research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a propyl 4-{[1-(2-methyl-4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}benzoate copper(II) chloride complex

crossmark logo

aNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan, bAlfraganus University, Yukari Karakamysh str. 2A 100190, Tashkent, Uzbekistan, cInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and dUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: hakimov1094@yahoo.com

Edited by G. Ferrence, Illinois State University, USA (Received 5 December 2024; accepted 24 February 2025; online 4 March 2025)

The core of the title complex, di­chlorido­bis­(propyl 4-{[1-(2-methyl-4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}benzoate)copper(II), [CuCl2(C20H20N4O5)2], which belongs to the copper(II) complex family, consists of two C20H20N4O5 ligands and two chloride ligands arranged around the metal, forming a trans-di­chlorido square-planar complex. In the crystal, the mol­ecules are linked by C—H⋯Cl and C—H⋯O hydrogen bonds as well as by aromatic ππ stacking inter­actions into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed.

1. Chemical context

Transition-metal halides may be reacted with functionalized organic mol­ecules (for example carb­oxy­lic acids, amides or amines) to produce neutral or ionic coordination compounds that combine and leverage the properties of both components (Constable et al., 2021[Constable, E. C., Parkin, G. & Que, L. (2021). Editors. Comprehensive Coordination Chemistry III, 3rd ed., pp. 185-214. Amsterdam: Elsevier.]). 1,2,3-Triazoles comprise an inter­esting class of heterocyclic compounds (Bozorov et al., 2019[Bozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511-3531.]), and the synthesis of ligand-based 3d metal complexes from these compounds is of even greater inter­est (Dheer et al., 2017[Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30-54.]). The discovery by Sharpless and coworkers in 2001 (Kolb et al., 2001[Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021.]) of click chemistry, especially the copper-catalysed alkyne-azide cyclo­addition (CuAAC) methodology for the preparation of triazole derivatives, has accelerated important advances in many scientific areas. This copper-catalysed process constituted a substantial development on the classical Huisgen-type thermal 1,3-dipolar cyclo­addition as it permitted the regioselective preparation of 1,4- and 1,5-disubstituted 1,2,3-triazoles (Huisgen, 1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565-598.]; Ling et al., 1996[Ling, R., Yoshida, M. & Mariano, P. S. (1996). J. Org. Chem. 61, 4439-4449.]; Hein & Fokin, 2010[Hein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302-1315.]; Liang & Astruc, 2011[Liang, L. & Astruc, D. (2011). Coord. Chem. Rev. 255, 2933-2945.]). Daniel Mendoza and co-worker reported the new copper(II) complexes supported by 2-mercapto and 4-mercapto­pyridine-derived 1,2,3-triazole ligands. Their new complexes were tested in the CuAAC process under a variety of reaction conditions. The overall catalytic data demonstrated these complexes displayed the best CuAAC performance in alcoholic solvents without the need for an external reducing agent (Gonzalez-Silva et al., 2019[Gonzalez-Silva, K., Rendon-Nava, D., Alvarez-Hernández, A. & Mendoza-Espinosa, D. (2019). New J. Chem. 43, 16538-16545.]). Herein, we report the synthesis of the coordination compound, 1, formed from propyl 4-{[1-(2-methyl-4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}benzoate and copper(II) chloride and examined it using single-crystal X-ray diffraction and Hirshfeld surface studies as a part of our ongoing inter­est in 1,2,3-triazole derivatives, a continuation of our recently published work on the synthesis of triazole derivatives (Hakimov et al., 2024[Hakimov, M., Khozhimatova, S., Ortikov, I., Abdugafurov, I. & Tojiboev, A. (2024). Acta Cryst. E80, 910-912.]).

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/c. Fig. 1[link] depicts a perspective view of the mononuclear centrosymmetric complex, [(Cu)(L)2(Cl)2], where L = propyl 4-{[1-(2-methyl-4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}benzoate, with the atom-labeling scheme. The asymmetric unit contains half of the mol­ecule, with the copper atom coincident with an inversion center, which renders the two C20H20N4O5 ligands crystallographically equivalent. Likewise, the trans-chloride ligands are crystallographically equivalent. The copper(II) center is coordinated by a single nitro­gen of each of the two 1H-1,2,3-triazole ligands with an N14—Cu bond length of 2.009 (2) Å and to two chlorine atoms with a Cu—Cl distances of 2.2460 (9) Å. Inter­estingly, the O10 atoms are located far away from the Cu center [4.451 (2) Å], ruling out a possible bidentate coordination of each 1,2,3-triazole ligand for the title compound. The coordination of the Cu metal center adopts a square-planar geometry, with τ4 = 0 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). According to the structural data for the title compound, the torsion angles O10—C11—C15—C16 and C16—N12—C17—C22 of the triazole ring with neighboring atoms are 53.6 (5) and −47.3 (5)°, respectively.

[Figure 1]
Figure 1
Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of the title compound, no classical strong hydrogen bonds are observed. Some inter­mol­ecular C—H⋯O and C—H⋯Cl contacts (Table 1[link]) can be identified as hydrogen bonds by Hirshfeld surface analysis (vide infra). For the complexes, a chain along the c-axis direction is observed due to stacking effects between the benzene rings (Fig. 2[link]). These contacts link the mol­ecules into a three-dimensional network, complemented by short ring-inter­actions with stacking between the triazole (centroid Cg1), propyl benzoate (centroid Cg2) rings and 1-methyl-5-nitro­benzene (centroid Cg3) rings [Cg1⋯Cg1′ = 5.5492 (18) Å, Cg2Cg2′ = 4.009 (2) Å and Cg3Cg3′ = 4.094 (2) Å, with slippages of 0.46, 1.799 and 2.091 Å, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O9 0.93 2.39 2.706 (4) 100
C22—H22⋯Cli 0.93 2.78 3.689 (3) 167
C29—H29B⋯O8ii 0.96 2.59 3.531 (6) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound. Hydrogen bonds are shown as blue dashed lines.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of mol­ecule 1 mapped over dnorm is shown in Fig. 3[link]. Inter­mol­ecular C—H⋯O and C—H⋯Cl contacts are shown, indicating close inter­actions (hydrogen bonds) as blue and red dashed lines, respectively. The 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]), indicate that inter­mol­ecular H⋯H and O⋯H/H⋯O contacts make the largest contributions to the total Hirshfeld surface, 38.8% and 25.1%, respectively, with other significant contributions being H⋯C/C⋯H (10.0%), H⋯Cl/Cl⋯H (8.9%) and O⋯C/C⋯O (3.3%) (Fig. 4[link]). The characteristic pair of spikes in the H⋯Cl/Cl⋯H and especially O⋯H/H⋯O plots shown in Fig. 4[link]c and Fig. 4[link]e are also indicative of hydrogen bonds. The Hirshfeld surface mapped over shape-index properties (Fig. 5[link]) illustrates the ππ stacking interactions .

[Figure 3]
Figure 3
Hirshfeld surface of 1 mapped over dnorm and close inter­mol­ecular contacts.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the inter­mol­ecular contacts in 1.
[Figure 5]
Figure 5
View of the Hirshfeld surface of the title compound plotted over shape-index: front and back views of middle mol­ecule, respectively.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the generalized 4-(phen­oxy­meth­yl)-1-phenyl-1H-1,2,3-triazole with triazole coordination to copper returned zero relevant hits. A search instead with 4-(pyridine­sulfanylymeth­yl)-1-phenyl-1H-1,2,3-triazole returned one hit, CSD refcode GORBAT (Gonzalez-Silva et al., 2019[Gonzalez-Silva, K., Rendon-Nava, D., Alvarez-Hernández, A. & Mendoza-Espinosa, D. (2019). New J. Chem. 43, 16538-16545.]). Four six-coordinate examples containing two bidentate 4-(pyridine)-1-phenyl-1H-1,2,3-triazole moieties and two chloride ligands have been reported (CSD refcodes KINNAZ, KINNED, KINNIH, KINNON and KINNUT; Conradie et al., 2018[Conradie, J., Conradie, M. M., Tawfiq, K. M., Coles, S. J., Tizzard, G. J., Wilson, C. & Potgieter, J. H. (2018). New J. Chem. 42, 16335-16345.]). The CSD returned less than 25 examples of four-coordinate copper(II) coordinated with exactly two chloride ligands and at least one N-coordinating triazole-derived ligand. Only eight examples have the chloride ligands in a trans or near-trans geometry, and of these, six include substituted benzotriazole ligands. The structure most similar to the title complex is bis­{4-[(benz­yloxy)meth­yl]-1-(4-chloro­benz­yl)-1H-1,2,3-triazole}di­chloro­copper(II) (CSD refcode QOCBAN; Mendoza-Espinosa et al., 2014[Mendoza-Espinosa, D., Negrón-Silva, G. E., Ángeles-Beltrán, D., Álvarez-Hernández, A., Suárez-Castillo, O. R. & Santillán, R. (2014). Dalton Trans. 43, 7069-7077.]).

6. Synthesis and crystallization

The starting reagents used for the synthesis of the title coordination compound – CuCl2·2H2O (chemical grade), 2-amino­ethanol (MEA) (analytical grade) and ethyl alcohol (analytical grade) – were used as received. 40 mg (0.01 mmol) of C20H20N4O5 triazole ligand and 20 mg (0.12 mmol) of CuCl2·2H2O were added to 0.4 ml of C2H7NO and 4 ml of C2H6O solution in a glass vial. The mixture cleared and became a navy blue solution, without sediment. It was then stored in the dark at room temperature for two weeks, after which dark-pink prism-shaped crystals of the complex formed. The yield was 33 mg (55%), m.p. 491–499 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and refined using a riding model with distance constraints of C—H = 0.93 Å (aromatic) and 0.97 Å (methyl­ene) with Uiso(H) = 1.2Ueq(C); C—H = 0.96 Å (meth­yl) with Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [CuCl2(C20H20N4O5)2]
Mr 927.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 15.8765 (4), 16.2381 (3), 8.0187 (2)
β (°) 92.984 (2)
V3) 2064.45 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.52
Crystal size (mm) 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.617, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11763, 3975, 3315
Rint 0.034
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.171, 1.08
No. of reflections 3975
No. of parameters 279
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.11, −0.73
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Dichloridobis(propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate)copper(II) top
Crystal data top
[CuCl2(C20H20N4O5)2]F(000) = 958
Mr = 927.24Dx = 1.492 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.8765 (4) ÅCell parameters from 6038 reflections
b = 16.2381 (3) Åθ = 2.8–71.2°
c = 8.0187 (2) ŵ = 2.52 mm1
β = 92.984 (2)°T = 295 K
V = 2064.45 (8) Å3Prism, metallic pinkish pink
Z = 20.4 × 0.2 × 0.1 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3315 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.034
scanθmax = 71.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1819
Tmin = 0.617, Tmax = 1.000k = 1916
11763 measured reflectionsl = 99
3975 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0806P)2 + 2.7811P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3975 reflectionsΔρmax = 1.11 e Å3
279 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.5000001.0000000.5000000.0332 (2)
Cl0.47301 (8)0.90207 (6)0.68768 (12)0.0572 (3)
N140.51141 (17)0.91436 (16)0.3218 (3)0.0326 (6)
N130.58540 (18)0.90064 (16)0.2623 (3)0.0356 (6)
N120.57226 (17)0.84290 (16)0.1438 (3)0.0335 (6)
C160.4907 (2)0.8206 (2)0.1295 (4)0.0388 (7)
H160.4661540.7818140.0567890.047*
C150.4514 (2)0.86703 (19)0.2442 (4)0.0357 (7)
C110.3628 (2)0.86819 (19)0.2929 (5)0.0406 (8)
H11A0.3567110.9043000.3879250.049*
H11B0.3258420.8876200.2010330.049*
O100.34212 (16)0.78556 (14)0.3351 (4)0.0475 (6)
C50.2652 (2)0.7721 (2)0.3977 (4)0.0373 (7)
C60.2435 (2)0.6895 (2)0.4118 (5)0.0430 (8)
H60.2792570.6487990.3750150.052*
C70.1692 (2)0.6684 (2)0.4801 (5)0.0430 (8)
H70.1557280.6131220.4929480.052*
C20.1138 (2)0.7287 (2)0.5304 (4)0.0374 (7)
C30.1353 (2)0.8107 (2)0.5119 (5)0.0444 (8)
H30.0983090.8514670.5440370.053*
C40.2108 (2)0.8329 (2)0.4463 (5)0.0450 (8)
H40.2247690.8881640.4350600.054*
C10.0341 (2)0.7081 (2)0.6095 (5)0.0417 (8)
O90.02717 (16)0.62677 (16)0.6325 (3)0.0488 (6)
C270.0424 (2)0.5987 (2)0.7267 (5)0.0469 (9)
H27A0.0954930.6189280.6770400.056*
H27B0.0363300.6182100.8410930.056*
C280.0399 (3)0.5062 (2)0.7216 (6)0.0589 (11)
H28A0.0512990.4882790.6072850.071*
H28B0.0844490.4848090.7877460.071*
C290.0439 (4)0.4699 (3)0.7865 (7)0.0789 (16)
H29A0.0876210.4868370.7157330.118*
H29B0.0400590.4108790.7864450.118*
H29C0.0567270.4889960.8982120.118*
C170.6440 (2)0.8097 (2)0.0661 (4)0.0342 (7)
C220.6531 (2)0.7246 (2)0.0682 (4)0.0358 (7)
H220.6132730.6907440.1147710.043*
C210.7238 (2)0.6921 (2)0.0018 (4)0.0380 (7)
C200.7843 (2)0.7405 (2)0.0689 (5)0.0465 (8)
H200.8315690.7171680.1137050.056*
C190.7731 (2)0.8247 (2)0.0681 (5)0.0467 (9)
H190.8136810.8579690.1137020.056*
C180.7032 (2)0.8617 (2)0.0014 (4)0.0393 (8)
C260.6933 (3)0.9537 (2)0.0065 (5)0.0553 (10)
H26A0.6364870.9673480.0432870.083*
H26B0.7317120.9766260.0826380.083*
H26C0.7053280.9759680.1030510.083*
N230.7348 (2)0.60191 (19)0.0011 (4)0.0469 (8)
O250.6897 (2)0.56138 (16)0.0887 (4)0.0610 (8)
O240.7876 (2)0.5722 (2)0.0855 (5)0.0753 (10)
O80.01809 (19)0.75633 (18)0.6508 (5)0.0674 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0392 (4)0.0267 (3)0.0345 (4)0.0014 (3)0.0092 (3)0.0058 (3)
Cl0.0881 (8)0.0353 (5)0.0505 (5)0.0033 (4)0.0254 (5)0.0041 (4)
N140.0386 (14)0.0267 (13)0.0330 (13)0.0035 (11)0.0078 (11)0.0039 (10)
N130.0396 (15)0.0324 (14)0.0351 (14)0.0030 (12)0.0053 (11)0.0094 (11)
N120.0409 (15)0.0262 (12)0.0339 (14)0.0016 (11)0.0074 (11)0.0061 (10)
C160.0420 (18)0.0297 (16)0.0449 (18)0.0054 (14)0.0030 (14)0.0080 (14)
C150.0413 (18)0.0257 (15)0.0403 (17)0.0024 (13)0.0038 (14)0.0013 (13)
C110.0394 (18)0.0260 (16)0.057 (2)0.0019 (13)0.0066 (15)0.0025 (15)
O100.0418 (13)0.0270 (11)0.0755 (18)0.0004 (10)0.0185 (12)0.0026 (11)
C50.0350 (17)0.0317 (16)0.0452 (18)0.0029 (13)0.0020 (14)0.0017 (14)
C60.0430 (19)0.0295 (16)0.057 (2)0.0009 (14)0.0102 (16)0.0007 (15)
C70.0456 (19)0.0302 (17)0.054 (2)0.0036 (15)0.0050 (16)0.0018 (15)
C20.0355 (17)0.0356 (17)0.0410 (18)0.0031 (14)0.0002 (13)0.0017 (14)
C30.0407 (19)0.0318 (17)0.061 (2)0.0032 (15)0.0078 (16)0.0012 (16)
C40.044 (2)0.0292 (16)0.063 (2)0.0011 (15)0.0116 (17)0.0023 (16)
C10.0415 (19)0.0403 (18)0.0433 (18)0.0015 (15)0.0022 (15)0.0019 (15)
O90.0464 (14)0.0397 (13)0.0622 (16)0.0055 (11)0.0210 (12)0.0031 (12)
C270.0420 (19)0.052 (2)0.048 (2)0.0043 (17)0.0133 (16)0.0029 (17)
C280.070 (3)0.049 (2)0.060 (3)0.022 (2)0.027 (2)0.0047 (19)
C290.093 (4)0.051 (3)0.096 (4)0.016 (3)0.038 (3)0.017 (3)
C170.0398 (17)0.0303 (16)0.0330 (16)0.0001 (13)0.0057 (13)0.0040 (13)
C220.0433 (18)0.0307 (16)0.0336 (16)0.0003 (14)0.0043 (13)0.0019 (13)
C210.0429 (18)0.0351 (17)0.0357 (17)0.0060 (14)0.0005 (14)0.0031 (14)
C200.0413 (19)0.051 (2)0.048 (2)0.0038 (17)0.0066 (15)0.0079 (17)
C190.046 (2)0.051 (2)0.044 (2)0.0079 (17)0.0121 (16)0.0016 (16)
C180.051 (2)0.0346 (17)0.0329 (16)0.0049 (15)0.0057 (14)0.0013 (13)
C260.078 (3)0.0349 (19)0.055 (2)0.0079 (19)0.020 (2)0.0034 (17)
N230.0530 (19)0.0382 (16)0.0492 (18)0.0113 (14)0.0018 (15)0.0043 (14)
O250.093 (2)0.0366 (14)0.0546 (17)0.0082 (14)0.0110 (15)0.0061 (12)
O240.064 (2)0.0563 (18)0.107 (3)0.0209 (16)0.0236 (18)0.0154 (18)
O80.0484 (17)0.0448 (16)0.111 (3)0.0069 (13)0.0250 (16)0.0018 (16)
Geometric parameters (Å, º) top
Cu—Cl2.2460 (9)C1—O81.199 (5)
Cu—Cli2.2460 (9)O9—C271.444 (4)
Cu—N14i2.009 (2)C27—H27A0.9700
Cu—N142.009 (2)C27—H27B0.9700
N14—N131.310 (4)C27—C281.503 (5)
N14—C151.350 (4)C28—H28A0.9700
N13—N121.344 (4)C28—H28B0.9700
N12—C161.344 (4)C28—C291.522 (7)
N12—C171.432 (4)C29—H29A0.9600
C16—H160.9300C29—H29B0.9600
C16—C151.365 (5)C29—H29C0.9600
C15—C111.481 (5)C17—C221.390 (4)
C11—H11A0.9700C17—C181.394 (5)
C11—H11B0.9700C22—H220.9300
C11—O101.426 (4)C22—C211.385 (5)
O10—C51.361 (4)C21—C201.373 (5)
C5—C61.390 (5)C21—N231.475 (4)
C5—C41.383 (5)C20—H200.9300
C6—H60.9300C20—C191.378 (5)
C6—C71.369 (5)C19—H190.9300
C7—H70.9300C19—C181.393 (5)
C7—C21.391 (5)C18—C261.502 (5)
C2—C31.384 (5)C26—H26A0.9600
C2—C11.483 (5)C26—H26B0.9600
C3—H30.9300C26—H26C0.9600
C3—C41.381 (5)N23—O251.221 (4)
C4—H40.9300N23—O241.216 (4)
C1—O91.338 (4)
Cli—Cu—Cl180.0C1—O9—C27117.0 (3)
N14i—Cu—Cli90.80 (8)O9—C27—H27A110.5
N14—Cu—Cli89.20 (8)O9—C27—H27B110.5
N14i—Cu—Cl89.20 (8)O9—C27—C28106.2 (3)
N14—Cu—Cl90.80 (8)H27A—C27—H27B108.7
N14i—Cu—N14180.0C28—C27—H27A110.5
N13—N14—Cu119.5 (2)C28—C27—H27B110.5
N13—N14—C15111.1 (3)C27—C28—H28A108.8
C15—N14—Cu129.4 (2)C27—C28—H28B108.8
N14—N13—N12105.5 (2)C27—C28—C29113.7 (4)
N13—N12—C16111.2 (3)H28A—C28—H28B107.7
N13—N12—C17118.2 (3)C29—C28—H28A108.8
C16—N12—C17130.3 (3)C29—C28—H28B108.8
N12—C16—H16127.3C28—C29—H29A109.5
N12—C16—C15105.4 (3)C28—C29—H29B109.5
C15—C16—H16127.3C28—C29—H29C109.5
N14—C15—C16106.8 (3)H29A—C29—H29B109.5
N14—C15—C11121.9 (3)H29A—C29—H29C109.5
C16—C15—C11131.2 (3)H29B—C29—H29C109.5
C15—C11—H11A110.4C22—C17—N12116.9 (3)
C15—C11—H11B110.4C22—C17—C18122.4 (3)
H11A—C11—H11B108.6C18—C17—N12120.6 (3)
O10—C11—C15106.5 (3)C17—C22—H22121.3
O10—C11—H11A110.4C21—C22—C17117.3 (3)
O10—C11—H11B110.4C21—C22—H22121.3
C5—O10—C11117.4 (3)C22—C21—N23118.0 (3)
O10—C5—C6114.6 (3)C20—C21—C22122.6 (3)
O10—C5—C4125.1 (3)C20—C21—N23119.3 (3)
C4—C5—C6120.3 (3)C21—C20—H20120.9
C5—C6—H6120.1C21—C20—C19118.2 (3)
C7—C6—C5119.8 (3)C19—C20—H20120.9
C7—C6—H6120.1C20—C19—H19118.8
C6—C7—H7119.6C20—C19—C18122.4 (3)
C6—C7—C2120.7 (3)C18—C19—H19118.8
C2—C7—H7119.6C17—C18—C26122.8 (3)
C7—C2—C1122.1 (3)C19—C18—C17117.0 (3)
C3—C2—C7118.8 (3)C19—C18—C26120.2 (3)
C3—C2—C1119.0 (3)C18—C26—H26A109.5
C2—C3—H3119.5C18—C26—H26B109.5
C4—C3—C2121.1 (3)C18—C26—H26C109.5
C4—C3—H3119.5H26A—C26—H26B109.5
C5—C4—H4120.4H26A—C26—H26C109.5
C3—C4—C5119.3 (3)H26B—C26—H26C109.5
C3—C4—H4120.4O25—N23—C21118.1 (3)
O9—C1—C2111.1 (3)O24—N23—C21118.0 (3)
O8—C1—C2126.0 (3)O24—N23—O25123.9 (3)
O8—C1—O9122.9 (3)
Cu—N14—N13—N12178.21 (19)C6—C7—C2—C1178.1 (3)
Cu—N14—C15—C16178.1 (2)C7—C2—C3—C40.7 (6)
Cu—N14—C15—C114.7 (5)C7—C2—C1—O93.6 (5)
N14—N13—N12—C160.1 (3)C7—C2—C1—O8177.3 (4)
N14—N13—N12—C17174.4 (3)C2—C3—C4—C50.4 (6)
N14—C15—C11—O10122.9 (3)C2—C1—O9—C27172.7 (3)
N13—N14—C15—C160.2 (4)C3—C2—C1—O9173.9 (3)
N13—N14—C15—C11177.5 (3)C3—C2—C1—O85.2 (6)
N13—N12—C16—C150.2 (4)C4—C5—C6—C72.5 (6)
N13—N12—C17—C22125.8 (3)C1—C2—C3—C4176.9 (3)
N13—N12—C17—C1851.5 (4)C1—O9—C27—C28175.3 (3)
N12—C16—C15—N140.3 (4)O9—C27—C28—C2956.2 (5)
N12—C16—C15—C11177.1 (3)C17—N12—C16—C15173.7 (3)
N12—C17—C22—C21177.9 (3)C17—C22—C21—C201.1 (5)
N12—C17—C18—C19177.2 (3)C17—C22—C21—N23179.3 (3)
N12—C17—C18—C263.8 (5)C22—C17—C18—C190.1 (5)
C16—N12—C17—C2247.3 (5)C22—C17—C18—C26179.1 (3)
C16—N12—C17—C18135.4 (4)C22—C21—C20—C190.9 (5)
C16—C15—C11—O1053.6 (5)C22—C21—N23—O2512.1 (5)
C15—N14—N13—N120.1 (3)C22—C21—N23—O24167.0 (3)
C15—C11—O10—C5174.7 (3)C21—C20—C19—C180.3 (6)
C11—O10—C5—C6170.4 (3)C20—C21—N23—O25166.1 (3)
C11—O10—C5—C410.0 (5)C20—C21—N23—O2414.8 (5)
O10—C5—C6—C7177.1 (3)C20—C19—C18—C170.1 (5)
O10—C5—C4—C3178.4 (4)C20—C19—C18—C26178.9 (4)
C5—C6—C7—C22.2 (6)C18—C17—C22—C210.7 (5)
C6—C5—C4—C31.2 (6)N23—C21—C20—C19179.1 (3)
C6—C7—C2—C30.6 (6)O8—C1—O9—C276.4 (6)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O90.932.392.706 (4)100
C22—H22···Clii0.932.783.689 (3)167
C29—H29B···O8iii0.962.593.531 (6)168
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Institute of Bioorganic Chemistry of the Academy Sciences of Uzbekistan, Tashkent, Uzbekistan, for providing the single-crystal XRD facility.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511–3531.  Web of Science CrossRef CAS PubMed Google Scholar
First citationConradie, J., Conradie, M. M., Tawfiq, K. M., Coles, S. J., Tizzard, G. J., Wilson, C. & Potgieter, J. H. (2018). New J. Chem. 42, 16335–16345.  Web of Science CSD CrossRef CAS Google Scholar
First citationConstable, E. C., Parkin, G. & Que, L. (2021). Editors. Comprehensive Coordination Chemistry III, 3rd ed., pp. 185–214. Amsterdam: Elsevier.  Google Scholar
First citationDheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzalez-Silva, K., Rendon-Nava, D., Alvarez-Hernández, A. & Mendoza-Espinosa, D. (2019). New J. Chem. 43, 16538–16545.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHakimov, M., Khozhimatova, S., Ortikov, I., Abdugafurov, I. & Tojiboev, A. (2024). Acta Cryst. E80, 910–912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302–1315.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565–598.  CrossRef Google Scholar
First citationKolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.  Web of Science CrossRef CAS Google Scholar
First citationLiang, L. & Astruc, D. (2011). Coord. Chem. Rev. 255, 2933–2945.  Web of Science CrossRef CAS Google Scholar
First citationLing, R., Yoshida, M. & Mariano, P. S. (1996). J. Org. Chem. 61, 4439–4449.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMendoza-Espinosa, D., Negrón-Silva, G. E., Ángeles-Beltrán, D., Álvarez-Hernández, A., Suárez-Castillo, O. R. & Santillán, R. (2014). Dalton Trans. 43, 7069–7077.  Web of Science CAS PubMed Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds