—C5—C6106.37 (10)C12—C17—H17119.9 (11)
N2—C5—C12110.49 (10)C16—C17—H17120.1 (11)
N2—C5—C18107.06 (10)C19—C18—C5123.14 (12)
C6—C5—C12110.99 (11)C19—C18—C23118.39 (12)
C6—C5—C18112.58 (10)C23—C18—C5118.46 (11)
C12—C5—C18109.24 (10)C18—C19—H19119.8
C7—C6—C5122.41 (12)C18—C19—C20120.43 (13)
C7—C6—C11118.22 (12)C20—C19—H19119.8
C11—C6—C5119.36 (12)C19—C20—H20119.7
C6—C7—H7119.4C21—C20—C19120.65 (13)
C6—C7—C8121.14 (13)C21—C20—H20119.7
C8—C7—H7119.4C20—C21—H21120.3
C7—C8—H8120.4C20—C21—C22119.39 (13)
C9—C8—C7119.21 (13)C22—C21—H21120.3
C9—C8—H8120.4C21—C22—H22121.3 (12)
C8—C9—Cl1119.04 (12)C21—C22—C23120.19 (13)
C8—C9—C10121.16 (13)C23—C22—H22118.6 (12)
C10—C9—Cl1119.80 (11)C18—C23—H23119.6
C9—C10—H10120.6C22—C23—C18120.90 (13)
C11—C10—C9118.86 (13)C22—C23—H23119.6
C11—C10—H10120.6
Cl1—C9—C10—C11179.33 (10)C5—C18—C23—C22176.11 (13)
N1—N2—C1—C20.28 (18)C6—C5—C12—C1381.65 (15)
N1—N2—C5—C644.59 (14)C6—C5—C12—C1796.19 (15)
N1—N2—C5—C1275.97 (14)C6—C5—C18—C1912.64 (18)
N1—N2—C5—C18165.17 (11)C6—C5—C18—C23168.79 (12)
N1—C3—C4—F151.16 (19)C6—C7—C8—C90.3 (2)
N1—C3—C4—F267.59 (18)C7—C6—C11—C101.02 (19)
N1—C3—C4—F3171.36 (14)C7—C8—C9—Cl1179.45 (10)
N2—N1—C3—C20.17 (16)C7—C8—C9—C100.3 (2)
N2—N1—C3—C4178.79 (12)C8—C9—C10—C110.2 (2)
N2—C1—C2—C30.35 (18)C9—C10—C11—C60.5 (2)
N2—C5—C6—C7131.58 (12)C11—C6—C7—C80.89 (19)
N2—C5—C6—C1148.00 (15)C12—C5—C6—C711.35 (17)
N2—C5—C12—C13160.59 (12)C12—C5—C6—C11168.23 (11)
N2—C5—C12—C1721.57 (17)C12—C5—C18—C19136.42 (13)
N2—C5—C18—C19103.91 (14)C12—C5—C18—C2345.01 (16)
N2—C5—C18—C2374.66 (14)C12—C13—C14—C150.4 (2)
C1—N2—C5—C6137.16 (14)C13—C12—C17—C160.4 (2)
C1—N2—C5—C12102.28 (16)C13—C14—C15—C160.2 (2)
C1—N2—C5—C1816.58 (18)C14—C15—C16—C170.5 (2)
C1—C2—C3—N10.33 (18)C15—C16—C17—C120.2 (2)
C1—C2—C3—C4178.83 (14)C17—C12—C13—C140.7 (2)
C2—C3—C4—F1130.44 (16)C18—C5—C6—C7111.46 (14)
C2—C3—C4—F2110.81 (18)C18—C5—C6—C1168.96 (15)
C2—C3—C4—F310.2 (2)C18—C5—C12—C1343.06 (16)
C3—N1—N2—C10.07 (15)C18—C5—C12—C17139.10 (13)
C3—N1—N2—C5178.47 (11)C18—C19—C20—C210.1 (2)
C5—N2—C1—C2178.07 (13)C19—C18—C23—C222.5 (2)
C5—C6—C7—C8179.53 (12)C19—C20—C21—C221.5 (2)
C5—C6—C11—C10179.39 (12)C20—C21—C22—C231.0 (2)
C5—C12—C13—C14178.64 (13)C21—C22—C23—C181.0 (2)
C5—C12—C17—C16178.24 (13)C23—C18—C19—C202.1 (2)
C5—C18—C19—C20176.47 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C12–17, C18–23 and C6–11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···N10.98 (2)2.382 (19)3.0541 (19)125.1 (14)
C22—H22···F2i0.96 (2)2.48 (2)3.3596 (18)151.6 (16)
C2—H2···Cg1i0.952.963.6237 (17)128
C7—H7···Cg10.952.983.6784 (15)132
C8—H8···Cg2ii0.952.803.4721 (15)129
C13—H13···Cg3ii0.952.983.7873 (15)144
C21—H21···Cg3iii0.952.713.4928 (15)140
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavis, L. O. (2013). Org. Prep. Proced. Int. 45, 437–464.  CrossRef CAS Google Scholar
First citationDestro, R., Pilati, T. & Simonetta, M. (1980). Acta Cryst. B36, 2495–2497.  CrossRef CAS IUCr Journals Google Scholar
First citationDunand, A. & Gerdil, R. (1982). Acta Cryst. B38, 570–575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFang, Z., Yin, H., Lin, L., Wen, S., Xie, L., Huang, Y. & Weng, Z. (2020). J. Org. Chem. 85, 8714–8722.  CrossRef CAS PubMed Google Scholar
First citationFronczek, F. R. (2014). Private Communication (refcode TRPETN01) CCDC, Cambridge, England. https://doi.org/10.5517/cc11k9d9  Google Scholar
First citationGuseinov, F. I., Çelikesir, S. T., Akkurt, M., Ovsyannikov, V. O., Ugrak, B. I., Lavrova, O. M., Samigullina, A. I. & Bhattarai, A. (2024). Acta Cryst. E80, 582–585.  CrossRef IUCr Journals Google Scholar
First citationGuseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.  CrossRef CAS Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CSD CrossRef Google Scholar
First citationKahr, B. & Carter, R. L. (1992). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 219, 79–100.  CrossRef CAS Google Scholar
First citationKüçükgüzel, Ş. G., ŞG, & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786–815.  Google Scholar
First citationKumar, A., Mathew, S., Jamali, M. F., Ahamad, S., Kant, R. & Mohanan, K. (2023). Adv. Synth. Catal. 365, 2218–2224.  CrossRef CAS Google Scholar
First citationLiu, R. H., Chai, G. L., Wang, X., Deng, H. Y. & Chang, J. (2023). J. Org. Chem. 88, 16566–16580.  CrossRef CAS PubMed Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationPizzuti, L. G., Barschak, A. M., Stefanello, F. D., Farias, M., Lencina, C., Roesch-Ely, M., Cunico, W., Moura, S. & Pereira, C. (2014). Curr. Org. Chem. 18, 115–126.  CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSecrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2020). Molecules, 25, 42.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R., Dols, T., Lehmann, C. & Englert, U. (2013). Z. Anorg. Allg. Chem. 639, 1933–1939.  CrossRef CAS Google Scholar
First citationWestphal, M. V., Wolfstädter, B. T., Plancher, J. M., Gatfield, J. & Carreira, E. M. (2015). ChemMedChem, 10, 461–469.  CrossRef CAS PubMed Google Scholar
First citationZhu, W., Wang, J., Wang, S., Gu, Z., Aceña, J. L., Izawa, K., Liu, H. & Soloshonok, V. A. (2014). J. Fluor. Chem. 167, 37–54.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds