research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of methyl (2Z)-(4-bromo­phen­yl)[2-(4-methyl­phen­yl)hydrazinyl­­idene]acetate, methyl (2Z)-(4-bromophen­yl)[2-(3,5-di­methyl­phen­yl)hydrazinyl­­idene]acetate, methyl (2Z)-[2-(4-meth­­oxy­phen­yl)hydrazinyl­­idene](3-nitro­phen­yl)acetate, methyl (2E)-(4-chlorophen­yl)(2-phenyl­hydrazinyl­­idene)acetate and methyl (2Z)-[2-(4-bromo­phen­yl)hydrazinyl­idene](4-chloro­phen­yl)acetate

crossmark logo

aDepartment of Chemical Engineering, Baku Engineering University, Khirdalan City, 120 AZ0101 Hasan Aliyev Street, Baku, Azerbaijan, bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 January 2025; accepted 4 March 2025; online 14 March 2025)

Mol­ecules of the title compounds, methyl (Z)-2-(4-bromo­phen­yl)-2-[2-(4-methyl­phen­yl)hydrazin-1-yl­idene]acetate, C16H15BrN2O2, (1), methyl (Z)-2-(4-bromo­phen­yl)-2-[2-(3,5-di­methyl­phen­yl)hydrazin-1-yl­idene]acetate, C17H17BrN2O2, (2), methyl (Z)-2-[2-(4-meth­oxy­phen­yl)hydrazin-1-yl­idene]-2-(3-nitro­phen­yl)acetate, C16H15N3O5, (3), and methyl (Z)-2-[2-(4-bromo­phen­yl)hydrazin-1-yl­idene]-2-(4-chloro­phen­yl)acetate, C15H12BrClN2O2, (5), adopt a Z configuration with respect to the central C=N bond, while methyl (E)-2-(4-chloro­phen­yl)-2-(2-phenyl­hydrazin-1-yl­idene)acetate, C15H13ClN2O2, (4), adopts an E configuration. The atoms of the phenyl ring of the bromo­phenyl group of (1) are disordered over two sets of sites with equal occupancies. In the crystal structure of (1), mol­ecules connected by C—H⋯N hydrogen bonds are further linked by C—H⋯π inter­actions, forming ribbons parallel to [010]. In (2), pairs of mol­ecules are linked by C—H⋯π inter­actions parallel to [100]. In (3), C—H⋯O hydrogen bonds form ribbons parallel to [010], while in (4), the mol­ecules are bonded together by C—H⋯N, C—H⋯Cl, C—H⋯O and C—H⋯π inter­actions parallel to [010]. In (5), C—H⋯Br, C—H⋯O and C—H⋯Cl inter­actions lead to the formation of layers parallel to (002). C—H⋯π inter­actions also occur between these planes. Hirshfeld surface analyses were performed to investigate and qu­antify the inter­molecular inter­actions between the mol­ecules of all compounds.

1. Chemical context

Catalytic olefination of hydrazones is a versatile method for the construction of halogenated alkenes starting from hydrazones (Adonin et al., 2019[Adonin, S. A., Gorokh, I. D., Samsonenko, D. G., Novikov, A. S., Korolkov, I. V., Plyusnin, P. E., Sokolov, M. N. & Fedin, V. P. (2019). Polyhedron, 159, 318-322.]; Bertani et al., 2010[Bertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P. & Terraneo, G. (2010). Coord. Chem. Rev. 254, 677-695.]; Metrangolo & Resnati, 2008[Metrangolo, P. & Resnati, G. (2008). Science, 321, 918-919.]; Askerova et al., 2024[Askerova, U., Abdullayev, Y., Shikhaliyev, N., Maharramov, A., Nenajdenko, V. G. & Autschbach, J. (2024). J. Comput. Chem. 45, 2098-2103.], Sergeev et al., 2020a[Sergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020a). Eur. J. Org. Chem. pp. 6085-6093.],b[Sergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020b). Eur. J. Org. Chem. pp. 4964-4971.]). In the case of the reaction with N-substituted hydrazones the reaction leads to formation of di­chlorodi­aza­dienes (Nenajdenko et al., 2017[Nenajdenko, V. G., Shastin, A. V., Gorbachev, V. M., Shorunov, S. V., Muzalevskiy, V. M., Lukianova, A. I., Dorovatovskii, P. V. & Khrustalev, V. N. (2017). ACS Catal. 7, 205-209.]). By using carbon tetra­bromide for olefination it is possible to prepare di­bromo­substituted di­aza­dienes as well (Nenajdenko et al., 2023[Nenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M. & Tskhovrebov, A. G. (2023). Catalysts, 13, 1194.]). Recently, these type of building blocks attracted attention for preparation of numerous classes of nitro­gen-containing heterocycles with inter­esting properties (Vitaku et al., 2014[Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257-10274.]; Das et al., 2019[Das, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. (2019). J. Med. Chem. 62, 4265-4311.]; Sergeev et al., 2020c[Sergeev, P. G. & Nenajdenko, V. G. (2020c). Russ. Chem. Rev. 89, 393-429.]; Tsyrenova et al., 2023[Tsyrenova, B. D., Lemport, P. S. & Nenajdenko, V. G. (2023). Uspehi Himii, 92, 5066.]; Safronov et al., 2023[Safronov, N. E., Tsyrenova, B. D., Minin, A. S., Benassi, E., Nenajdenko, V. G. & Belskaya, N. P. (2023). Dyes Pigments, 217, 111405.]; Tsyrenova et al., 2020a[Tsyrenova, B., Khrustalev, V. & Nenajdenko, V. (2020a). J. Org. Chem. 85, 7024-7035.],b[Tsyrenova, B. & Nenajdenko, V. (2020b). Molecules, 25, 480.]). It is particularly important to note that the solvolysis reaction of di­chlorodi­aza­dienes simultaneously yields Z and E isomers of aryl­hydrazones of α-keto esters (Shikhaliyev et al., 2021a[Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191-193.]).

[Scheme 1]

In this context, the methano­lysis reaction of some di­chlorodi­aza­dienes was carried out and the synthesis of aryl­hydrazo derivatives (1)–(5) of the corresponding α-keto esters was achieved (Fig. 1[link]).

[Figure 1]
Figure 1
Schematic representation of the synthesis of compounds (1)–(5).

2. Structural commentary

C16H15BrN2O2 (1) (Fig. 2[link]) crystallizes in the monoclinic C2/c space group with Z = 8. The atoms of the phenyl ring of the bromo­phenyl group of (1) are disordered over two sets of sites with equal occupancies. C17H17BrN2O2 (2) (Fig. 3[link]) crystallizes with two mol­ecules A and B in the asymmetric unit in the triclinic P[\overline{1}] space group with Z = 4. An overlay fit of mol­ecule B on mol­ecule A of (2) is shown in Fig. 4[link]; the weighted r.m.s. fit of the 22 non-H atoms is 0.268 Å with the major differences in the phenyl groups (C4A–C9A/C4B–C9B and C10A–C15A/C10B–C15B) of mol­ecules A and B. C16H15N3O5 (3) (Fig. 5[link]) crystallizes in the monoclinic C2/c space group with Z = 8, C15H13ClN2O2 (4) (Fig. 6[link]) crystallizes in the ortho­rhom­bic Pbca space group with Z = 8, and C15H12BrClN2O2 (5) (Fig. 7[link]) crystallizes in the ortho­rhom­bic Pca21 space group with Z = 4.

[Figure 2]
Figure 2
The mol­ecular structure of (1), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The phenyl ring atoms of the bromo­phenyl group of (1) are disordered over two sets of sites with equal occupancies. N2—H2⋯O1 and C9—H9⋯O2 intra­molecular hydrogen bonds are shown by dashed lines.
[Figure 3]
Figure 3
The two mol­ecules, A and B, in the asymmetric unit of (2), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
A least-squares overlay of the two independent mol­ecules A (black) and B (red) of (2).
[Figure 5]
Figure 5
The mol­ecular structure of (3), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of (4), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 7]
Figure 7
The mol­ecular structure of (5), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Mol­ecules (1), (2), (3) and (5) adopt a Z configuration with respect to the central C=N bond, while (4) adopts an E configuration. This also affects intra- and inter­molecular hydrogen-bonding and, consequently, the packing arrangement (see next section for details). The mol­ecular shapes of compounds (1), (2) and (5) are stabilized by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds (Tables 1[link], 2[link][link][link], 5[link]), forming S(6) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), while the stability of mol­ecule (3) is provided only by intra­molecular N—H⋯O inter­actions (Table 3[link]) with the same kind of hydrogen-bonding pattern. In the mol­ecule of (4) intra­molecular hydrogen bonds do not occur. In the five mol­ecules, the angles between the phenyl rings connected by the —NH—N=C— bridge are different. The corresponding angle is 44.40 (18)° for (1) for one of the two orientations in the disordered parts and 52.74 (19)° for the other orientation, while the dihedral angle between the disordered phenyl rings in (1) is 83.1 (2)°. In (2), the angle is 32.31 (18)° for mol­ecule A and 45.62 (18)° for mol­ecule B. In (3) it is 51.09 (7)°, in (4) 83.69 (6)° and in (5) 49.9 (3)°. Other bond lengths and angles within the five mol­ecules are in normal ranges and consistent with those of the related compounds described in the Database survey (Section 4).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.95 (4) 1.93 (4) 2.668 (3) 133 (4)
C9—H9⋯O2 0.95 2.49 2.862 (6) 103
C9A—H9A⋯N1i 0.95 2.55 3.488 (6) 169
C5A—H5ACg2ii 0.95 2.85 3.611 (6) 138
C8—H8⋯Cg5iii 0.95 2.81 3.677 (6) 152
C8A—H8ACg2i 0.95 2.86 3.607 (6) 136
C16—H16BCg7ii 0.98 2.74 3.544 (3) 139
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1A 1.00 (5) 1.82 (5) 2.631 (4) 136 (4)
N2B—H2B⋯O1B 0.81 (5) 2.03 (5) 2.645 (4) 133 (5)
C9A—H9A⋯O2A 0.95 2.47 2.827 (4) 102
C9B—H9B⋯O2B 0.95 2.58 2.898 (4) 100
C5A—H5ACg3i 0.95 2.88 3.637 (4) 137
Symmetry code: (i) [x-1, y, z].

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (2) 1.98 (2) 2.657 (2) 134 (2)
C7—H7⋯O4i 0.95 2.44 3.245 (2) 142
C12—H12⋯O1ii 0.95 2.52 3.401 (2) 154
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].

Table 4
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯N1i 0.98 2.55 3.5099 (15) 168
C3—H3C⋯Cl1ii 0.98 2.82 3.6422 (12) 142
C6—H6⋯O1iii 0.95 2.40 3.3113 (15) 161
C15—H15⋯O1iv 0.95 2.40 3.2759 (14) 153
C14—H14⋯Cg1v 0 2.80 3.4792 (12) 129
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x, y-1, z]; (iii) [x, y+1, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.93 (5) 2.00 (6) 2.666 (4) 127 (4)
C9—H9⋯O2 0.95 2.58 2.953 (6) 103
C11—H11⋯Br1i 0.95 2.75 3.689 (4) 172
C12—H12⋯O1ii 0.95 2.54 3.479 (4) 168
C14—H14⋯Cl1iii 0.95 2.70 3.616 (4) 161
C8—H8⋯Cg1iv 0.95 2.70 3.591 (6) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z]; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) [x-{\script{1\over 2}}, -y+1, z]; (iv) [-x+2, -y+1, z-{\script{1\over 2}}].

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (1), non-classical C9A—H9A⋯N1 hydrogen bonds connect adjacent mol­ecules parallel to [010] to form C(5) chains (Table 1[link]; Fig. 8[link]). In addition, mol­ecules are connected by C—H⋯π inter­actions to form ribbons along the propagation direction (Fig. 9[link]). Significant inter­molecular hydrogen bonding is not observed in (2). The mol­ecules are aligned in ribbons parallel to [100] in the (010) plane (Fig. 10[link]) whereby pairs of mol­ecules are formed by C5—H5⋯Cg3 inter­actions (Table 2[link]; Fig. 11[link]). The crystal structure is consolidated through van der Waals inter­actions. In the crystal of (3), C7—H7⋯O4 and C12—H12⋯O1 inter­actions form ribbons along [010] (Table 3[link]; Figs. 12[link] and 13[link]) , but C—H⋯π inter­actions are not observed. The crystal structure is consolidated through van der Waals inter­actions between the ribbons. In the crystal structure of (4), C3—H3B⋯N1, C3—H3C⋯Cl1, C6⋯H6⋯O1 and C15—H15⋯O1 inter­molecular inter­actions connect the mol­ecules under formation of layers parallel to the (001) plane (Table 4[link]; Figs. 14[link], 15[link]). At the same time, C14—H14⋯Cg1 inter­actions link the mol­ecules together in the (001) plane along [100] (Fig. 16[link]). The crystal structure is consolidated by van der Waals inter­actions between the layers. In the crystal structure of (5), C11—H11⋯Br1, C12—H12⋯O1 and C14—H14⋯Cl1 inter­molecular hydrogen bonds form layers parallel to (002) (Table 5[link]; Figs. 17[link], 18[link]). C8—H8⋯Cg1 inter­actions also take place between these planes and consolidate the crystal structure (Fig. 19[link]).

[Figure 8]
Figure 8
View of the intra- and inter­molecular hydrogen bonds of (1) along the b axis.
[Figure 9]
Figure 9
View of the C—H⋯π inter­actions of (1) in the unit cell along the b axis.
[Figure 10]
Figure 10
A general view of the mol­ecular packing of (2) in the unit cell.
[Figure 11]
Figure 11
A view of the C—H⋯π inter­actions of (2) along the c axis.
[Figure 12]
Figure 12
A view of the packing of (3) along the a axis.
[Figure 13]
Figure 13
A view of the packing of (3) along the c axis.
[Figure 14]
Figure 14
A view of the hydrogen bonds present in (4) in a view along the b axis.
[Figure 15]
Figure 15
A view of the hydrogen bonds present in (4) in a view along the c axis.
[Figure 16]
Figure 16
A view of the C—H⋯π contacts of (4) along the a axis.
[Figure 17]
Figure 17
A view of the hydrogen bonds present in (5) in a view along the a axis.
[Figure 18]
Figure 18
A view of the hydrogen bonds present in (5) in a view along the c axis.
[Figure 19]
Figure 19
A view of the C—H⋯π contacts of (5) in a view along the a axis.

To qu­antify the inter­molecular inter­actions between the mol­ecules in (1)–(5) in their respective crystal structures, Hirshfeld surfaces (Fig. 20[link]) and their corresponding two-dimensional fingerprint plots (Fig. 21[link]) were calculated with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dominant inter­actions in all compounds are H⋯H [(1): 59.9%, (2A): 41.8%, (2B): 46.4, (3): 38.9%, (4): 39.0% and (5): 26.3%] and C⋯H/H⋯C [(1): 13.3%, (2A): 26.8%, (2B): 21.0, (3): 16.0%, (4): 21.4% and (5): 25.1%]. In (3) and (4), O⋯H/H⋯O inter­actions are also important inter­actions [(3): 28.5% and (4): 12.7%]. Br⋯H/H⋯Br in Br-containing compounds (1), (2) and (5) [(1): 12.5%, (2A): 15.7%, (2B): 15.6% and (5): 15.8%] and Cl⋯H/H⋯Cl inter­actions in Cl-containing compound (5) [(5): 14.5%] also contribute to the stability of the crystal structures. The full percentage contributions of inter­atomic contacts calculated for each compound are given in Table 6[link]. The presence of different functional groups in the compounds leads to some differences in the remaining weak inter­actions.

Table 6
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for compounds 1, 2, 3, 4 and 5

Contact 1 2A 3B 3 4 5
H⋯H 59.9 41.8 46.4 38.9 39.0 26.3
C⋯H/H⋯C 13.3 26.8 21.0 16.0 21.4 25.1
Br⋯H/H⋯Br 12.5 15.7 15.6 15.8
O⋯H/H⋯O 6.2 6.9 8.5 28.5 12.7 5.6
N⋯H/H⋯N 2.0 3.2 3.2 2.4 5.7 1.9
N⋯C/C⋯N 2.2 1.7 1.7 3.4 2.0 1.0
C⋯C 1.4 1.1 1.1 3.6 1.2 2.3
O⋯C/C⋯O 1.1 1.4 1.4 3.9 1.4 3.9
O⋯N/N⋯O 0.9 0.7 0.7 1.9
O⋯O 0.1 0.9 0.2
N⋯N 0.4 1.5
Br⋯O/O⋯Br 0.5
Br⋯C/C⋯Br 0.1 0.5 0.2 0.6
Br⋯Br 0.1
Cl⋯H/H⋯Cl 14.5
Cl⋯O/O⋯Cl 1.3
[Figure 20]
Figure 20
Front (a) and back (b) views of the three-dimensional Hirshfeld surface of the mol­ecules (1), (2), (3), (4) and (5), with some C—H⋯O, C—H⋯Br, C—H⋯Cl and O—H⋯O hydrogen bonds shown as dashed lines.
[Figure 21]
Figure 21
The full two-dimensional fingerprint plots for (1), (2), (3), (4) and (5), showing (a) H⋯H, (b) C⋯H/H⋯C, (c) Cl⋯H/H⋯Cl or Br⋯H/H⋯Br and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with the (1E)-1-benzyl­idene-2-phenyl­hydrazine moiety revealed that the three most similar compounds are KOGYEN (Akhramez et al., 2019[Akhramez, S., Hafid, A., Khouili, M., Saadi, M., El Ammari, L. & Ketatni, E. M. (2019). Acta Cryst. E75, 964-968.]), UREKIM (Jasinski et al., 2011[Jasinski, J. P., Braley, A. N., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2011). Acta Cryst. E67, o1200-o1201.]) and SOJQAL (Sultan et al., 2014[Sultan, S., Taha, M., Shah, S. A. A., Yamin, B. M. & Zaki, H. M. (2014). Acta Cryst. E70, o751.]).

KOGYEN crystallizes in the monoclinic Cc space group with Z = 4, UREKIM in the triclinic P[\overline{1}] space group with Z = 2, and SOJQAL in the ortho­rhom­bic P212121 space group with Z = 4.

In KOGYEN, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along [100]. The N—H group does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions into the three-periodic structure. In UREKIM, crystal packing is stabilized by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯F inter­molecular inter­actions and centroid-to-centroid π-ring stacking inter­actions. In SOJQAL, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into zigzag chains propagating along [100].

5. Synthesis and crystallization

Compounds (1), (2) (3), (4) and (5) were synthesized according to a literature protocol (Shikhaliyev et al., 2021b[Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021b). Mendeleev Commun. 31, 677-679.]). For the procedure, 10 mg of the corresponding di­chlorodi­aza­diene and 30 ml of methanol were mixed and stirred for 2 h. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (1/1 v/v), and corresponding ethers were obtained as polycrystalline yellow solids.

Methyl (2Z)-(4-bromo­phen­yl)[2-(4-methyl­phen­yl)hydrazinyl­idene]acetate (1): yield 75%; m.p. 370 K. 1H NMR (300 MHz, chloro­form-d, ppm) δ 12.48 (s, 1H, –NH), 7.53 (d, J = 2.8 Hz, 4H, Ar), 7.19 (t, J = 7.0 Hz, 4H, Ar), 3.89 (s, 3H, –OCH3), 2.34 (s, 3H, --CH3). 13C NMR (75 MHz, CDCl3, ppm) δ 140.8, 140.6, 135.4, 132.5, 131.0, 130.1, 129.9, 121.5, 114.3, 114.1, 51.7, 20.8

Methyl (2Z)-(4-bromo-phen­yl)[2-(3,5-di­methyl­phen­yl)hydrazinyl­idene]acetate (2): yield 37%; m.p. 383 K. 1H NMR (300 MHz, chloro­form-d, ppm) δ 12.44 (s, 1H, –NH), 7.54 (s, 4H, Ar), 6.93 (s, 2H, Ar), 6.71 (s, 1H, Ar), 3.89 (s, 3H, –OCH3) , 2.34 (s, 6H, –CH3,). 13C NMR (75 MHz, chloro­form-d, ppm) δ 163.8, 142.8, 139.2, 135.4, 131.0, 130.2, 126.0, 124.8, 121.6, 112.2, 51.8, 21.4.

Methyl (2Z)-[2-(4-meth­oxy­phen­yl)hydrazinyl­idene](3-nitro­phen­yl)acetate (3): yield 63%; m.p. 375.18 K. 1H NMR (300 MHz, chloro­form-d, ppm) δ 12.67 (s, 1H, –NH), 8.55 (s, 1H, Ar), 8.14 (dd, J = 8.2, 1.3 Hz, 1H, Ar), 8.01 (d, J = 7.9 Hz, 1H, Ar), 7.53 (t, J = 8.0 Hz, 1H, Ar), 7.27 (d, J = 2.1 Hz, 1H, Ar), 7.25 (d, J = 2.0 Hz, 1H, Ar), 6.96–6.89 (m, 2H, Ar), 3.92 (s, 3H, –OCH3), 3.82 (s, 3H, –OCH3). 13C NMR (75 MHz, CDCl3, ppm) δ 163.7, 156.2, 148.0, 138.2, 136.3, 134.1, 128.6, 123.6, 123.2, 121.7, 115.8, 114.8, 55.6, 51.9.

Methyl (2E)-(4-chloro-phen­yl)(2-phenyl­hydrazinyl­idene)acetate (4): yield 63%; m.p. 375 K. 1H NMR (300 MHz, chloro­form-d, ppm) δ 8.07 (s, 1H, –NH), 7.55 (d, J = 8.4 Hz, 2H, Ar), 7.30 (dd, J = 7.8, 5.4 Hz, 4H, Ar), 7.16 (d, J = 7.7 Hz, 2H, Ar), 7.01 (t, J = 7.3 Hz, 1H, Ar), 3.88 (s, 3H, –OCH3). 13C NMR (75 MHz, CDCl3) δ 163.8, 142.9, 134.8, 133.5, 129.8, 129.4, 128.0, 126.4, 122.8, 114.3, 77.5, 77.0, 76.7, 76.6, 51.8.

Methyl (2Z)-[2-(4-bromo­phen­yl)-hydrazinyl­idene](4-chloro­phen­yl)acetate (5): yield 42%; m.p. 382 K. 1H NMR (300 MHz, chloro­form-d, ppm) δ 12.43 (s, 1H, –NH), 7.58 (d, J = 8.3 Hz, 2H, Ar), 7.44 (d, J = 8.4 Hz, 2H, Ar), 7.37 (d, J = 8.2 Hz, 2H, Ar), 7.16 (d, J = 8.4 Hz, 2H, Ar), 3.90 (s, 3H, –OCH3). 13C NMR (75 MHz, CDCl3) δ 132.34, 132.29, 129.91, 129.88, 128.20, 128.15, 117.52, 115.92, 63.76, 52.02, 29.72.

Compounds (1), (2) (3), (4) and (5) were dissolved in di­chloro­methane and then left at room temperature for slow evaporation; red single crystals of all compounds suitable for X-ray diffraction analysis started to form after ca 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The Moscow synchrotron radiation source was used to collect the data for crystals (2) and (5), while the data for crystals (1), (3) and (4) were collected using Cu Kα radiation on a laboratory diffractometer. In all five compounds, C-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The NH group hydrogen atoms were found by difference-Fourier maps for all five crystals and were refined freely for (1), (4) and (5), while those in (2) and (3) were refined with Uiso(H) = 1.2Ueq(N) of the attached nitro­gen atom. In (1), the phenyl ring atoms of the bromo­phenyl group are disordered over two sets of sites with equal occupancies. In (2) owing to poor agreement between observed and calculated intensities, 23 reflections were omitted from the final cycles of refinement.

Table 7
Experimental details

  1 2 3 4 5
Crystal data
Chemical formula C16H15BrN2O2 C17H17BrN2O2 C16H15N3O5 C15H13ClN2O2 C15H12BrClN2O2
Mr 347.20 361.23 329.31 288.72 367.62
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Monoclinic, C2/c Orthorhombic, Pbca Orthorhombic, Pca21
Temperature (K) 100 100 100 100 100
a, b, c (Å) 34.6329 (5), 4.84061 (6), 19.1365 (3) 9.8859 (9), 12.3021 (11), 13.9790 (12) 18.8022 (5), 21.9649 (6), 7.43092 (15) 15.86326 (8), 8.79608 (3), 19.24680 (8) 14.0199 (16), 16.5940 (19), 6.4471 (9)
α, β, γ (°) 90, 109.8598 (16), 90 83.480 (9), 73.266 (7), 81.695 (8) 90, 96.156 (2), 90 90, 90, 90 90, 90, 90
V3) 3017.33 (8) 1606.4 (3) 3051.19 (13) 2685.59 (2) 1499.9 (3)
Z 8 4 8 8 4
Radiation type Cu Kα Synchrotron, λ = 0.75270 Å Cu Kα Cu Kα Synchrotron, λ = 0.75270 Å
μ (mm−1) 3.77 2.97 0.91 2.55 3.35
Crystal size (mm) 0.20 × 0.05 × 0.03 0.12 × 0.09 × 0.07 0.29 × 0.10 × 0.09 0.12 × 0.11 × 0.06 0.18 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector Rayonix SX165 CCD Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector Rayonix SX165 CCD
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.745, 1.000 0.666, 0.789 0.322, 1.000 0.676, 1.000 0.514, 0.633
No. of measured, independent and observed [I > 2σ(I)] reflections 30865, 3282, 3031 21921, 8417, 6338 21181, 3303, 2634 51407, 2935, 2871 12123, 3908, 3677
Rint 0.047 0.036 0.072 0.030 0.039
(sin θ/λ)max−1) 0.639 0.686 0.639 0.639 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.12 0.064, 0.190, 1.07 0.046, 0.126, 1.07 0.030, 0.082, 1.08 0.040, 0.110, 1.09
No. of reflections 3282 8417 3303 2935 3908
No. of parameters 232 410 223 186 196
No. of restraints 0 0 0 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.17, −1.20 1.89, −0.94 0.27, −0.25 0.29, −0.28 1.27, −0.67
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.167 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Methyl (Z)-2-(4-bromophenyl)-2-[2-(4-methylphenyl)hydrazin-1-ylidene]acetate (1) top
Crystal data top
C16H15BrN2O2F(000) = 1408
Mr = 347.20Dx = 1.529 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 34.6329 (5) ÅCell parameters from 15931 reflections
b = 4.84061 (6) Åθ = 2.7–79.1°
c = 19.1365 (3) ŵ = 3.77 mm1
β = 109.8598 (16)°T = 100 K
V = 3017.33 (8) Å3Needle, yellow
Z = 80.20 × 0.05 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
3031 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.047
φ and ω scansθmax = 80.0°, θmin = 2.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021).
h = 4444
Tmin = 0.745, Tmax = 1.000k = 65
30865 measured reflectionsl = 2424
3282 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0672P)2 + 8.4257P]
where P = (Fo2 + 2Fc2)/3
3282 reflections(Δ/σ)max = 0.003
232 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.57358 (2)0.73045 (7)0.43385 (2)0.03156 (14)
O10.32249 (6)0.6995 (4)0.20483 (12)0.0287 (4)
O20.38021 (6)0.9149 (4)0.20583 (10)0.0237 (4)
N10.37298 (7)0.3715 (5)0.32724 (12)0.0242 (4)
N20.33381 (7)0.3087 (5)0.30821 (13)0.0250 (5)
H20.3151 (12)0.417 (8)0.270 (2)0.035 (10)*
C10.38646 (8)0.5648 (5)0.29398 (14)0.0218 (5)
C20.35954 (9)0.7297 (5)0.23131 (16)0.0229 (5)
C30.35571 (9)1.0778 (6)0.14355 (15)0.0288 (6)
H3A0.34240.95610.10130.043*
H3B0.37341.20990.12980.043*
H3C0.33471.17830.15720.043*
C40.43162 (8)0.6094 (5)0.32521 (14)0.0215 (5)
C50.45024 (15)0.6230 (11)0.4017 (3)0.0218 (9)0.5
H50.43380.61050.43250.026*0.5
C60.49249 (16)0.6545 (11)0.4344 (3)0.0249 (10)0.5
H60.50500.65960.48690.030*0.5
C5A0.45868 (17)0.3824 (11)0.3370 (3)0.0261 (10)0.5
H5A0.44800.20210.32340.031*0.5
C6A0.50112 (17)0.4202 (12)0.3687 (3)0.0268 (10)0.5
H6A0.51930.26760.37580.032*0.5
C70.51588 (8)0.6783 (6)0.38907 (14)0.0231 (5)
C80.49822 (16)0.6675 (12)0.3116 (3)0.0234 (10)0.5
H80.51480.68120.28110.028*0.5
C90.45600 (16)0.6364 (11)0.2801 (3)0.0219 (9)0.5
H90.44350.63340.22760.026*0.5
C8A0.49031 (19)0.9093 (12)0.3792 (3)0.0315 (12)0.5
H8A0.50141.08830.39370.038*0.5
C9A0.44817 (18)0.8689 (11)0.3474 (3)0.0293 (11)0.5
H9A0.43031.02300.34080.035*0.5
C100.32137 (8)0.1052 (5)0.34874 (14)0.0244 (5)
C110.27995 (9)0.0484 (6)0.33053 (14)0.0270 (5)
H110.26030.14590.29130.032*
C120.26724 (8)0.1513 (6)0.36979 (15)0.0251 (5)
H120.23870.18960.35630.030*
C130.29469 (9)0.2977 (5)0.42819 (15)0.0226 (5)
C140.33647 (9)0.2381 (5)0.44565 (16)0.0266 (6)
H140.35610.33520.48500.032*
C150.34988 (8)0.0385 (6)0.40626 (15)0.0263 (5)
H150.37840.00120.41880.032*
C160.28049 (10)0.5098 (6)0.47178 (16)0.0308 (6)
H16A0.28420.43730.52140.046*
H16B0.29670.67910.47620.046*
H16C0.25140.55100.44600.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01941 (19)0.0424 (2)0.02934 (19)0.00077 (10)0.00364 (13)0.00388 (11)
O10.0183 (9)0.0295 (9)0.0366 (10)0.0017 (7)0.0069 (8)0.0004 (8)
O20.0202 (8)0.0263 (9)0.0254 (8)0.0009 (7)0.0087 (7)0.0027 (7)
N10.0229 (10)0.0259 (11)0.0256 (10)0.0046 (9)0.0107 (8)0.0049 (8)
N20.0222 (11)0.0291 (11)0.0234 (10)0.0026 (9)0.0074 (9)0.0006 (9)
C10.0226 (12)0.0208 (11)0.0234 (11)0.0012 (9)0.0097 (9)0.0023 (9)
C20.0220 (13)0.0221 (12)0.0273 (12)0.0019 (9)0.0118 (11)0.0031 (9)
C30.0290 (13)0.0307 (13)0.0267 (12)0.0038 (11)0.0092 (11)0.0044 (11)
C40.0210 (12)0.0204 (11)0.0227 (11)0.0005 (9)0.0068 (9)0.0004 (9)
C50.020 (2)0.025 (2)0.021 (2)0.0017 (19)0.0077 (18)0.0001 (18)
C60.023 (2)0.026 (2)0.022 (2)0.001 (2)0.0038 (19)0.0021 (19)
C5A0.027 (3)0.021 (2)0.032 (3)0.002 (2)0.011 (2)0.000 (2)
C6A0.028 (3)0.026 (2)0.031 (3)0.003 (2)0.015 (2)0.006 (2)
C70.0188 (11)0.0264 (12)0.0230 (12)0.0007 (10)0.0056 (9)0.0029 (10)
C80.019 (2)0.029 (2)0.023 (2)0.002 (2)0.0072 (19)0.002 (2)
C90.021 (2)0.026 (2)0.019 (2)0.0015 (19)0.0082 (18)0.0001 (18)
C8A0.029 (3)0.023 (2)0.037 (3)0.001 (2)0.005 (2)0.002 (2)
C9A0.027 (3)0.018 (2)0.037 (3)0.003 (2)0.004 (2)0.003 (2)
C100.0289 (13)0.0249 (12)0.0217 (11)0.0033 (10)0.0115 (10)0.0046 (9)
C110.0275 (13)0.0306 (13)0.0218 (11)0.0013 (11)0.0071 (10)0.0009 (10)
C120.0200 (12)0.0304 (13)0.0243 (11)0.0030 (10)0.0068 (10)0.0016 (10)
C130.0271 (13)0.0198 (11)0.0234 (12)0.0007 (10)0.0117 (10)0.0013 (9)
C140.0239 (14)0.0279 (13)0.0269 (13)0.0050 (10)0.0071 (11)0.0028 (10)
C150.0202 (12)0.0294 (13)0.0313 (13)0.0036 (10)0.0114 (10)0.0088 (10)
C160.0401 (16)0.0237 (12)0.0357 (14)0.0013 (11)0.0222 (13)0.0022 (11)
Geometric parameters (Å, º) top
Br1—C71.905 (3)C6A—H6A0.9500
O1—C21.218 (4)C7—C8A1.399 (6)
O2—C21.338 (3)C7—C81.400 (6)
O2—C31.441 (3)C8—C91.387 (7)
N1—C11.304 (3)C8—H80.9500
N1—N21.315 (3)C9—H90.9500
N2—C101.409 (4)C8A—C9A1.391 (8)
N2—H20.96 (4)C8A—H8A0.9500
C1—C21.478 (4)C9A—H9A0.9500
C1—C41.488 (4)C10—C111.384 (4)
C3—H3A0.9800C10—C151.390 (4)
C3—H3B0.9800C11—C121.385 (4)
C3—H3C0.9800C11—H110.9500
C4—C9A1.386 (6)C12—C131.390 (4)
C4—C51.387 (5)C12—H120.9500
C4—C91.403 (5)C13—C141.400 (4)
C4—C5A1.412 (6)C13—C161.507 (4)
C5—C61.390 (7)C14—C151.398 (4)
C5—H50.9500C14—H140.9500
C6—C71.378 (6)C15—H150.9500
C6—H60.9500C16—H16A0.9800
C5A—C6A1.398 (8)C16—H16B0.9800
C5A—H5A0.9500C16—H16C0.9800
C6A—C71.356 (6)
C2—O2—C3115.5 (2)C8A—C7—Br1118.3 (3)
C1—N1—N2122.5 (2)C8—C7—Br1119.7 (3)
N1—N2—C10119.3 (2)C9—C8—C7118.7 (4)
N1—N2—H2117 (2)C9—C8—H8120.6
C10—N2—H2124 (2)C7—C8—H8120.6
N1—C1—C2123.5 (2)C8—C9—C4120.6 (4)
N1—C1—C4114.2 (2)C8—C9—H9119.7
C2—C1—C4122.3 (2)C4—C9—H9119.7
O1—C2—O2123.2 (3)C9A—C8A—C7118.0 (5)
O1—C2—C1123.9 (2)C9A—C8A—H8A121.0
O2—C2—C1112.9 (2)C7—C8A—H8A121.0
O2—C3—H3A109.5C4—C9A—C8A121.6 (5)
O2—C3—H3B109.5C4—C9A—H9A119.2
H3A—C3—H3B109.5C8A—C9A—H9A119.2
O2—C3—H3C109.5C11—C10—C15119.8 (2)
H3A—C3—H3C109.5C11—C10—N2119.0 (2)
H3B—C3—H3C109.5C15—C10—N2121.2 (2)
C5—C4—C9118.9 (3)C10—C11—C12119.7 (3)
C9A—C4—C5A118.2 (4)C10—C11—H11120.1
C9A—C4—C1121.6 (3)C12—C11—H11120.1
C5—C4—C1118.6 (3)C11—C12—C13122.4 (2)
C9—C4—C1122.4 (3)C11—C12—H12118.8
C5A—C4—C1120.1 (3)C13—C12—H12118.8
C4—C5—C6121.4 (4)C12—C13—C14117.1 (2)
C4—C5—H5119.3C12—C13—C16122.0 (3)
C6—C5—H5119.3C14—C13—C16120.9 (3)
C7—C6—C5118.7 (4)C15—C14—C13121.3 (3)
C7—C6—H6120.7C15—C14—H14119.4
C5—C6—H6120.7C13—C14—H14119.4
C6A—C5A—C4120.7 (5)C10—C15—C14119.7 (2)
C6A—C5A—H5A119.6C10—C15—H15120.1
C4—C5A—H5A119.6C14—C15—H15120.1
C7—C6A—C5A118.9 (5)C13—C16—H16A109.5
C7—C6A—H6A120.6C13—C16—H16B109.5
C5A—C6A—H6A120.6H16A—C16—H16B109.5
C6A—C7—C8A122.6 (4)C13—C16—H16C109.5
C6—C7—C8121.7 (4)H16A—C16—H16C109.5
C6A—C7—Br1119.1 (3)H16B—C16—H16C109.5
C6—C7—Br1118.6 (3)
C1—N1—N2—C10177.4 (2)C5—C6—C7—C80.9 (7)
N2—N1—C1—C20.9 (4)C5—C6—C7—Br1178.5 (4)
N2—N1—C1—C4178.3 (2)C6A—C7—C8—C968.3 (5)
C3—O2—C2—O10.6 (4)C6—C7—C8—C91.0 (7)
C3—O2—C2—C1178.6 (2)C8A—C7—C8—C960.4 (5)
N1—C1—C2—O10.4 (4)Br1—C7—C8—C9178.4 (4)
C4—C1—C2—O1179.5 (3)C7—C8—C9—C41.6 (8)
N1—C1—C2—O2179.7 (2)C9A—C4—C9—C861.1 (5)
C4—C1—C2—O21.2 (3)C5—C4—C9—C82.0 (7)
N1—C1—C4—C9A126.8 (4)C5A—C4—C9—C863.7 (5)
C2—C1—C4—C9A52.4 (4)C1—C4—C9—C8177.6 (4)
N1—C1—C4—C545.3 (4)C6A—C7—C8A—C9A0.3 (8)
C2—C1—C4—C5133.9 (3)C6—C7—C8A—C9A66.2 (6)
N1—C1—C4—C9134.2 (3)C8—C7—C8A—C9A61.5 (6)
C2—C1—C4—C946.6 (4)Br1—C7—C8A—C9A179.1 (4)
N1—C1—C4—C5A49.4 (4)C5—C4—C9A—C8A66.2 (6)
C2—C1—C4—C5A131.4 (4)C9—C4—C9A—C8A60.2 (6)
C9A—C4—C5—C667.0 (5)C5A—C4—C9A—C8A1.3 (8)
C9—C4—C5—C61.9 (7)C1—C4—C9A—C8A177.6 (5)
C5A—C4—C5—C658.9 (5)C7—C8A—C9A—C40.7 (9)
C1—C4—C5—C6177.7 (4)N1—N2—C10—C11177.2 (2)
C4—C5—C6—C71.3 (8)N1—N2—C10—C152.8 (4)
C9A—C4—C5A—C6A1.5 (7)C15—C10—C11—C120.0 (4)
C5—C4—C5A—C6A60.5 (5)N2—C10—C11—C12179.9 (2)
C9—C4—C5A—C6A65.3 (5)C10—C11—C12—C130.7 (4)
C1—C4—C5A—C6A177.8 (4)C11—C12—C13—C140.9 (4)
C4—C5A—C6A—C71.1 (7)C11—C12—C13—C16178.5 (3)
C5A—C6A—C7—C660.5 (5)C12—C13—C14—C150.4 (4)
C5A—C6A—C7—C8A0.5 (7)C16—C13—C14—C15179.0 (2)
C5A—C6A—C7—C867.0 (5)C11—C10—C15—C140.4 (4)
C5A—C6A—C7—Br1178.9 (4)N2—C10—C15—C14179.6 (2)
C5—C6—C7—C6A62.6 (5)C13—C14—C15—C100.2 (4)
C5—C6—C7—C8A66.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.95 (4)1.93 (4)2.668 (3)133 (4)
C9—H9···O20.952.492.862 (6)103
C9A—H9A···N1i0.952.553.488 (6)169
C5A—H5A···Cg2ii0.952.853.611 (6)138
C8—H8···Cg5iii0.952.813.677 (6)152
C8A—H8A···Cg2i0.952.863.607 (6)136
C16—H16B···Cg7ii0.982.743.544 (3)139
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+1/2.
Methyl (Z)-2-(4-bromophenyl)-2-[2-(3,5-dimethylphenyl)hydrazin-1-ylidene]acetate (2) top
Crystal data top
C17H17BrN2O2Z = 4
Mr = 361.23F(000) = 736
Triclinic, P1Dx = 1.494 Mg m3
a = 9.8859 (9) ÅSynchrotron radiation, λ = 0.75270 Å
b = 12.3021 (11) ÅCell parameters from 1000 reflections
c = 13.9790 (12) Åθ = 1.8–30.0°
α = 83.480 (9)°µ = 2.97 mm1
β = 73.266 (7)°T = 100 K
γ = 81.695 (8)°Prism, yellow
V = 1606.4 (3) Å30.12 × 0.09 × 0.07 mm
Data collection top
Rayonix SX165 CCD
diffractometer
6338 reflections with I > 2σ(I)
/f scanRint = 0.036
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 31.1°, θmin = 1.8°
Tmin = 0.666, Tmax = 0.789h = 1313
21921 measured reflectionsk = 1616
8417 independent reflectionsl = 1819
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.1079P)2 + 1.6265P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.89 e Å3
8417 reflectionsΔρmin = 0.94 e Å3
410 parametersExtinction correction: SHELXL-2019/2 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.044 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.4335 (3)0.3106 (3)0.6750 (3)0.0279 (6)
C2A0.4825 (3)0.4119 (3)0.6932 (3)0.0294 (7)
C3A0.6205 (4)0.5560 (3)0.6248 (3)0.0423 (9)
H3AA0.6774390.5856440.5600060.063*
H3AB0.6779000.5433970.6725040.063*
H3AC0.5367630.6087790.6501560.063*
C4A0.5061 (3)0.2504 (3)0.5848 (2)0.0261 (6)
C5A0.4260 (3)0.1991 (3)0.5392 (3)0.0316 (7)
H5A0.3256860.2036520.5664440.038*
C6A0.4906 (4)0.1420 (3)0.4553 (3)0.0319 (7)
H6A0.4351770.1069930.4252940.038*
C7A0.6361 (4)0.1361 (3)0.4152 (3)0.0301 (7)
C8A0.7196 (3)0.1832 (3)0.4598 (3)0.0318 (7)
H8A0.8199910.1771660.4327250.038*
C9A0.6534 (3)0.2393 (3)0.5451 (3)0.0309 (7)
H9A0.7098080.2707540.5769180.037*
C10A0.1256 (4)0.2743 (3)0.8804 (3)0.0316 (7)
C11A0.0567 (4)0.3239 (3)0.9683 (3)0.0369 (8)
H11A0.0920460.3852590.9843070.044*
C12A0.0639 (4)0.2842 (3)1.0332 (3)0.0375 (8)
C13A0.1141 (4)0.1949 (3)1.0083 (3)0.0327 (7)
H13A0.1970250.1680281.0523400.039*
C14A0.0465 (4)0.1436 (3)0.9208 (3)0.0307 (7)
C15A0.0755 (4)0.1845 (3)0.8550 (3)0.0314 (7)
H15A0.1228380.1512410.7942160.038*
C16A0.1391 (5)0.3384 (4)1.1287 (3)0.0500 (11)
H16C0.2360550.3682841.1273590.075*
H16D0.0873770.3982051.1348870.075*
H16E0.1429980.2838301.1859480.075*
C17A0.1000 (4)0.0467 (3)0.8954 (3)0.0363 (8)
H17C0.0703690.0195320.9338050.054*
H17D0.0607730.0372470.8235940.054*
H17E0.2040560.0585640.9120150.054*
Br1A0.72473 (4)0.06195 (3)0.29756 (3)0.03885 (15)
N1A0.3195 (3)0.2721 (2)0.7342 (2)0.0305 (6)
N2A0.2473 (3)0.3176 (3)0.8175 (2)0.0318 (6)
O1A0.4383 (3)0.4574 (2)0.7710 (2)0.0333 (5)
O2A0.5755 (3)0.4536 (2)0.6125 (2)0.0331 (5)
H2A0.294 (5)0.376 (4)0.835 (4)0.040*
C1B0.9468 (3)0.3394 (3)0.6648 (2)0.0260 (6)
C2B1.0061 (3)0.4347 (3)0.6847 (2)0.0262 (6)
C3B1.1954 (4)0.5434 (3)0.6364 (3)0.0322 (7)
H3BA1.2857850.5493590.5847720.048*
H3BB1.2128470.5301870.7024870.048*
H3BC1.1318910.6120290.6339750.048*
C4B1.0166 (3)0.2763 (3)0.5762 (2)0.0258 (6)
C5B1.0352 (3)0.1616 (3)0.5884 (3)0.0282 (6)
H5B1.0035250.1253560.6531810.034*
C6B1.0992 (3)0.1001 (3)0.5070 (3)0.0303 (7)
H6B1.1140120.0220280.5162030.036*
C7B1.1416 (3)0.1523 (3)0.4120 (3)0.0283 (6)
C8B1.1236 (3)0.2656 (3)0.3969 (3)0.0300 (7)
H8B1.1528270.3010060.3315020.036*
C9B1.0619 (3)0.3266 (3)0.4793 (3)0.0283 (6)
H9B1.0499270.4046980.4696990.034*
C10B0.6466 (3)0.2975 (3)0.8746 (3)0.0275 (6)
C11B0.5797 (4)0.3428 (3)0.9656 (3)0.0298 (7)
H11B0.6139980.4042420.9824360.036*
C12B0.4637 (4)0.2990 (3)1.0317 (3)0.0328 (7)
C13B0.4136 (4)0.2099 (3)1.0046 (3)0.0316 (7)
H13B0.3331410.1801041.0491620.038*
C14B0.4789 (3)0.1636 (3)0.9135 (3)0.0295 (7)
C15B0.5967 (3)0.2091 (3)0.8484 (2)0.0277 (6)
H15B0.6425700.1789510.7859650.033*
C16B0.3916 (5)0.3463 (4)1.1314 (3)0.0427 (9)
H16F0.2910850.3700731.1359720.064*
H16G0.4378520.4096191.1371090.064*
H16H0.3990700.2899551.1856600.064*
C17B0.4269 (4)0.0673 (3)0.8860 (3)0.0342 (7)
H17F0.4519260.0672280.8128450.051*
H17G0.3233590.0718990.9133320.051*
H17H0.4712050.0008180.9135870.051*
Br1B1.22812 (4)0.06754 (3)0.30080 (3)0.03961 (16)
N1B0.8342 (3)0.3006 (2)0.7260 (2)0.0275 (5)
N2B0.7636 (3)0.3450 (2)0.8103 (2)0.0278 (6)
O1B0.9482 (3)0.4914 (2)0.7546 (2)0.0334 (5)
O2B1.1299 (2)0.45294 (19)0.61850 (18)0.0279 (5)
H2B0.793 (5)0.396 (4)0.827 (4)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0274 (14)0.0292 (15)0.0269 (16)0.0017 (11)0.0068 (12)0.0047 (12)
C2A0.0272 (14)0.0316 (16)0.0290 (17)0.0008 (12)0.0074 (12)0.0056 (13)
C3A0.050 (2)0.0344 (19)0.039 (2)0.0136 (16)0.0002 (17)0.0116 (16)
C4A0.0258 (14)0.0258 (14)0.0259 (16)0.0016 (11)0.0065 (11)0.0022 (12)
C5A0.0266 (14)0.0354 (17)0.0334 (18)0.0009 (12)0.0097 (13)0.0055 (14)
C6A0.0316 (16)0.0342 (17)0.0315 (18)0.0042 (12)0.0092 (13)0.0074 (14)
C7A0.0365 (16)0.0252 (15)0.0263 (16)0.0007 (12)0.0060 (13)0.0045 (12)
C8A0.0264 (14)0.0255 (15)0.041 (2)0.0021 (11)0.0049 (13)0.0054 (13)
C9A0.0304 (15)0.0268 (15)0.0366 (19)0.0048 (12)0.0088 (13)0.0063 (13)
C10A0.0292 (15)0.0319 (16)0.0299 (17)0.0010 (12)0.0047 (13)0.0017 (13)
C11A0.0404 (18)0.0351 (18)0.0331 (19)0.0020 (14)0.0065 (15)0.0062 (15)
C12A0.0423 (19)0.0365 (18)0.0295 (18)0.0017 (14)0.0037 (14)0.0054 (14)
C13A0.0298 (15)0.0377 (18)0.0260 (17)0.0002 (13)0.0030 (12)0.0015 (13)
C14A0.0307 (15)0.0310 (16)0.0293 (17)0.0008 (12)0.0089 (13)0.0011 (13)
C15A0.0318 (16)0.0364 (17)0.0237 (16)0.0039 (13)0.0071 (12)0.0048 (13)
C16A0.053 (2)0.052 (2)0.036 (2)0.0084 (19)0.0076 (18)0.0136 (19)
C17A0.0341 (17)0.0366 (18)0.036 (2)0.0039 (14)0.0060 (14)0.0038 (15)
Br1A0.0446 (2)0.0352 (2)0.0327 (2)0.00094 (15)0.00333 (16)0.01194 (15)
N1A0.0312 (13)0.0321 (14)0.0267 (14)0.0011 (11)0.0079 (11)0.0022 (11)
N2A0.0325 (14)0.0310 (14)0.0303 (15)0.0042 (11)0.0048 (11)0.0056 (12)
O1A0.0336 (12)0.0338 (13)0.0314 (13)0.0013 (9)0.0064 (10)0.0086 (10)
O2A0.0379 (13)0.0268 (11)0.0324 (13)0.0061 (9)0.0033 (10)0.0070 (10)
C1B0.0259 (13)0.0263 (14)0.0249 (15)0.0037 (11)0.0046 (11)0.0029 (12)
C2B0.0262 (14)0.0286 (15)0.0222 (15)0.0003 (11)0.0052 (11)0.0026 (12)
C3B0.0317 (16)0.0310 (16)0.0339 (18)0.0067 (12)0.0069 (13)0.0045 (13)
C4B0.0236 (13)0.0267 (15)0.0253 (15)0.0017 (11)0.0031 (11)0.0058 (12)
C5B0.0285 (14)0.0270 (15)0.0284 (16)0.0043 (11)0.0061 (12)0.0021 (12)
C6B0.0322 (15)0.0244 (14)0.0344 (18)0.0050 (11)0.0078 (13)0.0052 (13)
C7B0.0277 (14)0.0316 (16)0.0254 (16)0.0034 (12)0.0034 (12)0.0111 (13)
C8B0.0315 (15)0.0322 (16)0.0257 (16)0.0062 (12)0.0050 (12)0.0041 (13)
C9B0.0278 (14)0.0275 (15)0.0262 (16)0.0000 (11)0.0033 (12)0.0029 (12)
C10B0.0256 (14)0.0303 (15)0.0238 (16)0.0015 (11)0.0039 (11)0.0038 (12)
C11B0.0322 (15)0.0296 (16)0.0252 (16)0.0035 (12)0.0032 (12)0.0052 (12)
C12B0.0326 (16)0.0347 (17)0.0253 (17)0.0005 (13)0.0003 (13)0.0045 (13)
C13B0.0296 (15)0.0328 (17)0.0268 (17)0.0023 (12)0.0002 (12)0.0008 (13)
C14B0.0274 (14)0.0282 (15)0.0317 (17)0.0011 (11)0.0080 (12)0.0004 (13)
C15B0.0279 (14)0.0296 (15)0.0218 (15)0.0013 (11)0.0027 (11)0.0032 (12)
C16B0.046 (2)0.047 (2)0.0292 (19)0.0101 (17)0.0057 (15)0.0131 (16)
C17B0.0324 (16)0.0307 (17)0.039 (2)0.0043 (13)0.0076 (14)0.0062 (14)
Br1B0.0464 (2)0.0367 (2)0.0340 (2)0.00589 (15)0.00226 (16)0.01727 (16)
N1B0.0269 (12)0.0299 (13)0.0246 (14)0.0008 (10)0.0057 (10)0.0046 (11)
N2B0.0276 (13)0.0308 (14)0.0228 (14)0.0024 (10)0.0020 (10)0.0079 (11)
O1B0.0344 (12)0.0319 (12)0.0314 (13)0.0052 (9)0.0025 (10)0.0084 (10)
O2B0.0272 (11)0.0292 (11)0.0266 (12)0.0049 (8)0.0042 (9)0.0052 (9)
Geometric parameters (Å, º) top
C1A—N1A1.307 (4)C1B—N1B1.308 (4)
C1A—C2A1.473 (5)C1B—C2B1.471 (4)
C1A—C4A1.480 (5)C1B—C4B1.478 (4)
C2A—O1A1.217 (4)C2B—O1B1.219 (4)
C2A—O2A1.337 (4)C2B—O2B1.336 (4)
C3A—O2A1.439 (4)C3B—O2B1.444 (4)
C3A—H3AA0.9800C3B—H3BA0.9800
C3A—H3AB0.9800C3B—H3BB0.9800
C3A—H3AC0.9800C3B—H3BC0.9800
C4A—C9A1.394 (4)C4B—C5B1.394 (4)
C4A—C5A1.399 (4)C4B—C9B1.400 (5)
C5A—C6A1.380 (5)C5B—C6B1.382 (5)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.380 (5)C6B—C7B1.383 (5)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.387 (5)C7B—C8B1.379 (5)
C7A—Br1A1.893 (3)C7B—Br1B1.893 (3)
C8A—C9A1.390 (5)C8B—C9B1.386 (4)
C8A—H8A0.9500C8B—H8B0.9500
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.384 (5)C10B—C15B1.382 (5)
C10A—C15A1.393 (5)C10B—C11B1.391 (5)
C10A—N2A1.405 (4)C10B—N2B1.402 (4)
C11A—C12A1.388 (5)C11B—C12B1.384 (5)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.385 (5)C12B—C13B1.396 (5)
C12A—C16A1.505 (5)C12B—C16B1.510 (5)
C13A—C14A1.387 (5)C13B—C14B1.396 (5)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.409 (5)C14B—C15B1.399 (5)
C14A—C17A1.487 (5)C14B—C17B1.487 (5)
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16C0.9800C16B—H16F0.9800
C16A—H16D0.9800C16B—H16G0.9800
C16A—H16E0.9800C16B—H16H0.9800
C17A—H17C0.9800C17B—H17F0.9800
C17A—H17D0.9800C17B—H17G0.9800
C17A—H17E0.9800C17B—H17H0.9800
N1A—N2A1.316 (4)N1B—N2B1.317 (4)
N2A—H2A0.99 (5)N2B—H2B0.81 (5)
N1A—C1A—C2A122.2 (3)N1B—C1B—C2B123.0 (3)
N1A—C1A—C4A116.2 (3)N1B—C1B—C4B115.2 (3)
C2A—C1A—C4A121.6 (3)C2B—C1B—C4B121.7 (3)
O1A—C2A—O2A122.7 (3)O1B—C2B—O2B123.4 (3)
O1A—C2A—C1A124.4 (3)O1B—C2B—C1B123.4 (3)
O2A—C2A—C1A112.9 (3)O2B—C2B—C1B113.2 (3)
O2A—C3A—H3AA109.5O2B—C3B—H3BA109.5
O2A—C3A—H3AB109.5O2B—C3B—H3BB109.5
H3AA—C3A—H3AB109.5H3BA—C3B—H3BB109.5
O2A—C3A—H3AC109.5O2B—C3B—H3BC109.5
H3AA—C3A—H3AC109.5H3BA—C3B—H3BC109.5
H3AB—C3A—H3AC109.5H3BB—C3B—H3BC109.5
C9A—C4A—C5A118.2 (3)C5B—C4B—C9B118.0 (3)
C9A—C4A—C1A122.2 (3)C5B—C4B—C1B119.1 (3)
C5A—C4A—C1A119.6 (3)C9B—C4B—C1B122.8 (3)
C6A—C5A—C4A120.9 (3)C6B—C5B—C4B120.6 (3)
C6A—C5A—H5A119.5C6B—C5B—H5B119.7
C4A—C5A—H5A119.5C4B—C5B—H5B119.7
C5A—C6A—C7A119.6 (3)C5B—C6B—C7B119.9 (3)
C5A—C6A—H6A120.2C5B—C6B—H6B120.0
C7A—C6A—H6A120.2C7B—C6B—H6B120.0
C6A—C7A—C8A121.1 (3)C8B—C7B—C6B121.1 (3)
C6A—C7A—Br1A119.8 (3)C8B—C7B—Br1B119.1 (3)
C8A—C7A—Br1A119.0 (3)C6B—C7B—Br1B119.7 (3)
C7A—C8A—C9A118.7 (3)C7B—C8B—C9B118.4 (3)
C7A—C8A—H8A120.7C7B—C8B—H8B120.8
C9A—C8A—H8A120.7C9B—C8B—H8B120.8
C8A—C9A—C4A121.3 (3)C8B—C9B—C4B121.8 (3)
C8A—C9A—H9A119.3C8B—C9B—H9B119.1
C4A—C9A—H9A119.3C4B—C9B—H9B119.1
C11A—C10A—C15A121.0 (3)C15B—C10B—C11B120.4 (3)
C11A—C10A—N2A117.9 (3)C15B—C10B—N2B121.4 (3)
C15A—C10A—N2A121.1 (3)C11B—C10B—N2B118.2 (3)
C10A—C11A—C12A120.2 (4)C12B—C11B—C10B120.5 (3)
C10A—C11A—H11A119.9C12B—C11B—H11B119.7
C12A—C11A—H11A119.9C10B—C11B—H11B119.7
C13A—C12A—C11A119.0 (3)C11B—C12B—C13B118.7 (3)
C13A—C12A—C16A120.7 (4)C11B—C12B—C16B121.0 (3)
C11A—C12A—C16A120.3 (4)C13B—C12B—C16B120.2 (3)
C12A—C13A—C14A121.8 (3)C14B—C13B—C12B121.6 (3)
C12A—C13A—H13A119.1C14B—C13B—H13B119.2
C14A—C13A—H13A119.1C12B—C13B—H13B119.2
C13A—C14A—C15A119.0 (3)C13B—C14B—C15B118.4 (3)
C13A—C14A—C17A121.4 (3)C13B—C14B—C17B121.3 (3)
C15A—C14A—C17A119.6 (3)C15B—C14B—C17B120.3 (3)
C10A—C15A—C14A119.0 (3)C10B—C15B—C14B120.4 (3)
C10A—C15A—H15A120.5C10B—C15B—H15B119.8
C14A—C15A—H15A120.5C14B—C15B—H15B119.8
C12A—C16A—H16C109.5C12B—C16B—H16F109.5
C12A—C16A—H16D109.5C12B—C16B—H16G109.5
H16C—C16A—H16D109.5H16F—C16B—H16G109.5
C12A—C16A—H16E109.5C12B—C16B—H16H109.5
H16C—C16A—H16E109.5H16F—C16B—H16H109.5
H16D—C16A—H16E109.5H16G—C16B—H16H109.5
C14A—C17A—H17C109.5C14B—C17B—H17F109.5
C14A—C17A—H17D109.5C14B—C17B—H17G109.5
H17C—C17A—H17D109.5H17F—C17B—H17G109.5
C14A—C17A—H17E109.5C14B—C17B—H17H109.5
H17C—C17A—H17E109.5H17F—C17B—H17H109.5
H17D—C17A—H17E109.5H17G—C17B—H17H109.5
C1A—N1A—N2A121.7 (3)C1B—N1B—N2B122.5 (3)
N1A—N2A—C10A120.6 (3)N1B—N2B—C10B119.9 (3)
N1A—N2A—H2A114 (3)N1B—N2B—H2B120 (3)
C10A—N2A—H2A125 (3)C10B—N2B—H2B120 (3)
C2A—O2A—C3A115.0 (3)C2B—O2B—C3B115.6 (3)
N1A—C1A—C2A—O1A13.0 (5)N1B—C1B—C2B—O1B7.1 (5)
C4A—C1A—C2A—O1A170.9 (3)C4B—C1B—C2B—O1B176.8 (3)
N1A—C1A—C2A—O2A163.1 (3)N1B—C1B—C2B—O2B172.9 (3)
C4A—C1A—C2A—O2A13.0 (4)C4B—C1B—C2B—O2B3.2 (4)
N1A—C1A—C4A—C9A145.6 (3)N1B—C1B—C4B—C5B43.2 (4)
C2A—C1A—C4A—C9A38.1 (5)C2B—C1B—C4B—C5B133.2 (3)
N1A—C1A—C4A—C5A32.0 (5)N1B—C1B—C4B—C9B134.9 (3)
C2A—C1A—C4A—C5A144.4 (3)C2B—C1B—C4B—C9B48.7 (5)
C9A—C4A—C5A—C6A2.1 (5)C9B—C4B—C5B—C6B1.3 (5)
C1A—C4A—C5A—C6A179.7 (3)C1B—C4B—C5B—C6B179.5 (3)
C4A—C5A—C6A—C7A0.5 (5)C4B—C5B—C6B—C7B1.9 (5)
C5A—C6A—C7A—C8A2.4 (5)C5B—C6B—C7B—C8B1.2 (5)
C5A—C6A—C7A—Br1A178.0 (3)C5B—C6B—C7B—Br1B179.6 (2)
C6A—C7A—C8A—C9A1.6 (5)C6B—C7B—C8B—C9B0.1 (5)
Br1A—C7A—C8A—C9A178.8 (3)Br1B—C7B—C8B—C9B179.1 (2)
C7A—C8A—C9A—C4A1.1 (5)C7B—C8B—C9B—C4B0.6 (5)
C5A—C4A—C9A—C8A2.9 (5)C5B—C4B—C9B—C8B0.1 (5)
C1A—C4A—C9A—C8A179.6 (3)C1B—C4B—C9B—C8B178.2 (3)
C15A—C10A—C11A—C12A0.3 (6)C15B—C10B—C11B—C12B0.9 (5)
N2A—C10A—C11A—C12A179.9 (3)N2B—C10B—C11B—C12B180.0 (3)
C10A—C11A—C12A—C13A0.2 (6)C10B—C11B—C12B—C13B1.1 (5)
C10A—C11A—C12A—C16A179.8 (4)C10B—C11B—C12B—C16B179.1 (4)
C11A—C12A—C13A—C14A0.5 (6)C11B—C12B—C13B—C14B0.9 (5)
C16A—C12A—C13A—C14A179.9 (4)C16B—C12B—C13B—C14B179.3 (4)
C12A—C13A—C14A—C15A0.8 (5)C12B—C13B—C14B—C15B0.4 (5)
C12A—C13A—C14A—C17A179.1 (4)C12B—C13B—C14B—C17B178.7 (3)
C11A—C10A—C15A—C14A0.5 (5)C11B—C10B—C15B—C14B0.4 (5)
N2A—C10A—C15A—C14A179.6 (3)N2B—C10B—C15B—C14B179.5 (3)
C13A—C14A—C15A—C10A0.8 (5)C13B—C14B—C15B—C10B0.2 (5)
C17A—C14A—C15A—C10A179.1 (3)C17B—C14B—C15B—C10B178.9 (3)
C2A—C1A—N1A—N2A4.7 (5)C2B—C1B—N1B—N2B0.9 (5)
C4A—C1A—N1A—N2A179.0 (3)C4B—C1B—N1B—N2B177.2 (3)
C1A—N1A—N2A—C10A179.6 (3)C1B—N1B—N2B—C10B177.8 (3)
C11A—C10A—N2A—N1A178.1 (3)C15B—C10B—N2B—N1B4.6 (5)
C15A—C10A—N2A—N1A2.0 (5)C11B—C10B—N2B—N1B176.3 (3)
O1A—C2A—O2A—C3A0.4 (5)O1B—C2B—O2B—C3B2.0 (5)
C1A—C2A—O2A—C3A176.7 (3)C1B—C2B—O2B—C3B178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1A1.00 (5)1.82 (5)2.631 (4)136 (4)
N2B—H2B···O1B0.81 (5)2.03 (5)2.645 (4)133 (5)
C9A—H9A···O2A0.952.472.827 (4)102
C9B—H9B···O2B0.952.582.898 (4)100
C5A—H5A···Cg3i0.952.883.637 (4)137
Symmetry code: (i) x1, y, z.
Methyl (Z)-2-[2-(4-methoxyphenyl)hydrazin-1-ylidene]-2-(3-nitrophenyl)acetate (3) top
Crystal data top
C16H15N3O5F(000) = 1376
Mr = 329.31Dx = 1.434 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.8022 (5) ÅCell parameters from 4042 reflections
b = 21.9649 (6) Åθ = 4.0–78.2°
c = 7.43092 (15) ŵ = 0.91 mm1
β = 96.156 (2)°T = 100 K
V = 3051.19 (13) Å3Prismatic needle, yellow
Z = 80.29 × 0.10 × 0.09 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
2634 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.072
φ and ω scansθmax = 80.0°, θmin = 3.1°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021).
h = 2323
Tmin = 0.322, Tmax = 1.000k = 2827
21181 measured reflectionsl = 69
3303 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0486P)2 + 2.64P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3303 reflectionsΔρmax = 0.27 e Å3
223 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00022 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61696 (7)0.61943 (6)0.38295 (16)0.0270 (3)
O20.68370 (6)0.70446 (6)0.37126 (17)0.0268 (3)
O30.63758 (7)0.86543 (6)0.02805 (16)0.0303 (3)
O40.59273 (7)0.95144 (6)0.04857 (17)0.0288 (3)
O50.24312 (6)0.55365 (6)0.76639 (16)0.0246 (3)
N10.50639 (8)0.69827 (7)0.50010 (18)0.0221 (3)
N20.49323 (8)0.63946 (7)0.5152 (2)0.0243 (3)
H20.5246 (12)0.6133 (11)0.488 (3)0.029*
N30.60948 (8)0.89818 (7)0.07922 (18)0.0230 (3)
C10.56661 (9)0.71660 (8)0.4425 (2)0.0210 (3)
C20.62303 (9)0.67454 (8)0.3949 (2)0.0220 (4)
C30.74375 (10)0.66734 (9)0.3324 (3)0.0317 (4)
H3A0.73130.64500.21920.048*
H3B0.75540.63840.43140.048*
H3C0.78520.69350.32030.048*
C40.57519 (8)0.78340 (8)0.4289 (2)0.0197 (3)
C50.59311 (8)0.80907 (8)0.2672 (2)0.0202 (3)
H50.60380.78400.16950.024*
C60.59483 (9)0.87167 (8)0.2535 (2)0.0200 (3)
C70.58109 (9)0.91057 (8)0.3922 (2)0.0225 (3)
H70.58190.95350.37700.027*
C80.56615 (9)0.88470 (9)0.5545 (2)0.0237 (4)
H80.55820.91000.65390.028*
C90.56288 (9)0.82174 (8)0.5716 (2)0.0222 (4)
H90.55200.80460.68280.027*
C100.42944 (9)0.61927 (8)0.5796 (2)0.0228 (4)
C110.42116 (9)0.55701 (8)0.6003 (2)0.0240 (4)
H110.45790.53020.57120.029*
C120.35965 (9)0.53308 (8)0.6634 (2)0.0233 (4)
H120.35450.49040.67780.028*
C130.30601 (9)0.57256 (8)0.7047 (2)0.0216 (4)
C140.31391 (9)0.63514 (8)0.6835 (2)0.0233 (4)
H140.27700.66190.71170.028*
C150.37540 (9)0.65865 (8)0.6213 (2)0.0239 (4)
H150.38060.70140.60730.029*
C160.23032 (9)0.48938 (8)0.7635 (2)0.0254 (4)
H16A0.23020.47420.63950.038*
H16B0.18390.48110.80690.038*
H16C0.26810.46890.84230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (7)0.0239 (7)0.0277 (6)0.0003 (5)0.0043 (5)0.0002 (5)
O20.0191 (6)0.0262 (7)0.0357 (7)0.0005 (5)0.0057 (5)0.0010 (5)
O30.0396 (7)0.0329 (7)0.0196 (6)0.0022 (6)0.0088 (5)0.0013 (5)
O40.0310 (7)0.0246 (7)0.0305 (6)0.0009 (6)0.0024 (5)0.0085 (5)
O50.0221 (6)0.0250 (6)0.0278 (6)0.0020 (5)0.0071 (5)0.0003 (5)
N10.0231 (7)0.0240 (7)0.0189 (6)0.0025 (6)0.0002 (5)0.0034 (6)
N20.0242 (7)0.0233 (8)0.0256 (7)0.0026 (6)0.0041 (6)0.0028 (6)
N30.0229 (7)0.0258 (8)0.0201 (7)0.0039 (6)0.0015 (5)0.0028 (6)
C10.0212 (7)0.0249 (9)0.0165 (7)0.0010 (7)0.0005 (6)0.0026 (6)
C20.0226 (8)0.0255 (9)0.0176 (7)0.0024 (7)0.0013 (6)0.0015 (6)
C30.0231 (9)0.0322 (10)0.0405 (10)0.0045 (8)0.0059 (8)0.0002 (8)
C40.0169 (7)0.0236 (9)0.0182 (7)0.0012 (6)0.0005 (6)0.0021 (6)
C50.0189 (7)0.0256 (9)0.0160 (7)0.0002 (7)0.0018 (6)0.0014 (6)
C60.0184 (7)0.0245 (9)0.0168 (7)0.0023 (6)0.0012 (6)0.0023 (6)
C70.0208 (7)0.0213 (8)0.0252 (8)0.0010 (7)0.0020 (6)0.0022 (7)
C80.0214 (8)0.0299 (9)0.0199 (8)0.0008 (7)0.0035 (6)0.0034 (7)
C90.0189 (7)0.0303 (9)0.0178 (7)0.0004 (7)0.0032 (6)0.0024 (7)
C100.0238 (8)0.0267 (9)0.0178 (7)0.0045 (7)0.0005 (6)0.0011 (7)
C110.0226 (8)0.0241 (9)0.0256 (8)0.0004 (7)0.0046 (6)0.0000 (7)
C120.0247 (8)0.0217 (9)0.0235 (8)0.0019 (7)0.0029 (6)0.0005 (7)
C130.0219 (8)0.0261 (9)0.0168 (7)0.0038 (7)0.0018 (6)0.0005 (6)
C140.0240 (8)0.0253 (9)0.0206 (8)0.0007 (7)0.0019 (6)0.0015 (7)
C150.0267 (8)0.0229 (9)0.0216 (8)0.0016 (7)0.0006 (6)0.0014 (7)
C160.0255 (8)0.0262 (9)0.0248 (8)0.0041 (7)0.0040 (7)0.0034 (7)
Geometric parameters (Å, º) top
O1—C21.218 (2)C5—H50.9500
O2—C21.344 (2)C6—C71.385 (2)
O2—C31.447 (2)C7—C81.388 (2)
O3—N31.2339 (19)C7—H70.9500
O4—N31.227 (2)C8—C91.391 (3)
O5—C131.3774 (19)C8—H80.9500
O5—C161.432 (2)C9—H90.9500
N1—C11.316 (2)C10—C111.387 (2)
N1—N21.322 (2)C10—C151.394 (3)
N2—C101.410 (2)C11—C121.396 (2)
N2—H20.86 (2)C11—H110.9500
N3—C61.472 (2)C12—C131.389 (2)
C1—C21.478 (2)C12—H120.9500
C1—C41.481 (2)C13—C141.393 (2)
C3—H3A0.9800C14—C151.390 (2)
C3—H3B0.9800C14—H140.9500
C3—H3C0.9800C15—H150.9500
C4—C91.393 (2)C16—H16A0.9800
C4—C51.401 (2)C16—H16B0.9800
C5—C61.379 (2)C16—H16C0.9800
C2—O2—C3116.24 (15)C8—C7—H7121.1
C13—O5—C16116.19 (13)C7—C8—C9120.11 (15)
C1—N1—N2120.14 (15)C7—C8—H8119.9
N1—N2—C10120.66 (15)C9—C8—H8119.9
N1—N2—H2119.4 (15)C8—C9—C4121.25 (15)
C10—N2—H2119.9 (15)C8—C9—H9119.4
O4—N3—O3123.74 (14)C4—C9—H9119.4
O4—N3—C6118.16 (14)C11—C10—C15119.60 (16)
O3—N3—C6118.10 (14)C11—C10—N2117.23 (16)
N1—C1—C2123.46 (16)C15—C10—N2123.17 (17)
N1—C1—C4115.42 (15)C10—C11—C12121.02 (16)
C2—C1—C4121.12 (14)C10—C11—H11119.5
O1—C2—O2123.38 (16)C12—C11—H11119.5
O1—C2—C1125.07 (15)C13—C12—C11119.10 (16)
O2—C2—C1111.52 (15)C13—C12—H12120.5
O2—C3—H3A109.5C11—C12—H12120.5
O2—C3—H3B109.5O5—C13—C12123.69 (16)
H3A—C3—H3B109.5O5—C13—C14116.16 (15)
O2—C3—H3C109.5C12—C13—C14120.14 (15)
H3A—C3—H3C109.5C15—C14—C13120.44 (16)
H3B—C3—H3C109.5C15—C14—H14119.8
C9—C4—C5118.99 (16)C13—C14—H14119.8
C9—C4—C1121.26 (14)C14—C15—C10119.70 (17)
C5—C4—C1119.69 (15)C14—C15—H15120.1
C6—C5—C4118.33 (15)C10—C15—H15120.1
C6—C5—H5120.8O5—C16—H16A109.5
C4—C5—H5120.8O5—C16—H16B109.5
C5—C6—C7123.51 (15)H16A—C16—H16B109.5
C5—C6—N3117.87 (14)O5—C16—H16C109.5
C7—C6—N3118.58 (15)H16A—C16—H16C109.5
C6—C7—C8117.73 (16)H16B—C16—H16C109.5
C6—C7—H7121.1
C1—N1—N2—C10178.96 (15)C5—C6—C7—C81.2 (3)
N2—N1—C1—C21.1 (2)N3—C6—C7—C8178.90 (14)
N2—N1—C1—C4179.31 (14)C6—C7—C8—C92.2 (2)
C3—O2—C2—O10.9 (2)C7—C8—C9—C40.8 (2)
C3—O2—C2—C1177.22 (14)C5—C4—C9—C81.8 (2)
N1—C1—C2—O19.1 (3)C1—C4—C9—C8175.54 (15)
C4—C1—C2—O1171.35 (15)N1—N2—C10—C11176.81 (14)
N1—C1—C2—O2169.00 (15)N1—N2—C10—C153.5 (2)
C4—C1—C2—O210.5 (2)C15—C10—C11—C120.4 (3)
N1—C1—C4—C949.2 (2)N2—C10—C11—C12179.97 (15)
C2—C1—C4—C9130.37 (17)C10—C11—C12—C130.3 (3)
N1—C1—C4—C5128.10 (16)C16—O5—C13—C128.3 (2)
C2—C1—C4—C552.3 (2)C16—O5—C13—C14171.31 (14)
C9—C4—C5—C62.7 (2)C11—C12—C13—O5179.49 (15)
C1—C4—C5—C6174.63 (14)C11—C12—C13—C140.1 (2)
C4—C5—C6—C71.3 (2)O5—C13—C14—C15179.76 (14)
C4—C5—C6—N3176.41 (14)C12—C13—C14—C150.1 (2)
O4—N3—C6—C5160.87 (15)C13—C14—C15—C100.1 (2)
O3—N3—C6—C518.7 (2)C11—C10—C15—C140.1 (2)
O4—N3—C6—C716.9 (2)N2—C10—C15—C14179.77 (15)
O3—N3—C6—C7163.47 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)1.98 (2)2.657 (2)134 (2)
C7—H7···O4i0.952.443.245 (2)142
C12—H12···O1ii0.952.523.401 (2)154
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1, y+1, z+1.
Methyl (E)-2-(4-chlorophenyl)-2-(2-phenylhydrazin-1-ylidene)acetate (4) top
Crystal data top
C15H13ClN2O2Dx = 1.428 Mg m3
Mr = 288.72Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 35974 reflections
a = 15.86326 (8) Åθ = 4.6–79.5°
b = 8.79608 (3) ŵ = 2.55 mm1
c = 19.24680 (8) ÅT = 100 K
V = 2685.59 (2) Å3Prism, yellow
Z = 80.12 × 0.11 × 0.06 mm
F(000) = 1200
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
2871 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.030
φ and ω scansθmax = 80.1°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021).
h = 2020
Tmin = 0.676, Tmax = 1.000k = 1110
51407 measured reflectionsl = 2424
2935 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.4066P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62856 (2)0.69084 (3)0.30196 (2)0.02208 (10)
O10.55614 (6)0.13395 (10)0.46392 (4)0.02205 (19)
O20.52650 (5)0.03451 (9)0.37933 (4)0.01828 (18)
N10.68620 (6)0.05063 (11)0.50371 (5)0.0165 (2)
N20.74780 (6)0.14132 (11)0.52647 (5)0.0176 (2)
H20.7585 (10)0.227 (2)0.5070 (9)0.025 (4)*
C10.63703 (7)0.09638 (13)0.45406 (6)0.0161 (2)
C20.57050 (7)0.01517 (13)0.43440 (6)0.0168 (2)
C30.45741 (7)0.06150 (15)0.35765 (6)0.0213 (2)
H3A0.42780.01370.31870.032*
H3B0.41820.07530.39650.032*
H3C0.47940.16070.34310.032*
C40.64041 (7)0.24740 (13)0.41905 (6)0.0157 (2)
C50.61040 (8)0.37765 (14)0.45216 (6)0.0188 (2)
H50.59160.37190.49890.023*
C60.60782 (8)0.51597 (14)0.41715 (6)0.0194 (2)
H60.58690.60460.43940.023*
C70.63640 (7)0.52207 (13)0.34913 (6)0.0176 (2)
C80.66907 (8)0.39514 (14)0.31583 (6)0.0197 (2)
H80.69030.40240.26980.024*
C90.67013 (7)0.25752 (13)0.35102 (6)0.0188 (2)
H90.69130.16930.32850.023*
C100.79852 (7)0.09200 (13)0.58191 (6)0.0155 (2)
C110.77436 (7)0.03165 (13)0.62277 (6)0.0167 (2)
H110.72280.08290.61370.020*
C120.82608 (8)0.07924 (13)0.67669 (6)0.0196 (2)
H120.81010.16460.70390.023*
C130.90101 (8)0.00373 (14)0.69152 (6)0.0203 (2)
H130.93600.03670.72860.024*
C140.92395 (7)0.12079 (13)0.65114 (6)0.0187 (2)
H140.97460.17400.66130.022*
C150.87377 (7)0.16839 (13)0.59610 (6)0.0169 (2)
H150.89050.25230.56830.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02274 (16)0.01621 (15)0.02730 (17)0.00088 (10)0.00065 (10)0.00687 (10)
O10.0299 (5)0.0155 (4)0.0207 (4)0.0003 (3)0.0038 (3)0.0027 (3)
O20.0199 (4)0.0184 (4)0.0165 (4)0.0008 (3)0.0041 (3)0.0022 (3)
N10.0190 (5)0.0163 (4)0.0143 (4)0.0019 (4)0.0007 (3)0.0008 (4)
N20.0214 (5)0.0146 (4)0.0168 (4)0.0008 (4)0.0033 (4)0.0031 (4)
C10.0200 (5)0.0146 (5)0.0138 (5)0.0031 (4)0.0002 (4)0.0006 (4)
C20.0209 (5)0.0151 (5)0.0143 (5)0.0043 (4)0.0002 (4)0.0010 (4)
C30.0182 (5)0.0247 (6)0.0211 (5)0.0022 (5)0.0020 (4)0.0009 (5)
C40.0165 (5)0.0148 (5)0.0159 (5)0.0010 (4)0.0042 (4)0.0007 (4)
C50.0241 (6)0.0176 (6)0.0146 (5)0.0012 (5)0.0016 (4)0.0013 (4)
C60.0226 (6)0.0152 (5)0.0204 (6)0.0022 (4)0.0028 (4)0.0021 (4)
C70.0162 (5)0.0149 (5)0.0216 (6)0.0013 (4)0.0039 (4)0.0035 (4)
C80.0206 (6)0.0200 (6)0.0184 (5)0.0016 (4)0.0017 (4)0.0025 (4)
C90.0209 (5)0.0168 (5)0.0187 (5)0.0028 (4)0.0008 (4)0.0005 (4)
C100.0181 (5)0.0151 (5)0.0134 (5)0.0040 (4)0.0002 (4)0.0010 (4)
C110.0183 (5)0.0147 (5)0.0172 (5)0.0009 (4)0.0005 (4)0.0003 (4)
C120.0256 (6)0.0167 (5)0.0164 (5)0.0004 (4)0.0005 (4)0.0030 (4)
C130.0220 (6)0.0218 (6)0.0173 (5)0.0042 (5)0.0037 (4)0.0005 (4)
C140.0170 (5)0.0194 (5)0.0197 (5)0.0006 (4)0.0001 (4)0.0036 (4)
C150.0183 (5)0.0149 (5)0.0176 (5)0.0006 (4)0.0031 (4)0.0005 (4)
Geometric parameters (Å, º) top
Cl1—C71.7446 (12)C6—C71.3864 (17)
O1—C21.2109 (14)C6—H60.9500
O2—C21.3423 (14)C7—C81.3878 (17)
O2—C31.4451 (14)C8—C91.3872 (16)
N1—C11.2975 (15)C8—H80.9500
N1—N21.3354 (14)C9—H90.9500
N2—C101.4050 (14)C10—C111.3959 (16)
N2—H20.861 (18)C10—C151.3967 (16)
C1—C21.4899 (16)C11—C121.3876 (16)
C1—C41.4905 (16)C11—H110.9500
C3—H3A0.9800C12—C131.3911 (18)
C3—H3B0.9800C12—H120.9500
C3—H3C0.9800C13—C141.3914 (17)
C4—C91.3945 (16)C13—H130.9500
C4—C51.3948 (16)C14—C151.3897 (17)
C5—C61.3914 (17)C14—H140.9500
C5—H50.9500C15—H150.9500
C2—O2—C3115.60 (9)C6—C7—Cl1120.07 (9)
C1—N1—N2119.75 (10)C8—C7—Cl1118.09 (9)
N1—N2—C10118.94 (9)C9—C8—C7118.75 (11)
N1—N2—H2121.8 (11)C9—C8—H8120.6
C10—N2—H2119.2 (11)C7—C8—H8120.6
N1—C1—C2114.11 (10)C8—C9—C4120.66 (11)
N1—C1—C4126.00 (11)C8—C9—H9119.7
C2—C1—C4119.84 (10)C4—C9—H9119.7
O1—C2—O2123.61 (11)C11—C10—C15119.96 (10)
O1—C2—C1125.62 (11)C11—C10—N2120.74 (10)
O2—C2—C1110.76 (10)C15—C10—N2119.30 (10)
O2—C3—H3A109.5C12—C11—C10119.61 (11)
O2—C3—H3B109.5C12—C11—H11120.2
H3A—C3—H3B109.5C10—C11—H11120.2
O2—C3—H3C109.5C11—C12—C13120.97 (11)
H3A—C3—H3C109.5C11—C12—H12119.5
H3B—C3—H3C109.5C13—C12—H12119.5
C9—C4—C5119.48 (11)C12—C13—C14119.00 (11)
C9—C4—C1119.57 (10)C12—C13—H13120.5
C5—C4—C1120.88 (10)C14—C13—H13120.5
C6—C5—C4120.46 (11)C15—C14—C13120.87 (11)
C6—C5—H5119.8C15—C14—H14119.6
C4—C5—H5119.8C13—C14—H14119.6
C7—C6—C5118.79 (11)C14—C15—C10119.58 (11)
C7—C6—H6120.6C14—C15—H15120.2
C5—C6—H6120.6C10—C15—H15120.2
C6—C7—C8121.81 (11)
C1—N1—N2—C10177.79 (10)C5—C6—C7—Cl1176.33 (9)
N2—N1—C1—C2179.28 (9)C6—C7—C8—C92.39 (18)
N2—N1—C1—C41.64 (17)Cl1—C7—C8—C9175.45 (9)
C3—O2—C2—O11.85 (16)C7—C8—C9—C41.20 (18)
C3—O2—C2—C1177.15 (9)C5—C4—C9—C80.84 (17)
N1—C1—C2—O15.92 (17)C1—C4—C9—C8176.03 (11)
C4—C1—C2—O1171.89 (11)N1—N2—C10—C1114.31 (16)
N1—C1—C2—O2175.10 (9)N1—N2—C10—C15165.87 (10)
C4—C1—C2—O27.09 (14)C15—C10—C11—C120.95 (17)
N1—C1—C4—C9108.05 (14)N2—C10—C11—C12179.23 (10)
C2—C1—C4—C974.43 (14)C10—C11—C12—C131.22 (18)
N1—C1—C4—C575.13 (16)C11—C12—C13—C140.27 (18)
C2—C1—C4—C5102.39 (13)C12—C13—C14—C150.95 (18)
C9—C4—C5—C61.78 (18)C13—C14—C15—C101.21 (17)
C1—C4—C5—C6175.04 (11)C11—C10—C15—C140.25 (17)
C4—C5—C6—C70.65 (18)N2—C10—C15—C14179.58 (10)
C5—C6—C7—C81.47 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N1i0.982.553.5099 (15)168
C3—H3C···Cl1ii0.982.823.6422 (12)142
C6—H6···O1iii0.952.403.3113 (15)161
C15—H15···O1iv0.952.403.2759 (14)153
C14—H14···Cg1v02.803.4792 (12)129
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z; (v) x, y+1/2, z+3/2.
Methyl (Z)-2-[2-(4-bromophenyl)hydrazin-1-ylidene]-2-(4-chlorophenyl)acetate (5) top
Crystal data top
C15H12BrClN2O2Dx = 1.628 Mg m3
Mr = 367.62Synchrotron radiation, λ = 0.75270 Å
Orthorhombic, Pca21Cell parameters from 1000 reflections
a = 14.0199 (16) Åθ = 2.0–30.0°
b = 16.5940 (19) ŵ = 3.35 mm1
c = 6.4471 (9) ÅT = 100 K
V = 1499.9 (3) Å3Prism, yellow
Z = 40.18 × 0.15 × 0.13 mm
F(000) = 736
Data collection top
Rayonix SX165 CCD
diffractometer
3677 reflections with I > 2σ(I)
/f scanRint = 0.039
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 30.9°, θmin = 2.0°
Tmin = 0.514, Tmax = 0.633h = 1918
12123 measured reflectionsk = 1822
3908 independent reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0506P)2 + 2.3974P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.09Δρmax = 1.27 e Å3
3908 reflectionsΔρmin = 0.67 e Å3
196 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.014 (1)
Primary atom site location: difference Fourier mapAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.167 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35303 (3)0.07176 (3)0.51060 (10)0.03049 (18)
Cl10.86147 (9)0.63637 (7)0.4619 (3)0.0430 (5)
O10.95706 (19)0.14905 (16)0.5120 (8)0.0231 (5)
O21.04385 (18)0.26332 (17)0.5082 (9)0.0251 (6)
N10.7900 (2)0.24954 (19)0.5158 (9)0.0196 (6)
N20.7689 (2)0.17193 (19)0.5187 (9)0.0203 (6)
H20.816 (4)0.133 (3)0.534 (11)0.028 (14)*
C10.8774 (3)0.2762 (2)0.5109 (10)0.0192 (7)
C20.9619 (3)0.2222 (2)0.5112 (11)0.0204 (6)
C31.1298 (3)0.2153 (3)0.5058 (17)0.0320 (9)
H3A1.18560.25090.50350.048*
H3B1.13020.18100.38210.048*
H3C1.13200.18150.63030.048*
C40.8846 (3)0.3657 (2)0.5107 (10)0.0193 (6)
C50.8273 (4)0.4089 (3)0.6459 (8)0.0273 (9)
H50.79150.38090.74820.033*
C60.8212 (4)0.4922 (3)0.6349 (9)0.0306 (10)
H60.78130.52120.72780.037*
C70.8734 (3)0.5318 (3)0.4883 (12)0.0283 (11)
C80.9341 (4)0.4911 (3)0.3510 (8)0.0296 (10)
H80.97050.51970.25080.035*
C90.9397 (4)0.4077 (3)0.3655 (8)0.0271 (9)
H90.98130.37880.27600.033*
C100.6727 (3)0.1497 (2)0.5157 (11)0.0197 (6)
C110.6488 (3)0.0683 (2)0.5221 (18)0.0257 (9)
H110.69780.02890.52850.031*
C120.5535 (3)0.0441 (2)0.5193 (12)0.0260 (8)
H120.53700.01150.52190.031*
C130.4838 (2)0.1026 (2)0.5125 (12)0.0220 (7)
C140.5058 (3)0.1841 (2)0.5129 (11)0.0214 (7)
H140.45620.22310.51330.026*
C150.6005 (3)0.2082 (2)0.5128 (11)0.0198 (7)
H150.61640.26390.51090.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0175 (2)0.0280 (2)0.0460 (3)0.00531 (13)0.0003 (3)0.0011 (3)
Cl10.0338 (6)0.0200 (5)0.0750 (14)0.0015 (4)0.0054 (6)0.0041 (6)
O10.0214 (12)0.0224 (12)0.0255 (13)0.0014 (10)0.0026 (19)0.0035 (19)
O20.0157 (11)0.0254 (13)0.0343 (14)0.0009 (10)0.001 (2)0.001 (2)
N10.0205 (14)0.0213 (14)0.0168 (13)0.0035 (11)0.002 (2)0.0016 (18)
N20.0156 (13)0.0185 (13)0.0268 (15)0.0000 (10)0.000 (2)0.000 (2)
C10.0175 (15)0.0205 (15)0.0195 (15)0.0019 (12)0.010 (3)0.003 (2)
C20.0183 (15)0.0248 (16)0.0183 (15)0.0013 (12)0.000 (3)0.001 (2)
C30.0186 (17)0.033 (2)0.044 (2)0.0030 (15)0.009 (4)0.003 (3)
C40.0165 (14)0.0210 (15)0.0205 (15)0.0029 (12)0.001 (2)0.001 (3)
C50.023 (2)0.027 (2)0.031 (2)0.0007 (19)0.0050 (18)0.0013 (18)
C60.023 (2)0.027 (2)0.042 (3)0.0032 (18)0.006 (2)0.000 (2)
C70.0209 (17)0.0198 (17)0.044 (3)0.0005 (14)0.002 (3)0.007 (2)
C80.024 (2)0.034 (3)0.030 (2)0.0049 (19)0.0017 (19)0.0018 (19)
C90.023 (2)0.034 (2)0.025 (2)0.0040 (19)0.0067 (18)0.0016 (19)
C100.0166 (15)0.0205 (15)0.0218 (16)0.0020 (12)0.004 (2)0.002 (2)
C110.0201 (18)0.0171 (16)0.040 (3)0.0017 (13)0.001 (3)0.000 (2)
C120.0218 (17)0.0168 (15)0.040 (2)0.0019 (13)0.004 (3)0.003 (3)
C130.0150 (14)0.0218 (16)0.0292 (17)0.0024 (12)0.000 (3)0.000 (2)
C140.0198 (15)0.0183 (15)0.0262 (16)0.0013 (12)0.000 (3)0.000 (2)
C150.0209 (16)0.0185 (15)0.0202 (15)0.0010 (12)0.001 (3)0.002 (2)
Geometric parameters (Å, º) top
Br1—C131.904 (3)C5—H50.9500
Cl1—C71.752 (4)C6—C71.365 (8)
O1—C21.217 (4)C6—H60.9500
O2—C21.335 (4)C7—C81.401 (8)
O2—C31.445 (5)C8—C91.390 (7)
N1—C11.303 (5)C8—H80.9500
N1—N21.322 (4)C9—H90.9500
N2—C101.397 (5)C10—C111.392 (5)
N2—H20.93 (6)C10—C151.403 (5)
C1—C21.485 (5)C11—C121.396 (5)
C1—C41.489 (5)C11—H110.9500
C3—H3A0.9800C12—C131.379 (5)
C3—H3B0.9800C12—H120.9500
C3—H3C0.9800C13—C141.385 (5)
C4—C51.385 (7)C14—C151.388 (5)
C4—C91.399 (7)C14—H140.9500
C5—C61.387 (7)C15—H150.9500
C2—O2—C3115.9 (3)C6—C7—Cl1119.5 (4)
C1—N1—N2122.8 (3)C8—C7—Cl1118.3 (5)
N1—N2—C10118.2 (3)C9—C8—C7118.1 (5)
N1—N2—H2121 (3)C9—C8—H8120.9
C10—N2—H2121 (3)C7—C8—H8120.9
N1—C1—C2123.1 (3)C8—C9—C4120.6 (5)
N1—C1—C4113.7 (3)C8—C9—H9119.7
C2—C1—C4123.2 (3)C4—C9—H9119.7
O1—C2—O2123.9 (3)C11—C10—N2119.2 (3)
O1—C2—C1123.8 (3)C11—C10—C15119.8 (3)
O2—C2—C1112.2 (3)N2—C10—C15120.9 (3)
O2—C3—H3A109.5C10—C11—C12120.7 (3)
O2—C3—H3B109.5C10—C11—H11119.7
H3A—C3—H3B109.5C12—C11—H11119.7
O2—C3—H3C109.5C13—C12—C11118.4 (3)
H3A—C3—H3C109.5C13—C12—H12120.8
H3B—C3—H3C109.5C11—C12—H12120.8
C5—C4—C9119.0 (4)C12—C13—C14122.0 (3)
C5—C4—C1118.5 (5)C12—C13—Br1119.5 (3)
C9—C4—C1122.3 (5)C14—C13—Br1118.4 (3)
C4—C5—C6121.3 (5)C13—C14—C15119.6 (3)
C4—C5—H5119.4C13—C14—H14120.2
C6—C5—H5119.4C15—C14—H14120.2
C7—C6—C5118.8 (5)C14—C15—C10119.4 (3)
C7—C6—H6120.6C14—C15—H15120.3
C5—C6—H6120.6C10—C15—H15120.3
C6—C7—C8122.1 (4)
C1—N1—N2—C10177.5 (6)C6—C7—C8—C90.7 (9)
N2—N1—C1—C20.9 (11)Cl1—C7—C8—C9176.8 (4)
N2—N1—C1—C4179.3 (6)C7—C8—C9—C41.2 (8)
C3—O2—C2—O10.0 (11)C5—C4—C9—C82.7 (8)
C3—O2—C2—C1179.3 (7)C1—C4—C9—C8170.7 (5)
N1—C1—C2—O11.5 (11)N1—N2—C10—C11179.0 (8)
C4—C1—C2—O1179.8 (7)N1—N2—C10—C151.0 (10)
N1—C1—C2—O2179.2 (6)N2—C10—C11—C12180.0 (8)
C4—C1—C2—O20.9 (9)C15—C10—C11—C122.0 (14)
N1—C1—C4—C544.2 (8)C10—C11—C12—C130.8 (14)
C2—C1—C4—C5134.2 (6)C11—C12—C13—C141.4 (13)
N1—C1—C4—C9129.2 (6)C11—C12—C13—Br1179.5 (7)
C2—C1—C4—C952.3 (9)C12—C13—C14—C152.3 (13)
C9—C4—C5—C62.3 (8)Br1—C13—C14—C15179.5 (5)
C1—C4—C5—C6171.4 (5)C13—C14—C15—C101.0 (11)
C4—C5—C6—C70.4 (8)C11—C10—C15—C141.1 (11)
C5—C6—C7—C81.1 (9)N2—C10—C15—C14179.0 (7)
C5—C6—C7—Cl1176.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.93 (5)2.00 (6)2.666 (4)127 (4)
C9—H9···O20.952.582.953 (6)103
C11—H11···Br1i0.952.753.689 (4)172
C12—H12···O1ii0.952.543.479 (4)168
C14—H14···Cl1iii0.952.703.616 (4)161
C8—H8···Cg1iv0.952.703.591 (6)157
Symmetry codes: (i) x+1/2, y, z; (ii) x1/2, y, z; (iii) x1/2, y+1, z; (iv) x+2, y+1, z1/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for compounds 1, 2, 3, 4 and 5 top
Contact12A3B345
H···H59.941.846.438.939.026.3
C···H/H···C13.326.821.016.021.425.1
Br···H/H···Br12.515.715.615.8
O···H/H···O6.26.98.528.512.75.6
N···H/H···N2.03.23.22.45.71.9
N···C/C···N2.21.71.73.42.01.0
C···C1.41.11.13.61.22.3
O···C/C···O1.11.41.43.91.43.9
O···N/N···O0.90.70.71.9
O···O0.10.90.2
N···N0.41.5
Br···O/O···Br0.5
Br···C/C···Br0.10.50.20.6
Br···Br0.1
Cl···H/H···Cl14.5
Cl···O/O···Cl1.3
 

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAB and GTA; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, IMS, AMM; supervision, NQS, MA and AB.

References

First citationAdonin, S. A., Gorokh, I. D., Samsonenko, D. G., Novikov, A. S., Korolkov, I. V., Plyusnin, P. E., Sokolov, M. N. & Fedin, V. P. (2019). Polyhedron, 159, 318–322.  CSD CrossRef CAS Google Scholar
First citationAkhramez, S., Hafid, A., Khouili, M., Saadi, M., El Ammari, L. & Ketatni, E. M. (2019). Acta Cryst. E75, 964–968.  CSD CrossRef IUCr Journals Google Scholar
First citationAskerova, U., Abdullayev, Y., Shikhaliyev, N., Maharramov, A., Nenajdenko, V. G. & Autschbach, J. (2024). J. Comput. Chem. 45, 2098–2103.  CrossRef CAS PubMed Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P. & Terraneo, G. (2010). Coord. Chem. Rev. 254, 677–695.  Web of Science CrossRef CAS Google Scholar
First citationDas, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. (2019). J. Med. Chem. 62, 4265–4311.  CrossRef CAS PubMed Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Braley, A. N., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2011). Acta Cryst. E67, o1200–o1201.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P. & Resnati, G. (2008). Science, 321, 918–919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M. & Tskhovrebov, A. G. (2023). Catalysts, 13, 1194.  CrossRef Google Scholar
First citationNenajdenko, V. G., Shastin, A. V., Gorbachev, V. M., Shorunov, S. V., Muzalevskiy, V. M., Lukianova, A. I., Dorovatovskii, P. V. & Khrustalev, V. N. (2017). ACS Catal. 7, 205–209.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafronov, N. E., Tsyrenova, B. D., Minin, A. S., Benassi, E., Nenajdenko, V. G. & Belskaya, N. P. (2023). Dyes Pigments, 217, 111405.  CrossRef Google Scholar
First citationSergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020a). Eur. J. Org. Chem. pp. 6085–6093.  CSD CrossRef Google Scholar
First citationSergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020b). Eur. J. Org. Chem. pp. 4964–4971.  CSD CrossRef Google Scholar
First citationSergeev, P. G. & Nenajdenko, V. G. (2020c). Russ. Chem. Rev. 89, 393–429.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021b). Mendeleev Commun. 31, 677–679.  CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSultan, S., Taha, M., Shah, S. A. A., Yamin, B. M. & Zaki, H. M. (2014). Acta Cryst. E70, o751.  CSD CrossRef IUCr Journals Google Scholar
First citationTsyrenova, B., Khrustalev, V. & Nenajdenko, V. (2020a). J. Org. Chem. 85, 7024–7035.  CSD CrossRef CAS PubMed Google Scholar
First citationTsyrenova, B. & Nenajdenko, V. (2020b). Molecules, 25, 480.  CrossRef PubMed Google Scholar
First citationTsyrenova, B. D., Lemport, P. S. & Nenajdenko, V. G. (2023). Uspehi Himii, 92, 5066.  Google Scholar
First citationVitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds