

research communications
Synthesis, H-1,2,3-triazol-4-yl]methoxy}benzoate copper(II) chloride complex
and Hirshfeld surface analysis of a propyl 4-{[1-(2-methyl-4-nitrophenyl)-1aNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan, bAlfraganus University, Yukari Karakamysh str. 2A 100190, Tashkent, Uzbekistan, cInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and dUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: hakimov1094@yahoo.com
The core of the title complex, dichloridobis(propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate)copper(II), [CuCl2(C20H20N4O5)2], which belongs to the copper(II) complex family, consists of two C20H20N4O5 ligands and two chloride ligands arranged around the metal, forming a trans-dichlorido square-planar complex. In the crystal, the molecules are linked by C—H⋯Cl and C—H⋯O hydrogen bonds as well as by aromatic π–π stacking interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed.
Keywords: crystal structure; copper (II) complex; 1,2,3-triazole; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 2426436
1. Chemical context
Transition-metal halides may be reacted with functionalized organic molecules (for example carboxylic acids, et al., 2021). 1,2,3-Triazoles comprise an interesting class of (Bozorov et al., 2019
), and the synthesis of ligand-based 3d metal complexes from these compounds is of even greater interest (Dheer et al., 2017
). The discovery by Sharpless and coworkers in 2001 (Kolb et al., 2001
) of click chemistry, especially the copper-catalysed alkyne-azide cycloaddition (CuAAC) methodology for the preparation of triazole derivatives, has accelerated important advances in many scientific areas. This copper-catalysed process constituted a substantial development on the classical Huisgen-type thermal 1,3-dipolar cycloaddition as it permitted the regioselective preparation of 1,4- and 1,5-disubstituted 1,2,3-triazoles (Huisgen, 1963
; Ling et al., 1996
; Hein & Fokin, 2010
; Liang & Astruc, 2011
). Daniel Mendoza and co-worker reported the new copper(II) complexes supported by 2-mercapto and 4-mercaptopyridine-derived 1,2,3-triazole ligands. Their new complexes were tested in the CuAAC process under a variety of reaction conditions. The overall catalytic data demonstrated these complexes displayed the best CuAAC performance in alcoholic solvents without the need for an external reducing agent (Gonzalez-Silva et al., 2019
). Herein, we report the synthesis of the coordination compound, 1, formed from propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate and copper(II) chloride and examined it using single-crystal X-ray diffraction and Hirshfeld surface studies as a part of our ongoing interest in 1,2,3-triazole derivatives, a continuation of our recently published work on the synthesis of triazole derivatives (Hakimov et al., 2024
).
2. Structural commentary
Compound 1 crystallizes in the monoclinic P21/c. Fig. 1 depicts a perspective view of the mononuclear centrosymmetric complex, [(Cu)(L)2(Cl)2], where L = propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate, with the atom-labeling scheme. The contains half of the molecule, with the copper atom coincident with an inversion center, which renders the two C20H20N4O5 ligands crystallographically equivalent. Likewise, the trans-chloride ligands are crystallographically equivalent. The copper(II) center is coordinated by a single nitrogen of each of the two 1H-1,2,3-triazole ligands with an N14—Cu bond length of 2.009 (2) Å and to two chlorine atoms with a Cu—Cl distances of 2.2460 (9) Å. Interestingly, the O10 atoms are located far away from the Cu center [4.451 (2) Å], ruling out a possible bidentate coordination of each 1,2,3-triazole ligand for the title compound. The coordination of the Cu metal center adopts a square-planar geometry, with τ4 = 0 (Yang et al., 2007
). According to the structural data for the title compound, the torsion angles O10—C11—C15—C16 and C16—N12—C17—C22 of the triazole ring with neighboring atoms are 53.6 (5) and −47.3 (5)°, respectively.
![]() | Figure 1 Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level. |
3. Supramolecular features
In the ) can be identified as hydrogen bonds by Hirshfeld surface analysis (vide infra). For the complexes, a chain along the c-axis direction is observed due to stacking effects between the benzene rings (Fig. 2
). These contacts link the molecules into a three-dimensional network, complemented by short ring-interactions with stacking between the triazole (centroid Cg1), propyl benzoate (centroid Cg2) rings and 1-methyl-5-nitrobenzene (centroid Cg3) rings [Cg1⋯Cg1′ = 5.5492 (18) Å, Cg2⋯Cg2′ = 4.009 (2) Å and Cg3⋯Cg3′ = 4.094 (2) Å, with slippages of 0.46, 1.799 and 2.091 Å, respectively].
|
![]() | Figure 2 Crystal packing of the title compound. Hydrogen bonds are shown as blue dashed lines. |
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed using CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface of molecule 1 mapped over dnorm is shown in Fig. 3
. Intermolecular C—H⋯O and C—H⋯Cl contacts are shown, indicating close interactions (hydrogen bonds) as blue and red dashed lines, respectively. The 2D fingerprint plots (McKinnon et al., 2007
), indicate that intermolecular H⋯H and O⋯H/H⋯O contacts make the largest contributions to the total Hirshfeld surface, 38.8% and 25.1%, respectively, with other significant contributions being H⋯C/C⋯H (10.0%), H⋯Cl/Cl⋯H (8.9%) and O⋯C/C⋯O (3.3%) (Fig. 4
). The characteristic pair of spikes in the H⋯Cl/Cl⋯H and especially O⋯H/H⋯O plots shown in Fig. 4
c and Fig. 4
e are also indicative of hydrogen bonds. The Hirshfeld surface mapped over shape-index properties (Fig. 5
) illustrates the π–π stacking interactions .
![]() | Figure 3 Hirshfeld surface of 1 mapped over dnorm and close intermolecular contacts. |
![]() | Figure 4 Two-dimensional fingerprint plots of the intermolecular contacts in 1. |
![]() | Figure 5 View of the Hirshfeld surface of the title compound plotted over shape-index: front and back views of middle molecule, respectively. |
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016) for the generalized 4-(phenoxymethyl)-1-phenyl-1H-1,2,3-triazole with triazole coordination to copper returned zero relevant hits. A search instead with 4-(pyridinesulfanylymethyl)-1-phenyl-1H-1,2,3-triazole returned one hit, CSD refcode GORBAT (Gonzalez-Silva et al., 2019
). Four six-coordinate examples containing two bidentate 4-(pyridine)-1-phenyl-1H-1,2,3-triazole moieties and two chloride ligands have been reported (CSD refcodes KINNAZ, KINNED, KINNIH, KINNON and KINNUT; Conradie et al., 2018
). The CSD returned less than 25 examples of four-coordinate copper(II) coordinated with exactly two chloride ligands and at least one N-coordinating triazole-derived ligand. Only eight examples have the chloride ligands in a trans or near-trans geometry, and of these, six include substituted benzotriazole ligands. The structure most similar to the title complex is bis{4-[(benzyloxy)methyl]-1-(4-chlorobenzyl)-1H-1,2,3-triazole}dichlorocopper(II) (CSD refcode QOCBAN; Mendoza-Espinosa et al., 2014
).
6. Synthesis and crystallization
The starting reagents used for the synthesis of the title coordination compound – CuCl2·2H2O (chemical grade), 2-aminoethanol (MEA) (analytical grade) and ethyl alcohol (analytical grade) – were used as received. 40 mg (0.01 mmol) of C20H20N4O5 triazole ligand and 20 mg (0.12 mmol) of CuCl2·2H2O were added to 0.4 ml of C2H7NO and 4 ml of C2H6O solution in a glass vial. The mixture cleared and became a navy blue solution, without sediment. It was then stored in the dark at room temperature for two weeks, after which dark-pink prism-shaped crystals of the complex formed. The yield was 33 mg (55%), m.p. 491–499 K.
7. details
Crystal data, data collection and structure . H atoms were positioned geometrically and refined using a riding model with distance constraints of C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C); C—H = 0.96 Å (methyl) with Uiso(H) = 1.5Ueq(C).
|
Supporting information
CCDC reference: 2426436
https://doi.org/10.1107/S2056989025001732/ej2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001732/ej2010Isup2.hkl
[CuCl2(C20H20N4O5)2] | F(000) = 958 |
Mr = 927.24 | Dx = 1.492 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 15.8765 (4) Å | Cell parameters from 6038 reflections |
b = 16.2381 (3) Å | θ = 2.8–71.2° |
c = 8.0187 (2) Å | µ = 2.52 mm−1 |
β = 92.984 (2)° | T = 295 K |
V = 2064.45 (8) Å3 | Prism, metallic pinkish pink |
Z = 2 | 0.4 × 0.2 × 0.1 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3315 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.034 |
scan | θmax = 71.5°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −18→19 |
Tmin = 0.617, Tmax = 1.000 | k = −19→16 |
11763 measured reflections | l = −9→9 |
3975 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.0806P)2 + 2.7811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3975 reflections | Δρmax = 1.11 e Å−3 |
279 parameters | Δρmin = −0.73 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.500000 | 1.000000 | 0.500000 | 0.0332 (2) | |
Cl | 0.47301 (8) | 0.90207 (6) | 0.68768 (12) | 0.0572 (3) | |
N14 | 0.51141 (17) | 0.91436 (16) | 0.3218 (3) | 0.0326 (6) | |
N13 | 0.58540 (18) | 0.90064 (16) | 0.2623 (3) | 0.0356 (6) | |
N12 | 0.57226 (17) | 0.84290 (16) | 0.1438 (3) | 0.0335 (6) | |
C16 | 0.4907 (2) | 0.8206 (2) | 0.1295 (4) | 0.0388 (7) | |
H16 | 0.466154 | 0.781814 | 0.056789 | 0.047* | |
C15 | 0.4514 (2) | 0.86703 (19) | 0.2442 (4) | 0.0357 (7) | |
C11 | 0.3628 (2) | 0.86819 (19) | 0.2929 (5) | 0.0406 (8) | |
H11A | 0.356711 | 0.904300 | 0.387925 | 0.049* | |
H11B | 0.325842 | 0.887620 | 0.201033 | 0.049* | |
O10 | 0.34212 (16) | 0.78556 (14) | 0.3351 (4) | 0.0475 (6) | |
C5 | 0.2652 (2) | 0.7721 (2) | 0.3977 (4) | 0.0373 (7) | |
C6 | 0.2435 (2) | 0.6895 (2) | 0.4118 (5) | 0.0430 (8) | |
H6 | 0.279257 | 0.648799 | 0.375015 | 0.052* | |
C7 | 0.1692 (2) | 0.6684 (2) | 0.4801 (5) | 0.0430 (8) | |
H7 | 0.155728 | 0.613122 | 0.492948 | 0.052* | |
C2 | 0.1138 (2) | 0.7287 (2) | 0.5304 (4) | 0.0374 (7) | |
C3 | 0.1353 (2) | 0.8107 (2) | 0.5119 (5) | 0.0444 (8) | |
H3 | 0.098309 | 0.851467 | 0.544037 | 0.053* | |
C4 | 0.2108 (2) | 0.8329 (2) | 0.4463 (5) | 0.0450 (8) | |
H4 | 0.224769 | 0.888164 | 0.435060 | 0.054* | |
C1 | 0.0341 (2) | 0.7081 (2) | 0.6095 (5) | 0.0417 (8) | |
O9 | 0.02717 (16) | 0.62677 (16) | 0.6325 (3) | 0.0488 (6) | |
C27 | −0.0424 (2) | 0.5987 (2) | 0.7267 (5) | 0.0469 (9) | |
H27A | −0.095493 | 0.618928 | 0.677040 | 0.056* | |
H27B | −0.036330 | 0.618210 | 0.841093 | 0.056* | |
C28 | −0.0399 (3) | 0.5062 (2) | 0.7216 (6) | 0.0589 (11) | |
H28A | −0.051299 | 0.488279 | 0.607285 | 0.071* | |
H28B | −0.084449 | 0.484809 | 0.787746 | 0.071* | |
C29 | 0.0439 (4) | 0.4699 (3) | 0.7865 (7) | 0.0789 (16) | |
H29A | 0.087621 | 0.486837 | 0.715733 | 0.118* | |
H29B | 0.040059 | 0.410879 | 0.786445 | 0.118* | |
H29C | 0.056727 | 0.488996 | 0.898212 | 0.118* | |
C17 | 0.6440 (2) | 0.8097 (2) | 0.0661 (4) | 0.0342 (7) | |
C22 | 0.6531 (2) | 0.7246 (2) | 0.0682 (4) | 0.0358 (7) | |
H22 | 0.613273 | 0.690744 | 0.114771 | 0.043* | |
C21 | 0.7238 (2) | 0.6921 (2) | −0.0018 (4) | 0.0380 (7) | |
C20 | 0.7843 (2) | 0.7405 (2) | −0.0689 (5) | 0.0465 (8) | |
H20 | 0.831569 | 0.717168 | −0.113705 | 0.056* | |
C19 | 0.7731 (2) | 0.8247 (2) | −0.0681 (5) | 0.0467 (9) | |
H19 | 0.813681 | 0.857969 | −0.113702 | 0.056* | |
C18 | 0.7032 (2) | 0.8617 (2) | −0.0014 (4) | 0.0393 (8) | |
C26 | 0.6933 (3) | 0.9537 (2) | −0.0065 (5) | 0.0553 (10) | |
H26A | 0.636487 | 0.967348 | −0.043287 | 0.083* | |
H26B | 0.731712 | 0.976626 | −0.082638 | 0.083* | |
H26C | 0.705328 | 0.975968 | 0.103051 | 0.083* | |
N23 | 0.7348 (2) | 0.60191 (19) | 0.0011 (4) | 0.0469 (8) | |
O25 | 0.6897 (2) | 0.56138 (16) | 0.0887 (4) | 0.0610 (8) | |
O24 | 0.7876 (2) | 0.5722 (2) | −0.0855 (5) | 0.0753 (10) | |
O8 | −0.01809 (19) | 0.75633 (18) | 0.6508 (5) | 0.0674 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0392 (4) | 0.0267 (3) | 0.0345 (4) | −0.0014 (3) | 0.0092 (3) | −0.0058 (3) |
Cl | 0.0881 (8) | 0.0353 (5) | 0.0505 (5) | 0.0033 (4) | 0.0254 (5) | 0.0041 (4) |
N14 | 0.0386 (14) | 0.0267 (13) | 0.0330 (13) | −0.0035 (11) | 0.0078 (11) | −0.0039 (10) |
N13 | 0.0396 (15) | 0.0324 (14) | 0.0351 (14) | −0.0030 (12) | 0.0053 (11) | −0.0094 (11) |
N12 | 0.0409 (15) | 0.0262 (12) | 0.0339 (14) | −0.0016 (11) | 0.0074 (11) | −0.0061 (10) |
C16 | 0.0420 (18) | 0.0297 (16) | 0.0449 (18) | −0.0054 (14) | 0.0030 (14) | −0.0080 (14) |
C15 | 0.0413 (18) | 0.0257 (15) | 0.0403 (17) | −0.0024 (13) | 0.0038 (14) | −0.0013 (13) |
C11 | 0.0394 (18) | 0.0260 (16) | 0.057 (2) | −0.0019 (13) | 0.0066 (15) | −0.0025 (15) |
O10 | 0.0418 (13) | 0.0270 (11) | 0.0755 (18) | −0.0004 (10) | 0.0185 (12) | 0.0026 (11) |
C5 | 0.0350 (17) | 0.0317 (16) | 0.0452 (18) | −0.0029 (13) | 0.0020 (14) | 0.0017 (14) |
C6 | 0.0430 (19) | 0.0295 (16) | 0.057 (2) | 0.0009 (14) | 0.0102 (16) | −0.0007 (15) |
C7 | 0.0456 (19) | 0.0302 (17) | 0.054 (2) | −0.0036 (15) | 0.0050 (16) | 0.0018 (15) |
C2 | 0.0355 (17) | 0.0356 (17) | 0.0410 (18) | −0.0031 (14) | 0.0002 (13) | 0.0017 (14) |
C3 | 0.0407 (19) | 0.0318 (17) | 0.061 (2) | 0.0032 (15) | 0.0078 (16) | −0.0012 (16) |
C4 | 0.044 (2) | 0.0292 (16) | 0.063 (2) | −0.0011 (15) | 0.0116 (17) | 0.0023 (16) |
C1 | 0.0415 (19) | 0.0403 (18) | 0.0433 (18) | −0.0015 (15) | 0.0022 (15) | 0.0019 (15) |
O9 | 0.0464 (14) | 0.0397 (13) | 0.0622 (16) | −0.0055 (11) | 0.0210 (12) | 0.0031 (12) |
C27 | 0.0420 (19) | 0.052 (2) | 0.048 (2) | −0.0043 (17) | 0.0133 (16) | 0.0029 (17) |
C28 | 0.070 (3) | 0.049 (2) | 0.060 (3) | −0.022 (2) | 0.027 (2) | −0.0047 (19) |
C29 | 0.093 (4) | 0.051 (3) | 0.096 (4) | 0.016 (3) | 0.038 (3) | 0.017 (3) |
C17 | 0.0398 (17) | 0.0303 (16) | 0.0330 (16) | 0.0001 (13) | 0.0057 (13) | −0.0040 (13) |
C22 | 0.0433 (18) | 0.0307 (16) | 0.0336 (16) | −0.0003 (14) | 0.0043 (13) | −0.0019 (13) |
C21 | 0.0429 (18) | 0.0351 (17) | 0.0357 (17) | 0.0060 (14) | −0.0005 (14) | −0.0031 (14) |
C20 | 0.0413 (19) | 0.051 (2) | 0.048 (2) | 0.0038 (17) | 0.0066 (15) | −0.0079 (17) |
C19 | 0.046 (2) | 0.051 (2) | 0.044 (2) | −0.0079 (17) | 0.0121 (16) | −0.0016 (16) |
C18 | 0.051 (2) | 0.0346 (17) | 0.0329 (16) | −0.0049 (15) | 0.0057 (14) | −0.0013 (13) |
C26 | 0.078 (3) | 0.0349 (19) | 0.055 (2) | −0.0079 (19) | 0.020 (2) | 0.0034 (17) |
N23 | 0.0530 (19) | 0.0382 (16) | 0.0492 (18) | 0.0113 (14) | −0.0018 (15) | −0.0043 (14) |
O25 | 0.093 (2) | 0.0366 (14) | 0.0546 (17) | 0.0082 (14) | 0.0110 (15) | 0.0061 (12) |
O24 | 0.064 (2) | 0.0563 (18) | 0.107 (3) | 0.0209 (16) | 0.0236 (18) | −0.0154 (18) |
O8 | 0.0484 (17) | 0.0448 (16) | 0.111 (3) | 0.0069 (13) | 0.0250 (16) | 0.0018 (16) |
Cu—Cl | 2.2460 (9) | C1—O8 | 1.199 (5) |
Cu—Cli | 2.2460 (9) | O9—C27 | 1.444 (4) |
Cu—N14i | 2.009 (2) | C27—H27A | 0.9700 |
Cu—N14 | 2.009 (2) | C27—H27B | 0.9700 |
N14—N13 | 1.310 (4) | C27—C28 | 1.503 (5) |
N14—C15 | 1.350 (4) | C28—H28A | 0.9700 |
N13—N12 | 1.344 (4) | C28—H28B | 0.9700 |
N12—C16 | 1.344 (4) | C28—C29 | 1.522 (7) |
N12—C17 | 1.432 (4) | C29—H29A | 0.9600 |
C16—H16 | 0.9300 | C29—H29B | 0.9600 |
C16—C15 | 1.365 (5) | C29—H29C | 0.9600 |
C15—C11 | 1.481 (5) | C17—C22 | 1.390 (4) |
C11—H11A | 0.9700 | C17—C18 | 1.394 (5) |
C11—H11B | 0.9700 | C22—H22 | 0.9300 |
C11—O10 | 1.426 (4) | C22—C21 | 1.385 (5) |
O10—C5 | 1.361 (4) | C21—C20 | 1.373 (5) |
C5—C6 | 1.390 (5) | C21—N23 | 1.475 (4) |
C5—C4 | 1.383 (5) | C20—H20 | 0.9300 |
C6—H6 | 0.9300 | C20—C19 | 1.378 (5) |
C6—C7 | 1.369 (5) | C19—H19 | 0.9300 |
C7—H7 | 0.9300 | C19—C18 | 1.393 (5) |
C7—C2 | 1.391 (5) | C18—C26 | 1.502 (5) |
C2—C3 | 1.384 (5) | C26—H26A | 0.9600 |
C2—C1 | 1.483 (5) | C26—H26B | 0.9600 |
C3—H3 | 0.9300 | C26—H26C | 0.9600 |
C3—C4 | 1.381 (5) | N23—O25 | 1.221 (4) |
C4—H4 | 0.9300 | N23—O24 | 1.216 (4) |
C1—O9 | 1.338 (4) | ||
Cli—Cu—Cl | 180.0 | C1—O9—C27 | 117.0 (3) |
N14i—Cu—Cli | 90.80 (8) | O9—C27—H27A | 110.5 |
N14—Cu—Cli | 89.20 (8) | O9—C27—H27B | 110.5 |
N14i—Cu—Cl | 89.20 (8) | O9—C27—C28 | 106.2 (3) |
N14—Cu—Cl | 90.80 (8) | H27A—C27—H27B | 108.7 |
N14i—Cu—N14 | 180.0 | C28—C27—H27A | 110.5 |
N13—N14—Cu | 119.5 (2) | C28—C27—H27B | 110.5 |
N13—N14—C15 | 111.1 (3) | C27—C28—H28A | 108.8 |
C15—N14—Cu | 129.4 (2) | C27—C28—H28B | 108.8 |
N14—N13—N12 | 105.5 (2) | C27—C28—C29 | 113.7 (4) |
N13—N12—C16 | 111.2 (3) | H28A—C28—H28B | 107.7 |
N13—N12—C17 | 118.2 (3) | C29—C28—H28A | 108.8 |
C16—N12—C17 | 130.3 (3) | C29—C28—H28B | 108.8 |
N12—C16—H16 | 127.3 | C28—C29—H29A | 109.5 |
N12—C16—C15 | 105.4 (3) | C28—C29—H29B | 109.5 |
C15—C16—H16 | 127.3 | C28—C29—H29C | 109.5 |
N14—C15—C16 | 106.8 (3) | H29A—C29—H29B | 109.5 |
N14—C15—C11 | 121.9 (3) | H29A—C29—H29C | 109.5 |
C16—C15—C11 | 131.2 (3) | H29B—C29—H29C | 109.5 |
C15—C11—H11A | 110.4 | C22—C17—N12 | 116.9 (3) |
C15—C11—H11B | 110.4 | C22—C17—C18 | 122.4 (3) |
H11A—C11—H11B | 108.6 | C18—C17—N12 | 120.6 (3) |
O10—C11—C15 | 106.5 (3) | C17—C22—H22 | 121.3 |
O10—C11—H11A | 110.4 | C21—C22—C17 | 117.3 (3) |
O10—C11—H11B | 110.4 | C21—C22—H22 | 121.3 |
C5—O10—C11 | 117.4 (3) | C22—C21—N23 | 118.0 (3) |
O10—C5—C6 | 114.6 (3) | C20—C21—C22 | 122.6 (3) |
O10—C5—C4 | 125.1 (3) | C20—C21—N23 | 119.3 (3) |
C4—C5—C6 | 120.3 (3) | C21—C20—H20 | 120.9 |
C5—C6—H6 | 120.1 | C21—C20—C19 | 118.2 (3) |
C7—C6—C5 | 119.8 (3) | C19—C20—H20 | 120.9 |
C7—C6—H6 | 120.1 | C20—C19—H19 | 118.8 |
C6—C7—H7 | 119.6 | C20—C19—C18 | 122.4 (3) |
C6—C7—C2 | 120.7 (3) | C18—C19—H19 | 118.8 |
C2—C7—H7 | 119.6 | C17—C18—C26 | 122.8 (3) |
C7—C2—C1 | 122.1 (3) | C19—C18—C17 | 117.0 (3) |
C3—C2—C7 | 118.8 (3) | C19—C18—C26 | 120.2 (3) |
C3—C2—C1 | 119.0 (3) | C18—C26—H26A | 109.5 |
C2—C3—H3 | 119.5 | C18—C26—H26B | 109.5 |
C4—C3—C2 | 121.1 (3) | C18—C26—H26C | 109.5 |
C4—C3—H3 | 119.5 | H26A—C26—H26B | 109.5 |
C5—C4—H4 | 120.4 | H26A—C26—H26C | 109.5 |
C3—C4—C5 | 119.3 (3) | H26B—C26—H26C | 109.5 |
C3—C4—H4 | 120.4 | O25—N23—C21 | 118.1 (3) |
O9—C1—C2 | 111.1 (3) | O24—N23—C21 | 118.0 (3) |
O8—C1—C2 | 126.0 (3) | O24—N23—O25 | 123.9 (3) |
O8—C1—O9 | 122.9 (3) | ||
Cu—N14—N13—N12 | −178.21 (19) | C6—C7—C2—C1 | −178.1 (3) |
Cu—N14—C15—C16 | 178.1 (2) | C7—C2—C3—C4 | −0.7 (6) |
Cu—N14—C15—C11 | −4.7 (5) | C7—C2—C1—O9 | 3.6 (5) |
N14—N13—N12—C16 | −0.1 (3) | C7—C2—C1—O8 | −177.3 (4) |
N14—N13—N12—C17 | −174.4 (3) | C2—C3—C4—C5 | 0.4 (6) |
N14—C15—C11—O10 | −122.9 (3) | C2—C1—O9—C27 | 172.7 (3) |
N13—N14—C15—C16 | 0.2 (4) | C3—C2—C1—O9 | −173.9 (3) |
N13—N14—C15—C11 | 177.5 (3) | C3—C2—C1—O8 | 5.2 (6) |
N13—N12—C16—C15 | 0.2 (4) | C4—C5—C6—C7 | −2.5 (6) |
N13—N12—C17—C22 | 125.8 (3) | C1—C2—C3—C4 | 176.9 (3) |
N13—N12—C17—C18 | −51.5 (4) | C1—O9—C27—C28 | 175.3 (3) |
N12—C16—C15—N14 | −0.3 (4) | O9—C27—C28—C29 | 56.2 (5) |
N12—C16—C15—C11 | −177.1 (3) | C17—N12—C16—C15 | 173.7 (3) |
N12—C17—C22—C21 | −177.9 (3) | C17—C22—C21—C20 | 1.1 (5) |
N12—C17—C18—C19 | 177.2 (3) | C17—C22—C21—N23 | 179.3 (3) |
N12—C17—C18—C26 | −3.8 (5) | C22—C17—C18—C19 | 0.1 (5) |
C16—N12—C17—C22 | −47.3 (5) | C22—C17—C18—C26 | 179.1 (3) |
C16—N12—C17—C18 | 135.4 (4) | C22—C21—C20—C19 | −0.9 (5) |
C16—C15—C11—O10 | 53.6 (5) | C22—C21—N23—O25 | −12.1 (5) |
C15—N14—N13—N12 | −0.1 (3) | C22—C21—N23—O24 | 167.0 (3) |
C15—C11—O10—C5 | 174.7 (3) | C21—C20—C19—C18 | 0.3 (6) |
C11—O10—C5—C6 | 170.4 (3) | C20—C21—N23—O25 | 166.1 (3) |
C11—O10—C5—C4 | −10.0 (5) | C20—C21—N23—O24 | −14.8 (5) |
O10—C5—C6—C7 | 177.1 (3) | C20—C19—C18—C17 | 0.1 (5) |
O10—C5—C4—C3 | −178.4 (4) | C20—C19—C18—C26 | −178.9 (4) |
C5—C6—C7—C2 | 2.2 (6) | C18—C17—C22—C21 | −0.7 (5) |
C6—C5—C4—C3 | 1.2 (6) | N23—C21—C20—C19 | −179.1 (3) |
C6—C7—C2—C3 | −0.6 (6) | O8—C1—O9—C27 | −6.4 (6) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O9 | 0.93 | 2.39 | 2.706 (4) | 100 |
C22—H22···Clii | 0.93 | 2.78 | 3.689 (3) | 167 |
C29—H29B···O8iii | 0.96 | 2.59 | 3.531 (6) | 168 |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) −x, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the Institute of Bioorganic Chemistry of the Academy Sciences of Uzbekistan, Tashkent, Uzbekistan, for providing the single-crystal XRD facility.
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511–3531. Web of Science CrossRef CAS PubMed Google Scholar
Conradie, J., Conradie, M. M., Tawfiq, K. M., Coles, S. J., Tizzard, G. J., Wilson, C. & Potgieter, J. H. (2018). New J. Chem. 42, 16335–16345. Web of Science CSD CrossRef CAS Google Scholar
Constable, E. C., Parkin, G. & Que, L. (2021). Editors. Comprehensive Coordination Chemistry III, 3rd ed., pp. 185–214. Amsterdam: Elsevier. Google Scholar
Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30–54. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gonzalez-Silva, K., Rendon-Nava, D., Alvarez-Hernández, A. & Mendoza-Espinosa, D. (2019). New J. Chem. 43, 16538–16545. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hakimov, M., Khozhimatova, S., Ortikov, I., Abdugafurov, I. & Tojiboev, A. (2024). Acta Cryst. E80, 910–912. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302–1315. Web of Science CrossRef CAS PubMed Google Scholar
Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565–598. CrossRef Google Scholar
Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021. Web of Science CrossRef CAS Google Scholar
Liang, L. & Astruc, D. (2011). Coord. Chem. Rev. 255, 2933–2945. Web of Science CrossRef CAS Google Scholar
Ling, R., Yoshida, M. & Mariano, P. S. (1996). J. Org. Chem. 61, 4439–4449. CrossRef PubMed CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mendoza-Espinosa, D., Negrón-Silva, G. E., Ángeles-Beltrán, D., Álvarez-Hernández, A., Suárez-Castillo, O. R. & Santillán, R. (2014). Dalton Trans. 43, 7069–7077. Web of Science CAS PubMed Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.