

research communications
Synthesis and
of dipotassium nickel polyphosphateaUnité de Recherche en Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Mauritania, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and cCNRS, Laboratoire CRM2, UMR CNRS 7036, Université de Lorraine, boulevard des aiguillettes, BP 70239, Vandoeuvre-lès-Nancy, 54506, France
*Correspondence e-mail:
Single crystals of K2Ni(PO3)4 were obtained by solid-state reaction. The structure consists of infinite zigzag polyphosphate chains, running along the c-axis direction, linked by Ni2+ ions and delimiting large tunnels in which the K+ ions are located. Ni2+ ions form slightly distorted NiO6 octahedra and the coordination numbers of the independent potassium cations are 8 and 10.
Keywords: crystal structure; phosphate; potassium; nickel; octahedral; pentagonal.
CCDC reference: 2430654
1. Chemical context
Transition-metal oxides (Fe, Co, or Ni) in melted phosphate systems of alkali metals (M2O–P2O5, M = Li, Na, or K) are widely studied (Pontchara & Durif, 1974; Litvin & Masloboev, 1989
; Panahandeh & Jung, 2003
; Moutataouia et al., 2014
; Ouaatta et al., 2019
). These materials present various and interesting properties and applications, such as catalysts (Moffat, 1978
), ferroelectric and/or magnetic materials (Lazoryak et al., 2004
; Hatert et al., 2004
; Essehli et al., 2015
) and ion-conduction properties (La Parola et al., 2018
; Orikasa et al., 2016
; Daidouh et al., 1999
). Some of these specific properties, such as are similar to those found in the phosphate systems themselves (Kapshuk et al., 2000
). These compounds have been characterized by several physico-chemical and structural methods. Among these studies, some have been devoted to nickel-based phosphates associated with alkali metals, such as the polyphosphates MNi(PO3)3 (M = Li, Na, or K; Kapshuk et al., 2000
) and NiCs4(PO3)6 (Sbai et al., 2004
). For all these samples, the study of their structural characteristics is essential for understanding most of the physical properties (Fischer et al., 1994
). The title polyphosphate, K2Ni(PO3)4, designated as (1), was obtained in the quest to synthesize new condensed phosphates appearing in the A2O–MO–LnO3–P2O5 quaternary system (A: an alkali metal, M: transition metal divalent cation, Ln: lanthanide or Y metal). This compound has been observed in the diagram Ni(PO3)2–KPO3 (Pontchara & Durif, 1974
) but, to our knowledge, its has not yet been reported. We report herein on its synthesis and structural characterization by single crystal X-ray diffraction.
2. Structural commentary
The title compound, (1), crystallizes in the non-centrosymmetric monoclinic Cc. The contains 19 atoms corresponding to the chemical formula K2Ni(PO3)4, as shown in Fig. 1. The structure is based on infinite zigzag polyphosphate chains running almost along the c-axis direction and linked by NiO6 octahedra (Fig. 2
). Each NiO6 octahedron shares corners with six different PO4 tetrahedra belonging to three polyphosphate chains. All the terminal O atoms of the PO4 tetrahedra in the polyphosphate chains interact with the Ni and K atoms. Such an arrangement creates a three-dimensional framework that delimits large hexagonal and pentagonal tunnels in which the K+ ions are located (Fig. 3
). The NiO6 octahedra are slightly distorted, with Ni—O distances ranging from 2.017 (2) to 2.167 (2) Å and the O—Ni—O angles from 82.52 (6)° to 173.51 (6)°. In the four PO4 tetrahedra, the equatorial and apical distances P—OE and P—OL, respectively, range from 1.469 (2) to 1.493 (2) Å for P—OE and 1.578 (1) to 1.602 (1)Å for P—OL and the O—P—O angles range from 100.37 (10) to 120.76 (10)°. The contains two crystallographically non-equivalent K atoms (K1 and K2) both located in large hexagonal and pentagonal tunnels (Fig. 3
). The (CN) is 8 for K1 and 10 for K2. The K—O interactions range from 2.582 (2) and 3.111 (2) Å for K1 (mean distance: 2.841 Å) and 2.761 (2) to 3.414 (2) Å for K2 (mean distance: 3.041 Å)
![]() | Figure 1 The asymmetric unit of K2Ni(PO3)4. |
![]() | Figure 2 Projection of the K2Ni(PO3)4 structure along [100]. |
![]() | Figure 3 Polyhedral representation of the structure of K2Ni(PO3)4 showing the tunnels in which the K+ cations are located. |
3. Database survey
A search in the Cambridge Structural Database (Version 5.43, November 2021; Groom et al., 2016) revealed about a dozen alkaline nickel-based phosphates: TlNi4(PO4)3, Tl4Ni7(PO4)6 and Tl2Ni4(P2O7)(PO4)2 (Panahandeh & Jung, 2003
), KNi3(PO4)P2O7 (Moutataouia et al., 2014
), K2Ni4(PO4)2(P2O7) (Palkina et al., 1980
), K2NiP2O7 (El Maadi et al., 1995
), AM4(PO4)3 (A = Na, K, Rb; M = Ni, Mn) (Daidouh et al., 1999
), MNi(PO3)3 (M = Na or K) (Kapshuk et al., 2000
), KNiPO4 (Fischer et al., 1994
), NiCs4(PO3)6 and NiK4(P3O9)2 (Sbai et al., 2004
). As in the case of the title compound, the structures of MNi(PO3)3 (M = Na or K) polyphosphates are based on infinite zigzag polyphosphate chains, linked by Ni2+ ions in octahedral coordination and delimiting tunnels in which the alkali ions are located (Fig. 3
). The metal atoms (M) and nickel atoms form infinite ⋯Ni–M–Ni–M⋯ columns of polyhedra sharing edges and alternating with the polyphosphate chains. In the NaNi(PO3)3 structure (Kapshuk et al., 2000
), the polyphosphate chains run along the a-axis direction, and the Na atom exhibits a distorted octahedral environment whereas in KNi(PO3)3, the polyphosphate chains are run in the same direction as in the title polyphosphate (c-axis) and the of the K atom is a distorted tricapped trigonal prism (CN = 9), unlike in the title polyphosphate where the K atoms exhibit two different coordination numbers (8 and 10). In the other alkaline nickel-based phosphates TlNi4(PO4)3, Tl4Ni7(PO4)6, Tl2Ni4(P2O7)(PO4)2, KNi3(PO4)P2O7, K2Ni4(PO4)2(P2O7), K2NiP2O7, AM4(PO4)3 (A = Na, K, Rb; M = Ni, Mn); the structural arrangements are markedly different from that of the title compound being based on alkali and Ni polyhedra sharing edges and forming chains that are linked together by isolated PO4 and/or diphosphate (P2O7) groups. In addition, the of the Ni atom is not always octahedral. For instance, it is 7-coordinated in TlNi4(PO4)3, 5-coordinated in KNi4(PO4)3 and has an unusual coordination of only four oxygen atoms in a distorted tetrahedron in Tl2Ni4(P2O7)(PO4)2. The coordination numbers of the metal atoms (Tl and K) in these phosphates range from 6 to 12. Thallium nickel phosphate, Tl2Ni4(P2O7)(PO4)2, adopts the K2Ni4(PO4)2(P2O7) structure, and the environments of the alkali and nickel atoms are nearly identical.
4. Synthesis and crystallization
Single crystals of K2Ni(PO3)4 were prepared by solid-state reaction. A mixture of the reagents K2CO3, NiCl2·6H2O, NH4H2PO4 and La2O3 in a molar ratio of K:Ni:P:La of 0.4:0.05:1:0.02 was placed in a porcelain crucible. The reaction mixture was then calcined at 623 K for 1 h and gradually heated to 823 K. Maintained at this temperature for 72 h, the reaction mixture then underwent slow cooling at a rate of 1 K h−1 to 773 K and then to room temperature with furnace inertia. The crystals obtained were recovered after washing with boiling water.
5. Refinement
Crystal data, data collection and structure . Solving and tests of the structure were carried out in both the centrosymmetric and non-centrosymmetric space groups C2/c and Cc. Better results with a much convergent were obtained with the non-centrosymmetric model. The use of the TWIN mode made the results significantly improved. No Extinction correction was applied. The residual maximum and minimum electron density peaks are located 0.13 Å from P1 and 0.36 Å from Ni1, respectively. However, the minimum density observed in the vicinity of a nickel atom is rather largely negative (−2.6 e Å−3) indicating probably that the absorption correction applied was not optimal.
|
Supporting information
CCDC reference: 2430654
https://doi.org/10.1107/S2056989025002221/ev2014sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002221/ev2014Isup2.hkl
K2Ni(PO3)4 | F(000) = 888 |
Mr = 452.79 | Dx = 2.960 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.07179 (16) Å | Cell parameters from 5641 reflections |
b = 12.50386 (16) Å | θ = 2.5–45.2° |
c = 7.53969 (11) Å | µ = 3.43 mm−1 |
β = 103.2349 (14)° | T = 293 K |
V = 1016.07 (3) Å3 | Block, metallic reddish red |
Z = 4 | 0.12 × 0.08 × 0.07 mm |
SuperNova diffractometer | Rint = 0.035 |
θ/2θ scans | θmax = 45.2°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | h = −22→21 |
Tmin = 0.509, Tmax = 0.710 | k = −24→24 |
33158 measured reflections | l = −14→14 |
8076 independent reflections | 3 standard reflections every 120 min |
7869 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0564P)2 + 1.2215P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.031 | (Δ/σ)max = 0.001 |
wR(F2) = 0.088 | Δρmax = 0.83 e Å−3 |
S = 1.07 | Δρmin = −2.85 e Å−3 |
8076 reflections | Absolute structure: Refined as an inversion twin |
173 parameters | Absolute structure parameter: 0.539 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. Data were collected on a SuperNova diffractometer equipped with a (Mo)X-ray Source and an Atlas CCD detector. Cell refinement and data reduction were performed with CrysAlisPro 1.171.42.49 (Rigaku, 2022) and adsorption correction withSCALE3 ABSPACK scaling algorithm (Rigaku Oxford Diffraction, 2022). Using the SHELX software package, the structure was solved by the direct method with the SHELXS program (Sheldrick, 2015a) and refined by the full-matrix least-squares method using SHELXL program (Sheldrick, 2015b). The programs Ortep-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) were used for molecular graphics and the software publCIF (Westrip, 2010) to prepare material for publication. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.94642 (3) | 0.34669 (2) | 0.79387 (4) | 0.00586 (5) | |
K1 | 0.61359 (4) | 0.63341 (3) | 0.12530 (6) | 0.00747 (6) | |
K2 | 1.31600 (5) | 0.37393 (4) | 0.96892 (7) | 0.01014 (7) | |
P1 | 1.05470 (5) | 0.57511 (4) | 0.70758 (7) | 0.00330 (7) | |
P2 | 0.83590 (5) | 0.57688 (4) | 0.86578 (7) | 0.00340 (7) | |
P3 | 0.62807 (5) | 0.68963 (4) | 0.62381 (7) | 0.00407 (7) | |
P4 | 1.28454 (5) | 0.66069 (4) | 0.97345 (7) | 0.00384 (7) | |
O1 | 0.94041 (16) | 0.62429 (12) | 0.7749 (2) | 0.0065 (2) | |
O2 | 0.84766 (14) | 0.45926 (12) | 0.8902 (2) | 0.00540 (19) | |
O3 | 0.71177 (15) | 0.58966 (12) | 0.7095 (2) | 0.0066 (2) | |
O4 | 1.16650 (16) | 0.59314 (15) | 0.8769 (2) | 0.0088 (2) | |
O5 | 1.04508 (15) | 0.45704 (12) | 0.6879 (2) | 0.0058 (2) | |
O6 | 0.82806 (16) | 0.64783 (12) | 1.0220 (2) | 0.0059 (2) | |
O7 | 1.07218 (15) | 0.64267 (13) | 0.5525 (2) | 0.0059 (2) | |
O8 | 1.31674 (15) | 0.73723 (13) | 0.8407 (2) | 0.0074 (2) | |
O9 | 1.23326 (16) | 0.72198 (13) | 1.1278 (2) | 0.0070 (2) | |
O10 | 1.37679 (15) | 0.58280 (13) | 1.0701 (2) | 0.0085 (2) | |
O11 | 0.55585 (16) | 0.72302 (13) | 0.7586 (2) | 0.0076 (2) | |
O12 | 0.56100 (16) | 0.66049 (14) | 0.4387 (2) | 0.0085 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00581 (9) | 0.00526 (8) | 0.00660 (8) | 0.00012 (7) | 0.00160 (7) | 0.00007 (7) |
K1 | 0.00615 (13) | 0.00922 (13) | 0.00764 (13) | −0.00002 (12) | 0.00283 (10) | −0.00036 (12) |
K2 | 0.00994 (16) | 0.00745 (14) | 0.01295 (17) | −0.00041 (12) | 0.00245 (13) | −0.00230 (12) |
P1 | 0.00303 (16) | 0.00325 (16) | 0.00364 (15) | −0.00080 (12) | 0.00081 (12) | −0.00030 (12) |
P2 | 0.00332 (16) | 0.00287 (15) | 0.00425 (15) | 0.00051 (12) | 0.00139 (12) | −0.00014 (12) |
P3 | 0.00380 (16) | 0.00497 (16) | 0.00343 (15) | 0.00063 (12) | 0.00079 (12) | 0.00020 (13) |
P4 | 0.00303 (16) | 0.00393 (17) | 0.00437 (16) | −0.00011 (12) | 0.00048 (13) | −0.00040 (12) |
O1 | 0.0059 (5) | 0.0051 (4) | 0.0101 (6) | 0.0000 (4) | 0.0052 (4) | 0.0001 (4) |
O2 | 0.0059 (5) | 0.0030 (4) | 0.0075 (5) | 0.0009 (3) | 0.0020 (4) | 0.0005 (3) |
O3 | 0.0050 (5) | 0.0051 (4) | 0.0085 (5) | 0.0007 (4) | −0.0008 (4) | 0.0003 (4) |
O4 | 0.0073 (5) | 0.0110 (6) | 0.0063 (5) | −0.0048 (4) | −0.0023 (4) | 0.0003 (4) |
O5 | 0.0065 (5) | 0.0037 (4) | 0.0076 (5) | −0.0006 (4) | 0.0026 (4) | −0.0007 (4) |
O6 | 0.0069 (5) | 0.0053 (5) | 0.0057 (5) | 0.0009 (4) | 0.0019 (4) | −0.0014 (4) |
O7 | 0.0065 (5) | 0.0067 (5) | 0.0048 (5) | −0.0015 (4) | 0.0017 (4) | 0.0008 (4) |
O8 | 0.0073 (5) | 0.0075 (5) | 0.0082 (5) | −0.0011 (4) | 0.0035 (4) | 0.0013 (4) |
O9 | 0.0087 (5) | 0.0064 (5) | 0.0064 (5) | 0.0020 (4) | 0.0029 (4) | −0.0011 (4) |
O10 | 0.0060 (5) | 0.0068 (5) | 0.0112 (6) | 0.0023 (4) | −0.0007 (4) | 0.0016 (4) |
O11 | 0.0085 (5) | 0.0078 (5) | 0.0078 (5) | 0.0023 (4) | 0.0043 (4) | 0.0005 (4) |
O12 | 0.0074 (5) | 0.0129 (6) | 0.0044 (5) | −0.0006 (4) | −0.0004 (4) | −0.0008 (4) |
Ni1—K1i | 3.6212 (6) | K2—O6vi | 2.8540 (16) |
Ni1—K1ii | 3.8294 (5) | K2—O7i | 2.9168 (18) |
Ni1—K2iii | 3.7520 (6) | K2—O8i | 3.1274 (18) |
Ni1—K2 | 4.0161 (6) | K2—O9iv | 2.7951 (17) |
Ni1—O2 | 2.0168 (15) | K2—O10iv | 3.273 (2) |
Ni1—O5 | 2.0335 (16) | K2—O10 | 2.7605 (18) |
Ni1—O6iv | 2.1666 (16) | K2—O11x | 3.2612 (18) |
Ni1—O7i | 2.1253 (16) | K2—O12x | 2.8069 (19) |
Ni1—O8v | 2.0717 (16) | P1—O1 | 1.5910 (17) |
Ni1—O11vi | 2.0194 (16) | P1—O4 | 1.5779 (16) |
K1—P2vii | 3.5486 (7) | P1—O5 | 1.4852 (16) |
K1—P2iv | 3.7705 (7) | P1—O7 | 1.4903 (16) |
K1—P4viii | 3.5763 (7) | P2—O1 | 1.5882 (17) |
K1—O2iv | 3.1108 (16) | P2—O2 | 1.4842 (16) |
K1—O3iv | 3.0080 (16) | P2—O3 | 1.6002 (16) |
K1—O6vii | 2.6693 (18) | P2—O6 | 1.4928 (16) |
K1—O7ix | 2.8697 (16) | P3—O3 | 1.6016 (16) |
K1—O8ix | 2.9396 (17) | P3—O9ix | 1.6009 (17) |
K1—O10viii | 2.6358 (18) | P3—O11 | 1.4893 (17) |
K1—O11vii | 2.9154 (17) | P3—O12 | 1.4691 (17) |
K1—O12 | 2.5817 (18) | P4—O4 | 1.5860 (17) |
K2—P3x | 3.4765 (7) | P4—O8 | 1.4858 (17) |
K2—P4 | 3.6034 (7) | P4—O9 | 1.6022 (17) |
K2—O4 | 3.195 (2) | P4—O10 | 1.4771 (16) |
K2—O5 | 3.4141 (17) | ||
K1i—Ni1—K1ii | 125.300 (12) | O10—K2—O5 | 90.43 (4) |
K1i—Ni1—K2iii | 67.218 (12) | O10—K2—O6vi | 153.87 (5) |
K1ii—Ni1—K2 | 62.662 (11) | O10—K2—O7i | 100.77 (5) |
K1i—Ni1—K2 | 171.099 (12) | O10—K2—O8i | 102.85 (5) |
K2iii—Ni1—K1ii | 88.300 (11) | O10—K2—O9iv | 131.91 (5) |
K2iii—Ni1—K2 | 119.195 (13) | O10—K2—O10iv | 90.52 (4) |
O2—Ni1—K1ii | 118.16 (5) | O10—K2—O11x | 93.26 (5) |
O2—Ni1—K1i | 59.09 (5) | O10—K2—O12x | 89.34 (5) |
O2—Ni1—K2iii | 126.08 (5) | O11x—K2—P3x | 25.28 (3) |
O2—Ni1—K2 | 114.71 (5) | O11x—K2—P4 | 115.41 (3) |
O2—Ni1—O5 | 92.99 (6) | O11x—K2—O5 | 173.59 (4) |
O2—Ni1—O6iv | 93.34 (6) | O11x—K2—O10iv | 111.68 (4) |
O2—Ni1—O7i | 85.48 (6) | O12x—K2—P3x | 24.16 (3) |
O2—Ni1—O8v | 86.88 (7) | O12x—K2—P4 | 104.51 (4) |
O2—Ni1—O11vi | 166.65 (7) | O12x—K2—O4 | 125.18 (5) |
O5—Ni1—K1ii | 120.40 (5) | O12x—K2—O5 | 136.41 (5) |
O5—Ni1—K1i | 114.24 (5) | O12x—K2—O6vi | 81.05 (5) |
O5—Ni1—K2 | 58.20 (5) | O12x—K2—O7i | 165.05 (5) |
O5—Ni1—K2iii | 113.79 (5) | O12x—K2—O8i | 101.57 (5) |
O5—Ni1—O6iv | 82.52 (6) | O12x—K2—O10iv | 62.93 (5) |
O5—Ni1—O7i | 91.15 (6) | O12x—K2—O11x | 48.97 (4) |
O5—Ni1—O8v | 166.15 (7) | K1xi—P1—K2iv | 65.244 (13) |
O6iv—Ni1—K1i | 47.10 (5) | O1—P1—K1xi | 81.92 (6) |
O6iv—Ni1—K1ii | 137.45 (4) | O1—P1—K2iv | 146.61 (6) |
O6iv—Ni1—K2 | 131.17 (5) | O4—P1—K1xi | 82.08 (7) |
O6iv—Ni1—K2iii | 49.19 (4) | O4—P1—K2iv | 79.50 (7) |
O7i—Ni1—K1ii | 47.74 (4) | O4—P1—O1 | 102.73 (10) |
O7i—Ni1—K1i | 135.89 (5) | O5—P1—K1xi | 162.46 (7) |
O7i—Ni1—K2iii | 135.94 (4) | O5—P1—K2iv | 99.47 (7) |
O7i—Ni1—K2 | 44.68 (5) | O5—P1—O1 | 111.84 (9) |
O7i—Ni1—O6iv | 173.50 (6) | O5—P1—O4 | 104.35 (10) |
O8v—Ni1—K1i | 54.26 (5) | O5—P1—O7 | 120.29 (9) |
O8v—Ni1—K1ii | 71.27 (5) | O7—P1—K1xi | 42.80 (6) |
O8v—Ni1—K2iii | 56.46 (5) | O7—P1—K2iv | 44.18 (7) |
O8v—Ni1—K2 | 133.93 (5) | O7—P1—O1 | 106.67 (9) |
O8v—Ni1—O6iv | 83.66 (6) | O7—P1—O4 | 109.57 (10) |
O8v—Ni1—O7i | 102.64 (7) | K1xii—P2—K1i | 86.856 (17) |
O11vi—Ni1—K1ii | 48.53 (5) | K1xii—P2—K2xiii | 67.271 (14) |
O11vi—Ni1—K1i | 126.83 (5) | K1i—P2—K2xiii | 135.710 (18) |
O11vi—Ni1—K2iii | 60.25 (5) | O1—P2—K1xii | 146.03 (6) |
O11vi—Ni1—K2 | 60.75 (5) | O1—P2—K1i | 120.85 (7) |
O11vi—Ni1—O5 | 94.32 (7) | O1—P2—K2xiii | 78.82 (6) |
O11vi—Ni1—O6iv | 98.67 (7) | O1—P2—O3 | 103.48 (9) |
O11vi—Ni1—O7i | 83.22 (7) | O2—P2—K1xii | 100.44 (7) |
O11vi—Ni1—O8v | 88.67 (7) | O2—P2—K1i | 52.96 (6) |
Ni1iv—K1—P2iv | 51.633 (11) | O2—P2—K2xiii | 161.42 (7) |
P2vii—K1—Ni1iv | 55.151 (12) | O2—P2—O1 | 111.80 (9) |
P2vii—K1—P2iv | 70.573 (13) | O2—P2—O3 | 103.08 (9) |
P2vii—K1—P4viii | 128.817 (18) | O2—P2—O6 | 120.69 (9) |
P4viii—K1—Ni1iv | 170.418 (17) | O3—P2—K1i | 50.17 (6) |
P4viii—K1—P2iv | 136.511 (17) | O3—P2—K1xii | 78.39 (7) |
O2iv—K1—Ni1iv | 33.80 (3) | O3—P2—K2xiii | 88.45 (6) |
O2iv—K1—P2iv | 22.39 (3) | O6—P2—K1i | 130.12 (7) |
O2iv—K1—P2vii | 72.46 (3) | O6—P2—K1xii | 43.42 (7) |
O2iv—K1—P4viii | 151.52 (3) | O6—P2—K2xiii | 40.83 (6) |
O3iv—K1—Ni1iv | 72.55 (3) | O6—P2—O1 | 107.34 (9) |
O3iv—K1—P2vii | 70.67 (4) | O6—P2—O3 | 109.04 (9) |
O3iv—K1—P2iv | 24.11 (3) | K2xiii—P3—K1 | 134.104 (18) |
O3iv—K1—P4viii | 116.65 (3) | K2xiv—P3—K1 | 79.126 (15) |
O3iv—K1—O2iv | 46.48 (4) | K2xiv—P3—K2xiii | 136.71 (2) |
O6vii—K1—Ni1iv | 36.48 (4) | O3—P3—K1 | 98.32 (7) |
O6vii—K1—P2iv | 70.19 (4) | O3—P3—K2xiv | 113.32 (6) |
O6vii—K1—P2vii | 22.61 (3) | O3—P3—K2xiii | 91.25 (6) |
O6vii—K1—P4viii | 144.02 (4) | O9ix—P3—K1 | 90.70 (6) |
O6vii—K1—O2iv | 63.03 (5) | O9ix—P3—K2xiii | 43.41 (6) |
O6vii—K1—O3iv | 79.73 (5) | O9ix—P3—K2xiv | 145.79 (6) |
O6vii—K1—O7ix | 89.55 (5) | O9ix—P3—O3 | 100.37 (9) |
O6vii—K1—O8ix | 60.32 (5) | O11—P3—K1 | 145.19 (7) |
O6vii—K1—O11vii | 73.37 (5) | O11—P3—K2xiii | 69.63 (7) |
O7ix—K1—Ni1iv | 96.04 (4) | O11—P3—K2xiv | 69.25 (7) |
O7ix—K1—P2iv | 146.15 (4) | O11—P3—O3 | 107.15 (10) |
O7ix—K1—P2vii | 100.93 (4) | O11—P3—O9ix | 107.19 (10) |
O7ix—K1—P4viii | 74.89 (4) | O12—P3—K1 | 27.68 (7) |
O7ix—K1—O2iv | 124.00 (4) | O12—P3—K2xiv | 51.45 (8) |
O7ix—K1—O3iv | 168.30 (5) | O12—P3—K2xiii | 153.56 (7) |
O7ix—K1—O8ix | 68.73 (5) | O12—P3—O3 | 108.05 (9) |
O7ix—K1—O11vii | 56.84 (5) | O12—P3—O9ix | 113.35 (10) |
O8ix—K1—Ni1iv | 34.89 (3) | O12—P3—O11 | 118.97 (11) |
O8ix—K1—P2iv | 77.60 (3) | K1xv—P4—K1xi | 126.000 (18) |
O8ix—K1—P2vii | 82.80 (3) | K1xv—P4—K2i | 79.159 (15) |
O8ix—K1—P4viii | 135.97 (4) | K1xv—P4—K2 | 79.311 (16) |
O8ix—K1—O2iv | 55.29 (4) | K2—P4—K1xi | 133.819 (19) |
O8ix—K1—O3iv | 101.52 (5) | K2i—P4—K1xi | 133.235 (18) |
O10viii—K1—Ni1iv | 165.34 (4) | K2—P4—K2i | 84.614 (14) |
O10viii—K1—P2iv | 115.13 (4) | O4—P4—K1xi | 79.54 (7) |
O10viii—K1—P2vii | 130.96 (4) | O4—P4—K1xv | 140.19 (8) |
O10viii—K1—P4viii | 21.38 (4) | O4—P4—K2 | 62.42 (7) |
O10viii—K1—O2iv | 131.63 (5) | O4—P4—K2i | 106.16 (7) |
O10viii—K1—O3iv | 96.26 (5) | O4—P4—O9 | 101.31 (10) |
O10viii—K1—O6vii | 152.78 (6) | O8—P4—K1xi | 42.82 (7) |
O10viii—K1—O7ix | 95.42 (5) | O8—P4—K1xv | 83.87 (7) |
O10viii—K1—O8ix | 145.79 (5) | O8—P4—K2 | 126.58 (7) |
O10viii—K1—O11vii | 87.03 (5) | O8—P4—K2i | 140.74 (7) |
O11vii—K1—Ni1iv | 106.92 (4) | O8—P4—O4 | 109.49 (10) |
O11vii—K1—P2iv | 134.53 (4) | O8—P4—O9 | 111.14 (9) |
O11vii—K1—P2vii | 65.34 (3) | O9—P4—K1xi | 88.55 (6) |
O11vii—K1—P4viii | 70.95 (4) | O9—P4—K1xv | 108.51 (6) |
O11vii—K1—O2iv | 136.18 (5) | O9—P4—K2i | 44.69 (6) |
O11vii—K1—O3iv | 123.15 (5) | O9—P4—K2 | 122.27 (6) |
O11vii—K1—O8ix | 106.65 (5) | O10—P4—K1xv | 40.58 (7) |
O12—K1—Ni1iv | 95.42 (4) | O10—P4—K1xi | 162.48 (8) |
O12—K1—P2vii | 149.42 (4) | O10—P4—K2i | 61.96 (8) |
O12—K1—P2iv | 84.87 (4) | O10—P4—K2 | 44.86 (7) |
O12—K1—P4viii | 81.60 (4) | O10—P4—O4 | 106.22 (10) |
O12—K1—O2iv | 77.92 (5) | O10—P4—O8 | 120.76 (10) |
O12—K1—O3iv | 94.28 (5) | O10—P4—O9 | 106.09 (10) |
O12—K1—O6vii | 131.32 (5) | P2—O1—P1 | 134.80 (10) |
O12—K1—O7ix | 89.27 (5) | Ni1—O2—K1i | 87.11 (5) |
O12—K1—O8ix | 74.13 (5) | P2—O2—Ni1 | 133.34 (10) |
O12—K1—O10viii | 75.61 (6) | P2—O2—K1i | 104.66 (7) |
O12—K1—O11vii | 140.45 (5) | P2—O3—K1i | 105.71 (7) |
P3x—K2—P4 | 108.365 (18) | P2—O3—P3 | 134.04 (11) |
O4—K2—P3x | 134.00 (3) | P3—O3—K1i | 119.39 (8) |
O4—K2—P4 | 26.10 (3) | P1—O4—K2 | 108.94 (9) |
O4—K2—O5 | 42.80 (4) | P1—O4—P4 | 149.18 (13) |
O4—K2—O10iv | 82.19 (5) | P4—O4—K2 | 91.47 (8) |
O4—K2—O11x | 140.01 (4) | Ni1—O5—K2 | 91.39 (5) |
O5—K2—P3x | 160.47 (3) | P1—O5—Ni1 | 131.91 (10) |
O5—K2—P4 | 68.28 (3) | P1—O5—K2 | 102.00 (7) |
O6vi—K2—P3x | 73.47 (4) | Ni1i—O6—K1xii | 96.42 (6) |
O6vi—K2—P4 | 170.35 (4) | Ni1i—O6—K2xiii | 95.74 (5) |
O6vi—K2—O4 | 152.31 (5) | K1xii—O6—K2xiii | 95.26 (5) |
O6vi—K2—O5 | 113.25 (4) | P2—O6—Ni1i | 129.30 (10) |
O6vi—K2—O7i | 85.13 (5) | P2—O6—K1xii | 113.98 (9) |
O6vi—K2—O8i | 56.20 (5) | P2—O6—K2xiii | 119.17 (9) |
O6vi—K2—O10iv | 106.24 (5) | Ni1iv—O7—K1xi | 99.02 (6) |
O6vi—K2—O11x | 62.17 (5) | Ni1iv—O7—K2iv | 104.50 (6) |
O7i—K2—P3x | 143.99 (4) | K1xi—O7—K2iv | 89.74 (5) |
O7i—K2—P4 | 88.43 (3) | P1—O7—Ni1iv | 125.44 (10) |
O7i—K2—O4 | 69.44 (5) | P1—O7—K1xi | 116.54 (8) |
O7i—K2—O5 | 55.30 (4) | P1—O7—K2iv | 114.96 (9) |
O7i—K2—O8i | 65.62 (5) | Ni1xvi—O8—K1xi | 90.84 (6) |
O7i—K2—O10iv | 127.26 (5) | Ni1xvi—O8—K2iv | 90.02 (6) |
O7i—K2—O11x | 118.74 (5) | K1xi—O8—K2iv | 84.52 (4) |
O8i—K2—P3x | 78.40 (3) | P4—O8—Ni1xvi | 145.38 (11) |
O8i—K2—P4 | 114.47 (3) | P4—O8—K1xi | 117.09 (9) |
O8i—K2—O4 | 118.08 (5) | P4—O8—K2iv | 111.44 (8) |
O8i—K2—O5 | 120.88 (4) | P3xi—O9—K2i | 113.41 (8) |
O8i—K2—O10iv | 159.73 (5) | P3xi—O9—P4 | 133.93 (11) |
O8i—K2—O11x | 53.12 (4) | P4—O9—K2i | 111.54 (8) |
O9iv—K2—P3x | 107.59 (4) | K1xv—O10—K2 | 116.20 (6) |
O9iv—K2—P4 | 115.06 (4) | K1xv—O10—K2i | 102.79 (5) |
O9iv—K2—O4 | 97.12 (5) | K2—O10—K2i | 108.77 (6) |
O9iv—K2—O5 | 60.22 (4) | P4—O10—K1xv | 118.04 (9) |
O9iv—K2—O6vi | 72.48 (5) | P4—O10—K2i | 94.57 (8) |
O9iv—K2—O7i | 92.51 (5) | P4—O10—K2 | 112.97 (9) |
O9iv—K2—O8i | 124.55 (5) | Ni1xiii—O11—K1xii | 100.21 (6) |
O9iv—K2—O10iv | 47.05 (4) | Ni1xiii—O11—K2xiv | 87.23 (6) |
O9iv—K2—O11x | 120.12 (5) | K1xii—O11—K2xiv | 117.41 (6) |
O9iv—K2—O12x | 88.78 (5) | P3—O11—Ni1xiii | 137.44 (11) |
O10iv—K2—P3x | 87.07 (3) | P3—O11—K1xii | 120.26 (9) |
O10—K2—P3x | 87.87 (4) | P3—O11—K2xiv | 85.46 (7) |
O10iv—K2—P4 | 83.39 (3) | K1—O12—K2xiv | 118.61 (6) |
O10—K2—P4 | 22.17 (3) | P3—O12—K1 | 136.99 (11) |
O10—K2—O4 | 47.91 (4) | P3—O12—K2xiv | 104.38 (9) |
O10iv—K2—O5 | 73.49 (4) | ||
K1xi—P1—O1—P2 | −175.17 (16) | O1—P2—O2—Ni1 | −12.87 (16) |
K1xi—P1—O4—K2 | −149.54 (7) | O1—P2—O2—K1i | −112.96 (8) |
K1xi—P1—O4—P4 | −20.6 (3) | O1—P2—O3—K1i | 119.13 (8) |
K1xi—P1—O5—Ni1 | −159.81 (12) | O1—P2—O3—P3 | −72.00 (17) |
K1xi—P1—O5—K2 | 97.2 (2) | O1—P2—O6—Ni1i | −79.45 (13) |
K1xi—P1—O7—Ni1iv | −124.79 (16) | O1—P2—O6—K1xii | 159.07 (8) |
K1xi—P1—O7—K2iv | 103.12 (10) | O1—P2—O6—K2xiii | 47.77 (11) |
K1i—P2—O1—P1 | −59.95 (18) | O2—P2—O1—P1 | −1.07 (19) |
K1xii—P2—O1—P1 | 159.50 (8) | O2—P2—O3—K1i | 2.53 (10) |
K1xii—P2—O2—Ni1 | 178.03 (11) | O2—P2—O3—P3 | 171.40 (15) |
K1i—P2—O2—Ni1 | 100.09 (14) | O2—P2—O6—Ni1i | 50.18 (16) |
K1xii—P2—O2—K1i | 77.94 (5) | O2—P2—O6—K1xii | −71.30 (12) |
K1xii—P2—O3—K1i | −95.65 (6) | O2—P2—O6—K2xiii | 177.41 (8) |
K1i—P2—O3—P3 | 168.9 (2) | O3—P2—O1—P1 | −111.34 (16) |
K1xii—P2—O3—P3 | 73.22 (15) | O3—P2—O2—Ni1 | 97.66 (13) |
K1xii—P2—O6—Ni1i | 121.48 (15) | O3—P2—O2—K1i | −2.43 (10) |
K1i—P2—O6—Ni1i | 115.61 (10) | O3—P2—O6—Ni1i | 169.07 (11) |
K1i—P2—O6—K1xii | −5.87 (12) | O3—P2—O6—K1xii | 47.60 (11) |
K1xii—P2—O6—K2xiii | −111.29 (12) | O3—P2—O6—K2xiii | −63.70 (11) |
K1i—P2—O6—K2xiii | −117.17 (7) | O3—P3—O11—Ni1xiii | 170.05 (14) |
K1—P3—O3—K1i | −63.59 (8) | O3—P3—O11—K1xii | 10.20 (12) |
K1—P3—O3—P2 | 128.73 (15) | O3—P3—O11—K2xiv | −109.04 (7) |
K1—P3—O11—Ni1xiii | −54.8 (2) | O3—P3—O12—K1 | −72.92 (16) |
K1—P3—O11—K1xii | 145.33 (7) | O3—P3—O12—K2xiv | 105.83 (9) |
K1—P3—O11—K2xiv | 26.10 (12) | O4—P1—O1—P2 | −95.24 (17) |
K1—P3—O12—K2xiv | 178.75 (19) | O4—P1—O5—Ni1 | 90.47 (14) |
K1xi—P4—O4—K2 | 152.97 (5) | O4—P1—O5—K2 | −12.48 (10) |
K1xv—P4—O4—K2 | 17.57 (12) | O4—P1—O7—Ni1iv | −177.97 (11) |
K1xv—P4—O4—P1 | −115.0 (2) | O4—P1—O7—K1xi | −53.18 (12) |
K1xi—P4—O4—P1 | 20.4 (3) | O4—P1—O7—K2iv | 49.94 (12) |
K1xi—P4—O8—Ni1xvi | 140.4 (2) | O4—P4—O8—Ni1xvi | −171.34 (17) |
K1xv—P4—O8—Ni1xvi | −29.95 (18) | O4—P4—O8—K1xi | 48.30 (12) |
K1xv—P4—O8—K1xi | −170.31 (8) | O4—P4—O8—K2iv | −46.62 (12) |
K1xi—P4—O8—K2iv | −94.92 (10) | O4—P4—O9—K2i | 101.62 (9) |
K1xv—P4—O8—K2iv | 94.78 (6) | O4—P4—O9—P3xi | −65.16 (17) |
K1xi—P4—O9—K2i | −179.35 (6) | O4—P4—O10—K1xv | 152.89 (10) |
K1xv—P4—O9—K2i | −51.64 (8) | O4—P4—O10—K2 | 12.62 (13) |
K1xv—P4—O9—P3xi | 141.58 (13) | O4—P4—O10—K2i | −99.99 (9) |
K1xi—P4—O9—P3xi | 13.87 (15) | O5—P1—O1—P2 | 16.13 (19) |
K1xi—P4—O10—K1xv | 45.8 (3) | O5—P1—O4—K2 | 13.82 (11) |
K1xi—P4—O10—K2i | 153.0 (2) | O5—P1—O4—P4 | 142.7 (3) |
K1xv—P4—O10—K2 | −140.27 (15) | O5—P1—O7—Ni1iv | 61.21 (15) |
K1xi—P4—O10—K2 | −94.4 (2) | O5—P1—O7—K1xi | −174.00 (8) |
K1xv—P4—O10—K2i | 107.12 (10) | O5—P1—O7—K2iv | −70.88 (11) |
K2iv—P1—O1—P2 | 174.58 (7) | O6—P2—O1—P1 | 133.43 (16) |
K2iv—P1—O4—K2 | −83.38 (6) | O6—P2—O2—Ni1 | −140.52 (12) |
K2iv—P1—O4—P4 | 45.5 (3) | O6—P2—O2—K1i | 119.39 (9) |
K2iv—P1—O5—Ni1 | 171.95 (10) | O6—P2—O3—K1i | −126.86 (8) |
K2iv—P1—O5—K2 | 69.00 (5) | O6—P2—O3—P3 | 42.01 (19) |
K2iv—P1—O7—Ni1iv | 132.09 (15) | O7—P1—O1—P2 | 149.54 (15) |
K2iv—P1—O7—K1xi | −103.12 (10) | O7—P1—O4—K2 | −116.23 (9) |
K2xiii—P2—O1—P1 | 163.00 (16) | O7—P1—O4—P4 | 12.7 (3) |
K2xiii—P2—O2—Ni1 | −135.19 (15) | O7—P1—O5—Ni1 | −146.17 (12) |
K2xiii—P2—O2—K1i | 124.72 (18) | O7—P1—O5—K2 | 110.88 (9) |
K2xiii—P2—O3—K1i | −162.76 (6) | O8—P4—O4—K2 | 121.90 (8) |
K2xiii—P2—O3—P3 | 6.11 (15) | O8—P4—O4—P1 | −10.7 (3) |
K2xiii—P2—O6—Ni1i | −127.23 (17) | O8—P4—O9—K2i | −142.14 (9) |
K2xiii—P2—O6—K1xii | 111.29 (12) | O8—P4—O9—P3xi | 51.08 (18) |
K2xiii—P3—O3—K1i | 161.44 (8) | O8—P4—O10—K1xv | 27.62 (15) |
K2xiv—P3—O3—K1i | 18.10 (11) | O8—P4—O10—K2 | −112.65 (11) |
K2xiii—P3—O3—P2 | −6.24 (16) | O8—P4—O10—K2i | 134.73 (9) |
K2xiv—P3—O3—P2 | −149.58 (13) | O9ix—P3—O3—K1i | −155.84 (9) |
K2xiii—P3—O11—Ni1xiii | 85.23 (15) | O9ix—P3—O3—P2 | 36.48 (18) |
K2xiv—P3—O11—Ni1xiii | −80.91 (15) | O9ix—P3—O11—Ni1xiii | 63.04 (18) |
K2xiii—P3—O11—K1xii | −74.63 (8) | O9ix—P3—O11—K1xii | −96.82 (10) |
K2xiv—P3—O11—K1xii | 119.23 (10) | O9ix—P3—O11—K2xiv | 143.95 (7) |
K2xiii—P3—O11—K2xiv | 166.14 (5) | O9ix—P3—O12—K1 | 37.38 (18) |
K2xiii—P3—O12—K1 | 62.0 (2) | O9ix—P3—O12—K2xiv | −143.87 (8) |
K2xiv—P3—O12—K1 | −178.75 (19) | O9—P4—O4—K2 | −120.65 (7) |
K2xiii—P3—O12—K2xiv | −119.20 (14) | O9—P4—O4—P1 | 106.8 (3) |
K2i—P4—O4—K2 | −74.83 (5) | O9—P4—O8—Ni1xvi | 77.6 (2) |
K2—P4—O4—P1 | −132.6 (3) | O9—P4—O8—K1xi | −62.80 (11) |
K2i—P4—O4—P1 | 152.6 (3) | O9—P4—O8—K2iv | −157.72 (8) |
K2i—P4—O8—Ni1xvi | 34.6 (3) | O9—P4—O10—K1xv | −99.86 (11) |
K2—P4—O8—Ni1xvi | −101.76 (18) | O9—P4—O10—K2 | 119.87 (9) |
K2—P4—O8—K1xi | 117.88 (7) | O9—P4—O10—K2i | 7.26 (9) |
K2i—P4—O8—K1xi | −105.80 (10) | O10—P4—O4—K2 | −10.01 (10) |
K2—P4—O8—K2iv | 22.96 (11) | O10—P4—O4—P1 | −142.6 (3) |
K2i—P4—O8—K2iv | 159.29 (5) | O10—P4—O8—Ni1xvi | −47.6 (2) |
K2—P4—O9—K2i | 37.22 (10) | O10—P4—O8—K1xi | 172.04 (9) |
K2—P4—O9—P3xi | −129.56 (12) | O10—P4—O8—K2iv | 77.12 (12) |
K2i—P4—O9—P3xi | −166.8 (2) | O10—P4—O9—K2i | −9.12 (11) |
K2i—P4—O10—K1xv | −107.12 (10) | O10—P4—O9—P3xi | −175.90 (14) |
K2—P4—O10—K1xv | 140.27 (15) | O11—P3—O3—K1i | 92.39 (11) |
K2—P4—O10—K2i | −112.61 (10) | O11—P3—O3—P2 | −75.29 (18) |
K2i—P4—O10—K2 | 112.61 (10) | O11—P3—O12—K1 | 164.75 (12) |
O1—P1—O4—K2 | 130.66 (8) | O11—P3—O12—K2xiv | −16.50 (12) |
O1—P1—O4—P4 | −100.4 (3) | O12—P3—O3—K1i | −36.92 (13) |
O1—P1—O5—Ni1 | −19.87 (16) | O12—P3—O3—P2 | 155.39 (15) |
O1—P1—O5—K2 | −122.82 (8) | O12—P3—O11—Ni1xiii | −67.17 (19) |
O1—P1—O7—Ni1iv | −67.44 (13) | O12—P3—O11—K1xii | 132.98 (10) |
O1—P1—O7—K1xi | 57.35 (10) | O12—P3—O11—K2xiv | 13.74 (10) |
O1—P1—O7—K2iv | 160.47 (8) |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1/2, y−1/2, z+1; (iii) x−1/2, −y+1/2, z−1/2; (iv) x, −y+1, z−1/2; (v) x−1/2, y−1/2, z; (vi) x+1/2, y−1/2, z; (vii) x, y, z−1; (viii) x−1, y, z−1; (ix) x−1/2, −y+3/2, z−1/2; (x) x+1, −y+1, z+1/2; (xi) x+1/2, −y+3/2, z+1/2; (xii) x, y, z+1; (xiii) x−1/2, y+1/2, z; (xiv) x−1, −y+1, z−1/2; (xv) x+1, y, z+1; (xvi) x+1/2, y+1/2, z. |
Acknowledgements
The authors are grateful to the Service de Coopération et d'Action Culturelle (SCAC) de l'Ambassade de France en Mauritanie for financial support and Professor Claude Lecomte and coworkers of the Laboratoire CRM2 of the Université de Lorraine (France) for their help.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109–117. Web of Science CrossRef ICSD CAS Google Scholar
El Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531–536. CAS Google Scholar
Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). Dalton Trans. 44, 4526–4532. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, P., Luján, M., Kubel, F. & Schmid, H. (1994). Ferroelectrics, 162, 37–44. CrossRef ICSD Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506. Web of Science CrossRef ICSD CAS Google Scholar
Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. Rep. 45, 206–209. CrossRef Google Scholar
La Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58–61. CAS Google Scholar
Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). Solid State Sci. 6, 185–195. Web of Science CrossRef ICSD CAS Google Scholar
Litvin, B. N. & Masloboev, V. A. (1989). Rare Earth Phosphates, edited by R. Grebentshikov. Moscow: Nauka Publishing. Google Scholar
Moffat, J. B. (1978). Catal. Rev. 18, 199–258. CrossRef CAS Web of Science Google Scholar
Moutataouia, M., Lamire, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, i5. CSD CrossRef IUCr Journals Google Scholar
Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). Sci. Rep. 6, 26382. CrossRef PubMed Google Scholar
Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402–404. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Palkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130–1134. CAS Google Scholar
Panahandeh, A. & Jung, W. (2003). Z. Anorg. Allg. Chem. 629, 1651–1660. CrossRef ICSD CAS Google Scholar
Pontchara, P. & Durif, A. (1974). C. R. Acad. Sci. C, 278, 175–178. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sbai, K., Belaaouad, S., Kenz, A., Tace, E. M. & Tridane, M. (2004). Powder Diffr. 19, 375–377. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.