research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of dipotassium nickel polyphosphate

crossmark logo

aUnité de Recherche en Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Mauritania, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and cCNRS, Laboratoire CRM2, UMR CNRS 7036, Université de Lorraine, boulevard des aiguillettes, BP 70239, Vandoeuvre-lès-Nancy, 54506, France
*Correspondence e-mail:

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 20 February 2025; accepted 11 March 2025; online 19 March 2025)

Single crystals of K2Ni(PO3)4 were obtained by solid-state reaction. The structure consists of infinite zigzag polyphosphate chains, running along the c-axis direction, linked by Ni2+ ions and delimiting large tunnels in which the K+ ions are located. Ni2+ ions form slightly distorted NiO6 octa­hedra and the coordination numbers of the independent potassium cations are 8 and 10.

1. Chemical context

Transition-metal oxides (Fe, Co, or Ni) in melted phosphate systems of alkali metals (M2O–P2O5, M = Li, Na, or K) are widely studied (Pontchara & Durif, 1974[Pontchara, P. & Durif, A. (1974). C. R. Acad. Sci. C, 278, 175-178.]; Litvin & Masloboev, 1989[Litvin, B. N. & Masloboev, V. A. (1989). Rare Earth Phosphates, edited by R. Grebentshikov. Moscow: Nauka Publishing.]; Panahandeh & Jung, 2003[Panahandeh, A. & Jung, W. (2003). Z. Anorg. Allg. Chem. 629, 1651-1660.]; Moutataouia et al., 2014[Moutataouia, M., Lamire, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, i5.]; Ouaatta et al., 2019[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402-404.]). These materials present various and inter­esting properties and applications, such as catalysts (Moffat, 1978[Moffat, J. B. (1978). Catal. Rev. 18, 199-258.]), ferroelectric and/or magnetic materials (Lazoryak et al., 2004[Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). Solid State Sci. 6, 185-195.]; Hatert et al., 2004[Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487-506.]; Essehli et al., 2015[Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). Dalton Trans. 44, 4526-4532.]) and ion-conduction properties (La Parola et al., 2018[La Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58-61.]; Orikasa et al., 2016[Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). Sci. Rep. 6, 26382.]; Daidouh et al., 1999[Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109-117.]). Some of these specific properties, such as catalytic activity, are similar to those found in the phosphate systems themselves (Kapshuk et al., 2000[Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206-209.]). These compounds have been characterized by several physico-chemical and structural methods. Among these studies, some have been devoted to nickel-based phosphates associated with alkali metals, such as the polyphosphates MNi(PO3)3 (M = Li, Na, or K; Kapshuk et al., 2000[Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206-209.]) and NiCs4(PO3)6 (Sbai et al., 2004[Sbai, K., Belaaouad, S., Kenz, A., Tace, E. M. & Tridane, M. (2004). Powder Diffr. 19, 375-377.]). For all these samples, the study of their structural characteristics is essential for understanding most of the physical properties (Fischer et al., 1994[Fischer, P., Luján, M., Kubel, F. & Schmid, H. (1994). Ferroelectrics, 162, 37-44.]). The title polyphos­phate, K2Ni(PO3)4, designated as (1), was obtained in the quest to synthesize new condensed phosphates appearing in the A2O–MO–LnO3–P2O5 quaternary system (A: an alkali metal, M: transition metal divalent cation, Ln: lanthanide or Y metal). This compound has been observed in the diagram Ni(PO3)2–KPO3 (Pontchara & Durif, 1974[Pontchara, P. & Durif, A. (1974). C. R. Acad. Sci. C, 278, 175-178.]) but, to our knowledge, its crystal structure has not yet been reported. We report herein on its synthesis and structural characterization by single crystal X-ray diffraction.

2. Structural commentary

The title compound, (1), crystallizes in the non-centrosymmetric monoclinic space group Cc. The asymmetric unit contains 19 atoms corresponding to the chemical formula K2Ni(PO3)4, as shown in Fig. 1[link]. The structure is based on infinite zigzag polyphosphate chains running almost along the c-axis direction and linked by NiO6 octa­hedra (Fig. 2[link]). Each NiO6 octa­hedron shares corners with six different PO4 tetra­hedra belonging to three polyphosphate chains. All the terminal O atoms of the PO4 tetra­hedra in the polyphosphate chains inter­act with the Ni and K atoms. Such an arrangement creates a three-dimensional framework that delimits large hexa­gonal and penta­gonal tunnels in which the K+ ions are located (Fig. 3[link]). The NiO6 octa­hedra are slightly distorted, with Ni—O distances ranging from 2.017 (2) to 2.167 (2) Å and the O—Ni—O angles from 82.52 (6)° to 173.51 (6)°. In the four PO4 tetra­hedra, the equatorial and apical distances P—OE and P—OL, respectively, range from 1.469 (2) to 1.493 (2) Å for P—OE and 1.578 (1) to 1.602 (1)Å for P—OL and the O—P—O angles range from 100.37 (10) to 120.76 (10)°. The unit cell contains two crystallographically non-equivalent K atoms (K1 and K2) both located in large hexa­gonal and penta­gonal tunnels (Fig. 3[link]). The coordination number (CN) is 8 for K1 and 10 for K2. The K—O inter­actions range from 2.582 (2) and 3.111 (2) Å for K1 (mean distance: 2.841 Å) and 2.761 (2) to 3.414 (2) Å for K2 (mean distance: 3.041 Å)

[Figure 1]
Figure 1
The asymmetric unit of K2Ni(PO3)4.
[Figure 2]
Figure 2
Projection of the K2Ni(PO3)4 structure along [100].
[Figure 3]
Figure 3
Polyhedral representation of the structure of K2Ni(PO3)4 showing the tunnels in which the K+ cations are located.

3. Database survey

A search in the Cambridge Structural Database (Version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed about a dozen alkaline nickel-based phosphates: TlNi4(PO4)3, Tl4Ni7(PO4)6 and Tl2Ni4(P2O7)(PO4)2 (Panahandeh & Jung, 2003[Panahandeh, A. & Jung, W. (2003). Z. Anorg. Allg. Chem. 629, 1651-1660.]), KNi3(PO4)P2O7 (Moutataouia et al., 2014[Moutataouia, M., Lamire, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, i5.]), K2Ni4(PO4)2(P2O7) (Palkina et al., 1980[Palkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130-1134.]), K2NiP2O7 (El Maadi et al., 1995[El Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531-536.]), AM4(PO4)3 (A = Na, K, Rb; M = Ni, Mn) (Daidouh et al., 1999[Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109-117.]), MNi(PO3)3 (M = Na or K) (Kapshuk et al., 2000[Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206-209.]), KNiPO4 (Fischer et al., 1994[Fischer, P., Luján, M., Kubel, F. & Schmid, H. (1994). Ferroelectrics, 162, 37-44.]), NiCs4(PO3)6 and NiK4(P3O9)2 (Sbai et al., 2004[Sbai, K., Belaaouad, S., Kenz, A., Tace, E. M. & Tridane, M. (2004). Powder Diffr. 19, 375-377.]). As in the case of the title compound, the structures of MNi(PO3)3 (M = Na or K) polyphosphates are based on infinite zigzag polyphosphate chains, linked by Ni2+ ions in octa­hedral coordination and delimiting tunnels in which the alkali ions are located (Fig. 3[link]). The metal atoms (M) and nickel atoms form infinite ⋯Ni–M–Ni–M⋯ columns of polyhedra sharing edges and alternating with the polyphos­phate chains. In the NaNi(PO3)3 structure (Kapshuk et al., 2000[Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206-209.]), the polyphosphate chains run along the a-axis direction, and the Na atom exhibits a distorted octa­hedral environment whereas in KNi(PO3)3, the polyphosphate chains are run in the same direction as in the title polyphos­phate (c-axis) and the coordination polyhedron of the K atom is a distorted tricapped trigonal prism (CN = 9), unlike in the title polyphosphate where the K atoms exhibit two different coordin­ation numbers (8 and 10). In the other alkaline nickel-based phosphates TlNi4(PO4)3, Tl4Ni7(PO4)6, Tl2Ni4(P2O7)(PO4)2, KNi3(PO4)P2O7, K2Ni4(PO4)2(P2O7), K2NiP2O7, AM4(PO4)3 (A = Na, K, Rb; M = Ni, Mn); the structural arrangements are markedly different from that of the title compound being based on alkali and Ni polyhedra sharing edges and forming chains that are linked together by isolated PO4 and/or diphosphate (P2O7) groups. In addition, the coordination polyhedron of the Ni atom is not always octa­hedral. For instance, it is 7-coordinated in TlNi4(PO4)3, 5-coordinated in KNi4(PO4)3 and has an unusual coordination of only four oxygen atoms in a distorted tetra­hedron in Tl2Ni4(P2O7)(PO4)2. The coordination numbers of the metal atoms (Tl and K) in these phosphates range from 6 to 12. Thallium nickel phosphate, Tl2Ni4(P2O7)(PO4)2, adopts the K2Ni4(PO4)2(P2O7) structure, and the environments of the alkali and nickel atoms are nearly identical.

4. Synthesis and crystallization

Single crystals of K2Ni(PO3)4 were prepared by solid-state reaction. A mixture of the reagents K2CO3, NiCl2·6H2O, NH4H2PO4 and La2O3 in a molar ratio of K:Ni:P:La of 0.4:0.05:1:0.02 was placed in a porcelain crucible. The reaction mixture was then calcined at 623 K for 1 h and gradually heated to 823 K. Maintained at this temperature for 72 h, the reaction mixture then underwent slow cooling at a rate of 1 K h−1 to 773 K and then to room temperature with furnace inertia. The crystals obtained were recovered after washing with boiling water.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Solving and refinement tests of the structure were carried out in both the centrosymmetric and non-centrosymmetric space groups C2/c and Cc. Better results with a much convergent refinement were obtained with the non-centrosymmetric model. The use of the TWIN refinement mode made the refinement results significantly improved. No Extinction correction was applied. The residual maximum and minimum electron density peaks are located 0.13 Å from P1 and 0.36 Å from Ni1, respectively. However, the minimum density observed in the vicinity of a nickel atom is rather largely negative (−2.6 e Å−3) indicating probably that the absorption correction applied was not optimal.

Table 1
Experimental details

Crystal data
Chemical formula K2Ni(PO3)4
Mr 452.79
Crystal system, space group Monoclinic, Cc
Temperature (K) 293
a, b, c (Å) 11.07179 (16), 12.50386 (16), 7.53969 (11)
β (°) 103.2349 (14)
V3) 1016.07 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.43
Crystal size (mm) 0.12 × 0.08 × 0.07
 
Data collection
Diffractometer SuperNova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.509, 0.710
No. of measured, independent and observed [I > 2σ(I)] reflections 33158, 8076, 7869
Rint 0.035
(sin θ/λ)max−1) 0.999
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.07
No. of reflections 8076
No. of parameters 173
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.83, −2.85
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.539 (9)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Dipotassium nickel polyphosphate top
Crystal data top
K2Ni(PO3)4F(000) = 888
Mr = 452.79Dx = 2.960 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 11.07179 (16) ÅCell parameters from 5641 reflections
b = 12.50386 (16) Åθ = 2.5–45.2°
c = 7.53969 (11) ŵ = 3.43 mm1
β = 103.2349 (14)°T = 293 K
V = 1016.07 (3) Å3Block, metallic reddish red
Z = 40.12 × 0.08 × 0.07 mm
Data collection top
SuperNova
diffractometer
Rint = 0.035
θ/2θ scansθmax = 45.2°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 2221
Tmin = 0.509, Tmax = 0.710k = 2424
33158 measured reflectionsl = 1414
8076 independent reflections3 standard reflections every 120 min
7869 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0564P)2 + 1.2215P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.001
wR(F2) = 0.088Δρmax = 0.83 e Å3
S = 1.07Δρmin = 2.85 e Å3
8076 reflectionsAbsolute structure: Refined as an inversion twin
173 parametersAbsolute structure parameter: 0.539 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Data were collected on a SuperNova diffractometer equipped with a (Mo)X-ray Source and an Atlas CCD detector. Cell refinement and data reduction were performed with CrysAlisPro 1.171.42.49 (Rigaku, 2022) and adsorption correction withSCALE3 ABSPACK scaling algorithm (Rigaku Oxford Diffraction, 2022). Using the SHELX software package, the structure was solved by the direct method with the SHELXS program (Sheldrick, 2015a) and refined by the full-matrix least-squares method using SHELXL program (Sheldrick, 2015b). The programs Ortep-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) were used for molecular graphics and the software publCIF (Westrip, 2010) to prepare material for publication.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.94642 (3)0.34669 (2)0.79387 (4)0.00586 (5)
K10.61359 (4)0.63341 (3)0.12530 (6)0.00747 (6)
K21.31600 (5)0.37393 (4)0.96892 (7)0.01014 (7)
P11.05470 (5)0.57511 (4)0.70758 (7)0.00330 (7)
P20.83590 (5)0.57688 (4)0.86578 (7)0.00340 (7)
P30.62807 (5)0.68963 (4)0.62381 (7)0.00407 (7)
P41.28454 (5)0.66069 (4)0.97345 (7)0.00384 (7)
O10.94041 (16)0.62429 (12)0.7749 (2)0.0065 (2)
O20.84766 (14)0.45926 (12)0.8902 (2)0.00540 (19)
O30.71177 (15)0.58966 (12)0.7095 (2)0.0066 (2)
O41.16650 (16)0.59314 (15)0.8769 (2)0.0088 (2)
O51.04508 (15)0.45704 (12)0.6879 (2)0.0058 (2)
O60.82806 (16)0.64783 (12)1.0220 (2)0.0059 (2)
O71.07218 (15)0.64267 (13)0.5525 (2)0.0059 (2)
O81.31674 (15)0.73723 (13)0.8407 (2)0.0074 (2)
O91.23326 (16)0.72198 (13)1.1278 (2)0.0070 (2)
O101.37679 (15)0.58280 (13)1.0701 (2)0.0085 (2)
O110.55585 (16)0.72302 (13)0.7586 (2)0.0076 (2)
O120.56100 (16)0.66049 (14)0.4387 (2)0.0085 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00581 (9)0.00526 (8)0.00660 (8)0.00012 (7)0.00160 (7)0.00007 (7)
K10.00615 (13)0.00922 (13)0.00764 (13)0.00002 (12)0.00283 (10)0.00036 (12)
K20.00994 (16)0.00745 (14)0.01295 (17)0.00041 (12)0.00245 (13)0.00230 (12)
P10.00303 (16)0.00325 (16)0.00364 (15)0.00080 (12)0.00081 (12)0.00030 (12)
P20.00332 (16)0.00287 (15)0.00425 (15)0.00051 (12)0.00139 (12)0.00014 (12)
P30.00380 (16)0.00497 (16)0.00343 (15)0.00063 (12)0.00079 (12)0.00020 (13)
P40.00303 (16)0.00393 (17)0.00437 (16)0.00011 (12)0.00048 (13)0.00040 (12)
O10.0059 (5)0.0051 (4)0.0101 (6)0.0000 (4)0.0052 (4)0.0001 (4)
O20.0059 (5)0.0030 (4)0.0075 (5)0.0009 (3)0.0020 (4)0.0005 (3)
O30.0050 (5)0.0051 (4)0.0085 (5)0.0007 (4)0.0008 (4)0.0003 (4)
O40.0073 (5)0.0110 (6)0.0063 (5)0.0048 (4)0.0023 (4)0.0003 (4)
O50.0065 (5)0.0037 (4)0.0076 (5)0.0006 (4)0.0026 (4)0.0007 (4)
O60.0069 (5)0.0053 (5)0.0057 (5)0.0009 (4)0.0019 (4)0.0014 (4)
O70.0065 (5)0.0067 (5)0.0048 (5)0.0015 (4)0.0017 (4)0.0008 (4)
O80.0073 (5)0.0075 (5)0.0082 (5)0.0011 (4)0.0035 (4)0.0013 (4)
O90.0087 (5)0.0064 (5)0.0064 (5)0.0020 (4)0.0029 (4)0.0011 (4)
O100.0060 (5)0.0068 (5)0.0112 (6)0.0023 (4)0.0007 (4)0.0016 (4)
O110.0085 (5)0.0078 (5)0.0078 (5)0.0023 (4)0.0043 (4)0.0005 (4)
O120.0074 (5)0.0129 (6)0.0044 (5)0.0006 (4)0.0004 (4)0.0008 (4)
Geometric parameters (Å, º) top
Ni1—K1i3.6212 (6)K2—O6vi2.8540 (16)
Ni1—K1ii3.8294 (5)K2—O7i2.9168 (18)
Ni1—K2iii3.7520 (6)K2—O8i3.1274 (18)
Ni1—K24.0161 (6)K2—O9iv2.7951 (17)
Ni1—O22.0168 (15)K2—O10iv3.273 (2)
Ni1—O52.0335 (16)K2—O102.7605 (18)
Ni1—O6iv2.1666 (16)K2—O11x3.2612 (18)
Ni1—O7i2.1253 (16)K2—O12x2.8069 (19)
Ni1—O8v2.0717 (16)P1—O11.5910 (17)
Ni1—O11vi2.0194 (16)P1—O41.5779 (16)
K1—P2vii3.5486 (7)P1—O51.4852 (16)
K1—P2iv3.7705 (7)P1—O71.4903 (16)
K1—P4viii3.5763 (7)P2—O11.5882 (17)
K1—O2iv3.1108 (16)P2—O21.4842 (16)
K1—O3iv3.0080 (16)P2—O31.6002 (16)
K1—O6vii2.6693 (18)P2—O61.4928 (16)
K1—O7ix2.8697 (16)P3—O31.6016 (16)
K1—O8ix2.9396 (17)P3—O9ix1.6009 (17)
K1—O10viii2.6358 (18)P3—O111.4893 (17)
K1—O11vii2.9154 (17)P3—O121.4691 (17)
K1—O122.5817 (18)P4—O41.5860 (17)
K2—P3x3.4765 (7)P4—O81.4858 (17)
K2—P43.6034 (7)P4—O91.6022 (17)
K2—O43.195 (2)P4—O101.4771 (16)
K2—O53.4141 (17)
K1i—Ni1—K1ii125.300 (12)O10—K2—O590.43 (4)
K1i—Ni1—K2iii67.218 (12)O10—K2—O6vi153.87 (5)
K1ii—Ni1—K262.662 (11)O10—K2—O7i100.77 (5)
K1i—Ni1—K2171.099 (12)O10—K2—O8i102.85 (5)
K2iii—Ni1—K1ii88.300 (11)O10—K2—O9iv131.91 (5)
K2iii—Ni1—K2119.195 (13)O10—K2—O10iv90.52 (4)
O2—Ni1—K1ii118.16 (5)O10—K2—O11x93.26 (5)
O2—Ni1—K1i59.09 (5)O10—K2—O12x89.34 (5)
O2—Ni1—K2iii126.08 (5)O11x—K2—P3x25.28 (3)
O2—Ni1—K2114.71 (5)O11x—K2—P4115.41 (3)
O2—Ni1—O592.99 (6)O11x—K2—O5173.59 (4)
O2—Ni1—O6iv93.34 (6)O11x—K2—O10iv111.68 (4)
O2—Ni1—O7i85.48 (6)O12x—K2—P3x24.16 (3)
O2—Ni1—O8v86.88 (7)O12x—K2—P4104.51 (4)
O2—Ni1—O11vi166.65 (7)O12x—K2—O4125.18 (5)
O5—Ni1—K1ii120.40 (5)O12x—K2—O5136.41 (5)
O5—Ni1—K1i114.24 (5)O12x—K2—O6vi81.05 (5)
O5—Ni1—K258.20 (5)O12x—K2—O7i165.05 (5)
O5—Ni1—K2iii113.79 (5)O12x—K2—O8i101.57 (5)
O5—Ni1—O6iv82.52 (6)O12x—K2—O10iv62.93 (5)
O5—Ni1—O7i91.15 (6)O12x—K2—O11x48.97 (4)
O5—Ni1—O8v166.15 (7)K1xi—P1—K2iv65.244 (13)
O6iv—Ni1—K1i47.10 (5)O1—P1—K1xi81.92 (6)
O6iv—Ni1—K1ii137.45 (4)O1—P1—K2iv146.61 (6)
O6iv—Ni1—K2131.17 (5)O4—P1—K1xi82.08 (7)
O6iv—Ni1—K2iii49.19 (4)O4—P1—K2iv79.50 (7)
O7i—Ni1—K1ii47.74 (4)O4—P1—O1102.73 (10)
O7i—Ni1—K1i135.89 (5)O5—P1—K1xi162.46 (7)
O7i—Ni1—K2iii135.94 (4)O5—P1—K2iv99.47 (7)
O7i—Ni1—K244.68 (5)O5—P1—O1111.84 (9)
O7i—Ni1—O6iv173.50 (6)O5—P1—O4104.35 (10)
O8v—Ni1—K1i54.26 (5)O5—P1—O7120.29 (9)
O8v—Ni1—K1ii71.27 (5)O7—P1—K1xi42.80 (6)
O8v—Ni1—K2iii56.46 (5)O7—P1—K2iv44.18 (7)
O8v—Ni1—K2133.93 (5)O7—P1—O1106.67 (9)
O8v—Ni1—O6iv83.66 (6)O7—P1—O4109.57 (10)
O8v—Ni1—O7i102.64 (7)K1xii—P2—K1i86.856 (17)
O11vi—Ni1—K1ii48.53 (5)K1xii—P2—K2xiii67.271 (14)
O11vi—Ni1—K1i126.83 (5)K1i—P2—K2xiii135.710 (18)
O11vi—Ni1—K2iii60.25 (5)O1—P2—K1xii146.03 (6)
O11vi—Ni1—K260.75 (5)O1—P2—K1i120.85 (7)
O11vi—Ni1—O594.32 (7)O1—P2—K2xiii78.82 (6)
O11vi—Ni1—O6iv98.67 (7)O1—P2—O3103.48 (9)
O11vi—Ni1—O7i83.22 (7)O2—P2—K1xii100.44 (7)
O11vi—Ni1—O8v88.67 (7)O2—P2—K1i52.96 (6)
Ni1iv—K1—P2iv51.633 (11)O2—P2—K2xiii161.42 (7)
P2vii—K1—Ni1iv55.151 (12)O2—P2—O1111.80 (9)
P2vii—K1—P2iv70.573 (13)O2—P2—O3103.08 (9)
P2vii—K1—P4viii128.817 (18)O2—P2—O6120.69 (9)
P4viii—K1—Ni1iv170.418 (17)O3—P2—K1i50.17 (6)
P4viii—K1—P2iv136.511 (17)O3—P2—K1xii78.39 (7)
O2iv—K1—Ni1iv33.80 (3)O3—P2—K2xiii88.45 (6)
O2iv—K1—P2iv22.39 (3)O6—P2—K1i130.12 (7)
O2iv—K1—P2vii72.46 (3)O6—P2—K1xii43.42 (7)
O2iv—K1—P4viii151.52 (3)O6—P2—K2xiii40.83 (6)
O3iv—K1—Ni1iv72.55 (3)O6—P2—O1107.34 (9)
O3iv—K1—P2vii70.67 (4)O6—P2—O3109.04 (9)
O3iv—K1—P2iv24.11 (3)K2xiii—P3—K1134.104 (18)
O3iv—K1—P4viii116.65 (3)K2xiv—P3—K179.126 (15)
O3iv—K1—O2iv46.48 (4)K2xiv—P3—K2xiii136.71 (2)
O6vii—K1—Ni1iv36.48 (4)O3—P3—K198.32 (7)
O6vii—K1—P2iv70.19 (4)O3—P3—K2xiv113.32 (6)
O6vii—K1—P2vii22.61 (3)O3—P3—K2xiii91.25 (6)
O6vii—K1—P4viii144.02 (4)O9ix—P3—K190.70 (6)
O6vii—K1—O2iv63.03 (5)O9ix—P3—K2xiii43.41 (6)
O6vii—K1—O3iv79.73 (5)O9ix—P3—K2xiv145.79 (6)
O6vii—K1—O7ix89.55 (5)O9ix—P3—O3100.37 (9)
O6vii—K1—O8ix60.32 (5)O11—P3—K1145.19 (7)
O6vii—K1—O11vii73.37 (5)O11—P3—K2xiii69.63 (7)
O7ix—K1—Ni1iv96.04 (4)O11—P3—K2xiv69.25 (7)
O7ix—K1—P2iv146.15 (4)O11—P3—O3107.15 (10)
O7ix—K1—P2vii100.93 (4)O11—P3—O9ix107.19 (10)
O7ix—K1—P4viii74.89 (4)O12—P3—K127.68 (7)
O7ix—K1—O2iv124.00 (4)O12—P3—K2xiv51.45 (8)
O7ix—K1—O3iv168.30 (5)O12—P3—K2xiii153.56 (7)
O7ix—K1—O8ix68.73 (5)O12—P3—O3108.05 (9)
O7ix—K1—O11vii56.84 (5)O12—P3—O9ix113.35 (10)
O8ix—K1—Ni1iv34.89 (3)O12—P3—O11118.97 (11)
O8ix—K1—P2iv77.60 (3)K1xv—P4—K1xi126.000 (18)
O8ix—K1—P2vii82.80 (3)K1xv—P4—K2i79.159 (15)
O8ix—K1—P4viii135.97 (4)K1xv—P4—K279.311 (16)
O8ix—K1—O2iv55.29 (4)K2—P4—K1xi133.819 (19)
O8ix—K1—O3iv101.52 (5)K2i—P4—K1xi133.235 (18)
O10viii—K1—Ni1iv165.34 (4)K2—P4—K2i84.614 (14)
O10viii—K1—P2iv115.13 (4)O4—P4—K1xi79.54 (7)
O10viii—K1—P2vii130.96 (4)O4—P4—K1xv140.19 (8)
O10viii—K1—P4viii21.38 (4)O4—P4—K262.42 (7)
O10viii—K1—O2iv131.63 (5)O4—P4—K2i106.16 (7)
O10viii—K1—O3iv96.26 (5)O4—P4—O9101.31 (10)
O10viii—K1—O6vii152.78 (6)O8—P4—K1xi42.82 (7)
O10viii—K1—O7ix95.42 (5)O8—P4—K1xv83.87 (7)
O10viii—K1—O8ix145.79 (5)O8—P4—K2126.58 (7)
O10viii—K1—O11vii87.03 (5)O8—P4—K2i140.74 (7)
O11vii—K1—Ni1iv106.92 (4)O8—P4—O4109.49 (10)
O11vii—K1—P2iv134.53 (4)O8—P4—O9111.14 (9)
O11vii—K1—P2vii65.34 (3)O9—P4—K1xi88.55 (6)
O11vii—K1—P4viii70.95 (4)O9—P4—K1xv108.51 (6)
O11vii—K1—O2iv136.18 (5)O9—P4—K2i44.69 (6)
O11vii—K1—O3iv123.15 (5)O9—P4—K2122.27 (6)
O11vii—K1—O8ix106.65 (5)O10—P4—K1xv40.58 (7)
O12—K1—Ni1iv95.42 (4)O10—P4—K1xi162.48 (8)
O12—K1—P2vii149.42 (4)O10—P4—K2i61.96 (8)
O12—K1—P2iv84.87 (4)O10—P4—K244.86 (7)
O12—K1—P4viii81.60 (4)O10—P4—O4106.22 (10)
O12—K1—O2iv77.92 (5)O10—P4—O8120.76 (10)
O12—K1—O3iv94.28 (5)O10—P4—O9106.09 (10)
O12—K1—O6vii131.32 (5)P2—O1—P1134.80 (10)
O12—K1—O7ix89.27 (5)Ni1—O2—K1i87.11 (5)
O12—K1—O8ix74.13 (5)P2—O2—Ni1133.34 (10)
O12—K1—O10viii75.61 (6)P2—O2—K1i104.66 (7)
O12—K1—O11vii140.45 (5)P2—O3—K1i105.71 (7)
P3x—K2—P4108.365 (18)P2—O3—P3134.04 (11)
O4—K2—P3x134.00 (3)P3—O3—K1i119.39 (8)
O4—K2—P426.10 (3)P1—O4—K2108.94 (9)
O4—K2—O542.80 (4)P1—O4—P4149.18 (13)
O4—K2—O10iv82.19 (5)P4—O4—K291.47 (8)
O4—K2—O11x140.01 (4)Ni1—O5—K291.39 (5)
O5—K2—P3x160.47 (3)P1—O5—Ni1131.91 (10)
O5—K2—P468.28 (3)P1—O5—K2102.00 (7)
O6vi—K2—P3x73.47 (4)Ni1i—O6—K1xii96.42 (6)
O6vi—K2—P4170.35 (4)Ni1i—O6—K2xiii95.74 (5)
O6vi—K2—O4152.31 (5)K1xii—O6—K2xiii95.26 (5)
O6vi—K2—O5113.25 (4)P2—O6—Ni1i129.30 (10)
O6vi—K2—O7i85.13 (5)P2—O6—K1xii113.98 (9)
O6vi—K2—O8i56.20 (5)P2—O6—K2xiii119.17 (9)
O6vi—K2—O10iv106.24 (5)Ni1iv—O7—K1xi99.02 (6)
O6vi—K2—O11x62.17 (5)Ni1iv—O7—K2iv104.50 (6)
O7i—K2—P3x143.99 (4)K1xi—O7—K2iv89.74 (5)
O7i—K2—P488.43 (3)P1—O7—Ni1iv125.44 (10)
O7i—K2—O469.44 (5)P1—O7—K1xi116.54 (8)
O7i—K2—O555.30 (4)P1—O7—K2iv114.96 (9)
O7i—K2—O8i65.62 (5)Ni1xvi—O8—K1xi90.84 (6)
O7i—K2—O10iv127.26 (5)Ni1xvi—O8—K2iv90.02 (6)
O7i—K2—O11x118.74 (5)K1xi—O8—K2iv84.52 (4)
O8i—K2—P3x78.40 (3)P4—O8—Ni1xvi145.38 (11)
O8i—K2—P4114.47 (3)P4—O8—K1xi117.09 (9)
O8i—K2—O4118.08 (5)P4—O8—K2iv111.44 (8)
O8i—K2—O5120.88 (4)P3xi—O9—K2i113.41 (8)
O8i—K2—O10iv159.73 (5)P3xi—O9—P4133.93 (11)
O8i—K2—O11x53.12 (4)P4—O9—K2i111.54 (8)
O9iv—K2—P3x107.59 (4)K1xv—O10—K2116.20 (6)
O9iv—K2—P4115.06 (4)K1xv—O10—K2i102.79 (5)
O9iv—K2—O497.12 (5)K2—O10—K2i108.77 (6)
O9iv—K2—O560.22 (4)P4—O10—K1xv118.04 (9)
O9iv—K2—O6vi72.48 (5)P4—O10—K2i94.57 (8)
O9iv—K2—O7i92.51 (5)P4—O10—K2112.97 (9)
O9iv—K2—O8i124.55 (5)Ni1xiii—O11—K1xii100.21 (6)
O9iv—K2—O10iv47.05 (4)Ni1xiii—O11—K2xiv87.23 (6)
O9iv—K2—O11x120.12 (5)K1xii—O11—K2xiv117.41 (6)
O9iv—K2—O12x88.78 (5)P3—O11—Ni1xiii137.44 (11)
O10iv—K2—P3x87.07 (3)P3—O11—K1xii120.26 (9)
O10—K2—P3x87.87 (4)P3—O11—K2xiv85.46 (7)
O10iv—K2—P483.39 (3)K1—O12—K2xiv118.61 (6)
O10—K2—P422.17 (3)P3—O12—K1136.99 (11)
O10—K2—O447.91 (4)P3—O12—K2xiv104.38 (9)
O10iv—K2—O573.49 (4)
K1xi—P1—O1—P2175.17 (16)O1—P2—O2—Ni112.87 (16)
K1xi—P1—O4—K2149.54 (7)O1—P2—O2—K1i112.96 (8)
K1xi—P1—O4—P420.6 (3)O1—P2—O3—K1i119.13 (8)
K1xi—P1—O5—Ni1159.81 (12)O1—P2—O3—P372.00 (17)
K1xi—P1—O5—K297.2 (2)O1—P2—O6—Ni1i79.45 (13)
K1xi—P1—O7—Ni1iv124.79 (16)O1—P2—O6—K1xii159.07 (8)
K1xi—P1—O7—K2iv103.12 (10)O1—P2—O6—K2xiii47.77 (11)
K1i—P2—O1—P159.95 (18)O2—P2—O1—P11.07 (19)
K1xii—P2—O1—P1159.50 (8)O2—P2—O3—K1i2.53 (10)
K1xii—P2—O2—Ni1178.03 (11)O2—P2—O3—P3171.40 (15)
K1i—P2—O2—Ni1100.09 (14)O2—P2—O6—Ni1i50.18 (16)
K1xii—P2—O2—K1i77.94 (5)O2—P2—O6—K1xii71.30 (12)
K1xii—P2—O3—K1i95.65 (6)O2—P2—O6—K2xiii177.41 (8)
K1i—P2—O3—P3168.9 (2)O3—P2—O1—P1111.34 (16)
K1xii—P2—O3—P373.22 (15)O3—P2—O2—Ni197.66 (13)
K1xii—P2—O6—Ni1i121.48 (15)O3—P2—O2—K1i2.43 (10)
K1i—P2—O6—Ni1i115.61 (10)O3—P2—O6—Ni1i169.07 (11)
K1i—P2—O6—K1xii5.87 (12)O3—P2—O6—K1xii47.60 (11)
K1xii—P2—O6—K2xiii111.29 (12)O3—P2—O6—K2xiii63.70 (11)
K1i—P2—O6—K2xiii117.17 (7)O3—P3—O11—Ni1xiii170.05 (14)
K1—P3—O3—K1i63.59 (8)O3—P3—O11—K1xii10.20 (12)
K1—P3—O3—P2128.73 (15)O3—P3—O11—K2xiv109.04 (7)
K1—P3—O11—Ni1xiii54.8 (2)O3—P3—O12—K172.92 (16)
K1—P3—O11—K1xii145.33 (7)O3—P3—O12—K2xiv105.83 (9)
K1—P3—O11—K2xiv26.10 (12)O4—P1—O1—P295.24 (17)
K1—P3—O12—K2xiv178.75 (19)O4—P1—O5—Ni190.47 (14)
K1xi—P4—O4—K2152.97 (5)O4—P1—O5—K212.48 (10)
K1xv—P4—O4—K217.57 (12)O4—P1—O7—Ni1iv177.97 (11)
K1xv—P4—O4—P1115.0 (2)O4—P1—O7—K1xi53.18 (12)
K1xi—P4—O4—P120.4 (3)O4—P1—O7—K2iv49.94 (12)
K1xi—P4—O8—Ni1xvi140.4 (2)O4—P4—O8—Ni1xvi171.34 (17)
K1xv—P4—O8—Ni1xvi29.95 (18)O4—P4—O8—K1xi48.30 (12)
K1xv—P4—O8—K1xi170.31 (8)O4—P4—O8—K2iv46.62 (12)
K1xi—P4—O8—K2iv94.92 (10)O4—P4—O9—K2i101.62 (9)
K1xv—P4—O8—K2iv94.78 (6)O4—P4—O9—P3xi65.16 (17)
K1xi—P4—O9—K2i179.35 (6)O4—P4—O10—K1xv152.89 (10)
K1xv—P4—O9—K2i51.64 (8)O4—P4—O10—K212.62 (13)
K1xv—P4—O9—P3xi141.58 (13)O4—P4—O10—K2i99.99 (9)
K1xi—P4—O9—P3xi13.87 (15)O5—P1—O1—P216.13 (19)
K1xi—P4—O10—K1xv45.8 (3)O5—P1—O4—K213.82 (11)
K1xi—P4—O10—K2i153.0 (2)O5—P1—O4—P4142.7 (3)
K1xv—P4—O10—K2140.27 (15)O5—P1—O7—Ni1iv61.21 (15)
K1xi—P4—O10—K294.4 (2)O5—P1—O7—K1xi174.00 (8)
K1xv—P4—O10—K2i107.12 (10)O5—P1—O7—K2iv70.88 (11)
K2iv—P1—O1—P2174.58 (7)O6—P2—O1—P1133.43 (16)
K2iv—P1—O4—K283.38 (6)O6—P2—O2—Ni1140.52 (12)
K2iv—P1—O4—P445.5 (3)O6—P2—O2—K1i119.39 (9)
K2iv—P1—O5—Ni1171.95 (10)O6—P2—O3—K1i126.86 (8)
K2iv—P1—O5—K269.00 (5)O6—P2—O3—P342.01 (19)
K2iv—P1—O7—Ni1iv132.09 (15)O7—P1—O1—P2149.54 (15)
K2iv—P1—O7—K1xi103.12 (10)O7—P1—O4—K2116.23 (9)
K2xiii—P2—O1—P1163.00 (16)O7—P1—O4—P412.7 (3)
K2xiii—P2—O2—Ni1135.19 (15)O7—P1—O5—Ni1146.17 (12)
K2xiii—P2—O2—K1i124.72 (18)O7—P1—O5—K2110.88 (9)
K2xiii—P2—O3—K1i162.76 (6)O8—P4—O4—K2121.90 (8)
K2xiii—P2—O3—P36.11 (15)O8—P4—O4—P110.7 (3)
K2xiii—P2—O6—Ni1i127.23 (17)O8—P4—O9—K2i142.14 (9)
K2xiii—P2—O6—K1xii111.29 (12)O8—P4—O9—P3xi51.08 (18)
K2xiii—P3—O3—K1i161.44 (8)O8—P4—O10—K1xv27.62 (15)
K2xiv—P3—O3—K1i18.10 (11)O8—P4—O10—K2112.65 (11)
K2xiii—P3—O3—P26.24 (16)O8—P4—O10—K2i134.73 (9)
K2xiv—P3—O3—P2149.58 (13)O9ix—P3—O3—K1i155.84 (9)
K2xiii—P3—O11—Ni1xiii85.23 (15)O9ix—P3—O3—P236.48 (18)
K2xiv—P3—O11—Ni1xiii80.91 (15)O9ix—P3—O11—Ni1xiii63.04 (18)
K2xiii—P3—O11—K1xii74.63 (8)O9ix—P3—O11—K1xii96.82 (10)
K2xiv—P3—O11—K1xii119.23 (10)O9ix—P3—O11—K2xiv143.95 (7)
K2xiii—P3—O11—K2xiv166.14 (5)O9ix—P3—O12—K137.38 (18)
K2xiii—P3—O12—K162.0 (2)O9ix—P3—O12—K2xiv143.87 (8)
K2xiv—P3—O12—K1178.75 (19)O9—P4—O4—K2120.65 (7)
K2xiii—P3—O12—K2xiv119.20 (14)O9—P4—O4—P1106.8 (3)
K2i—P4—O4—K274.83 (5)O9—P4—O8—Ni1xvi77.6 (2)
K2—P4—O4—P1132.6 (3)O9—P4—O8—K1xi62.80 (11)
K2i—P4—O4—P1152.6 (3)O9—P4—O8—K2iv157.72 (8)
K2i—P4—O8—Ni1xvi34.6 (3)O9—P4—O10—K1xv99.86 (11)
K2—P4—O8—Ni1xvi101.76 (18)O9—P4—O10—K2119.87 (9)
K2—P4—O8—K1xi117.88 (7)O9—P4—O10—K2i7.26 (9)
K2i—P4—O8—K1xi105.80 (10)O10—P4—O4—K210.01 (10)
K2—P4—O8—K2iv22.96 (11)O10—P4—O4—P1142.6 (3)
K2i—P4—O8—K2iv159.29 (5)O10—P4—O8—Ni1xvi47.6 (2)
K2—P4—O9—K2i37.22 (10)O10—P4—O8—K1xi172.04 (9)
K2—P4—O9—P3xi129.56 (12)O10—P4—O8—K2iv77.12 (12)
K2i—P4—O9—P3xi166.8 (2)O10—P4—O9—K2i9.12 (11)
K2i—P4—O10—K1xv107.12 (10)O10—P4—O9—P3xi175.90 (14)
K2—P4—O10—K1xv140.27 (15)O11—P3—O3—K1i92.39 (11)
K2—P4—O10—K2i112.61 (10)O11—P3—O3—P275.29 (18)
K2i—P4—O10—K2112.61 (10)O11—P3—O12—K1164.75 (12)
O1—P1—O4—K2130.66 (8)O11—P3—O12—K2xiv16.50 (12)
O1—P1—O4—P4100.4 (3)O12—P3—O3—K1i36.92 (13)
O1—P1—O5—Ni119.87 (16)O12—P3—O3—P2155.39 (15)
O1—P1—O5—K2122.82 (8)O12—P3—O11—Ni1xiii67.17 (19)
O1—P1—O7—Ni1iv67.44 (13)O12—P3—O11—K1xii132.98 (10)
O1—P1—O7—K1xi57.35 (10)O12—P3—O11—K2xiv13.74 (10)
O1—P1—O7—K2iv160.47 (8)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z1/2; (v) x1/2, y1/2, z; (vi) x+1/2, y1/2, z; (vii) x, y, z1; (viii) x1, y, z1; (ix) x1/2, y+3/2, z1/2; (x) x+1, y+1, z+1/2; (xi) x+1/2, y+3/2, z+1/2; (xii) x, y, z+1; (xiii) x1/2, y+1/2, z; (xiv) x1, y+1, z1/2; (xv) x+1, y, z+1; (xvi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Service de Coopération et d'Action Culturelle (SCAC) de l'Ambassade de France en Mauritanie for financial support and Professor Claude Lecomte and coworkers of the Laboratoire CRM2 of the Université de Lorraine (France) for their help.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDaidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109–117.  Web of Science CrossRef ICSD CAS Google Scholar
First citationEl Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531–536.  CAS Google Scholar
First citationEssehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). Dalton Trans. 44, 4526–4532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, P., Luján, M., Kubel, F. & Schmid, H. (1994). Ferroelectrics, 162, 37–44.  CrossRef ICSD Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206–209.  CrossRef Google Scholar
First citationLa Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58–61.  CAS Google Scholar
First citationLazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). Solid State Sci. 6, 185–195.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLitvin, B. N. & Masloboev, V. A. (1989). Rare Earth Phosphates, edited by R. Grebentshikov. Moscow: Nauka Publishing.  Google Scholar
First citationMoffat, J. B. (1978). Catal. Rev. 18, 199–258.  CrossRef CAS Web of Science Google Scholar
First citationMoutataouia, M., Lamire, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, i5.  CSD CrossRef IUCr Journals Google Scholar
First citationOrikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). Sci. Rep. 6, 26382.  CrossRef PubMed Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402–404.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationPalkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130–1134.  CAS Google Scholar
First citationPanahandeh, A. & Jung, W. (2003). Z. Anorg. Allg. Chem. 629, 1651–1660.  CrossRef ICSD CAS Google Scholar
First citationPontchara, P. & Durif, A. (1974). C. R. Acad. Sci. C, 278, 175–178.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSbai, K., Belaaouad, S., Kenz, A., Tace, E. M. & Tridane, M. (2004). Powder Diffr. 19, 375–377.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds