research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(diiso­propyl­amino)­fluoro­borane

crossmark logo

aUniversity of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstrasse 30, 48149 Münster, Germany
*Correspondence e-mail: hebenbro@uni-muenster.de

Edited by J. Reibenspies, Texas A & M University, USA (Received 14 February 2025; accepted 8 April 2025; online 17 April 2025)

The predominantly planar structure of a fluoro-substituted bis­(di­alkyl­amino)­borane, C12H28BFN2, was obtained from the reaction of boron trifluoride diethyl etherate with lithium diiso­propyl­amide and its structure is presented here. While the B—F bond length is in the typical range of single B—F bonds, the B—N bond length indicates a partial double-bond character. The sterically demanding isopropyl groups on both amides increase the N—B—N angle and enable inter­molecular van der Waals inter­actions.

1. Chemical context

Bis(di­alkyl­amino)­boranes and their derivatives have emerged as prominent starting materials in the field of boron chemistry due to their ease of functionalization and enhanced stability, attributable to the double-bond character of the B—N bond. The fact that these substituents can also be used to realize unusual coordination patterns on the B atom was first demonstrated in 1982 by Nöth and Parry through the formation of the two-coordinate borinium cation (Nöth et al., 1982[Nöth, H., Staudigl, R. & Wagner, H.-U. (1982). Inorg. Chem. 21, 706-716.]; Higashi et al., 1982[Higashi, J., Eastman, A. D. & Parry, R. W. (1982). Inorg. Chem. 21, 716-720.]). Nöth generated the borinium cations from bis­(di­alkyl­amino)­bromo­boranes by reaction with Lewis acids, while Parry used analogous chloro­boranes. This pioneering work was further expanded, exploring the use of a variety of amines, Lewis acids and boranes (Nöth et al., 1984[Nöth, H., Rasthofer, B. & Weber, S. (1984). Z. Naturforsch B, 39, 1058-1068.], 1986[Nöth, H. & Rasthofer, B. (1986). Chem. Ber. 119, 2075-2079.]; Kölle et al., 1986[Kölle, P. & Nöth, H. (1986). Chem. Ber. 119, 313-324.]). More recently, Major et al. (2019[Major, C. J., Bamford, K. L., Qu, Z.-W. & Stephan, D. W. (2019). Chem. Commun. 55, 5155-5158.]) have demonstrated an alternative approach based on analogous fluorinated com­pounds, wherein a silylium cation functions as a fluoride abstractor. They also showed that these borinium cations are versatile reagents in hyroboration reactions. Here we report the structure of the starting material, bis­(diiso­propyl­amino)­fluoro­borane, 1, which was also previously identi­fied as a product of reactions of (di­iso­propyl­amino)­difluoro­boranes in the presence of Na/K alloy (Maringgele et al., 1992[Maringgele, W., Seebold, U., Meller, A., Dielkus, S., Pohl, E., Herbst-Irmer, R. & Sheldrick, G. M. (1992). Chem. Ber. 125, 1559-1564.], 1993[Maringgele, W., Meller, A., Dielkus, S. & Herbst-Irmer, R. (1993). Z. Naturforsch. B, 48, 561-570.]), but its structure was never elucidated. The structural investigation of such a simple com­pound will contribute to the understanding of the basic binding situation and properties, and will provide a more com­plete picture when com­pared with analogous structures.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the triclinic space group P[\overline{1}] and has one mol­ecule in the asymmetric unit (Fig. 1[link]). The bond length between boron and fluorine [1.3650 (9) Å] falls within the typical range of bond lengths observed for B—F bonds. The B—N bond lengths [1.4227 (10) and 1.4206 (10) Å] not only correspond to typical boron alkyl­amides, but also show a bond length resulting from the partial formation of a B—N double bond. The N—B—N angle [128.91 (7)°] exhibits a slight increase com­pared to analogous com­pounds. This is attributed to the sterically demanding substituents present on both amines, along with the fluorine substituent, which exhibits a smaller steric bulkiness, thereby enabling the widening of the bond angle. The overall structure of the com­pound is predominantly planar, which is consistent with the expected geometry of a trigonal-substituted B atom with partial double bonds to the substituents.

[Figure 1]
Figure 1
The asymmetric unit of the solid-state structure of com­pound 1, with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity.

3. Supra­molecular features

Compound 1 does not show any significant inter­molecular inter­actions. The formation of four-membered rings, as found for example in analogous amino­boron difluorides (Hazell, 1966[Hazell, A. C. (1966). J. Chem. Soc. A, pp. 1392-1394.]; Edwards et al., 1970[Edwards, I. A. S. & Stadler, H. P. (1970). Acta Cryst. B26, 1905-1908.]; Jones, 1984[Jones, P. G. (1984). Acta Cryst. C40, 1465-1466.]), is not possible in the case of com­pound 1 due to the steric demand of the isopropyl side groups. The isopropyl groups themselves are capable of significant van der Waals inter­actions. These inter­actions were evaluated using the CrystalExplorer program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). It was found that the inter­actions occur almost exclusively through H⋯H contacts, as is typical for van der Waals inter­actions (Fig. 2[link]). A small fraction is also due to H⋯F inter­actions. Inter­actions via the N atoms or the B atom do not take place. A decom­position of the inter­action energy between the mol­ecules reveals that the inter­action is predominantly mediated by dispersion forces, with electrostatic or polarization com­ponents being negligible (Fig. 3[link]).

[Figure 2]
Figure 2
Decom­posed two-dimensional fingerprint plots of the inter­actions of com­pound 1 devided in reciprocal H⋯H (left) and H⋯F (right) contacts along with their contributions (CrystalExplorer; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).
[Figure 3]
Figure 3
Inter­action energies (in kJ mol−1) for different contacts within the structure of 1, divided into electrostatic, polarization, dispersion and repulsive contributions, together with the total inter­action energy. In the partial packing diagram (left), the inter­acting mol­ecules are colour-coded to correlate with the tabulated energies (CrystalExplorer; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

4. Database survey

A database search [Cambridge Structural Database (CSD), Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] for analogous com­pounds reveals only two di­amino­fluoro­boranes with acyclic amines (CSD refcodes YUBMUE and YUBNEP; Ott et al., 2009[Ott, H., Matthes, C., Ringe, A., Magull, J., Stalke, D. & Klingebiel, U. (2009). Chem. A Eur. J. 15, 4602-4609.]). The major difference between these com­pounds and com­pound 1 is that only one of the amines has two isopropyl substituents, while the other amine is substituted with an aromatic substituent and a proton. The B—F bond lengths in both structures range from 1.363 to 1.368 Å, the B—N bonds to the isopropyl-substituted amines range from 1.395 to 1.410 Å and the N—B—N bond angles range from 126.90 to 128.21°. Furthermore, an expanded search, encom­passing diiso­propyl­amine-substituted trigonal–planar boranes in general, yields 351 entries, with the B—N bond lengths ranging from 1.316 to 1.501 Å, contingent on the specific substituents on the B atom. Subsequent to quaternization of the N atom by protonation, a substantial elongation of the B—N bond is observed (1.571 Å in YUBNOZ; Ott et al., 2009[Ott, H., Matthes, C., Ringe, A., Magull, J., Stalke, D. & Klingebiel, U. (2009). Chem. A Eur. J. 15, 4602-4609.]), attributable to the elimination of the partial double-bond character.

5. Synthesis and crystallization

5.1. General considerations

All reagents were purchased from commercial suppliers and used without further purification. Pentane was dried using lithium aluminium hydride and distilled before use. Reactions of the air-sensitive com­pounds were carried out under an inert argon atmosphere using the Schlenk line technique. NMR spectra were recorded on a Bruker Avance (Neo) 500 instruments. NMR spectra were referenced to residual solvent peaks (C6D6). Mass spectra were recorded on a Bruker Impact II instrument. The single-crystal X-ray diffraction (SC-XRD) data were collected on a Bruker Venture with a Photon III CMOS detector with Mo Kα radiation (λ = 0.71073 Å). The experimental procedure was adapted from Major et al. (2019[Major, C. J., Bamford, K. L., Qu, Z.-W. & Stephan, D. W. (2019). Chem. Commun. 55, 5155-5158.]).

5.2. Experimental procedure

Boron trifluoride diethyl etherate (1.63 ml, 13.0 mmol) was dissolved in pentane (50 ml) and the solution cooled to 195 K. A solution of lithium diiso­propyl­amide in THF (13.0 ml, 26.0 mmol, 2 M) was then added dropwise. The resulting solution was stirred for 7 h at 195 K and then for 14 h at room tem­per­a­ture. A precipitated orange solid was separated by filtration and the resulting solution was concentrated in vacuo at 273 K. The residue was redissolved in n-pentane (7 ml) and stored at 247 K for 2 d. The suspension was then cooled to 195 K and the precipitated yellowish solid was separated by filtration. The solvent was removed in vacuo and the uptake in pentane and subsequent filtration were repeated as described above. Compound 1 was obtained as a yellowish crystalline solid (yield: 1.13 g, 4.91 mmol). Colourless crystals suitable for X-ray crystallography were obtained from the solid by sublimation (yield 38%). 1H NMR (500 MHz, C6D6): δ (ppm) 3.20 [hept, 3JHH = 6.7 Hz, 4H, NCH(CH3)2], 1.18 [d, 3JHH = 6.9 Hz, 24H, NCH(CH3)2]. 13C{1H} NMR (101 MHz, C6D6): δ (ppm) 45.3 [NCH(CH3)2], 23.9 [d, 4JCF = 2.5 Hz, NCH(CH3)2]. 11B{1H} NMR (160 MHz, C6D6): δ (ppm) 25.0 (s). 19F{1H} NMR (471 MHz, C6D6): δ (ppm) −108.9 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed at ideal calculated positions and refined using a riding model.

Table 1
Experimental details

Crystal data
Chemical formula C12H28BFN2
Mr 230.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.3603 (2), 7.6440 (3), 16.4098 (6)
α, β, γ (°) 84.334 (1), 84.820 (1), 67.518 (1)
V3) 732.38 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.50 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE with a PHOTON III CMOS detector
Absorption correction Empirical (using intensity measurements) (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.514, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 44165, 4103, 3776
Rint 0.043
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.08
No. of reflections 4103
No. of parameters 153
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.27
Computer programs: SAINT-Plus (Bruker, 2021[Bruker (2021). APEX4, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Lübben et al., 2019[Lübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50-62.]; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), APEX4 (Bruker, 2021[Bruker (2021). APEX4, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Bis(diisopropylamino)fluoroborane top
Crystal data top
C12H28BFN2Z = 2
Mr = 230.17F(000) = 256
Triclinic, P1Dx = 1.044 Mg m3
a = 6.3603 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6440 (3) ÅCell parameters from 9941 reflections
c = 16.4098 (6) Åθ = 2.5–29.6°
α = 84.334 (1)°µ = 0.07 mm1
β = 84.820 (1)°T = 100 K
γ = 67.518 (1)°Plate, colourless
V = 732.38 (5) Å30.50 × 0.50 × 0.10 mm
Data collection top
Bruker D8 VENTURE with a PHOTON III CMOS detector
diffractometer
3776 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.043
f\ and w\ scansθmax = 29.6°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2021)
h = 88
Tmin = 0.514, Tmax = 0.746k = 1010
44165 measured reflectionsl = 2222
4103 independent reflections
Refinement top
Refinement on F2Primary atom site location: intrinsic phasing
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.1203P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4103 reflectionsΔρmax = 0.51 e Å3
153 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.93904 (9)0.04267 (7)0.71623 (3)0.02497 (13)
N10.88667 (11)0.25106 (9)0.81925 (4)0.01548 (13)
N20.72717 (11)0.36432 (9)0.67705 (4)0.01613 (14)
C10.94682 (13)0.09107 (10)0.88255 (4)0.01678 (15)
H10.9489180.1455100.9353000.020*
C21.18385 (14)0.06119 (12)0.86768 (5)0.02304 (17)
H2A1.2246620.1485770.9167310.035*
H2B1.2953000.0008750.8557700.035*
H2C1.1836180.1317870.8210000.035*
C30.76418 (15)0.00544 (12)0.89528 (5)0.02429 (17)
H3A0.8032760.0936030.9403340.036*
H3B0.7557310.0499510.8448890.036*
H3C0.6163250.1049250.9087710.036*
C40.88051 (12)0.43069 (10)0.84597 (4)0.01606 (15)
H40.8457940.5245050.7972410.019*
C50.69137 (14)0.51110 (11)0.91219 (5)0.02059 (16)
H5A0.6797200.6385570.9227310.031*
H5B0.7269630.4283700.9627530.031*
H5C0.5461500.5179260.8935490.031*
C61.11067 (14)0.41371 (12)0.87467 (5)0.02167 (16)
H6A1.1031940.5393620.8862610.033*
H6B1.2299650.3623720.8315610.033*
H6C1.1460320.3285490.9245540.033*
C70.54639 (12)0.54721 (10)0.69565 (4)0.01650 (15)
H70.5286950.5501830.7567310.020*
C80.60564 (14)0.71800 (11)0.66229 (5)0.02176 (16)
H8A0.4866980.8346860.6812080.033*
H8B0.6158430.7243140.6022010.033*
H8C0.7522950.7043290.6821210.033*
C90.31532 (13)0.56770 (12)0.66626 (5)0.02146 (16)
H9A0.1972350.6850370.6849660.032*
H9B0.2778310.4589130.6888260.032*
H9C0.3233210.5722300.6062070.032*
C100.76673 (13)0.32376 (11)0.58934 (4)0.01805 (15)
H100.6800440.4448010.5574700.022*
C111.01744 (15)0.26992 (13)0.56098 (5)0.02464 (17)
H11A1.0361910.2537920.5019090.037*
H11B1.1089850.1507740.5904260.037*
H11C1.0680660.3706370.5723840.037*
C120.67586 (15)0.17610 (13)0.56824 (5)0.02438 (17)
H12A0.6873300.1688470.5086120.037*
H12B0.5160150.2129890.5883320.037*
H12C0.7660100.0518670.5942400.037*
B10.84742 (14)0.22573 (12)0.73804 (5)0.01686 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0343 (3)0.0151 (2)0.0207 (2)0.0022 (2)0.00725 (19)0.00367 (17)
N10.0176 (3)0.0128 (3)0.0152 (3)0.0044 (2)0.0035 (2)0.0002 (2)
N20.0178 (3)0.0154 (3)0.0136 (3)0.0040 (2)0.0021 (2)0.0016 (2)
C10.0178 (3)0.0150 (3)0.0164 (3)0.0050 (3)0.0036 (2)0.0015 (2)
C20.0202 (4)0.0188 (4)0.0247 (4)0.0013 (3)0.0048 (3)0.0011 (3)
C30.0249 (4)0.0237 (4)0.0270 (4)0.0130 (3)0.0048 (3)0.0047 (3)
C40.0170 (3)0.0150 (3)0.0168 (3)0.0064 (3)0.0035 (2)0.0003 (2)
C50.0210 (4)0.0187 (3)0.0206 (3)0.0051 (3)0.0014 (3)0.0046 (3)
C60.0208 (4)0.0244 (4)0.0233 (4)0.0120 (3)0.0062 (3)0.0016 (3)
C70.0162 (3)0.0157 (3)0.0161 (3)0.0040 (3)0.0025 (2)0.0007 (2)
C80.0245 (4)0.0174 (3)0.0230 (4)0.0074 (3)0.0045 (3)0.0015 (3)
C90.0173 (3)0.0250 (4)0.0210 (3)0.0063 (3)0.0034 (3)0.0012 (3)
C100.0204 (3)0.0195 (3)0.0137 (3)0.0065 (3)0.0022 (2)0.0017 (2)
C110.0224 (4)0.0285 (4)0.0217 (4)0.0083 (3)0.0026 (3)0.0047 (3)
C120.0296 (4)0.0261 (4)0.0206 (4)0.0125 (3)0.0046 (3)0.0049 (3)
B10.0179 (4)0.0151 (4)0.0166 (3)0.0048 (3)0.0022 (3)0.0015 (3)
Geometric parameters (Å, º) top
F1—B11.3650 (9)C6—H6A0.9800
N1—B11.4227 (10)C6—H6B0.9800
N1—C41.4676 (9)C6—H6C0.9800
N1—C11.4779 (9)C7—C81.5310 (11)
N2—B11.4206 (10)C7—C91.5343 (10)
N2—C71.4701 (9)C7—H71.0000
N2—C101.4812 (9)C8—H8A0.9800
C1—C31.5272 (11)C8—H8B0.9800
C1—C21.5280 (11)C8—H8C0.9800
C1—H11.0000C9—H9A0.9800
C2—H2A0.9800C9—H9B0.9800
C2—H2B0.9800C9—H9C0.9800
C2—H2C0.9800C10—C111.5266 (11)
C3—H3A0.9800C10—C121.5298 (11)
C3—H3B0.9800C10—H101.0000
C3—H3C0.9800C11—H11A0.9800
C4—C51.5284 (11)C11—H11B0.9800
C4—C61.5326 (10)C11—H11C0.9800
C4—H41.0000C12—H12A0.9800
C5—H5A0.9800C12—H12B0.9800
C5—H5B0.9800C12—H12C0.9800
C5—H5C0.9800
B1—N1—C4123.84 (6)H6B—C6—H6C109.5
B1—N1—C1121.01 (6)N2—C7—C8113.11 (6)
C4—N1—C1115.11 (6)N2—C7—C9112.27 (6)
B1—N2—C7123.64 (6)C8—C7—C9110.19 (6)
B1—N2—C10120.53 (6)N2—C7—H7107.0
C7—N2—C10115.66 (6)C8—C7—H7107.0
N1—C1—C3111.48 (6)C9—C7—H7107.0
N1—C1—C2113.89 (6)C7—C8—H8A109.5
C3—C1—C2111.49 (7)C7—C8—H8B109.5
N1—C1—H1106.5H8A—C8—H8B109.5
C3—C1—H1106.5C7—C8—H8C109.5
C2—C1—H1106.5H8A—C8—H8C109.5
C1—C2—H2A109.5H8B—C8—H8C109.5
C1—C2—H2B109.5C7—C9—H9A109.5
H2A—C2—H2B109.5C7—C9—H9B109.5
C1—C2—H2C109.5H9A—C9—H9B109.5
H2A—C2—H2C109.5C7—C9—H9C109.5
H2B—C2—H2C109.5H9A—C9—H9C109.5
C1—C3—H3A109.5H9B—C9—H9C109.5
C1—C3—H3B109.5N2—C10—C11111.40 (6)
H3A—C3—H3B109.5N2—C10—C12113.43 (6)
C1—C3—H3C109.5C11—C10—C12111.42 (7)
H3A—C3—H3C109.5N2—C10—H10106.7
H3B—C3—H3C109.5C11—C10—H10106.7
N1—C4—C5112.25 (6)C12—C10—H10106.7
N1—C4—C6112.37 (6)C10—C11—H11A109.5
C5—C4—C6110.44 (6)C10—C11—H11B109.5
N1—C4—H4107.2H11A—C11—H11B109.5
C5—C4—H4107.2C10—C11—H11C109.5
C6—C4—H4107.2H11A—C11—H11C109.5
C4—C5—H5A109.5H11B—C11—H11C109.5
C4—C5—H5B109.5C10—C12—H12A109.5
H5A—C5—H5B109.5C10—C12—H12B109.5
C4—C5—H5C109.5H12A—C12—H12B109.5
H5A—C5—H5C109.5C10—C12—H12C109.5
H5B—C5—H5C109.5H12A—C12—H12C109.5
C4—C6—H6A109.5H12B—C12—H12C109.5
C4—C6—H6B109.5F1—B1—N2116.05 (7)
H6A—C6—H6B109.5F1—B1—N1115.03 (6)
C4—C6—H6C109.5N2—B1—N1128.91 (7)
H6A—C6—H6C109.5
B1—N1—C1—C358.17 (9)B1—N2—C10—C1157.08 (9)
C4—N1—C1—C3124.16 (7)C7—N2—C10—C11127.52 (7)
B1—N1—C1—C269.05 (9)B1—N2—C10—C1269.60 (9)
C4—N1—C1—C2108.62 (7)C7—N2—C10—C12105.80 (8)
B1—N1—C4—C5117.02 (8)C7—N2—B1—F1154.87 (7)
C1—N1—C4—C565.38 (8)C10—N2—B1—F120.15 (10)
B1—N1—C4—C6117.78 (8)C7—N2—B1—N125.31 (12)
C1—N1—C4—C659.82 (8)C10—N2—B1—N1159.67 (8)
B1—N2—C7—C8117.08 (8)C4—N1—B1—F1156.92 (7)
C10—N2—C7—C867.68 (8)C1—N1—B1—F120.55 (10)
B1—N2—C7—C9117.45 (8)C4—N1—B1—N222.91 (12)
C10—N2—C7—C957.79 (8)C1—N1—B1—N2159.63 (7)
 

Acknowledgements

The authors would like to acknowledge Professor Jens Müller for financial and non-material support, as well as for providing access to laboratories and chemicals. MH would like to thank the funds of the chemical industry (VCI) for their support.

References

First citationBruker (2021). APEX4, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, I. A. S. & Stadler, H. P. (1970). Acta Cryst. B26, 1905–1908.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHazell, A. C. (1966). J. Chem. Soc. A, pp. 1392–1394.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, J., Eastman, A. D. & Parry, R. W. (1982). Inorg. Chem. 21, 716–720.  CrossRef CAS Google Scholar
First citationJones, P. G. (1984). Acta Cryst. C40, 1465–1466.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKölle, P. & Nöth, H. (1986). Chem. Ber. 119, 313–324.  Google Scholar
First citationLübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50–62.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMajor, C. J., Bamford, K. L., Qu, Z.-W. & Stephan, D. W. (2019). Chem. Commun. 55, 5155–5158.  CrossRef CAS Google Scholar
First citationMaringgele, W., Meller, A., Dielkus, S. & Herbst-Irmer, R. (1993). Z. Naturforsch. B, 48, 561–570.  CrossRef CAS Google Scholar
First citationMaringgele, W., Seebold, U., Meller, A., Dielkus, S., Pohl, E., Herbst–Irmer, R. & Sheldrick, G. M. (1992). Chem. Ber. 125, 1559–1564.  CrossRef CAS Google Scholar
First citationNöth, H. & Rasthofer, B. (1986). Chem. Ber. 119, 2075–2079.  Google Scholar
First citationNöth, H., Rasthofer, B. & Weber, S. (1984). Z. Naturforsch B, 39, 1058–1068.  Google Scholar
First citationNöth, H., Staudigl, R. & Wagner, H.-U. (1982). Inorg. Chem. 21, 706–716.  Google Scholar
First citationOtt, H., Matthes, C., Ringe, A., Magull, J., Stalke, D. & Klingebiel, U. (2009). Chem. A Eur. J. 15, 4602–4609.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds