research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the fungicide metconazole

crossmark logo

aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru 560 035, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 1 April 2025; accepted 5 April 2025; online 8 April 2025)

Metconazole is a systemic triazole fungicide that inhibits the ergosterol bio­synthesis pathway. It is widely used in agriculture to control fungal infections, including rusts, fusarium and septoria diseases. The mol­ecular structure is a three-ring system, namely, 5-(4-chlorobenz­yl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmeth­yl)cyclo­pentan-1-ol, C17H22ClN3O, consisting of a cyclo­pentan-1-ol with 1,2,4-triazol-1-ylmethyl, gem-dimethyl and 4-chloro­benzyl groups attached at the 1-, 2- and 5-positions of the cyclo­penta­nol ring. It has two stereocentres (cyclo­penta­nol positions 1 and 5) leading to four stereoisomers, with the (1S,5R) form being the most bioactive. Despite its agricultural significance, detailed crystallographic data remain scarce. This study reports the crystal structure and Hirshfeld surface analysis of racemic cis-metconazole [(1S,5R)/(1R,5S)], determined in the monoclinic space group P21/c with two independent mol­ecules in the asymmetric unit (Z′ = 2). Both exhibit similar conformations, with minor differences in the cyclo­penta­nol ring puckering and the torsion angles between the three rings. The crystal packing consists of 21-screw-related hy­dro­gen-bonded chains parallel to the b axis, with additional weak C—H⋯N and C—H⋯Cl contacts linking adjacent mol­ecules. Hirshfeld surface analysis indicates that inter­molecular inter­actions are dominated by contacts involving hy­dro­gen (96.1 and 96.7% for the two mol­ecules).

1. Chemical context

Metconazole is an agricultural fungicide discovered by the Kureha Corporation in 1986 (Kumazawa et al., 2000[Kumazawa, S., Ito, A., Saishoji, T. & Chuman, H. (2000). J. Pestic. Sci. 25, 321331.]). It is toxic to a broad range of fungal species (Ito et al., 1999[Ito, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262-269.]) by acting as a de­methyl­ation inhibitor (DMI) in the ergosterol biosynthesis pathway. It is used to control a range of fungal infections, including alternaria, rusts, fusarium and septoria diseases. Metconazole is also known to inhibit the synthesis of fungal cell membranes. As a systemic triazole fungicide, metconazole has been proposed for the control of Black Sigatoka disease (Mycosphaerella fijiensis) in bananas. Single and sequential applications of metconazole, alone or in combination with pyraclostrobin, to improve fusarium head blight control and wheat yield in Brazil were described by Spolti et al. (2013[Spolti, P., Guerra, D. S., Badiale-Furlong, E. & Del Ponte, E. M. (2013). Trop. Plant Pathol. 38, 085-096.]). Detailed applications of metconazole are well documented (Tateishi et al., 2014[Tateishi, H., Miyake, T., Mori, M., Sakuma, Y. & Saishoji, T. (2014). J. Pestic. Sci. 39, 16.]). Enanti­oselective effects on photosynthetic activity in Microcystis flosaquae were reported by Li et al. (2021[Li, L., Huang, P. & Li, J. (2021). Ecotoxicol. Environ. Saf. 211, 111894.]). Anti­fungal activities against the emerging wheat pathogen Fusarium pseudogramine­arum were recently published by Liu et al. (2023[Liu, X., Wang, S., Fan, Z., Wu, J., Wang, L., He, D., Mohamed, S. R., Dawood, D. H., Shi, J., Gao, T. & Xu, J. (2023). Pestic. Biochem. Physiol. 190, 105298.]). A review of the pesticide risk assessment of metconazole was given by Álvarez et al. (2023[Álvarez, F., Arena, M., Auteri, D., Binaglia, S. B. L. M., Castoldi, A. F., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., De Lentdecker, C., De Magistris, I., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Halling, K., Nogareda, L. H., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Kienzler, A., Lanzoni, A., Lava, R., Leuschner, R., Linguadoca, A., Louisse, J., Lythgo, C., Magrans, O., Mangas, I., Miron, I., Molnar, T., Padovani, L., Padricello, V., Panzarea, M., Morte, J. M. P., Rizzuto, S., Romac, A., Rortais, A., Serafimova, R., Sharp, R., Szentes, C., Terron, A., Theobald, A., Tiramani, M., Vianello, G. & Villamar-Bouza, L. (2023). EFSA J. 21, 8141.]), which suggested that it may cause liver damage in mammals. Recently, in vitro and ex vivo anti­fungal activities against the rice blast fungus Pyricularia oryzae have been reported (Fei & Hao, 2024[Fei, L. & Hao, L. (2024). Molecules, 29, 1353.]). Stereoselective studies of metconazole in four types of fruit, including absolute configuration and SFC–MS/MS enanti­oseparation, degradation and risk assessment, were published by Diao et al. (2024[Diao, Z., Di, S., Qi, P., Liu, Z., Wang, Z., Zhao, H., Wang, M., Zhang, C. & Wang, X. (2024). Food Chem. 438, 137944.]).

[Scheme 1]

The structure of metconazole includes a cyclo­penta­nol ring substituted at the 1-, 2- and 5-positions by 1,2,4-triazol-1-ylmethyl, gem-dimethyl and 4-chloro­benzyl groups, respectively. It contains two chiral C atoms (C1 and C5), leading to four stereoisomers, i.e. two cis forms (1S,5R/1R,5S) and the two trans forms (1S,5S) and (1R,5R). The most bioactive is reported to be the (1S,5R) isomer (Ito et al., 1999[Ito, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262-269.]; He et al., 2021[He, R., Guo, D., Huang, Z., Kong, Y., Ji, C., Gu, J., Zhang, Z.-B., Diao, J., Zhou, Z., Zhao, M., Fan, J. & Zhang, W. (2021). Sci. Total Environ. 784, 147194.]). The crystal structure of the (1S,5R) isomer was reported by Ito et al. (1999[Ito, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262-269.]), but the structure does not appear in either the Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) or the Crystallography Open Database (COD, accessed 23 March 2025; Gražulis et al., 2009[Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726-729.]). In view of the agricultural importance and applications of metconazole, and the lack of readily accessible crystallographic structure details, this article reports the crystal structure and Hirshfeld surface analysis of a racemate of the cis forms, i.e. the (1S,5R/1R,5S) enanti­omorphs.

2. Structural commentary

The structure of cis-metconazole presented here crystallizes in the monoclinic space group P21/c, with two mol­ecules (A and B in Fig. 1[link]) in the asymmetric unit (Z′ = 2). The structure is a three-ring system consisting of a central cyclo­penta­nol with 1,2,4-triazol-1-ylmethyl (and hydrox­yl) attached at C1, two methyl groups on C2 and a 4-chloro­benzyl group bonded to C5. Atoms C1 and C5 are stereogenic. In the assigned asymmetric unit, both mol­ecules are (1R,5S), but the crystallographic inversion requires that an equal amount of (1S,5R) must be present. The conformations of the two independent mol­ecules are broadly similar, as is evident in an overlay plot (r.m.s. deviation = 0.187 Å; Fig. 2[link]). There are, however, minor differences. For example, in mol­ecule A, the maximum deviation from planarity of the cyclo­penta­nol ring is 0.2627 (10) Å at atom C1A, whereas for mol­ecule B, it is 0.2618 (11) Å at C2B owing to a slight change in ring pucker. The similarity in the conformations prompted us to check for a simpler structure with Z′ = 1 at room tem­per­a­ture, but none was found. The overall mol­ecular conformations are a consequence of rotation about the four rotatable bonds C5—C6, C6—C7, C1—C13 and C13—N1. For ease of com­parison, representative torsion angles qu­anti­fying the differences are presented in Table 1[link].

Table 1
Conformation defining torsion angles (°) in metconazole

Torsion angle Mol­ecule A Mol­ecule B
C2—C5—C6—C7 −152.82 (19) −151.88 (16)
C5—C6—C7—C8 113.52 (17) 116.02 (16)
O1—C1—C13—N1 −60.01 (17) −56.18 (17)
C1—C13—N1—N2 −109.63 (16) −102.44 (17)
[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of cis-metconazole. H atoms are drawn as small circles of fixed arbitrary radius.
[Figure 2]
Figure 2
A least-squares overlay of the two symmetry-independent mol­ecules of cis-metconazole.

3. Supra­molecular features

There are only two conventional hy­dro­gen bonds in the crystal structure, namely, O1A—H1A⋯N3Ai [DA = 2.9097 (18) Å] and O1B—H1B⋯N3Biii [DA = 2.8956 (18) Å] (the sym­metry codes are available in Table 2[link]). These result in separate helical chains of 21-screw-related A and B mol­ecules, each parallel to the b axis, as depicted in Fig. 3[link]. The only noteworthy close contacts between the A and B mol­ecules are of the form C11A—H11A⋯N2B [DA = 3.500 (2) Å]. The default suggestion for `potential hy­dro­gen bonds' in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) also flags weak contacts of the form C14A—H14A⋯Cl1Aii [DA = 3.9223 (18) Å] and C14B—H14B⋯Cl1Biv [DA = 3.6665 (18) Å] between c-glide-related mol­ecules. These are also shown in Fig. 3[link] and summarized in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N3Ai 0.86 2.08 2.9097 (18) 164
C11A—H11A⋯N2B 0.95 2.62 3.500 (2) 155
C14A—H14A⋯Cl1Aii 0.95 2.98 3.9223 (18) 175
O1B—H1B⋯N3Biii 0.87 2.05 2.8956 (18) 163
C14B—H14B⋯Cl1Biv 0.95 2.75 3.6665 (18) 163
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}], [-z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial packing plot, viewed down [103], showing O—H⋯N hy­dro­gen bonds, as well as C—H⋯N and C—H⋯Cl contacts, as dotted cyan lines.

Separate Hirshfeld surface analyses of the two independent mol­ecules using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) shows that both mol­ecules have very similar environments, with almost all atom–atom contacts (96.1% coverage for mol­ecule A and 96.7% for B) involving hy­dro­gen. These are depicted pairwise for H⋯H, H⋯Cl, H⋯C and H⋯N contacts in Fig. 4[link].

[Figure 4]
Figure 4
Hirshfeld surface two-dimensional fingerprint plots for each independent mol­ecule, arranged in pairs for mol­ecules A and B, respectively. (a)/(b) H⋯H, (c)/(d) H⋯Cl, (e)/(f) H⋯C and (g)/(h) H⋯N contacts. Reciprocal contacts are included in each case.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the keyword `conazole' returned 193 hits, while a search with both `conazole' and `triazole' produced 23 matches. A search using a mol­ecular fragment consisting of just the three-ring substructure gave two matches: an organic triazolium salt with [BF4] anions in which the heterocycle is fused to a substituted perhydro­penta­lene ring system (CSD refcode AWIGEV; Budny et al., 2021[Budny, M., Kozakiewicz, A. & Wolan, A. (2021). Org. Lett. 23, 5123-5127.]) and a neutral com­pound (FEPHOA; Budny et al., 2017[Budny, M., Włodarczyk, J., Muzioł, T., Bosiak, M. J. & Wolan, A. (2017). Tetrahedron Lett. 58, 4285-4288.]), which differs from metconazole by the presence of an additional hydroxyl group at the 3-position of the cyclo­penta­nol ring. The crystal structure of the (1S,5R) isomer reported by Ito et al. (1999[Ito, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262-269.]) was not found in either the CSD or the COD.

5. Synthesis and crystallization

The gift sample of metconazole was purified by column chromatography and recrystallized from methanol by slow evaporation to obtain X-ray-quality crystals (m.p. 386–389 K).

6. Data collection and refinement

None of the crystals were single, but appeared to be multiple domain two-com­ponent twins by reticular pseudomerohedry (e.g. Parkin, 2021[Parkin, S. R. (2021). Acta Cryst. E77, 452-465.]). However, data images did not integrate well using two orientation matrices in the manner recommended by Sevvana et al. (2019[Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040-1050.]). Nonetheless, it proved possible to excise most of the minor com­ponent from one specimen, so that the remaining minor twin fragment had a negligible effect on the measured diffraction maxima. This crystal was used for data collection. A second similarly treated crystal was later re-indexed at several tem­per­a­tures up to 294 K to check for any transition to a smaller Z′ = 1 structure, but no dramatic changes in unit-cell dimensions were observed.

All H atoms were found in difference Fourier maps. Carbon-bound H atoms were subsequently included in the refinement using riding models, with constrained distances set to 0.95 (Csp2—H), 0.98 (RCH3), 0.99 (R2CH2) and 1.00 Å (R3CH). Hydroxyl H atoms were also included using a riding model, but the O—H distances were refined. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 and OH) of the attached atom. Data collection and structure refinement statistics are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C17H22ClN3O
Mr 319.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 21.1989 (6), 9.5096 (3), 17.6330 (5)
β (°) 110.483 (1)
V3) 3329.95 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.22 × 0.20 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.903, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 60403, 7671, 6719
Rint 0.040
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.15
No. of reflections 7671
No. of parameters 406
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

5-[(4-Chlorophenyl)methyl]-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentan-1-ol top
Crystal data top
C17H22ClN3OF(000) = 1360
Mr = 319.82Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.1989 (6) ÅCell parameters from 9892 reflections
b = 9.5096 (3) Åθ = 2.8–27.5°
c = 17.6330 (5) ŵ = 0.24 mm1
β = 110.483 (1)°T = 100 K
V = 3329.95 (17) Å3Slab, colourless
Z = 80.22 × 0.20 × 0.11 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
7671 independent reflections
Radiation source: microsource6719 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.040
φ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2725
Tmin = 0.903, Tmax = 0.971k = 1212
60403 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0277P)2 + 2.5387P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
7671 reflectionsΔρmax = 0.32 e Å3
406 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 100K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.68175 (2)0.71920 (4)0.40138 (2)0.02457 (10)
O1A0.52795 (5)0.05539 (12)0.62641 (7)0.0196 (2)
H1A0.5127 (4)0.008 (2)0.6496 (11)0.029*
N1A0.60358 (7)0.20248 (14)0.77571 (8)0.0195 (3)
N2A0.64966 (7)0.30544 (16)0.80922 (9)0.0277 (3)
N3A0.54519 (7)0.37624 (15)0.79895 (9)0.0252 (3)
C1A0.59973 (7)0.05243 (16)0.65730 (9)0.0172 (3)
C2A0.62713 (8)0.08738 (16)0.63359 (10)0.0197 (3)
C3A0.61181 (10)0.06495 (18)0.54219 (10)0.0268 (4)
H3AA0.6453410.1148960.5246710.032*
H3AB0.5664420.1013160.5105730.032*
C4A0.61530 (9)0.09397 (18)0.52911 (10)0.0234 (3)
H4AA0.5737180.1267030.4861730.028*
H4AB0.6542680.1166550.5126830.028*
C5A0.62298 (8)0.16560 (16)0.61033 (9)0.0185 (3)
H5A0.6719630.1837400.6397580.022*
C6A0.58581 (9)0.30658 (17)0.59845 (10)0.0230 (3)
H6AA0.5369530.2901050.5711000.028*
H6AB0.5925950.3488160.6520540.028*
C7A0.61005 (8)0.40847 (16)0.54868 (10)0.0198 (3)
C8A0.56811 (8)0.45113 (17)0.47216 (10)0.0207 (3)
H8A0.5238050.4138790.4504450.025*
C9A0.58951 (8)0.54694 (17)0.42676 (10)0.0213 (3)
H9A0.5600760.5758850.3748790.026*
C10A0.65406 (8)0.59929 (16)0.45817 (9)0.0196 (3)
C11A0.69756 (8)0.55970 (17)0.53428 (10)0.0215 (3)
H11A0.7418870.5969660.5554970.026*
C12A0.67496 (8)0.46467 (17)0.57866 (10)0.0221 (3)
H12A0.7043900.4370690.6308230.027*
C13A0.62454 (8)0.07077 (17)0.74931 (9)0.0207 (3)
H13A0.6075220.0084820.7731120.025*
H13B0.6743360.0660430.7705810.025*
C14A0.61194 (9)0.40646 (19)0.82161 (11)0.0285 (4)
H14A0.6300730.4943120.8447470.034*
C15A0.54260 (8)0.24617 (18)0.77086 (10)0.0223 (3)
H15A0.5026800.1916050.7500960.027*
C16A0.70333 (8)0.10486 (18)0.67767 (11)0.0249 (3)
H16A0.7193440.1863110.6555340.037*
H16B0.7125450.1193550.7355860.037*
H16C0.7266730.0200570.6700030.037*
C17A0.59222 (9)0.21937 (17)0.64933 (11)0.0254 (3)
H17A0.6079080.3018020.6276420.038*
H17B0.5433820.2097740.6226940.038*
H17C0.6030150.2310260.7077400.038*
Cl1B0.81854 (2)0.26865 (4)0.24588 (2)0.02863 (11)
O1B0.96960 (5)0.92837 (12)0.60315 (7)0.0201 (2)
H1B0.9829 (3)0.993 (2)0.6401 (13)0.030*
N1B0.89595 (7)0.76902 (14)0.68325 (8)0.0192 (3)
N2B0.85737 (7)0.65081 (16)0.66925 (9)0.0288 (3)
N3B0.96104 (7)0.60789 (15)0.76048 (9)0.0252 (3)
C1B0.89788 (7)0.92607 (16)0.57054 (9)0.0170 (3)
C2B0.86934 (8)1.06611 (16)0.52487 (10)0.0203 (3)
C3B0.88597 (9)1.04776 (18)0.44722 (10)0.0261 (4)
H3BA0.8564311.1079260.4032840.031*
H3BB0.9334501.0733130.4570560.031*
C4B0.87378 (10)0.89232 (19)0.4246 (1)0.0302 (4)
H4BA0.9084840.8565570.4038120.036*
H4BB0.8289290.8791580.3822630.036*
C5B0.87770 (8)0.81331 (16)0.50303 (9)0.0192 (3)
H5B0.8314910.7790480.4964960.023*
C6B0.92474 (8)0.68569 (17)0.51927 (10)0.0218 (3)
H6BA0.9703920.7168660.5234450.026*
H6BB0.9279250.6423040.5715230.026*
C7B0.89944 (8)0.57752 (16)0.45240 (9)0.0195 (3)
C8B0.93632 (8)0.54384 (17)0.40351 (10)0.0213 (3)
H8B0.9786300.5879340.4131450.026*
C9B0.91278 (8)0.44719 (17)0.34086 (10)0.0220 (3)
H9B0.9386950.4244590.3081740.026*
C10B0.85096 (8)0.38482 (17)0.32705 (9)0.0211 (3)
C11B0.81342 (8)0.41252 (17)0.37572 (10)0.0213 (3)
H11B0.7716040.3666510.3666320.026*
C12B0.83852 (8)0.50919 (17)0.43823 (10)0.0211 (3)
H12B0.8133030.5290150.4721430.025*
C13B0.87017 (8)0.89825 (17)0.63853 (9)0.0198 (3)
H13C0.8819430.9785170.6766900.024*
H13D0.8204410.8926910.6149570.024*
C14B0.89867 (9)0.55898 (19)0.71736 (11)0.0308 (4)
H14B0.8856670.4645480.7216240.037*
C15B0.95680 (8)0.74128 (17)0.73703 (9)0.0214 (3)
H15B0.9922860.8078570.7559780.026*
C16B0.79259 (8)1.07684 (18)0.50387 (11)0.0264 (4)
H16D0.7749381.1547960.4660170.040*
H16E0.7827381.0937440.5534160.040*
H16F0.7712800.9888030.4788290.040*
C17B0.90242 (9)1.19719 (17)0.57190 (11)0.0267 (4)
H17D0.8826801.2811800.5402940.040*
H17E0.9508931.1948610.5819550.040*
H17F0.8949341.1997550.6236680.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0309 (2)0.01992 (19)0.0269 (2)0.00292 (15)0.01513 (16)0.00167 (15)
O1A0.0175 (5)0.0193 (6)0.0224 (5)0.0014 (4)0.0075 (4)0.0021 (4)
N1A0.0222 (7)0.0195 (7)0.0175 (6)0.0002 (5)0.0076 (5)0.0022 (5)
N2A0.0254 (7)0.0280 (8)0.0289 (8)0.0042 (6)0.0086 (6)0.0110 (6)
N3A0.0281 (7)0.0237 (7)0.0265 (7)0.0016 (6)0.0129 (6)0.0043 (6)
C1A0.0165 (7)0.0167 (7)0.0187 (7)0.0001 (6)0.0066 (6)0.0013 (6)
C2A0.0224 (8)0.0165 (7)0.0214 (8)0.0004 (6)0.0091 (6)0.0033 (6)
C3A0.0369 (10)0.0215 (8)0.0222 (8)0.0004 (7)0.0106 (7)0.0044 (7)
C4A0.0290 (9)0.0237 (8)0.0205 (8)0.0002 (7)0.0125 (7)0.0015 (6)
C5A0.0203 (7)0.0170 (7)0.0199 (7)0.0012 (6)0.0093 (6)0.0004 (6)
C6A0.0276 (8)0.0202 (8)0.0262 (8)0.0019 (6)0.0155 (7)0.0020 (6)
C7A0.0234 (8)0.0160 (7)0.0231 (8)0.0022 (6)0.0121 (6)0.0009 (6)
C8A0.0203 (7)0.0201 (8)0.0230 (8)0.0023 (6)0.0092 (6)0.0033 (6)
C9A0.0221 (8)0.0227 (8)0.0191 (7)0.0019 (6)0.0073 (6)0.0003 (6)
C10A0.0249 (8)0.0155 (7)0.0217 (7)0.0010 (6)0.0121 (6)0.0010 (6)
C11A0.0198 (7)0.0214 (8)0.0234 (8)0.0019 (6)0.0078 (6)0.0033 (6)
C12A0.0240 (8)0.0211 (8)0.0201 (7)0.0029 (6)0.0064 (6)0.0001 (6)
C13A0.0230 (8)0.0186 (8)0.0203 (7)0.0047 (6)0.0072 (6)0.0009 (6)
C14A0.0320 (9)0.0247 (9)0.0305 (9)0.0032 (7)0.0133 (8)0.0100 (7)
C15A0.0231 (8)0.0234 (8)0.0226 (8)0.0006 (6)0.0108 (6)0.0018 (6)
C16A0.0231 (8)0.0209 (8)0.0322 (9)0.0016 (6)0.0117 (7)0.0035 (7)
C17A0.0271 (8)0.0175 (8)0.0330 (9)0.0017 (6)0.0124 (7)0.0030 (7)
Cl1B0.0338 (2)0.0224 (2)0.0239 (2)0.00359 (17)0.00284 (16)0.00667 (16)
O1B0.0182 (5)0.0196 (6)0.0208 (5)0.0008 (4)0.0048 (4)0.0024 (4)
N1B0.0215 (6)0.0175 (6)0.0188 (6)0.0008 (5)0.0073 (5)0.0014 (5)
N2B0.0233 (7)0.0231 (7)0.0361 (8)0.0051 (6)0.0055 (6)0.0065 (6)
N3B0.0261 (7)0.0231 (7)0.0251 (7)0.0007 (6)0.0074 (6)0.0065 (6)
C1B0.0169 (7)0.0158 (7)0.0180 (7)0.0006 (6)0.0057 (6)0.0006 (6)
C2B0.0235 (8)0.0158 (7)0.0209 (7)0.0014 (6)0.0070 (6)0.0027 (6)
C3B0.0363 (10)0.0207 (8)0.0224 (8)0.0021 (7)0.0117 (7)0.0048 (7)
C4B0.0478 (11)0.0230 (9)0.0185 (8)0.0039 (8)0.0102 (8)0.0015 (7)
C5B0.0208 (7)0.0178 (7)0.0180 (7)0.0002 (6)0.0054 (6)0.0009 (6)
C6B0.0235 (8)0.0195 (8)0.0199 (7)0.0026 (6)0.0043 (6)0.0029 (6)
C7B0.0237 (8)0.0165 (7)0.0165 (7)0.0037 (6)0.0048 (6)0.0014 (6)
C8B0.0204 (7)0.0208 (8)0.0217 (8)0.0013 (6)0.0062 (6)0.0016 (6)
C9B0.0250 (8)0.0224 (8)0.0195 (7)0.0053 (6)0.0089 (6)0.0006 (6)
C10B0.0259 (8)0.0161 (7)0.0176 (7)0.0040 (6)0.0030 (6)0.0006 (6)
C11B0.0216 (8)0.0170 (7)0.0233 (8)0.0017 (6)0.0055 (6)0.0019 (6)
C12B0.0236 (8)0.0201 (8)0.0209 (7)0.0046 (6)0.0093 (6)0.0020 (6)
C13B0.0215 (7)0.0179 (7)0.0201 (7)0.0032 (6)0.0075 (6)0.0022 (6)
C14B0.0296 (9)0.0225 (9)0.0369 (10)0.0032 (7)0.0074 (8)0.0092 (7)
C15B0.0219 (8)0.0220 (8)0.0186 (7)0.0009 (6)0.0051 (6)0.0010 (6)
C16B0.0253 (8)0.0222 (8)0.0288 (9)0.0048 (7)0.0059 (7)0.0051 (7)
C17B0.0321 (9)0.0164 (8)0.0285 (9)0.0006 (7)0.0068 (7)0.0017 (7)
Geometric parameters (Å, º) top
Cl1A—C10A1.7490 (16)Cl1B—C10B1.7473 (16)
O1A—C1A1.4259 (18)O1B—C1B1.4250 (18)
O1A—H1A0.86 (2)O1B—H1B0.87 (2)
N1A—C15A1.332 (2)N1B—C15B1.333 (2)
N1A—N2A1.3631 (19)N1B—N2B1.3610 (19)
N1A—C13A1.459 (2)N1B—C13B1.459 (2)
N2A—C14A1.316 (2)N2B—C14B1.315 (2)
N3A—C15A1.326 (2)N3B—C15B1.327 (2)
N3A—C14A1.360 (2)N3B—C14B1.356 (2)
C1A—C13A1.530 (2)C1B—C13B1.532 (2)
C1A—C5A1.540 (2)C1B—C5B1.547 (2)
C1A—C2A1.565 (2)C1B—C2B1.564 (2)
C2A—C17A1.531 (2)C2B—C17B1.525 (2)
C2A—C16A1.537 (2)C2B—C3B1.539 (2)
C2A—C3A1.543 (2)C2B—C16B1.540 (2)
C3A—C4A1.535 (2)C3B—C4B1.529 (2)
C3A—H3AA0.9900C3B—H3BA0.9900
C3A—H3AB0.9900C3B—H3BB0.9900
C4A—C5A1.542 (2)C4B—C5B1.550 (2)
C4A—H4AA0.9900C4B—H4BA0.9900
C4A—H4AB0.9900C4B—H4BB0.9900
C5A—C6A1.532 (2)C5B—C6B1.533 (2)
C5A—H5A1.0000C5B—H5B1.0000
C6A—C7A1.513 (2)C6B—C7B1.514 (2)
C6A—H6AA0.9900C6B—H6BA0.9900
C6A—H6AB0.9900C6B—H6BB0.9900
C7A—C8A1.391 (2)C7B—C12B1.388 (2)
C7A—C12A1.396 (2)C7B—C8B1.389 (2)
C8A—C9A1.390 (2)C8B—C9B1.389 (2)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.377 (2)C9B—C10B1.380 (2)
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.388 (2)C10B—C11B1.385 (2)
C11A—C12A1.386 (2)C11B—C12B1.390 (2)
C11A—H11A0.9500C11B—H11B0.9500
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C17A—H17A0.9800C17B—H17D0.9800
C17A—H17B0.9800C17B—H17E0.9800
C17A—H17C0.9800C17B—H17F0.9800
C1A—O1A—H1A109.5C1B—O1B—H1B109.5
C15A—N1A—N2A109.64 (13)C15B—N1B—N2B109.64 (13)
C15A—N1A—C13A130.13 (14)C15B—N1B—C13B129.60 (14)
N2A—N1A—C13A120.20 (13)N2B—N1B—C13B120.66 (13)
C14A—N2A—N1A102.20 (14)C14B—N2B—N1B102.09 (14)
C15A—N3A—C14A102.11 (14)C15B—N3B—C14B101.93 (14)
O1A—C1A—C13A109.12 (12)O1B—C1B—C13B109.52 (12)
O1A—C1A—C5A106.28 (12)O1B—C1B—C5B106.86 (12)
C13A—C1A—C5A115.75 (13)C13B—C1B—C5B113.83 (13)
O1A—C1A—C2A111.16 (12)O1B—C1B—C2B111.13 (12)
C13A—C1A—C2A110.99 (12)C13B—C1B—C2B111.39 (12)
C5A—C1A—C2A103.38 (12)C5B—C1B—C2B103.94 (12)
C17A—C2A—C16A107.99 (13)C17B—C2B—C3B111.82 (14)
C17A—C2A—C3A111.36 (14)C17B—C2B—C16B108.81 (14)
C16A—C2A—C3A110.06 (13)C3B—C2B—C16B110.20 (14)
C17A—C2A—C1A113.57 (13)C17B—C2B—C1B113.23 (13)
C16A—C2A—C1A112.29 (13)C3B—C2B—C1B101.17 (12)
C3A—C2A—C1A101.50 (12)C16B—C2B—C1B111.46 (13)
C4A—C3A—C2A106.83 (13)C4B—C3B—C2B105.74 (13)
C4A—C3A—H3AA110.4C4B—C3B—H3BA110.6
C2A—C3A—H3AA110.4C2B—C3B—H3BA110.6
C4A—C3A—H3AB110.4C4B—C3B—H3BB110.6
C2A—C3A—H3AB110.4C2B—C3B—H3BB110.6
H3AA—C3A—H3AB108.6H3BA—C3B—H3BB108.7
C3A—C4A—C5A106.87 (13)C3B—C4B—C5B106.52 (13)
C3A—C4A—H4AA110.3C3B—C4B—H4BA110.4
C5A—C4A—H4AA110.3C5B—C4B—H4BA110.4
C3A—C4A—H4AB110.3C3B—C4B—H4BB110.4
C5A—C4A—H4AB110.3C5B—C4B—H4BB110.4
H4AA—C4A—H4AB108.6H4BA—C4B—H4BB108.6
C6A—C5A—C1A116.03 (12)C6B—C5B—C1B114.73 (13)
C6A—C5A—C4A112.17 (13)C6B—C5B—C4B112.25 (13)
C1A—C5A—C4A103.95 (12)C1B—C5B—C4B105.34 (13)
C6A—C5A—H5A108.1C6B—C5B—H5B108.1
C1A—C5A—H5A108.1C1B—C5B—H5B108.1
C4A—C5A—H5A108.1C4B—C5B—H5B108.1
C7A—C6A—C5A112.14 (13)C7B—C6B—C5B111.25 (13)
C7A—C6A—H6AA109.2C7B—C6B—H6BA109.4
C5A—C6A—H6AA109.2C5B—C6B—H6BA109.4
C7A—C6A—H6AB109.2C7B—C6B—H6BB109.4
C5A—C6A—H6AB109.2C5B—C6B—H6BB109.4
H6AA—C6A—H6AB107.9H6BA—C6B—H6BB108.0
C8A—C7A—C12A117.79 (15)C12B—C7B—C8B118.08 (15)
C8A—C7A—C6A121.18 (15)C12B—C7B—C6B120.77 (14)
C12A—C7A—C6A121.02 (15)C8B—C7B—C6B121.14 (15)
C9A—C8A—C7A121.54 (15)C9B—C8B—C7B121.52 (15)
C9A—C8A—H8A119.2C9B—C8B—H8B119.2
C7A—C8A—H8A119.2C7B—C8B—H8B119.2
C10A—C9A—C8A118.95 (15)C10B—C9B—C8B118.66 (15)
C10A—C9A—H9A120.5C10B—C9B—H9B120.7
C8A—C9A—H9A120.5C8B—C9B—H9B120.7
C9A—C10A—C11A121.41 (15)C9B—C10B—C11B121.67 (15)
C9A—C10A—Cl1A119.39 (12)C9B—C10B—Cl1B119.56 (12)
C11A—C10A—Cl1A119.20 (12)C11B—C10B—Cl1B118.77 (13)
C12A—C11A—C10A118.61 (15)C10B—C11B—C12B118.28 (15)
C12A—C11A—H11A120.7C10B—C11B—H11B120.9
C10A—C11A—H11A120.7C12B—C11B—H11B120.9
C11A—C12A—C7A121.69 (15)C7B—C12B—C11B121.73 (15)
C11A—C12A—H12A119.2C7B—C12B—H12B119.1
C7A—C12A—H12A119.2C11B—C12B—H12B119.1
N1A—C13A—C1A113.96 (13)N1B—C13B—C1B113.25 (13)
N1A—C13A—H13A108.8N1B—C13B—H13C108.9
C1A—C13A—H13A108.8C1B—C13B—H13C108.9
N1A—C13A—H13B108.8N1B—C13B—H13D108.9
C1A—C13A—H13B108.8C1B—C13B—H13D108.9
H13A—C13A—H13B107.7H13C—C13B—H13D107.7
N2A—C14A—N3A115.29 (15)N2B—C14B—N3B115.61 (16)
N2A—C14A—H14A122.4N2B—C14B—H14B122.2
N3A—C14A—H14A122.4N3B—C14B—H14B122.2
N3A—C15A—N1A110.76 (15)N3B—C15B—N1B110.73 (15)
N3A—C15A—H15A124.6N3B—C15B—H15B124.6
N1A—C15A—H15A124.6N1B—C15B—H15B124.6
C2A—C16A—H16A109.5C2B—C16B—H16D109.5
C2A—C16A—H16B109.5C2B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C2A—C16A—H16C109.5C2B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C2A—C17A—H17A109.5C2B—C17B—H17D109.5
C2A—C17A—H17B109.5C2B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
C2A—C17A—H17C109.5C2B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
C15A—N1A—N2A—C14A0.61 (18)C15B—N1B—N2B—C14B0.57 (19)
C13A—N1A—N2A—C14A177.59 (14)C13B—N1B—N2B—C14B177.23 (15)
O1A—C1A—C2A—C17A47.47 (17)O1B—C1B—C2B—C17B45.87 (17)
C13A—C1A—C2A—C17A74.17 (17)C13B—C1B—C2B—C17B76.54 (17)
C5A—C1A—C2A—C17A161.11 (13)C5B—C1B—C2B—C17B160.47 (13)
O1A—C1A—C2A—C16A170.35 (13)O1B—C1B—C2B—C3B73.94 (15)
C13A—C1A—C2A—C16A48.71 (17)C13B—C1B—C2B—C3B163.65 (13)
C5A—C1A—C2A—C16A76.01 (15)C5B—C1B—C2B—C3B40.67 (15)
O1A—C1A—C2A—C3A72.15 (15)O1B—C1B—C2B—C16B168.95 (13)
C13A—C1A—C2A—C3A166.21 (13)C13B—C1B—C2B—C16B46.53 (17)
C5A—C1A—C2A—C3A41.49 (15)C5B—C1B—C2B—C16B76.45 (15)
C17A—C2A—C3A—C4A151.19 (14)C17B—C2B—C3B—C4B159.06 (14)
C16A—C2A—C3A—C4A89.09 (16)C16B—C2B—C3B—C4B79.78 (17)
C1A—C2A—C3A—C4A30.01 (17)C1B—C2B—C3B—C4B38.25 (17)
C2A—C3A—C4A—C5A7.56 (18)C2B—C3B—C4B—C5B21.50 (19)
O1A—C1A—C5A—C6A43.87 (17)O1B—C1B—C5B—C6B34.43 (17)
C13A—C1A—C5A—C6A77.44 (17)C13B—C1B—C5B—C6B86.60 (16)
C2A—C1A—C5A—C6A161.00 (13)C2B—C1B—C5B—C6B152.03 (13)
O1A—C1A—C5A—C4A79.78 (14)O1B—C1B—C5B—C4B89.54 (15)
C13A—C1A—C5A—C4A158.91 (13)C13B—C1B—C5B—C4B149.44 (14)
C2A—C1A—C5A—C4A37.35 (15)C2B—C1B—C5B—C4B28.07 (16)
C3A—C4A—C5A—C6A144.71 (14)C3B—C4B—C5B—C6B129.92 (15)
C3A—C4A—C5A—C1A18.58 (17)C3B—C4B—C5B—C1B4.40 (18)
C1A—C5A—C6A—C7A177.53 (13)C1B—C5B—C6B—C7B177.16 (13)
C4A—C5A—C6A—C7A58.26 (18)C4B—C5B—C6B—C7B62.64 (18)
C5A—C6A—C7A—C8A113.52 (17)C5B—C6B—C7B—C12B63.93 (19)
C5A—C6A—C7A—C12A67.59 (19)C5B—C6B—C7B—C8B116.02 (16)
C12A—C7A—C8A—C9A0.3 (2)C12B—C7B—C8B—C9B1.5 (2)
C6A—C7A—C8A—C9A178.62 (14)C6B—C7B—C8B—C9B178.49 (15)
C7A—C8A—C9A—C10A0.8 (2)C7B—C8B—C9B—C10B0.6 (2)
C8A—C9A—C10A—C11A0.8 (2)C8B—C9B—C10B—C11B2.4 (2)
C8A—C9A—C10A—Cl1A179.64 (12)C8B—C9B—C10B—Cl1B177.23 (12)
C9A—C10A—C11A—C12A0.4 (2)C9B—C10B—C11B—C12B2.0 (2)
Cl1A—C10A—C11A—C12A179.96 (12)Cl1B—C10B—C11B—C12B177.58 (12)
C10A—C11A—C12A—C7A0.0 (2)C8B—C7B—C12B—C11B1.8 (2)
C8A—C7A—C12A—C11A0.1 (2)C6B—C7B—C12B—C11B178.13 (14)
C6A—C7A—C12A—C11A179.04 (15)C10B—C11B—C12B—C7B0.1 (2)
C15A—N1A—C13A—C1A68.1 (2)C15B—N1B—C13B—C1B73.5 (2)
N2A—N1A—C13A—C1A109.63 (16)N2B—N1B—C13B—C1B102.44 (17)
O1A—C1A—C13A—N1A60.01 (17)O1B—C1B—C13B—N1B56.18 (17)
C5A—C1A—C13A—N1A59.77 (18)C5B—C1B—C13B—N1B63.35 (17)
C2A—C1A—C13A—N1A177.17 (12)C2B—C1B—C13B—N1B179.52 (12)
N1A—N2A—C14A—N3A0.3 (2)N1B—N2B—C14B—N3B0.8 (2)
C15A—N3A—C14A—N2A0.2 (2)C15B—N3B—C14B—N2B0.7 (2)
C14A—N3A—C15A—N1A0.59 (18)C14B—N3B—C15B—N1B0.28 (18)
N2A—N1A—C15A—N3A0.79 (19)N2B—N1B—C15B—N3B0.19 (19)
C13A—N1A—C15A—N3A177.17 (15)C13B—N1B—C15B—N3B176.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N3Ai0.862.082.9097 (18)164
C11A—H11A···N2B0.952.623.500 (2)155
C14A—H14A···Cl1Aii0.952.983.9223 (18)175
O1B—H1B···N3Biii0.872.052.8956 (18)163
C14B—H14B···Cl1Biv0.952.753.6665 (18)163
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.
Conformation defining torsion angles (°) in metconazole top
Torsion angleMolecule AMolecule B
C2—C5—C6—C7-152.82 (19)-151.88 (16)
C5—C6—C7—C8113.52 (17)116.02 (16)
O1—C1—C13—N1-60.01 (17)-56.18 (17)
C1—C13—N1—N2-109.63 (16)-102.44 (17)
 

Acknowledgements

The authors thank Honeychem Pharma Research Pvt. Ltd, Peenya Industrial Area, Bengaluru 560 058, India, for a gift sample of metconazole.

Funding information

Funding for this research was provided by: NSF MRI program (grant No. MRI CHE1625732).

References

First citationÁlvarez, F., Arena, M., Auteri, D., Binaglia, S. B. L. M., Castoldi, A. F., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., De Lentdecker, C., De Magistris, I., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Halling, K., Nogareda, L. H., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Kienzler, A., Lanzoni, A., Lava, R., Leuschner, R., Linguadoca, A., Louisse, J., Lythgo, C., Magrans, O., Mangas, I., Miron, I., Molnar, T., Padovani, L., Padricello, V., Panzarea, M., Morte, J. M. P., Rizzuto, S., Romac, A., Rortais, A., Serafimova, R., Sharp, R., Szentes, C., Terron, A., Theobald, A., Tiramani, M., Vianello, G. & Villamar-Bouza, L. (2023). EFSA J. 21, 8141.  Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudny, M., Kozakiewicz, A. & Wolan, A. (2021). Org. Lett. 23, 5123–5127.  CSD CrossRef CAS PubMed Google Scholar
First citationBudny, M., Włodarczyk, J., Muzioł, T., Bosiak, M. J. & Wolan, A. (2017). Tetrahedron Lett. 58, 4285–4288.  CSD CrossRef CAS Google Scholar
First citationDiao, Z., Di, S., Qi, P., Liu, Z., Wang, Z., Zhao, H., Wang, M., Zhang, C. & Wang, X. (2024). Food Chem. 438, 137944.  CrossRef PubMed Google Scholar
First citationFei, L. & Hao, L. (2024). Molecules, 29, 1353.  CrossRef PubMed Google Scholar
First citationGražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, R., Guo, D., Huang, Z., Kong, Y., Ji, C., Gu, J., Zhang, Z.-B., Diao, J., Zhou, Z., Zhao, M., Fan, J. & Zhang, W. (2021). Sci. Total Environ. 784, 147194.  CrossRef PubMed Google Scholar
First citationIto, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262–269.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumazawa, S., Ito, A., Saishoji, T. & Chuman, H. (2000). J. Pestic. Sci. 25, 321331.  CrossRef Google Scholar
First citationLi, L., Huang, P. & Li, J. (2021). Ecotoxicol. Environ. Saf. 211, 111894.  CrossRef PubMed Google Scholar
First citationLiu, X., Wang, S., Fan, Z., Wu, J., Wang, L., He, D., Mohamed, S. R., Dawood, D. H., Shi, J., Gao, T. & Xu, J. (2023). Pestic. Biochem. Physiol. 190, 105298.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. R. (2021). Acta Cryst. E77, 452–465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpolti, P., Guerra, D. S., Badiale–Furlong, E. & Del Ponte, E. M. (2013). Trop. Plant Pathol. 38, 085–096.  CrossRef Google Scholar
First citationTateishi, H., Miyake, T., Mori, M., Sakuma, Y. & Saishoji, T. (2014). J. Pestic. Sci. 39, 16.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds