research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,6-Di­methyl-1,10-phenanthroline)(2-{[2-(di­phenyl­phosphan­yl)benzyl­­idene]amino}­ethan-1-amine)­platinum(II) dinitrate methanol disolvate

crossmark logo

aSchool of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia, and bAustralian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia
*Correspondence e-mail: j.aldrich-wright@westernsydney.edu.au

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 2 December 2024; accepted 26 February 2025; online 4 March 2025)

The title compound, [Pt(C14H12N2)(C21H21N2P)](NO3)2·2CH3OH, is a platinum(II) complex, which crystallizes in a monoclinic (P21/c) space group. The complex exhibits a distorted square-planar geometry, which includes a monodentate 5,6-dimethyl-1,10-phenanthroline ligand and a tridentate 2-{[2-(di­phenyl­phosphan­yl)benzyl­idene]amino}­ethan-1-amine ligand. The structure reveals both intra- and inter­molecular π-stacking inter­actions between the phenanthroline and phosphine rings. Hydrogen bonding is observed between the complex ion, nitrate counter-ions and solvent mol­ecules.

A Platinum(II) Complex which Surprised Us

What is it about?

A crystal structure of platinum(II) complex that we didn't expect to isolate and that shows a unique coordination for this type of complex.

Why is it important?

The results of these experiments show that coordination chemistry can still surprise you even when you been working with similar systems for some years.

Read more on Kudos…
The following have contributed to this page:
Janice Aldrich-Wright

1. Chemical context

Platinum(II) complexes of the structure [Pt(AL)(HL)] have shown promise as potent chemotherapeutic agents (Kemp et al., 2007[Kemp, S., Wheate, N. J., Buck, D. P., Nikac, M., Collins, J. G. & Aldrich-Wright, J. R. (2007). J. Inorg. Biochem. 101, 1049-1058.]). To further enhance this class of complexes, various approaches have been undertaken including oxidation to platinum(IV) and subsequent modification by the coordination of various bioactive and non-bioactive ligands in the axial positions (Khoury et al., 2022[Khoury, A., Sakoff, J. A., Gilbert, J., Scott, K. F., Karan, S., Gordon, C. P. & Aldrich-Wright, J. R. (2022). Pharmaceutics, 14, 787.]). When investigating potential axial linking strategies, we discovered an unusual reaction between 2-(di­phenyl­phosphino)benzaldehyde and [Pt(5,6-dimethyl-1,10-phenanthroline)(1,2-di­amino­ethane)]2+ resulting in a novel coordination sphere. Typically, 1,10-phenanthroline and its derivatives coordinate as a bidentate ligand, however in this instance one of the Pt—N bonds is displaced by the introduction of 2-(di­phenyl­phosphino)benzaldehyde, resulting in a Pt—P bond and the formation of an imine with one of the 1,2-di­amino­ethane amines. Herein, we present the crystal structure of the title platinum complex.

[Scheme 1]

2. Structural commentary

The title complex contains a PtII ion coordinated with a monodentate 5,6-dimethyl-1,10-phenanthroline and a tridentate 2-{[2-(di­phenyl­phosphan­yl)benzyl­idene]amino}­ethan-1-amine ligand, with two nitrate counter-ions and two methanol solvent mol­ecules (Fig. 1[link]). The Pt coordination exhibits a distorted square-planar geometry with the platinum atom sitting 0.0063 (13)#7emsp14;Å from the plane. The 5,6-dimethyl-1,10-phenanthroline ligand is coordinated through a single nitro­gen, with the extended ring structure sitting orthogonal to the coordinated amines. The centre of the phenanthroline ring sits below one of the tri­phenyl­phosphine rings, with a centroid–centroid distance of 3.652 (3) Å (Fig. 2[link]), evidencing π-stacking inter­actions. The intra­molecular ππ stacking inter­action is quite unique as no similar case has been reported for Pt complexes with monodentate phenanthroline type ligands in CSD. Therefore, it is not essential for stabilizing the monodentate nature of phenanthroline ligands. The bond length for Pt—N1 [Pt—Phen, 2.052 (3) Å] is comparable to those in complexes bearing a monodentate 2,9-dimethyl-1,10-phenanthroline (Fanizzi et al., 1994[Fanizzi, F. P., Lanfranchi, M., Natile, G. & Tiripicchio, A. (1994). Inorg. Chem. 33, 3331-3339.], 2004[Fanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705-1713.]), and is also comparable to other bidentate examples (Kato & Takahashi, 1999[Kato, M. & Takahashi, J. (1999). Acta Cryst. C55, 1809-1812.]; Brodie et al., 2006[Brodie, C. R., Turner, P., Wheate, N. J. & Aldrich-Wright, J. R. (2006). Acta Cryst. E62, m3137-m3139.]). Despite imine derivatization of the 1,2-di­amino­ethane, the N3—Pt1—N4 bond angle is 83.30 (14)°, which is consistent with previously reported complexes with unmodified di­amines (Ellis & Hambley, 1994[Ellis, L. T. & Hambley, T. W. (1994). Acta Cryst. C50, 1888-1889.]; Kato & Takahashi, 1999[Kato, M. & Takahashi, J. (1999). Acta Cryst. C55, 1809-1812.]; Brodie et al., 2006[Brodie, C. R., Turner, P., Wheate, N. J. & Aldrich-Wright, J. R. (2006). Acta Cryst. E62, m3137-m3139.]); however, the Pt—N4 (NH2) and Pt—N3 (N) bond lengths do differ. The Pt—N4 bond is 2.092 (4) Å, which is slightly longer than the prior di­amine examples which range from 2.031 to 2.044 Å for the Pt—NH2 bonds (Ellis & Hambley, 1994[Ellis, L. T. & Hambley, T. W. (1994). Acta Cryst. C50, 1888-1889.]; Kato & Takahashi, 1999[Kato, M. & Takahashi, J. (1999). Acta Cryst. C55, 1809-1812.]; Brodie et al., 2006[Brodie, C. R., Turner, P., Wheate, N. J. & Aldrich-Wright, J. R. (2006). Acta Cryst. E62, m3137-m3139.]), whereas the Pt—N3 bond is slightly shorter at 1.984 (3) Å. These differences are attributed to the presence of the imine double bond. The nitrate counter-ions are located next to the NH2 with hydrogen-bonding inter­actions evident between the amine and the counter-ions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.91 1.96 2.872 (5) 176
N4—H4B⋯O4 0.91 2.05 2.920 (5) 159
O7—H7⋯O6 0.84 1.96 2.771 (5) 162
O8—H8⋯O7 0.84 2.04 2.872 (5) 170
C3—H3⋯O1i 0.95 2.36 3.244 (6) 154
C3—H3⋯O2i 0.95 2.57 3.168 (6) 121
C9—H9A⋯O4ii 0.98 2.48 3.235 (6) 134
C9—H9B⋯O5iii 0.98 2.53 3.494 (6) 170
C14—H14⋯O7iv 0.95 2.57 3.417 (6) 149
C18—H18⋯O5v 0.95 2.58 3.288 (6) 131
C22—H22A⋯O3vi 0.99 2.47 3.422 (6) 162
C22—H22B⋯O5 0.99 2.44 3.385 (6) 160
C25—H25⋯O2vii 0.95 2.40 3.282 (5) 154
C27—H27⋯O6viii 0.95 2.58 3.278 (6) 131
C29—H29⋯O6 0.95 2.40 3.094 (5) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, y+1, z]; (v) [-x, -y+2, -z+1]; (vi) [-x+1, -y+2, -z+1]; (vii) [x-1, y, z]; (viii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
View of the title complex with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% level.
[Figure 2]
Figure 2
The intra­molecular ππ stacking inter­action.

3. Supra­molecular features

The complex mol­ecules are arranged in an inverted pattern, allowing for offset π-stacking inter­actions between the phenanthroline ligands [centroid–centroid distance = 4.179 (5) Å]. Hydrogen bonding is observed among the nitrate counter-ions and methanol solvent mol­ecules, with the solvent occupying the spaces between complex mol­ecules (Table 1[link], Fig. 3[link]).

[Figure 3]
Figure 3
Crystal packing of the title complex with hydrogen-bonding inter­actions shown as dashed lines.

4. Database survey

Although 330 crystal structures were reported in the CSD (2022.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Pt complexes involving phenanthroline ligands, Pt complexes with monodentate phenanthroline type ligands are rather rare. So far only eleven such structures were reported, almost all involving additional simple ligands, with the monodentate Pt—N bond lengths ranging from 2.037 to 2.181 Å. Among these eleven structures, nine include a monodentate 2,9-dimethyl-1,10-phenanthroline unit where the methyl groups are purported to induce steric effects, preventing bidentate coordination. Three of these structures [CSD Refcodes SOYZAH (Fanizzi et al., 1992[Fanizzi, F. P., Maresca, L., Natile, G., Lanfranchi, M., Tiripicchio, A. & Pacchioni, G. (1992). J. Chem. Soc. Chem. Commun. pp. 333-338.]), POFJOJ and POFJUP (Fanizzi et al., 1994[Fanizzi, F. P., Lanfranchi, M., Natile, G. & Tiripicchio, A. (1994). Inorg. Chem. 33, 3331-3339.])] also contain tri­phenyl­phosphine-type ligands, with monodentate Pt—N bond lengths of 2.181, 2.046 and 2.069 Å, respectively. Of the two structures that include a monodentate 1,10-phenathroline, one includes two tri­ethyl­phosphine and one chlorido ligands (CPEUPT; Bushnell et al., 1974[Bushnell, G. W., Dixon, K. R. & Khan, M. A. (1974). Can. J. Chem. 52, 1367-1376.]), whereas the other includes three penta­fluoro­benzene ligands (ZAXXOL; Usón et al., 1995[Usón, R., Forniés, J., Tomás, M., Martínez, F., Casas, J. M. & Fortuño, C. (1995). Inorg. Chim. Acta, 235, 51-60.]) with monodentate Pt—N bond lengths of 2.136 and 2.140 Å respectively.

5. Synthesis and crystallization

The synthesis of the title complex was achieved via reaction between [Pt(5,6-dimethyl-1,10-phenanthroline)(1,2-di­amino­ethane)](NO3)2 (Pt56MEEN) and 2-(di­phenyl­phosphino)benzaldehyde. Pt56MEEN was synthesized as its chloride salt using a modified literature method (Brodie et al., 2004[Brodie, C. R., Collins, J. G. & Aldrich-Wright, J. R. (2004). Dalton Trans. pp. 1145-1152.]). First, 1,2-di­amino­ethane was reacted with an equimolar amount of K2PtCl4 in water. The resultant yellow precipitate was refluxed with 5,6-dimethyl-1,10-phenanthroline to yield a pale-yellow solution. The complex was then isolated using reverse-phase C18 chromatography and converted to its nitrate salt by addition of two molar equivalents of AgNO3 in water. The AgCl precipitate was removed by vacuum filtration and the solution dried. The complex was suspended in methanol and stirred with 1.25 molar equivalents of 2-(di­phenyl­phosphino-benzaldehyde) at 323 K overnight to form a clear orange solution. The desired product was isolated using reverse-phase C18 flash chromatography with a water–methanol mobile phase. Crystals of the title complex were formed using vapour diffusion of diethyl ether into a solution of the complex in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The single-crystal data were collected at 100 (2) K on the MX1 beamline (Cowieson et al., 2015[Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187-190.]) at the Australian Synchrotron employing silicon double crystal monochromated synchrotron radiation (λ = 0.71078 Å). Hydrogen atoms were added to the calculated positions and refined using a riding model. Potential hydrogen bonds were calculated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C14H12N2)(C21H21N2P)](NO3)2·2CH4O
Mr 923.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.692 (3), 11.349 (2), 25.812 (5)
β (°) 95.29 (3)
V3) 3702.1 (13)
Z 4
Radiation type Silicon double crystal monochromated synchrotron, λ = 0.71078 Å
μ (mm−1) 3.89
Crystal size (mm) 0.01 × 0.01 × 0.004
 
Data collection
Diffractometer Eiger Detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.339, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 46431, 7437, 6419
Rint 0.109
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.04
No. of reflections 7437
No. of parameters 484
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.77, −1.38
Computer programs: XDS (Kabsch, 1993[Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.], 2010[Kabsch, W. (2010). Acta Cryst. D66, 133-144.]), BlueIce (McPhillips et al., 2002[McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]), SHELXT2018/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(5,6-Dimethyl-1,10-phenanthroline)(2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1-amine)platinum(II) dinitrate methanol disolvate top
Crystal data top
[Pt(C14H12N2)(C21H21N2P)](NO3)2·2CH4OF(000) = 1848
Mr = 923.82Dx = 1.657 Mg m3
Monoclinic, P21/cSilicon double crystal monochromated synchrotron radiation, λ = 0.71078 Å
a = 12.692 (3) ÅCell parameters from 12000 reflections
b = 11.349 (2) Åθ = 1.6–28.6°
c = 25.812 (5) ŵ = 3.89 mm1
β = 95.29 (3)°T = 100 K
V = 3702.1 (13) Å3Block, yellow
Z = 40.01 × 0.01 × 0.004 mm
Data collection top
Eiger Detector
diffractometer
6419 reflections with I > 2σ(I)
Radiation source: Australian Synchrotron MX1Rint = 0.109
π scansθmax = 28.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1314
Tmin = 0.339, Tmax = 0.431k = 1313
46431 measured reflectionsl = 3232
7437 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7437 reflectionsΔρmax = 2.77 e Å3
484 parametersΔρmin = 1.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data integration and reduction were undertaken with XDS (Kabsch, 2010). Absorption corrections were applied to the data using SADABS (Krause et al., 2015). The structures were solved by direct methods using SHELXT (Sheldrick, 2015a) and refined with SHELXL2014 (Sheldrick, 2015b) using the Olex2 graphical user interface (Dolomanov et al., 2009). All non-hydrogen atoms were located on the electron density maps and refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.26663 (2)0.87768 (2)0.61133 (2)0.02627 (8)
P10.09855 (9)0.89639 (9)0.62855 (4)0.0265 (2)
N10.3115 (3)0.7812 (3)0.67692 (13)0.0290 (7)
N20.3393 (3)1.0216 (3)0.68673 (14)0.0309 (8)
N30.2414 (3)0.9622 (3)0.54403 (13)0.0283 (7)
N40.4185 (3)0.8543 (3)0.58758 (14)0.0292 (7)
H4A0.4681650.8705950.6143300.035*
H4B0.4272170.7784480.5774080.035*
C10.3119 (3)0.6634 (4)0.67141 (17)0.0326 (9)
H10.2921380.6309520.6379890.039*
C20.3400 (4)0.5872 (4)0.71225 (18)0.0378 (10)
H20.3409000.5044970.7066100.045*
C30.3667 (4)0.6331 (4)0.7615 (2)0.0367 (10)
H30.3849590.5819890.7900550.044*
C40.3666 (3)0.7555 (4)0.76877 (16)0.0316 (9)
C50.3429 (3)0.8290 (4)0.72493 (17)0.0303 (9)
C60.3902 (3)0.8071 (4)0.82022 (17)0.0343 (10)
C70.4071 (4)0.7244 (4)0.86580 (18)0.0437 (11)
H7A0.3504800.6654160.8638010.066*
H7B0.4063640.7690710.8982460.066*
H7C0.4755810.6847770.8650290.066*
C80.3932 (3)0.9272 (4)0.82598 (17)0.0349 (9)
C90.4176 (4)0.9848 (4)0.87858 (18)0.0446 (11)
H9A0.4944410.9896750.8866980.067*
H9B0.3868550.9378200.9052570.067*
H9C0.3872981.0642860.8778540.067*
C100.3755 (3)1.0031 (4)0.78090 (17)0.0324 (9)
C110.3521 (3)0.9549 (4)0.73063 (16)0.0295 (9)
C120.3800 (4)1.1271 (4)0.7840 (2)0.0393 (11)
H120.3943911.1641320.8169070.047*
C130.3638 (4)1.1941 (4)0.74024 (18)0.0385 (10)
H130.3652701.2776230.7423690.046*
C140.3450 (4)1.1373 (4)0.6917 (2)0.0369 (10)
H140.3359721.1843850.6612370.044*
C150.0374 (3)1.0261 (3)0.59714 (15)0.0279 (8)
C160.0553 (3)1.0722 (4)0.61407 (17)0.0326 (9)
H160.0843251.0371420.6430030.039*
C170.1065 (4)1.1692 (4)0.58928 (18)0.0363 (10)
H170.1698251.1988870.6013480.044*
C180.0651 (3)1.2216 (4)0.54746 (17)0.0356 (9)
H180.0988411.2883200.5310300.043*
C190.0261 (3)1.1762 (4)0.52962 (16)0.0333 (9)
H190.0537851.2119590.5004850.040*
C200.0789 (3)1.0784 (4)0.55352 (16)0.0290 (8)
C210.1711 (3)1.0384 (4)0.52799 (16)0.0303 (9)
H210.1799041.0734850.4952610.036*
C220.3266 (3)0.9377 (4)0.50960 (16)0.0339 (9)
H22A0.3277530.9997490.4826850.041*
H22B0.3142090.8607930.4920230.041*
C230.4301 (3)0.9360 (4)0.54336 (16)0.0325 (9)
H23A0.4877720.9086650.5229360.039*
H23B0.4477901.0161720.5565500.039*
C240.0141 (3)0.7732 (3)0.60688 (15)0.0295 (9)
C250.0948 (3)0.7758 (4)0.61190 (17)0.0368 (10)
H250.1251640.8411400.6280730.044*
C260.1579 (4)0.6833 (4)0.59331 (18)0.0390 (10)
H260.2318980.6857730.5963500.047*
C270.1143 (4)0.5862 (4)0.57013 (19)0.0389 (10)
H270.1580820.5225780.5576020.047*
C280.0068 (4)0.5832 (4)0.56551 (17)0.0381 (10)
H280.0233600.5171180.5497800.046*
C290.0576 (3)0.6761 (4)0.58369 (15)0.0306 (9)
H290.1314180.6733910.5803050.037*
C300.0824 (3)0.9117 (4)0.69738 (16)0.0313 (9)
C310.0708 (4)0.8101 (4)0.72678 (17)0.0378 (10)
H310.0614210.7360230.7098310.045*
C320.0728 (4)0.8163 (5)0.78048 (18)0.0457 (12)
H320.0652340.7467490.8002820.055*
C330.0858 (4)0.9244 (5)0.80516 (19)0.0490 (12)
H330.0874450.9288510.8419800.059*
C340.0965 (4)1.0258 (4)0.77646 (18)0.0425 (11)
H340.1045601.0996920.7936630.051*
C350.0955 (3)1.0206 (4)0.72290 (17)0.0357 (9)
H350.1035561.0905070.7034390.043*
O10.5815 (3)0.8966 (3)0.67026 (13)0.0378 (7)
O20.7493 (2)0.9350 (3)0.67857 (14)0.0519 (9)
O30.6696 (3)0.9005 (4)0.60208 (14)0.0547 (9)
N50.6680 (3)0.9108 (3)0.65012 (15)0.0364 (8)
O40.3886 (3)0.6110 (3)0.55246 (16)0.0450 (9)
O50.2954 (3)0.6488 (3)0.47932 (13)0.0441 (8)
O60.2319 (3)0.5336 (3)0.53539 (13)0.0451 (8)
N60.3067 (3)0.5982 (3)0.52204 (15)0.0356 (8)
O70.2720 (3)0.3786 (3)0.61778 (15)0.0431 (10)
H70.2698080.4346230.5964200.065*
C360.1720 (5)0.3699 (4)0.6397 (3)0.0537 (14)
H36A0.1204030.3307250.6148650.081*
H36B0.1465410.4490530.6472500.081*
H36C0.1809430.3240010.6719860.081*
O80.3441 (3)0.2207 (3)0.54159 (17)0.0588 (10)
H80.3257350.2606580.5666480.088*
C370.3934 (4)0.2952 (5)0.5070 (2)0.0545 (13)
H37A0.3922990.2572350.4728790.082*
H37B0.4668930.3096500.5207490.082*
H37C0.3552990.3702870.5035280.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03153 (13)0.02215 (12)0.02472 (12)0.00001 (5)0.00038 (7)0.00103 (5)
P10.0315 (6)0.0235 (5)0.0241 (5)0.0001 (4)0.0001 (4)0.0003 (4)
N10.0345 (18)0.0220 (16)0.0305 (18)0.0020 (13)0.0023 (14)0.0003 (14)
N20.0316 (19)0.0256 (17)0.0345 (19)0.0016 (13)0.0027 (14)0.0004 (15)
N30.0321 (18)0.0221 (16)0.0303 (18)0.0041 (13)0.0001 (14)0.0015 (13)
N40.033 (2)0.0258 (16)0.0285 (19)0.0033 (14)0.0019 (14)0.0023 (14)
C10.040 (2)0.024 (2)0.034 (2)0.0002 (17)0.0013 (17)0.0002 (18)
C20.047 (3)0.026 (2)0.040 (3)0.0000 (19)0.003 (2)0.004 (2)
C30.039 (3)0.031 (2)0.039 (3)0.0018 (17)0.002 (2)0.0086 (18)
C40.029 (2)0.035 (2)0.031 (2)0.0003 (17)0.0018 (16)0.0060 (18)
C50.029 (2)0.026 (2)0.035 (2)0.0028 (16)0.0026 (16)0.0005 (17)
C60.031 (2)0.039 (2)0.033 (2)0.0022 (18)0.0005 (17)0.0033 (19)
C70.049 (3)0.048 (3)0.033 (2)0.005 (2)0.001 (2)0.010 (2)
C80.033 (2)0.040 (3)0.032 (2)0.0008 (18)0.0015 (17)0.0024 (19)
C90.058 (3)0.041 (3)0.033 (2)0.000 (2)0.004 (2)0.002 (2)
C100.027 (2)0.032 (2)0.038 (2)0.0039 (16)0.0011 (17)0.0027 (18)
C110.027 (2)0.031 (2)0.031 (2)0.0014 (16)0.0028 (16)0.0003 (17)
C120.040 (3)0.039 (3)0.038 (3)0.0023 (17)0.002 (2)0.0085 (18)
C130.045 (3)0.024 (2)0.045 (3)0.0005 (17)0.001 (2)0.0046 (19)
C140.043 (3)0.029 (2)0.039 (3)0.0004 (17)0.002 (2)0.0063 (18)
C150.035 (2)0.0237 (19)0.024 (2)0.0011 (15)0.0010 (15)0.0020 (16)
C160.034 (2)0.027 (2)0.036 (2)0.0020 (17)0.0010 (17)0.0018 (18)
C170.037 (2)0.027 (2)0.044 (3)0.0034 (18)0.0027 (19)0.0053 (19)
C180.046 (3)0.025 (2)0.035 (2)0.0029 (17)0.0050 (18)0.0000 (18)
C190.043 (3)0.025 (2)0.030 (2)0.0020 (17)0.0046 (17)0.0025 (17)
C200.034 (2)0.0229 (19)0.029 (2)0.0010 (16)0.0044 (16)0.0035 (17)
C210.036 (2)0.030 (2)0.024 (2)0.0045 (17)0.0010 (16)0.0012 (16)
C220.041 (2)0.030 (2)0.031 (2)0.0015 (17)0.0030 (17)0.0031 (17)
C230.038 (2)0.030 (2)0.030 (2)0.0000 (17)0.0033 (17)0.0047 (17)
C240.038 (2)0.024 (2)0.025 (2)0.0022 (16)0.0011 (16)0.0026 (16)
C250.040 (3)0.032 (2)0.039 (2)0.0016 (18)0.0023 (18)0.0020 (18)
C260.037 (2)0.034 (2)0.045 (3)0.0037 (18)0.0029 (19)0.002 (2)
C270.043 (3)0.030 (2)0.041 (3)0.0047 (19)0.008 (2)0.004 (2)
C280.055 (3)0.025 (2)0.033 (2)0.0012 (19)0.005 (2)0.0002 (19)
C290.038 (2)0.024 (2)0.029 (2)0.0032 (16)0.0017 (17)0.0012 (17)
C300.027 (2)0.038 (2)0.028 (2)0.0019 (17)0.0010 (16)0.0016 (19)
C310.048 (3)0.036 (2)0.029 (2)0.0057 (19)0.0004 (18)0.0030 (19)
C320.053 (3)0.050 (3)0.035 (3)0.011 (2)0.004 (2)0.003 (2)
C330.047 (3)0.070 (4)0.030 (2)0.000 (3)0.003 (2)0.005 (2)
C340.043 (3)0.047 (3)0.036 (2)0.004 (2)0.0036 (19)0.013 (2)
C350.033 (2)0.039 (2)0.035 (2)0.0048 (18)0.0041 (18)0.0002 (19)
O10.0381 (19)0.0356 (17)0.0397 (18)0.0020 (13)0.0040 (14)0.0003 (14)
O20.0343 (18)0.061 (2)0.060 (2)0.0016 (16)0.0001 (16)0.0230 (19)
O30.051 (2)0.078 (3)0.035 (2)0.0135 (18)0.0066 (16)0.0069 (18)
N50.042 (2)0.0278 (18)0.039 (2)0.0057 (16)0.0011 (17)0.0012 (17)
O40.043 (2)0.0381 (19)0.052 (2)0.0061 (13)0.0094 (16)0.0032 (15)
O50.055 (2)0.0406 (17)0.0363 (19)0.0048 (15)0.0001 (15)0.0075 (15)
O60.048 (2)0.0412 (18)0.0463 (19)0.0014 (15)0.0075 (15)0.0007 (15)
N60.043 (2)0.0304 (18)0.033 (2)0.0047 (16)0.0026 (16)0.0061 (16)
O70.045 (2)0.035 (2)0.050 (2)0.0022 (12)0.0050 (18)0.0111 (13)
C360.053 (4)0.044 (3)0.062 (4)0.001 (2)0.002 (3)0.008 (2)
O80.068 (3)0.0364 (19)0.073 (3)0.0019 (17)0.012 (2)0.0042 (18)
C370.062 (3)0.048 (3)0.055 (3)0.004 (2)0.012 (3)0.010 (3)
Geometric parameters (Å, º) top
Pt1—P12.2290 (13)C18—C191.384 (6)
Pt1—N12.052 (3)C19—H190.9500
Pt1—N31.984 (3)C19—C201.410 (6)
Pt1—N42.092 (4)C20—C211.467 (6)
P1—C151.819 (4)C21—H210.9500
P1—C241.818 (4)C22—H22A0.9900
P1—C301.815 (4)C22—H22B0.9900
N1—C11.345 (5)C22—C231.509 (6)
N1—C51.377 (5)C23—H23A0.9900
N2—C111.360 (5)C23—H23B0.9900
N2—C141.321 (5)C24—C251.400 (6)
N3—C211.283 (5)C24—C291.392 (6)
N3—C221.487 (5)C25—H250.9500
N4—H4A0.9100C25—C261.380 (6)
N4—H4B0.9100C26—H260.9500
N4—C231.488 (5)C26—C271.392 (7)
C1—H10.9500C27—H270.9500
C1—C21.384 (6)C27—C281.381 (7)
C2—H20.9500C28—H280.9500
C2—C31.386 (7)C28—C291.388 (6)
C3—H30.9500C29—H290.9500
C3—C41.402 (6)C30—C311.396 (6)
C4—C51.416 (6)C30—C351.402 (6)
C4—C61.457 (6)C31—H310.9500
C5—C111.440 (6)C31—C321.386 (6)
C6—C71.505 (6)C32—H320.9500
C6—C81.371 (7)C32—C331.385 (8)
C7—H7A0.9800C33—H330.9500
C7—H7B0.9800C33—C341.382 (8)
C7—H7C0.9800C34—H340.9500
C8—C91.513 (6)C34—C351.383 (6)
C8—C101.448 (6)C35—H350.9500
C9—H9A0.9800O1—N51.267 (5)
C9—H9B0.9800O2—N51.241 (5)
C9—H9C0.9800O3—N51.248 (5)
C10—C111.414 (6)O4—N61.252 (5)
C10—C121.410 (6)O5—N61.240 (5)
C12—H120.9500O6—N61.272 (5)
C12—C131.362 (7)O7—H70.8400
C13—H130.9500O7—C361.440 (7)
C13—C141.409 (7)C36—H36A0.9800
C14—H140.9500C36—H36B0.9800
C15—C161.393 (6)C36—H36C0.9800
C15—C201.417 (6)O8—H80.8400
C16—H160.9500O8—C371.416 (6)
C16—C171.403 (6)C37—H37A0.9800
C17—H170.9500C37—H37B0.9800
C17—C181.378 (7)C37—H37C0.9800
C18—H180.9500
N1—Pt1—P194.83 (10)C18—C17—H17119.9
N1—Pt1—N488.92 (13)C17—C18—H18120.3
N3—Pt1—P192.78 (10)C17—C18—C19119.4 (4)
N3—Pt1—N1171.97 (13)C19—C18—H18120.3
N3—Pt1—N483.30 (14)C18—C19—H19119.1
N4—Pt1—P1174.15 (10)C18—C19—C20121.7 (4)
C15—P1—Pt1111.42 (14)C20—C19—H19119.1
C24—P1—Pt1114.42 (14)C15—C20—C21126.7 (4)
C24—P1—C15105.63 (19)C19—C20—C15118.8 (4)
C30—P1—Pt1113.62 (14)C19—C20—C21114.5 (4)
C30—P1—C15106.1 (2)N3—C21—C20128.6 (4)
C30—P1—C24105.0 (2)N3—C21—H21115.7
C1—N1—Pt1116.5 (3)C20—C21—H21115.7
C1—N1—C5118.9 (4)N3—C22—H22A110.2
C5—N1—Pt1124.6 (3)N3—C22—H22B110.2
C14—N2—C11118.0 (4)N3—C22—C23107.5 (3)
C21—N3—Pt1131.2 (3)H22A—C22—H22B108.5
C21—N3—C22117.1 (3)C23—C22—H22A110.2
C22—N3—Pt1111.4 (2)C23—C22—H22B110.2
Pt1—N4—H4A110.2N4—C23—C22107.9 (3)
Pt1—N4—H4B110.2N4—C23—H23A110.1
H4A—N4—H4B108.5N4—C23—H23B110.1
C23—N4—Pt1107.8 (3)C22—C23—H23A110.1
C23—N4—H4A110.2C22—C23—H23B110.1
C23—N4—H4B110.2H23A—C23—H23B108.4
N1—C1—H1118.5C25—C24—P1121.0 (3)
N1—C1—C2122.9 (4)C29—C24—P1119.7 (3)
C2—C1—H1118.5C29—C24—C25119.3 (4)
C1—C2—H2120.4C24—C25—H25120.1
C1—C2—C3119.2 (4)C26—C25—C24119.9 (4)
C3—C2—H2120.4C26—C25—H25120.1
C2—C3—H3120.3C25—C26—H26119.7
C2—C3—C4119.5 (4)C25—C26—C27120.7 (4)
C4—C3—H3120.3C27—C26—H26119.7
C3—C4—C5118.6 (4)C26—C27—H27120.3
C3—C4—C6121.2 (4)C28—C27—C26119.5 (4)
C5—C4—C6120.1 (4)C28—C27—H27120.3
N1—C5—C4120.7 (4)C27—C28—H28119.8
N1—C5—C11119.7 (4)C27—C28—C29120.5 (4)
C4—C5—C11119.6 (4)C29—C28—H28119.8
C4—C6—C7117.7 (4)C24—C29—H29119.9
C8—C6—C4120.0 (4)C28—C29—C24120.2 (4)
C8—C6—C7122.3 (4)C28—C29—H29119.9
C6—C7—H7A109.5C31—C30—P1118.7 (4)
C6—C7—H7B109.5C31—C30—C35119.1 (4)
C6—C7—H7C109.5C35—C30—P1121.7 (3)
H7A—C7—H7B109.5C30—C31—H31119.7
H7A—C7—H7C109.5C32—C31—C30120.6 (4)
H7B—C7—H7C109.5C32—C31—H31119.7
C6—C8—C9121.9 (4)C31—C32—H32120.1
C6—C8—C10120.2 (4)C33—C32—C31119.7 (5)
C10—C8—C9117.9 (4)C33—C32—H32120.1
C8—C9—H9A109.5C32—C33—H33119.9
C8—C9—H9B109.5C34—C33—C32120.3 (5)
C8—C9—H9C109.5C34—C33—H33119.9
H9A—C9—H9B109.5C33—C34—H34119.7
H9A—C9—H9C109.5C33—C34—C35120.5 (5)
H9B—C9—H9C109.5C35—C34—H34119.7
C11—C10—C8120.7 (4)C30—C35—H35120.1
C12—C10—C8123.0 (4)C34—C35—C30119.8 (4)
C12—C10—C11116.2 (4)C34—C35—H35120.1
N2—C11—C5117.7 (4)O2—N5—O1119.3 (4)
N2—C11—C10123.3 (4)O2—N5—O3121.3 (4)
C10—C11—C5119.0 (4)O3—N5—O1119.4 (4)
C10—C12—H12119.7O4—N6—O6119.6 (4)
C13—C12—C10120.5 (4)O5—N6—O4121.7 (4)
C13—C12—H12119.7O5—N6—O6118.7 (4)
C12—C13—H13120.6C36—O7—H7109.5
C12—C13—C14118.8 (4)O7—C36—H36A109.5
C14—C13—H13120.6O7—C36—H36B109.5
N2—C14—C13123.0 (4)O7—C36—H36C109.5
N2—C14—H14118.5H36A—C36—H36B109.5
C13—C14—H14118.5H36A—C36—H36C109.5
C16—C15—P1120.1 (3)H36B—C36—H36C109.5
C16—C15—C20118.6 (4)C37—O8—H8109.5
C20—C15—P1121.2 (3)O8—C37—H37A109.5
C15—C16—H16119.3O8—C37—H37B109.5
C15—C16—C17121.4 (4)O8—C37—H37C109.5
C17—C16—H16119.3H37A—C37—H37B109.5
C16—C17—H17119.9H37A—C37—H37C109.5
C18—C17—C16120.1 (4)H37B—C37—H37C109.5
Pt1—P1—C15—C16162.0 (3)C8—C10—C12—C13179.3 (4)
Pt1—P1—C15—C2021.5 (4)C9—C8—C10—C11179.8 (4)
Pt1—P1—C24—C25175.8 (3)C9—C8—C10—C120.0 (6)
Pt1—P1—C24—C292.5 (4)C10—C12—C13—C141.4 (7)
Pt1—P1—C30—C3189.2 (3)C11—N2—C14—C130.1 (7)
Pt1—P1—C30—C3582.2 (4)C11—C10—C12—C131.0 (7)
Pt1—N1—C1—C2179.7 (3)C12—C10—C11—N23.2 (6)
Pt1—N1—C5—C4176.2 (3)C12—C10—C11—C5178.0 (4)
Pt1—N1—C5—C113.9 (5)C12—C13—C14—N21.9 (7)
Pt1—N3—C21—C206.9 (6)C14—N2—C11—C5178.4 (4)
Pt1—N3—C22—C2339.7 (4)C14—N2—C11—C102.8 (6)
Pt1—N4—C23—C2239.0 (4)C15—P1—C24—C2552.9 (4)
P1—C15—C16—C17177.5 (3)C15—P1—C24—C29125.4 (3)
P1—C15—C20—C19177.8 (3)C15—P1—C30—C31148.1 (3)
P1—C15—C20—C210.6 (6)C15—P1—C30—C3540.6 (4)
P1—C24—C25—C26177.5 (3)C15—C16—C17—C180.4 (7)
P1—C24—C29—C28178.0 (3)C15—C20—C21—N312.1 (7)
P1—C30—C31—C32171.1 (4)C16—C15—C20—C191.2 (6)
P1—C30—C35—C34171.4 (3)C16—C15—C20—C21176.0 (4)
N1—C1—C2—C31.5 (7)C16—C17—C18—C191.2 (6)
N1—C5—C11—N26.5 (5)C17—C18—C19—C200.8 (6)
N1—C5—C11—C10174.6 (4)C18—C19—C20—C150.4 (6)
N3—C22—C23—N451.6 (4)C18—C19—C20—C21177.1 (4)
C1—N1—C5—C45.4 (6)C19—C20—C21—N3170.6 (4)
C1—N1—C5—C11174.5 (4)C20—C15—C16—C170.8 (6)
C1—C2—C3—C41.1 (7)C21—N3—C22—C23135.1 (4)
C2—C3—C4—C52.4 (7)C22—N3—C21—C20179.5 (4)
C2—C3—C4—C6177.6 (4)C24—P1—C15—C1673.2 (4)
C3—C4—C5—N15.7 (6)C24—P1—C15—C20103.3 (3)
C3—C4—C5—C11174.1 (4)C24—P1—C30—C3136.5 (4)
C3—C4—C6—C74.2 (6)C24—P1—C30—C35152.1 (4)
C3—C4—C6—C8177.7 (4)C24—C25—C26—C270.9 (7)
C4—C5—C11—N2173.4 (4)C25—C24—C29—C280.4 (6)
C4—C5—C11—C105.5 (5)C25—C26—C27—C280.4 (7)
C4—C6—C8—C9179.9 (4)C26—C27—C28—C290.1 (7)
C4—C6—C8—C101.5 (6)C27—C28—C29—C240.1 (7)
C5—N1—C1—C21.8 (6)C29—C24—C25—C260.8 (6)
C5—C4—C6—C7175.8 (4)C30—P1—C15—C1637.9 (4)
C5—C4—C6—C82.3 (6)C30—P1—C15—C20145.6 (3)
C6—C4—C5—N1174.3 (4)C30—P1—C24—C2559.0 (4)
C6—C4—C5—C115.8 (6)C30—P1—C24—C29122.7 (3)
C6—C8—C10—C111.8 (6)C30—C31—C32—C330.4 (7)
C6—C8—C10—C12178.5 (4)C31—C30—C35—C340.1 (6)
C7—C6—C8—C92.1 (6)C31—C32—C33—C340.2 (7)
C7—C6—C8—C10179.5 (4)C32—C33—C34—C350.7 (7)
C8—C10—C11—N2177.1 (4)C33—C34—C35—C300.7 (7)
C8—C10—C11—C51.8 (6)C35—C30—C31—C320.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.911.962.872 (5)176
N4—H4B···O40.912.052.920 (5)159
O7—H7···O60.841.962.771 (5)162
O8—H8···O70.842.042.872 (5)170
C3—H3···O1i0.952.363.244 (6)154
C3—H3···O2i0.952.573.168 (6)121
C9—H9A···O4ii0.982.483.235 (6)134
C9—H9B···O5iii0.982.533.494 (6)170
C14—H14···O7iv0.952.573.417 (6)149
C18—H18···O5v0.952.583.288 (6)131
C22—H22A···O3vi0.992.473.422 (6)162
C22—H22B···O50.992.443.385 (6)160
C25—H25···O2vii0.952.403.282 (5)154
C27—H27···O6viii0.952.583.278 (6)131
C29—H29···O60.952.403.094 (5)130
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) x+1, y+2, z+1; (vii) x1, y, z; (viii) x, y+1, z+1.
 

Acknowledgements

The crystallographic data for the title compound were collected on the MX1 beamline at the Australian Synchrotron, a part of ANSTO.

References

First citationBrodie, C. R., Collins, J. G. & Aldrich-Wright, J. R. (2004). Dalton Trans. pp. 1145–1152.  Web of Science CrossRef Google Scholar
First citationBrodie, C. R., Turner, P., Wheate, N. J. & Aldrich-Wright, J. R. (2006). Acta Cryst. E62, m3137–m3139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBushnell, G. W., Dixon, K. R. & Khan, M. A. (1974). Can. J. Chem. 52, 1367–1376.  CSD CrossRef CAS Web of Science Google Scholar
First citationCowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllis, L. T. & Hambley, T. W. (1994). Acta Cryst. C50, 1888–1889.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFanizzi, F. P., Lanfranchi, M., Natile, G. & Tiripicchio, A. (1994). Inorg. Chem. 33, 3331–3339.  CSD CrossRef CAS Web of Science Google Scholar
First citationFanizzi, F. P., Maresca, L., Natile, G., Lanfranchi, M., Tiripicchio, A. & Pacchioni, G. (1992). J. Chem. Soc. Chem. Commun. pp. 333–338.  CSD CrossRef Web of Science Google Scholar
First citationFanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705–1713.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKabsch, W. (1993). J. Appl. Cryst. 26, 795–800.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 133–144.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKato, M. & Takahashi, J. (1999). Acta Cryst. C55, 1809–1812.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKemp, S., Wheate, N. J., Buck, D. P., Nikac, M., Collins, J. G. & Aldrich-Wright, J. R. (2007). J. Inorg. Biochem. 101, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhoury, A., Sakoff, J. A., Gilbert, J., Scott, K. F., Karan, S., Gordon, C. P. & Aldrich-Wright, J. R. (2022). Pharmaceutics, 14, 787.  Web of Science CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUsón, R., Forniés, J., Tomás, M., Martínez, F., Casas, J. M. & Fortuño, C. (1995). Inorg. Chim. Acta, 235, 51–60.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds