research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and supra­molecular inter­actions of prism[6]arene-based host–guest systems with dihalohexa­nes

crossmark logo

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 17 March 2025; accepted 25 April 2025; online 2 May 2025)

The crystal structures of the supra­molecular systems formed by pereth­oxy prism[6]arene (PS6) with 1,6-di­chloro­hexane (HexCl2), C90H96O12·2C6H12Cl2, and 1,6-di­iodo­hexane (HexI2), C90H96O12·2C6H12I2, are reported. PS6 encapsulates these linear dihaloalkanes, creating 1:1 host–guest systems (PS6·HexCl2 and PS6·HexI2). The structural details and host–guest inter­molecular inter­actions within the crystal networks are presented and discussed. In both crystal structures, the prism[6]arene macrocycle adopts a distorted cuboid shape, with the guest positioned perpendicular to its main axis.

1. Chemical context

Prism[n]arenes are a class of naphthalene-based macrocyclic systems that have been reported recently (Della Sala et al., 2020[Della Sala, P., Del Regno, R., Talotta, C., Capobianco, A., Hickey, N., Geremia, S., De Rosa, M., Spinella, A., Soriente, A., Neri, P. & Gaeta, C. (2020). J. Am. Chem. Soc. 142, 1752-1756.], 2021[Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952-9961.]). They are structurally analogous to pillar[n]arenes, with the key difference being that the di­alk­oxy­benzene units are replaced by dialk­oxy naphthalenes. The five di­meth­oxy­naphthalene units, linked via methyl­ene bridges, adopt a prism-like shape and are thus named permeth­oxy prism[5]arene. Similarly, the six-membered di­eth­oxy­naphthalene units adopt a folded cuboid-shaped conformation and are referred to as pereth­oxy prism[6]arene.

Currently, the prism[n]arene family remains relatively small, consisting of only two known members: prism[5]arene and prism[6]arene. Suitably designed prism[n]arene macrocycles are expected to possess light-sensitizing properties, making them promising candidates for detection and sensing applications, as naphthalene units exhibit remarkable fluorescence (Yao & Jiang, 2020[Yao, H. & Jiang, W. (2020). Naphthol-Based Macrocycles. In Handbook of Macrocyclic Supramolecular Assembly edited by Y. Liu, Y. Chen & H.- Y. Zhang. Singapore: Springer. https://doi. org/10.1007/978-981-15-2686-2_40.]). Additionally, the large biphenyl π-system of the naphthalene moieties provides a deeper and wider cavity in macrocyclic prism[n]arene derivatives, enhancing their host–guest inter­actions. Both prism[5]arene and prism[6]arene exhibit a significant degree of conformational flexibility, enabling them to accommodate various guest mol­ecules within their cavities (Yang & Jiang, 2020[Yang, L. P. & Jiang, W. (2020). Angew. Chem. Int. Ed. 59, 15794-15796.]; Liang et al., 2022[Liang, X., Shen, Y., Zhou, D., Ji, J., Wang, H., Zhao, T., Mori, T., Wu, W. & Yang, C. (2022). Chem. Commun. 58, 13584-13587.]; Regno et al., 2022[Del Regno, R., Santonoceta, G. D. G., Della Sala, P., De Rosa, M., Soriente, A., Talotta, C., Spinella, A., Neri, P., Sgarlata, C. & Gaeta, C. (2022). Org. Lett. 24, 2711-2715.], 2024[Del Regno, R., Palmieri, A., Della Sala, P., Talotta, C., De Rosa, M., Campanile, G., Argenio, C. & Gaeta, C. (2024). Org. Lett. 26, 8228-8232.]; Zhang et al., 2024[Zhang, G., Cheng, C., Li, Z., Zhao, D. & Han, C. (2024). Org. Biomol. Chem. 22, 3611-3614.]). However, detailed structural investigations of these prism[n]arene systems and their host–guest inter­actions remain underdeveloped.

Recently, the present authors provided a detailed account of the guest encapsulation characteristics of permeth­oxy prism[5]arene and pereth­oxy prism[6]arene with different α,ω-di­bromo­alkanes (Vinodh et al., 2025[Vinodh, M., Abdeljaber, N. O., Alipour, F. H. & Al-Azemi, T. F. (2025). CrystEngComm 27, 1873-1878.]). In the present work, we discuss the crystal structures of pereth­oxy prism[6]arene (PS6) co-crystallized with either 1,6-di­chloro­hexane (HexCl2) or 1,6-di­iodo­hexane (HexI2). The results show that PS6 encapsulates these linear dihaloalkanes, forming 1:1 host–guest complexes (PS6·HexCl2 and PS6·HexI2). The structural details and host–guest inter­molecular inter­actions within the crystal network are presented and discussed.

[Scheme 1]

2. Structural commentary

PS6·HexCl2 crystallizes in the monoclinic crystal system, space group C2/c, with its asymmetric unit consisting of half of a prism[6]arene mol­ecule and two halves of 1,6-di­chloro­hexane moieties. Upon symmetry expansion, one mol­ecule of 1,6-di­chloro­hexane is encapsulated within the cavity of the pereth­oxy prism[6]arene, resulting in the formation of a host–guest supra­molecular inclusion complex, PS6·HexCl2. Additionally, an extra 1,6-di­chloro­hexane mol­ecule is present for each PS6·HexCl2, acting as a space-filling solvent mol­ecule (Fig. 1[link]). Furthermore, two disordered ethoxy groups are observed at the rim of the macrocycle in Fig. 1[link].

[Figure 1]
Figure 1
Symmetry-expanded crystal structure of PS6·HexCl2 with displacement ellipsoids (30% probability; only the symmetry independent atoms are labeled). Hydrogen atoms are omitted for clarity.

The prism[6]arene macrocycle in PS6·HexCl2 exhibits a distorted cuboid shape, with its longer sides comprising two naphthalene units each, while the shorter sides consist of a single naphthalene unit. Measuring the distances based on the centroids of the phenyl rings in the naphthalene units, the length of the cuboid is approximately 12.32 Å, and the shortest width is 8.46 Å. Inside this cuboid-shaped prism[6]arene, a single 1,6-di­chloro­hexane guest is positioned perpendicular to the main axis of the macrocycle. This orthogonal orientation is quite different from the common threaded encapsulation typically observed in pillar[5]arenes or prism[5]arenes with such linear guest mol­ecules. As a result of this unique arrangement, the chlorine atoms of the encapsulated 1,6-di­chloro­hexane mol­ecule are aligned in the same direction and project toward the opening of the cuboid. The distance between the terminal chlorine atoms in the encapsulated guest mol­ecule is measured to be 4.83 Å, whereas in the similar 1,6-di­chloro­hexane mol­ecules positioned outside the prism[6]arene as space-filling solvents, the distance is 9.34 Å.

Similarly, PS6·HexI2 crystallizes in the monoclinic crystal system, space group C2/c, with its asymmetric unit consisting of half of a prism[6]arene mol­ecule and two halves of 1,6-di­iodo­hexane moieties. Similar to PS6·HexCl2, the crystal structure of PS6·HexI2 includes one mol­ecule of 1,6-di­iodo­hexane encapsulated within the cavity of pereth­oxy prism[6]arene, forming a host-guest supra­molecular inclusion complex, PS6·HexI2, along with an additional 1,6-di­iodo­hexane mol­ecule serving as a space-filling solvent (Fig. 2[link]).

[Figure 2]
Figure 2
Symmetry-expanded crystal structure of PS6·HexI2 with displacement ellipsoids (30% probability; only the symmetry independent atoms are labeled). Hydrogen atoms are omitted for clarity.

The prism[6]arene macrocycle in PS6·HexI2 also exhibits a distorted cuboid shape, with a length of approximately 12.24 Å and a shortest width of around 8.23 Å. In this inclusion complex, the encapsulated 1,6-di­iodo­hexane guest is also positioned perpendicular to the main axis of the macrocycle, with its iodine atoms aligned in the same direction and projecting toward the opening of the cuboid. The distance between the terminal iodine atoms in the encapsulated guest mol­ecule is measured to be 4.56 Å, whereas in the similar 1,6-di­iodo­hexane mol­ecules positioned outside the prism[6]arene as space-filling solvents, this distance is 9.98 Å. This suggests that the 1,6-di­iodo­hexane guest experiences greater strain within the prism[6]arene cavity compared to the 1,6-di­chloro­hexane guest.

3. Supra­molecular features

The encapsulated guest mol­ecules, 1,6-di­chloro­hexane or 1,6-di­iodo­hexane, engage in multiple non-bonding inter­actions with their prism[6]arene macrocyclic host via C—H⋯O or C—H⋯π inter­actions. Fig. 3[link] illustrates the host–guest inter­actions between prism[6]arene and 1,6-di­chloro­hexane in PS6·HexCl2, while Fig. 4[link] depicts the inter­actions between prism[6]arene and 1,6-di­iodo­hexane in PS6·HexI2. The qu­anti­tative details of these supra­molecular host–guest inter­actions in PS6·HexCl2 and PS6·HexI2 are presented in Tables 1[link] and 2[link], respectively.

Table 1
Non-bonding inter­actions between prism[6]arene host and di­chloro­hexane guest (Å, °)

π1–π3 are the centroids of the phenyl rings C1–C5,C10, C16–C21 and C23–C27,C32, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯Cl1 0.93 3.28 3.776 (5) 116
C34—H34A⋯Cl1 0.97 3.45 4.380 (4) 160
C43—H43C⋯Cl1 0.96 3.20 3.809 (2) 123
C46—H46A⋯O5i 0.97 3.19 4.140 (7) 166
C46—H46Bπ1 0.97 3.12 3.926 (6) 145
C47—H47Aπ3 0.97 3.23 4.044 (8) 143
C47—H47Bπ2 0.97 3.32 4.079 (7) 137
C48—H48A⋯O41 0.97 3.34 4.278 (7) 162
C48—H48B⋯O5 0.97 3.16 3.881 (7) 132
Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.

Table 2
Non-bonding inter­actions between prism[6]arene host and di­iodo­hexane guest (Å, °)

π1–π3 are centroids of the phenyl rings C5–C10, C16–C21 and C23–C27,C32, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯I1 0.93 3.38 3.930 (8) 120
C36—H36A⋯I1 0.97 3.45 4.385 (6) 163
C41i—H41Bi⋯I1 0.96 3.37 3.920 (8) 118
C46—H46A⋯O6i 0.97 3.07 4.015 (12) 166
C46—H46Bπ1 0.97 3.28 4.019 (8) 135
C47—H47Aπ2 0.97 3.31 4.098 (10) 139
C47—H47Bπ3 0.97 3.32 4.059 (11) 136
C48—H48A⋯O3 0.97 3.32 4.271 (10) 165
C48—H48B⋯O6 0.97 3.20 3.936 (10) 134
Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.
[Figure 3]
Figure 3
Host–guest inter­actions between the prism[6]arene host and di­chloro­hexane guest. π1–π3 are the centroids of the phenyl rings C1—C5,C10; C16—C21 and C23—C27,C32 respectively. Symmetry code (1) 1 − x, y, 0.5 − z.
[Figure 4]
Figure 4
Host–guest inter­actions between the prism[6]arene host and di­iodo­hexane guest. π1–π3 are the centroids of the phenyl rings C5–C10, C16–C21 and C23–C27,C32, respectively. Symmetry code: (1) 1 − x, y, [{1\over 2}] − z.

Additionally, in the PS6·HexI2 crystal packing, inter­molecular C—H⋯π inter­actions are observed among adjacent prism[6]arene macrocycles, as demonstrated in Fig. 5[link]. The 1,6-di­iodo­hexane mol­ecules present outside the macrocyclic cavity of PS6·HexI2 are also expected to engage in C—H⋯I inter­actions, which are likewise illustrated in Fig. 5[link]. The qu­anti­tative details of these inter­molecular non-bonding inter­actions are provided in Table 3[link]. The packing features of both PS6·HexCl2 and PS6·HexI2 crystals are nearly identical and are shown together in Fig. 6[link].

Table 3
Inter­molecular non-bonding inter­actions between adjacent prism[6]arenes as well as prism[6]arene and solvent di­iodo­hexane (Å, °)

π is the centroid of the C12–C16phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41Cπi 0.96 2.74 3.492 (8) 136
C44—H44B⋯I2i 0.97 3.19 3.952 (9) 137
Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.
[Figure 5]
Figure 5
Inter­molecular non-bonding inter­actions among PS6PS6 and PS6HexI2 (space-filling solvent). π is the centroid of the C12–C16, C21 phenyl ring. Symmetry code: (a) 1 − x, y, [{1\over 2}] − z; (b) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z; (c) 1 − x, 2 − y, 1 − z; (d) x, 2 − y, [{1\over 2}] + z; (e) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (f) x, 2 − y, −[{1\over 2}] + z.
[Figure 6]
Figure 6
Packing pattern of PS6·HexCl2 and PS6·HexI2 systems in the crystal network.

4. Hirshfeld surface analysis

Hirshfeld surface analysis using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.]) indicates moderate inter­actions between the prism[6]arene macrocycle and the 1,6-di­chloro­hexa­ne/1,6-di­iodo­hexane present in the cavity. The Hirshfeld surfaces of both PS6·HexCl2 and PS6·HexI2 are depicted in Fig. 7[link], which shows red spots and white regions inside the macrocyclic cavity corresponding to O⋯H and C—H⋯π bonds, as well as Cl⋯H/I⋯H inter­actions exhibited by the host and guest mol­ecules. These inter­actions collectively contribute to a tighter fit of the guest mol­ecule within the prism[6]arene cavity. The 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) reveal that almost all inter­molecular contacts in these crystal systems involve hydrogen, with the vast majority being H⋯H inter­actions, which account for 74.0% in PS6·HexCl2 and 73.2% in PS6·HexI2, respectively. In the case of PS6·HexCl2, the other significant inter­actions are C⋯H (16.2%), Cl⋯H (6.1%), and O⋯H (3.1%), whereas for PS6·HexI2, they are C⋯H (16.2%), I⋯H (7.1%), and O⋯H (2.9%). Thus, van der Waals inter­actions play a particularly prominent role in these crystal structures. The slightly higher contribution of I⋯H inter­actions in PS6·HexI2 compared to the Cl⋯H contribution in PS6·HexCl2 suggests the presence of non-bonding C—H⋯I inter­actions between the prism[6]arene macrocycle and the 1,6-di­iodo­hexane mol­ecules located outside the macrocyclic cavity, as discussed above.

[Figure 7]
Figure 7
Hirshfeld surfaces (mapped with dnorm) illustrating host–guest inter­actions in PS6·HexCl2 and PS6·HexI2.

5. Database survey

A search in the Cambridge Structural Database (version 5.46, last update February 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the crystal structure of pereth­oxy prism[6]arene has been reported in six different guest/solvent combinations. However, no prism[6]arene macrocycle has been reported encapsulating either 1,6-di­chloro­hexane or 1,6-di­iodo­butane. A structure of pereth­oxy prism[6]arene without a guest mol­ecule inside has been reported, exhibiting a perfect cuboid shape, where all six faces of the cuboid consist of naphthalene moieties. Di­chloro­methane and methanol are present in this crystal as space-filling solvents (TOCQUB; Zhang et al., 2023[Zhang, G., Li, Z., Pan, Z., Zhao, D. & Han, C. (2023). New J. Chem. 47, 18910-18913.]). Similarly, pereth­oxy prism[6]arene with no guest inside also retains a perfect cuboid shape when di­chloro­methane alone is present as a space-filling solvent. However, when ethyl acetate is present as the space-filling solvent, the cuboid shape becomes distorted at one end, giving pereth­oxy prism[6]arene a pyramidal shape. In this crystal, the macromolecule does not encapsulate any guest mol­ecule (IVUGUE and IVUGIS; Della Sala et al., 2021[Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952-9961.]). The crystal structure of meth­oxy prism[6]arene encapsulating a tetra­ethyl­ammonium ion inside the macrocyclic cavity has also been reported (IVUHOZS; Della Sala et al., 2021[Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952-9961.]). The prism[6]arene in this structure adopts a deformed cuboid shape, almost similar to that of PS6·HexCl2 or PS6·HexI2, with all six faces of the cuboid consisting of naphthalene moieties. A tetra­kis­[3,5-bis­(tri­fluoro­meth­yl)phen­yl]borate anion serves as the counter-anion and is located outside the macrocycle. Additionally, di­chloro­methane is present as another space-filling solvent. A perprop­oxy prism[6]arene with no guest inside the cavity has been reported, exhibiting a slightly deformed cuboid shape, with all six faces of the cuboid consisting of naphthalene moieties. Toluene is present as a space-filling solvent in this crystal (IVUHAL; Della Sala et al., 2021[Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952-9961.]). Furthermore, an isoprop­oxy prism[6]arene macrocycle has been reported, in which the prism[6]arene adopts a perfect cuboid conformation, with four isopropyl chains folded inside the cavity. These branched isopropyl chains on the prism[6]arene rims engage in C—H⋯π inter­actions with the naphthalene moieties of the macrocycle, thereby filling its inter­nal void and stabilizing the cuboid conformation. Di­chloro­methane and methanol are present as space-filling solvents in this crystal network (RINQIS; Regno et al., 2023[Del Regno, R., Della Sala, P., Hickey, N., Geremia, S., Talotta, C., Neri, P. & Gaeta, C. (2023). Eur. J. Org. Chem. 26, e202300608.]).

6. Synthesis and crystallization

Prism[6]arene was synthesized as reported earlier (Della Sala et al., 2021[Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952-9961.]). Colorless crystals of PS6·HexCl2 and PS6·HexI2, suitable for single-crystal analysis, were grown by dissolving prism[6]arene (10 mg) in a 1,6-di­chloro­methane: 1,6-di­chloro­hexane solvent mixture (90:10 v/v, 1 mL) and prism[6]arene (10 mg) in a 1,6-di­chloro­methane: 1,6-di­iodo­hexane solvent mixture (90:10 v/v, 1 mL), respectively, and subjecting them to slow solvent evaporation.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  PS6·HexCl2 PS6·HexI2
Crystal data
Chemical formula C90H96O12·2C6H12Cl2 C90H96O12·2C6H12I2
Mr 1679.77 2045.57
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 38.722 (3), 10.4622 (7), 23.8910 (16) 38.728 (3), 10.5427 (6), 24.0234 (16)
β (°) 106.978 (8) 106.814 (8)
V3) 9256.9 (12) 9389.3 (11)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 1.39
Crystal size (mm) 0.20 × 0.16 × 0.06 0.20 × 0.17 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.546, 0.897 0.452, 0.884
No. of measured, independent and observed [I > 2σ(I)] reflections 31898, 8092, 4016 27851, 8193, 4349
Rint 0.112 0.077
(sin θ/λ)max−1) 0.594 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.187, 1.00 0.069, 0.192, 1.02
No. of reflections 8092 8193
No. of parameters 556 532
No. of restraints 92 46
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.24 0.70, −0.77
Computer programs: CrystalClear (Rigaku, 2016[Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

One of the eth­oxy fractions of the prism[6]arene mol­ecule in the PS6·HexCl2 crystal was found to be disordered. Consequently, refinement of this disordered fraction was carried out using the PART command, with 82.3 (19):17.7 (19) % occupancies for the major and minor components, respectively. The DELU and SIMU commands were used to restrain the thermal factors of these disordered components. Additionally, SIMU and RIGU were used to restrain/constrain the thermal displacement parameters, while the DFIX and DANG commands were applied to adjust the geometry of the 1,6-di­chloro­hexane fragment in this crystal.

For the PS6·HexI2 crystal, the DELU and SIMU commands were used to restrain the thermal factors of the carbon atoms belonging to the 1,6-di­iodo­hexane fragments. Furthermore, the geometry of one of the eth­oxy components was adjusted using the DFIX command, while SIMU and DELU were used to restrain/constrain the thermal displacement parameters of this fraction.

In both crystals, all hydrogen atoms were positioned geometrically, with C—H distances of 0.96 Å for methyl, 0.97 Å for methyl­ene, and 0.93 Å for aromatic hydrogen atoms. The thermal factors of hydrogen atoms were refined with Uiso(H)=1.2Ueq(C), except for hydrogen atoms from methyl groups, where Uiso(H)=1.5Ueq(C) was applied.

Supporting information


Computing details top

Perethoxy-prism[6]arene 1,6-dichlorohexane disolvate (PS6_HexCl2) top
Crystal data top
C90H96O12·2C6H12Cl2F(000) = 3584
Mr = 1679.77Dx = 1.205 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 38.722 (3) ÅCell parameters from 14258 reflections
b = 10.4622 (7) Åθ = 3.2–24.9°
c = 23.8910 (16) ŵ = 0.19 mm1
β = 106.978 (8)°T = 293 K
V = 9256.9 (12) Å3Block, colorless
Z = 40.20 × 0.16 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4016 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.112
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 4245
Tmin = 0.546, Tmax = 0.897k = 1212
31898 measured reflectionsl = 2828
8092 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0844P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
8092 reflectionsΔρmax = 0.28 e Å3
556 parametersΔρmin = 0.24 e Å3
92 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.56472 (5)0.59286 (18)0.29326 (8)0.1364 (6)
O10.66007 (7)0.5601 (2)0.46893 (11)0.0558 (7)
C10.65386 (8)0.3419 (3)0.44409 (15)0.0384 (8)
O20.66298 (7)0.0535 (2)0.28958 (11)0.0579 (7)
C20.66023 (9)0.4651 (3)0.42885 (15)0.0415 (9)
Cl20.75364 (4)0.66424 (12)0.57427 (7)0.1020 (5)
O30.68655 (7)0.4117 (3)0.20064 (12)0.0676 (8)
C30.66764 (10)0.4906 (3)0.37609 (16)0.0476 (9)
H30.6722010.5742340.3670570.057*
C40.66830 (9)0.3950 (3)0.33767 (16)0.0472 (9)
H40.6731500.4147880.3027630.057*
O50.47899 (6)0.4852 (2)0.40860 (12)0.0580 (7)
C50.66178 (8)0.2668 (3)0.34972 (15)0.0390 (8)
C60.66318 (9)0.1658 (3)0.31055 (15)0.0409 (9)
O60.64885 (7)0.0852 (3)0.56017 (12)0.0671 (8)
C70.65982 (9)0.0426 (3)0.32739 (16)0.0457 (9)
C100.65495 (8)0.2409 (3)0.40455 (15)0.0384 (8)
C90.65053 (9)0.1118 (3)0.41814 (16)0.0461 (9)
H90.6458750.0918790.4531790.055*
C80.65293 (10)0.0156 (3)0.38086 (17)0.0504 (10)
H80.6499920.0686790.3908990.061*
C120.64242 (9)0.2576 (3)0.20262 (15)0.0430 (9)
C110.67070 (9)0.1915 (3)0.25260 (15)0.0472 (9)
H11A0.6761560.1099860.2378260.057*
H11B0.6925390.2425250.2610220.057*
C130.65262 (9)0.3629 (4)0.17603 (16)0.0490 (10)
C150.59554 (10)0.3656 (4)0.10091 (17)0.0534 (10)
H150.5806660.4023660.0669580.064*
C140.62879 (10)0.4144 (4)0.12512 (17)0.0565 (11)
H140.6361500.4843630.1074800.068*
C160.58271 (9)0.2596 (3)0.12598 (15)0.0426 (9)
C170.54758 (9)0.2068 (3)0.10158 (15)0.0450 (9)
C180.53695 (9)0.1050 (3)0.12930 (17)0.0476 (9)
C200.59445 (10)0.1009 (4)0.20321 (16)0.0519 (10)
H200.6098240.0623480.2362160.062*
C190.56058 (10)0.0530 (4)0.18043 (18)0.0579 (11)
H190.5529710.0149670.1989690.069*
C210.60705 (9)0.2069 (3)0.17852 (15)0.0419 (9)
C220.52281 (9)0.2503 (4)0.04232 (15)0.0493 (10)
H22A0.5359230.3113780.0257300.059*
H22B0.5175560.1768670.0164250.059*
C240.51238 (10)0.4320 (3)0.43228 (15)0.0459 (9)
C230.51300 (9)0.3112 (3)0.45722 (15)0.0440 (9)
C270.57991 (9)0.3132 (3)0.48233 (14)0.0395 (8)
C260.57686 (10)0.4357 (3)0.45583 (15)0.0449 (9)
H260.5977670.4776810.4544800.054*
C250.54456 (10)0.4935 (3)0.43243 (16)0.0468 (9)
H250.5437280.5747200.4163010.056*
C300.58361 (10)0.0823 (4)0.54138 (17)0.0537 (10)
H300.5850580.0070790.5626680.064*
C290.61525 (10)0.1394 (4)0.53691 (16)0.0485 (9)
C280.61390 (9)0.2544 (3)0.50677 (15)0.0416 (9)
C400.70105 (12)0.4994 (5)0.1687 (2)0.0822 (15)
H40A0.6867040.5769140.1614290.099*
H40B0.7009230.4626800.1313940.099*
O40.50337 (7)0.0539 (2)0.10384 (13)0.0658 (8)
C38A0.4882 (2)0.0298 (11)0.1382 (4)0.091 (3)0.823 (19)
H38A0.4923010.0051540.1771880.109*0.823 (19)
H38B0.4997860.1128340.1416960.109*0.823 (19)
C39A0.4488 (3)0.0440 (16)0.1097 (7)0.154 (6)0.823 (19)
H39A0.4387380.0999040.1326200.231*0.823 (19)
H39B0.4374330.0382110.1066360.231*0.823 (19)
H39C0.4448980.0794740.0712360.231*0.823 (19)
C38B0.4787 (7)0.041 (4)0.1381 (13)0.074 (8)0.177 (19)
H38C0.4619050.1116280.1313360.089*0.177 (19)
H38D0.4915750.0363770.1794840.089*0.177 (19)
C39B0.4593 (12)0.082 (3)0.118 (3)0.091 (12)0.177 (19)
H39D0.4421500.0975760.1387460.136*0.177 (19)
H39E0.4469720.0760010.0765260.136*0.177 (19)
H39F0.4764420.1507430.1243490.136*0.177 (19)
C370.65758 (16)0.2586 (4)0.2485 (2)0.1072 (19)
H37A0.6504880.3450440.2527850.161*
H37B0.6822740.2571600.2479080.161*
H37C0.6424140.2238800.2124430.161*
C360.65381 (14)0.1801 (4)0.29858 (19)0.0790 (14)
H36A0.6291780.1840710.3005980.095*
H36B0.6697310.2124310.3350870.095*
C350.64472 (17)0.7641 (4)0.4955 (2)0.108 (2)
H35A0.6433530.8532380.4855410.161*
H35B0.6631250.7512310.5319240.161*
H35C0.6218780.7361440.4992130.161*
C340.65372 (12)0.6891 (3)0.44855 (19)0.0677 (12)
H34A0.6338750.6923080.4126960.081*
H34B0.6750910.7237780.4407740.081*
C330.64855 (9)0.3169 (3)0.50395 (14)0.0401 (9)
H33A0.6684450.2639230.5259570.048*
H33B0.6506370.3981960.5242050.048*
C320.54691 (9)0.2518 (3)0.48389 (15)0.0431 (9)
C310.55082 (10)0.1343 (3)0.51531 (16)0.0503 (10)
H310.5302300.0921060.5179970.060*
C420.47697 (10)0.6130 (4)0.38585 (18)0.0582 (11)
H42A0.4873620.6160320.3535260.070*
H42B0.4903890.6710110.4160730.070*
C410.73890 (14)0.5289 (6)0.2042 (2)0.121 (2)
H41A0.7499340.5840290.1822580.182*
H41B0.7524530.4509360.2133410.182*
H41C0.7386020.5707200.2398490.182*
C430.43802 (11)0.6519 (4)0.3653 (2)0.0727 (13)
H43A0.4361860.7376540.3504440.109*
H43B0.4279020.6479910.3975040.109*
H43C0.4250360.5950070.3349300.109*
C460.56990 (18)0.4348 (6)0.2688 (3)0.146 (3)
H46A0.5612180.4334920.2263970.175*
H46B0.5954330.4142680.2800790.175*
C450.69531 (13)0.0236 (6)0.6281 (2)0.112 (2)
H45A0.7000780.0881740.6579560.168*
H45B0.7083960.0526890.6436100.168*
H45C0.7028570.0536500.5955640.168*
C440.65571 (13)0.0049 (5)0.60819 (19)0.0855 (15)
H44A0.6420980.0737820.5976830.103*
H44B0.6484760.0456970.6394440.103*
C470.55092 (19)0.3345 (5)0.2916 (3)0.142 (2)
H47A0.5618600.3294540.3335790.171*
H47B0.5553560.2535170.2751560.171*
C480.51000 (19)0.3486 (6)0.2801 (2)0.134 (2)
H48A0.5014640.2790130.2993740.161*
H48B0.5052580.4278280.2975720.161*
C490.75588 (12)0.5492 (4)0.5202 (2)0.0775 (13)
H49A0.7376410.5691630.4837340.093*
H49B0.7793090.5547960.5132700.093*
C500.75018 (11)0.4155 (4)0.5381 (2)0.0656 (12)
H50A0.7266130.4092460.5444080.079*
H50B0.7682590.3954740.5746590.079*
C510.75267 (11)0.3188 (3)0.4914 (2)0.0637 (11)
H51A0.7344670.3389180.4549690.076*
H51B0.7761370.3262420.4848080.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1564 (16)0.1473 (15)0.1135 (13)0.0262 (12)0.0518 (12)0.0044 (12)
O10.0794 (19)0.0372 (15)0.0552 (17)0.0047 (12)0.0266 (14)0.0015 (13)
C10.0360 (19)0.042 (2)0.037 (2)0.0002 (15)0.0098 (16)0.0022 (18)
O20.082 (2)0.0433 (16)0.0501 (16)0.0053 (13)0.0222 (14)0.0016 (14)
C20.049 (2)0.035 (2)0.041 (2)0.0003 (16)0.0141 (17)0.0005 (18)
Cl20.1175 (12)0.0737 (8)0.1200 (12)0.0091 (7)0.0429 (9)0.0068 (8)
O30.0536 (17)0.087 (2)0.0581 (18)0.0188 (15)0.0091 (14)0.0205 (16)
C30.064 (3)0.032 (2)0.049 (2)0.0042 (17)0.0204 (19)0.0078 (19)
C40.061 (2)0.043 (2)0.040 (2)0.0003 (18)0.0190 (18)0.008 (2)
O50.0463 (16)0.0552 (16)0.0690 (19)0.0048 (13)0.0114 (14)0.0084 (14)
C50.035 (2)0.042 (2)0.039 (2)0.0023 (15)0.0093 (16)0.0055 (18)
C60.040 (2)0.041 (2)0.041 (2)0.0044 (16)0.0105 (17)0.0039 (18)
O60.0591 (18)0.0735 (19)0.0720 (19)0.0137 (14)0.0241 (15)0.0383 (16)
C70.051 (2)0.047 (2)0.039 (2)0.0070 (17)0.0113 (18)0.000 (2)
C100.036 (2)0.041 (2)0.037 (2)0.0002 (15)0.0086 (16)0.0061 (18)
C90.056 (2)0.045 (2)0.040 (2)0.0002 (17)0.0174 (18)0.0021 (19)
C80.066 (3)0.032 (2)0.052 (2)0.0003 (17)0.016 (2)0.006 (2)
C120.044 (2)0.049 (2)0.039 (2)0.0046 (17)0.0168 (17)0.0003 (19)
C110.047 (2)0.050 (2)0.045 (2)0.0076 (17)0.0145 (18)0.0045 (19)
C130.040 (2)0.065 (3)0.045 (2)0.0018 (19)0.0152 (18)0.011 (2)
C150.046 (2)0.068 (3)0.046 (2)0.003 (2)0.0134 (19)0.017 (2)
C140.051 (3)0.069 (3)0.053 (2)0.001 (2)0.019 (2)0.027 (2)
C160.042 (2)0.049 (2)0.041 (2)0.0036 (17)0.0187 (17)0.0034 (19)
C170.045 (2)0.050 (2)0.043 (2)0.0093 (18)0.0178 (18)0.0012 (19)
C180.040 (2)0.044 (2)0.059 (3)0.0008 (18)0.0141 (19)0.001 (2)
C200.053 (2)0.053 (2)0.045 (2)0.0017 (19)0.0072 (19)0.008 (2)
C190.057 (3)0.053 (2)0.063 (3)0.002 (2)0.016 (2)0.015 (2)
C210.047 (2)0.042 (2)0.040 (2)0.0069 (17)0.0173 (18)0.0056 (18)
C220.043 (2)0.063 (2)0.041 (2)0.0040 (18)0.0124 (17)0.001 (2)
C240.045 (2)0.052 (2)0.040 (2)0.0049 (18)0.0114 (18)0.0011 (18)
C230.044 (2)0.051 (2)0.038 (2)0.0048 (17)0.0139 (17)0.0068 (19)
C270.043 (2)0.044 (2)0.0330 (19)0.0028 (16)0.0125 (16)0.0017 (17)
C260.043 (2)0.046 (2)0.047 (2)0.0028 (17)0.0160 (18)0.0006 (19)
C250.046 (2)0.048 (2)0.049 (2)0.0033 (18)0.0163 (18)0.0033 (19)
C300.057 (3)0.050 (2)0.057 (3)0.001 (2)0.023 (2)0.016 (2)
C290.048 (2)0.057 (2)0.043 (2)0.0053 (19)0.0179 (19)0.007 (2)
C280.045 (2)0.043 (2)0.037 (2)0.0023 (17)0.0130 (17)0.0002 (18)
C400.072 (3)0.111 (4)0.066 (3)0.033 (3)0.024 (3)0.002 (3)
O40.0505 (17)0.0667 (18)0.076 (2)0.0090 (14)0.0121 (15)0.0088 (16)
C38A0.068 (5)0.078 (6)0.117 (5)0.029 (4)0.014 (4)0.016 (5)
C39A0.074 (6)0.191 (13)0.183 (10)0.040 (8)0.015 (6)0.081 (10)
C38B0.020 (12)0.086 (17)0.109 (17)0.001 (12)0.008 (10)0.010 (16)
C39B0.09 (2)0.038 (13)0.15 (3)0.010 (12)0.05 (2)0.030 (17)
C370.192 (6)0.056 (3)0.084 (4)0.013 (3)0.055 (4)0.018 (3)
C360.138 (4)0.042 (2)0.060 (3)0.006 (2)0.033 (3)0.010 (2)
C350.193 (6)0.052 (3)0.106 (4)0.015 (3)0.087 (4)0.002 (3)
C340.104 (4)0.037 (2)0.072 (3)0.001 (2)0.041 (3)0.003 (2)
C330.043 (2)0.042 (2)0.035 (2)0.0000 (16)0.0112 (16)0.0022 (17)
C320.046 (2)0.050 (2)0.034 (2)0.0037 (17)0.0132 (17)0.0001 (18)
C310.050 (2)0.049 (2)0.053 (2)0.0102 (18)0.0171 (19)0.004 (2)
C420.057 (3)0.057 (3)0.058 (3)0.012 (2)0.013 (2)0.004 (2)
C410.076 (4)0.176 (6)0.103 (4)0.059 (4)0.013 (3)0.002 (4)
C430.073 (3)0.067 (3)0.071 (3)0.008 (2)0.010 (2)0.002 (2)
C460.129 (6)0.144 (6)0.177 (7)0.038 (5)0.063 (5)0.003 (6)
C450.077 (4)0.177 (6)0.077 (4)0.031 (4)0.015 (3)0.058 (4)
C440.079 (3)0.123 (4)0.055 (3)0.021 (3)0.022 (3)0.036 (3)
C470.167 (6)0.118 (5)0.146 (6)0.033 (5)0.053 (5)0.005 (5)
C480.175 (6)0.134 (5)0.100 (5)0.012 (5)0.051 (5)0.005 (4)
C490.074 (3)0.071 (3)0.086 (4)0.000 (2)0.021 (3)0.003 (3)
C500.048 (2)0.067 (3)0.079 (3)0.000 (2)0.015 (2)0.003 (3)
C510.044 (2)0.069 (3)0.076 (3)0.003 (2)0.015 (2)0.007 (3)
Geometric parameters (Å, º) top
Cl1—C461.784 (6)C40—C411.495 (6)
O1—C21.382 (4)C40—H40A0.9700
O1—C341.431 (4)C40—H40B0.9700
C1—C21.381 (4)O4—C38B1.435 (17)
C1—C101.426 (5)O4—C38A1.439 (7)
C1—C331.526 (4)C38A—C39A1.483 (11)
O2—C71.381 (4)C38A—H38A0.9700
O2—C361.404 (4)C38A—H38B0.9700
C2—C31.398 (5)C39A—H39A0.9600
Cl2—C491.787 (5)C39A—H39B0.9600
O3—C131.371 (4)C39A—H39C0.9600
O3—C401.410 (5)C38B—C39B1.492 (19)
C3—C41.363 (5)C38B—H38C0.9700
C3—H30.9300C38B—H38D0.9700
C4—C51.410 (4)C39B—H39D0.9600
C4—H40.9300C39B—H39E0.9600
O5—C241.369 (4)C39B—H39F0.9600
O5—C421.436 (4)C37—C361.494 (6)
C5—C61.423 (5)C37—H37A0.9600
C5—C101.436 (4)C37—H37B0.9600
C6—C71.368 (5)C37—H37C0.9600
C6—C111.520 (5)C36—H36A0.9700
O6—C291.379 (4)C36—H36B0.9700
O6—C441.384 (5)C35—C341.491 (6)
C7—C81.407 (5)C35—H35A0.9600
C10—C91.411 (5)C35—H35B0.9600
C9—C81.365 (5)C35—H35C0.9600
C9—H90.9300C34—H34A0.9700
C8—H80.9300C34—H34B0.9700
C12—C131.386 (5)C33—H33A0.9700
C12—C211.424 (5)C33—H33B0.9700
C12—C111.529 (5)C32—C311.425 (5)
C11—H11A0.9700C31—H310.9300
C11—H11B0.9700C42—C431.500 (5)
C13—C141.402 (5)C42—H42A0.9700
C15—C141.348 (5)C42—H42B0.9700
C15—C161.417 (5)C41—H41A0.9600
C15—H150.9300C41—H41B0.9600
C14—H140.9300C41—H41C0.9600
C16—C171.426 (5)C43—H43A0.9600
C16—C211.441 (5)C43—H43B0.9600
C17—C181.379 (5)C43—H43C0.9600
C17—C221.529 (5)C46—C471.473 (6)
C18—O41.373 (4)C46—H46A0.9700
C18—C191.404 (5)C46—H46B0.9700
C20—C191.361 (5)C45—C441.497 (6)
C20—C211.408 (5)C45—H45A0.9600
C20—H200.9300C45—H45B0.9600
C19—H190.9300C45—H45C0.9600
C22—C23i1.529 (5)C44—H44A0.9700
C22—H22A0.9700C44—H44B0.9700
C22—H22B0.9700C47—C481.534 (7)
C24—C231.395 (5)C47—H47A0.9700
C24—C251.402 (5)C47—H47B0.9700
C23—C321.424 (5)C48—C48i1.419 (11)
C27—C281.416 (5)C48—H48A0.9700
C27—C261.418 (5)C48—H48B0.9700
C27—C321.440 (5)C49—C501.498 (5)
C26—C251.354 (5)C49—H49A0.9700
C26—H260.9300C49—H49B0.9700
C25—H250.9300C50—C511.529 (6)
C30—C311.354 (5)C50—H50A0.9700
C30—C291.395 (5)C50—H50B0.9700
C30—H300.9300C51—C51ii1.526 (7)
C29—C281.395 (5)C51—H51A0.9700
C28—C331.512 (4)C51—H51B0.9700
C2—O1—C34118.5 (3)C38A—C39A—H39C109.5
C2—C1—C10118.3 (3)H39A—C39A—H39C109.5
C2—C1—C33119.4 (3)H39B—C39A—H39C109.5
C10—C1—C33122.1 (3)O4—C38B—C39B105 (2)
C7—O2—C36120.8 (3)O4—C38B—H38C110.8
C1—C2—O1116.8 (3)C39B—C38B—H38C110.8
C1—C2—C3121.0 (3)O4—C38B—H38D110.8
O1—C2—C3122.1 (3)C39B—C38B—H38D110.8
C13—O3—C40119.5 (3)H38C—C38B—H38D108.9
C4—C3—C2121.1 (3)C38B—C39B—H39D109.5
C4—C3—H3119.5C38B—C39B—H39E109.5
C2—C3—H3119.5H39D—C39B—H39E109.5
C3—C4—C5121.4 (3)C38B—C39B—H39F109.5
C3—C4—H4119.3H39D—C39B—H39F109.5
C5—C4—H4119.3H39E—C39B—H39F109.5
C24—O5—C42118.4 (3)C36—C37—H37A109.5
C4—C5—C6121.9 (3)C36—C37—H37B109.5
C4—C5—C10117.2 (3)H37A—C37—H37B109.5
C6—C5—C10120.8 (3)C36—C37—H37C109.5
C7—C6—C5118.8 (3)H37A—C37—H37C109.5
C7—C6—C11119.7 (3)H37B—C37—H37C109.5
C5—C6—C11121.5 (3)O2—C36—C37107.9 (4)
C29—O6—C44121.0 (3)O2—C36—H36A110.1
C6—C7—O2117.3 (3)C37—C36—H36A110.1
C6—C7—C8121.0 (3)O2—C36—H36B110.1
O2—C7—C8121.6 (3)C37—C36—H36B110.1
C9—C10—C1121.9 (3)H36A—C36—H36B108.4
C9—C10—C5117.2 (3)C34—C35—H35A109.5
C1—C10—C5120.9 (3)C34—C35—H35B109.5
C8—C9—C10121.3 (3)H35A—C35—H35B109.5
C8—C9—H9119.4C34—C35—H35C109.5
C10—C9—H9119.4H35A—C35—H35C109.5
C9—C8—C7120.8 (3)H35B—C35—H35C109.5
C9—C8—H8119.6O1—C34—C35107.2 (3)
C7—C8—H8119.6O1—C34—H34A110.3
C13—C12—C21118.7 (3)C35—C34—H34A110.3
C13—C12—C11118.8 (3)O1—C34—H34B110.3
C21—C12—C11122.2 (3)C35—C34—H34B110.3
C6—C11—C12120.5 (3)H34A—C34—H34B108.5
C6—C11—H11A107.2C28—C33—C1118.7 (3)
C12—C11—H11A107.2C28—C33—H33A107.6
C6—C11—H11B107.2C1—C33—H33A107.6
C12—C11—H11B107.2C28—C33—H33B107.6
H11A—C11—H11B106.8C1—C33—H33B107.6
O3—C13—C12117.7 (3)H33A—C33—H33B107.1
O3—C13—C14122.3 (3)C23—C32—C31123.6 (3)
C12—C13—C14120.0 (3)C23—C32—C27120.2 (3)
C14—C15—C16121.6 (3)C31—C32—C27116.1 (3)
C14—C15—H15119.2C30—C31—C32122.0 (3)
C16—C15—H15119.2C30—C31—H31119.0
C15—C14—C13122.1 (4)C32—C31—H31119.0
C15—C14—H14119.0O5—C42—C43108.4 (3)
C13—C14—H14119.0O5—C42—H42A110.0
C15—C16—C17122.7 (3)C43—C42—H42A110.0
C15—C16—C21116.5 (3)O5—C42—H42B110.0
C17—C16—C21120.7 (3)C43—C42—H42B110.0
C18—C17—C16119.1 (3)H42A—C42—H42B108.4
C18—C17—C22118.7 (3)C40—C41—H41A109.5
C16—C17—C22121.9 (3)C40—C41—H41B109.5
O4—C18—C17117.7 (3)H41A—C41—H41B109.5
O4—C18—C19121.8 (3)C40—C41—H41C109.5
C17—C18—C19120.4 (3)H41A—C41—H41C109.5
C19—C20—C21122.3 (3)H41B—C41—H41C109.5
C19—C20—H20118.9C42—C43—H43A109.5
C21—C20—H20118.9C42—C43—H43B109.5
C20—C19—C18120.8 (4)H43A—C43—H43B109.5
C20—C19—H19119.6C42—C43—H43C109.5
C18—C19—H19119.6H43A—C43—H43C109.5
C20—C21—C12122.3 (3)H43B—C43—H43C109.5
C20—C21—C16116.6 (3)C47—C46—Cl1115.0 (5)
C12—C21—C16121.1 (3)C47—C46—H46A108.5
C23i—C22—C17116.3 (3)Cl1—C46—H46A108.5
C23i—C22—H22A108.2C47—C46—H46B108.5
C17—C22—H22A108.2Cl1—C46—H46B108.5
C23i—C22—H22B108.2H46A—C46—H46B107.5
C17—C22—H22B108.2C44—C45—H45A109.5
H22A—C22—H22B107.4C44—C45—H45B109.5
O5—C24—C23116.2 (3)H45A—C45—H45B109.5
O5—C24—C25123.1 (3)C44—C45—H45C109.5
C23—C24—C25120.7 (3)H45A—C45—H45C109.5
C24—C23—C32119.0 (3)H45B—C45—H45C109.5
C24—C23—C22i118.6 (3)O6—C44—C45108.4 (4)
C32—C23—C22i122.4 (3)O6—C44—H44A110.0
C28—C27—C26121.5 (3)C45—C44—H44A110.0
C28—C27—C32121.4 (3)O6—C44—H44B110.0
C26—C27—C32117.1 (3)C45—C44—H44B110.0
C25—C26—C27122.3 (3)H44A—C44—H44B108.4
C25—C26—H26118.9C46—C47—C48117.8 (6)
C27—C26—H26118.9C46—C47—H47A107.9
C26—C25—C24120.6 (4)C48—C47—H47A107.9
C26—C25—H25119.7C46—C47—H47B107.9
C24—C25—H25119.7C48—C47—H47B107.9
C31—C30—C29121.3 (4)H47A—C47—H47B107.2
C31—C30—H30119.4C48i—C48—C47114.3 (8)
C29—C30—H30119.4C48i—C48—H48A108.7
O6—C29—C28116.9 (3)C47—C48—H48A108.7
O6—C29—C30122.6 (3)C48i—C48—H48B108.7
C28—C29—C30120.5 (3)C47—C48—H48B108.7
C29—C28—C27118.6 (3)H48A—C48—H48B107.6
C29—C28—C33119.8 (3)C50—C49—Cl2112.3 (3)
C27—C28—C33121.6 (3)C50—C49—H49A109.1
O3—C40—C41107.9 (4)Cl2—C49—H49A109.1
O3—C40—H40A110.1C50—C49—H49B109.1
C41—C40—H40A110.1Cl2—C49—H49B109.1
O3—C40—H40B110.1H49A—C49—H49B107.9
C41—C40—H40B110.1C49—C50—C51111.4 (4)
H40A—C40—H40B108.4C49—C50—H50A109.4
C18—O4—C38B119.2 (12)C51—C50—H50A109.4
C18—O4—C38A118.5 (4)C49—C50—H50B109.4
O4—C38A—C39A109.6 (8)C51—C50—H50B109.4
O4—C38A—H38A109.8H50A—C50—H50B108.0
C39A—C38A—H38A109.8C51ii—C51—C50112.7 (5)
O4—C38A—H38B109.8C51ii—C51—H51A109.1
C39A—C38A—H38B109.8C50—C51—H51A109.1
H38A—C38A—H38B108.2C51ii—C51—H51B109.1
C38A—C39A—H39A109.5C50—C51—H51B109.1
C38A—C39A—H39B109.5H51A—C51—H51B107.8
H39A—C39A—H39B109.5
C10—C1—C2—O1178.0 (3)C11—C12—C21—C207.2 (5)
C33—C1—C2—O12.3 (5)C13—C12—C21—C162.8 (5)
C10—C1—C2—C30.1 (5)C11—C12—C21—C16170.6 (3)
C33—C1—C2—C3175.6 (3)C15—C16—C21—C20179.5 (3)
C34—O1—C2—C1158.2 (3)C17—C16—C21—C201.0 (5)
C34—O1—C2—C323.9 (5)C15—C16—C21—C121.6 (5)
C1—C2—C3—C41.0 (5)C17—C16—C21—C12178.9 (3)
O1—C2—C3—C4178.8 (3)C18—C17—C22—C23i68.2 (5)
C2—C3—C4—C50.4 (5)C16—C17—C22—C23i118.3 (4)
C3—C4—C5—C6178.6 (3)C42—O5—C24—C23175.9 (3)
C3—C4—C5—C100.9 (5)C42—O5—C24—C253.6 (5)
C4—C5—C6—C7174.2 (3)O5—C24—C23—C32178.5 (3)
C10—C5—C6—C73.5 (5)C25—C24—C23—C321.1 (5)
C4—C5—C6—C111.9 (5)O5—C24—C23—C22i1.6 (5)
C10—C5—C6—C11179.5 (3)C25—C24—C23—C22i178.0 (3)
C5—C6—C7—O2177.0 (3)C28—C27—C26—C25179.8 (3)
C11—C6—C7—O21.0 (5)C32—C27—C26—C250.4 (5)
C5—C6—C7—C83.8 (5)C27—C26—C25—C241.6 (6)
C11—C6—C7—C8179.9 (3)O5—C24—C25—C26179.2 (3)
C36—O2—C7—C6169.0 (4)C23—C24—C25—C261.3 (5)
C36—O2—C7—C810.2 (5)C44—O6—C29—C28154.1 (4)
C2—C1—C10—C9176.8 (3)C44—O6—C29—C3027.5 (6)
C33—C1—C10—C91.2 (5)C31—C30—C29—O6176.3 (4)
C2—C1—C10—C51.2 (5)C31—C30—C29—C282.0 (6)
C33—C1—C10—C5176.9 (3)O6—C29—C28—C27179.9 (3)
C4—C5—C10—C9176.4 (3)C30—C29—C28—C271.7 (5)
C6—C5—C10—C91.3 (5)O6—C29—C28—C333.5 (5)
C4—C5—C10—C11.7 (5)C30—C29—C28—C33178.1 (3)
C6—C5—C10—C1179.4 (3)C26—C27—C28—C29174.1 (3)
C1—C10—C9—C8177.6 (3)C32—C27—C28—C295.2 (5)
C5—C10—C9—C80.5 (5)C26—C27—C28—C332.2 (5)
C10—C9—C8—C70.2 (5)C32—C27—C28—C33178.5 (3)
C6—C7—C8—C92.0 (5)C13—O3—C40—C41176.1 (4)
O2—C7—C8—C9178.8 (3)C17—C18—O4—C38B127 (2)
C7—C6—C11—C12113.3 (4)C19—C18—O4—C38B56 (2)
C5—C6—C11—C1270.7 (4)C17—C18—O4—C38A165.0 (7)
C13—C12—C11—C6128.5 (4)C19—C18—O4—C38A17.6 (8)
C21—C12—C11—C658.1 (5)C18—O4—C38A—C39A163.8 (12)
C40—O3—C13—C12166.1 (4)C18—O4—C38B—C39B143 (3)
C40—O3—C13—C1412.6 (6)C7—O2—C36—C37176.0 (4)
C21—C12—C13—O3178.7 (3)C2—O1—C34—C35164.4 (4)
C11—C12—C13—O37.6 (5)C29—C28—C33—C1121.5 (4)
C21—C12—C13—C142.5 (5)C27—C28—C33—C162.1 (4)
C11—C12—C13—C14171.2 (3)C2—C1—C33—C28122.4 (3)
C16—C15—C14—C130.4 (6)C10—C1—C33—C2862.0 (4)
O3—C13—C14—C15179.6 (4)C24—C23—C32—C31174.0 (3)
C12—C13—C14—C150.9 (6)C22i—C23—C32—C312.8 (5)
C14—C15—C16—C17179.5 (4)C24—C23—C32—C273.2 (5)
C14—C15—C16—C210.1 (6)C22i—C23—C32—C27179.9 (3)
C15—C16—C17—C18178.8 (3)C28—C27—C32—C23177.9 (3)
C21—C16—C17—C180.7 (5)C26—C27—C32—C232.8 (5)
C15—C16—C17—C227.6 (5)C28—C27—C32—C314.8 (5)
C21—C16—C17—C22172.8 (3)C26—C27—C32—C31174.5 (3)
C16—C17—C18—O4178.2 (3)C29—C30—C31—C322.3 (6)
C22—C17—C18—O44.5 (5)C23—C32—C31—C30178.3 (3)
C16—C17—C18—C190.8 (5)C27—C32—C31—C301.0 (5)
C22—C17—C18—C19172.9 (3)C24—O5—C42—C43177.2 (3)
C21—C20—C19—C182.6 (6)C29—O6—C44—C45172.2 (4)
O4—C18—C19—C20176.5 (4)Cl1—C46—C47—C4857.0 (9)
C17—C18—C19—C200.8 (6)C46—C47—C48—C48i61.7 (7)
C19—C20—C21—C12179.5 (4)Cl2—C49—C50—C51179.3 (3)
C19—C20—C21—C162.6 (6)C49—C50—C51—C51ii179.4 (4)
C13—C12—C21—C20179.4 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1.
Perethoxy-prism[6]arene 1,6-diiodohexane disolvate (PS6_HexI2) top
Crystal data top
C90H96O12·2C6H12I2F(000) = 4160
Mr = 2045.57Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 38.728 (3) ÅCell parameters from 15264 reflections
b = 10.5427 (6) Åθ = 3.2–25.0°
c = 24.0234 (16) ŵ = 1.39 mm1
β = 106.814 (8)°T = 293 K
V = 9389.3 (11) Å3Block, colorless
Z = 40.20 × 0.17 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4349 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.077
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 4446
Tmin = 0.452, Tmax = 0.884k = 1212
27851 measured reflectionsl = 2828
8193 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0908P)2 + 16.5419P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8193 reflectionsΔρmax = 0.70 e Å3
532 parametersΔρmin = 0.77 e Å3
46 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.56133 (2)1.12590 (7)0.29126 (3)0.0893 (3)
O10.68726 (12)0.9155 (5)0.2043 (2)0.0639 (14)
C10.66315 (16)0.6730 (6)0.3135 (3)0.0377 (15)
C40.64994 (17)0.6201 (6)0.4197 (3)0.0432 (16)
H40.6451660.6002070.4544960.052*
O40.65571 (12)1.0642 (4)0.46814 (19)0.0494 (11)
C50.65374 (15)0.7480 (5)0.4062 (3)0.0350 (14)
O50.64596 (12)0.5905 (5)0.5595 (2)0.0595 (13)
C60.65149 (15)0.8480 (5)0.4446 (3)0.0355 (15)
O60.47670 (11)0.9847 (4)0.40813 (19)0.0506 (11)
C70.65716 (15)0.9700 (6)0.4293 (3)0.0366 (14)
C80.66516 (17)0.9956 (6)0.3773 (3)0.0434 (16)
H80.6695781.0787000.3683330.052*
C90.66660 (16)0.9010 (6)0.3395 (3)0.0390 (15)
H90.6713370.9209960.3046710.047*
C510.7525 (2)0.8183 (8)0.4926 (4)0.080 (2)
H51A0.7347460.8393720.4562150.096*
H51B0.7762160.8278670.4870690.096*
C500.7490 (2)0.9106 (8)0.5388 (4)0.082 (2)
H50A0.7254780.9004580.5449260.098*
H50B0.7671050.8909040.5751550.098*
C30.65303 (18)0.5244 (6)0.3835 (3)0.0467 (17)
H30.6504450.4408140.3939510.056*
O30.49439 (13)0.5548 (5)0.3944 (2)0.0629 (13)
C20.66008 (17)0.5502 (6)0.3305 (3)0.0416 (15)
I20.74942 (2)1.18026 (7)0.58573 (4)0.1109 (3)
O20.66407 (12)0.4562 (4)0.29368 (19)0.0505 (12)
C120.61111 (16)0.7585 (6)0.5057 (3)0.0361 (14)
C110.64584 (16)0.8221 (6)0.5036 (3)0.0377 (14)
H11A0.6657390.7697880.5255330.045*
H11B0.6476120.9024440.5238620.045*
C100.66105 (15)0.7741 (6)0.3520 (2)0.0341 (14)
C140.58096 (19)0.5845 (6)0.5379 (3)0.0492 (17)
H140.5824070.5084830.5580600.059*
C130.61251 (17)0.6438 (6)0.5351 (3)0.0433 (16)
C150.54843 (18)0.6352 (6)0.5120 (3)0.0461 (16)
H150.5279190.5919710.5141240.055*
C170.51062 (17)0.8104 (6)0.4553 (3)0.0412 (15)
C160.54417 (16)0.7520 (6)0.4814 (3)0.0378 (15)
C220.47517 (16)0.7504 (7)0.4547 (3)0.0441 (16)
H22A0.4620310.8103640.4714690.053*
H22B0.4803180.6769230.4800690.053*
C210.57746 (16)0.8140 (6)0.4802 (2)0.0355 (14)
C200.57429 (16)0.9373 (6)0.4551 (2)0.0387 (15)
H200.5951360.9801090.4542760.046*
C190.54171 (17)0.9947 (6)0.4322 (3)0.0424 (15)
H190.5407121.0761040.4169130.051*
C180.50957 (16)0.9314 (6)0.4315 (3)0.0392 (15)
C240.46082 (17)0.6063 (6)0.3684 (3)0.0452 (16)
C230.45027 (16)0.7080 (6)0.3959 (3)0.0414 (15)
C270.60851 (16)0.7086 (6)0.1808 (3)0.0389 (15)
C260.59565 (18)0.6043 (6)0.2051 (3)0.0474 (16)
H260.6107000.5676160.2385640.057*
C250.56240 (18)0.5545 (6)0.1821 (3)0.0533 (18)
H250.5549850.4856690.1999430.064*
C300.63019 (18)0.9153 (7)0.1283 (3)0.0531 (18)
H300.6372650.9855290.1109210.064*
C290.65376 (17)0.8672 (6)0.1789 (3)0.0464 (17)
C280.64354 (16)0.7607 (6)0.2060 (3)0.0389 (15)
C340.6522 (2)0.3342 (7)0.2997 (3)0.067 (2)
H34A0.6271150.3365110.2995980.080*
H34B0.6663120.2982990.3363650.080*
C330.67158 (17)0.6974 (6)0.2566 (3)0.0400 (15)
H33A0.6776460.6164460.2427280.048*
H33B0.6931890.7492120.2653800.048*
C320.58404 (16)0.7601 (6)0.1283 (2)0.0369 (14)
C310.59773 (18)0.8648 (6)0.1037 (3)0.0495 (17)
H310.5834790.8993020.0690520.059*
C400.47465 (18)1.1141 (6)0.3889 (3)0.0514 (17)
H40A0.4848761.1217690.3566270.062*
H40B0.4883661.1679700.4202390.062*
C390.6919 (2)0.4877 (11)0.6297 (4)0.106 (4)
H39A0.6965100.4316170.6624930.159*
H39B0.7005990.4500620.5999560.159*
H39C0.7039330.5669840.6414980.159*
C380.6522 (2)0.5101 (9)0.6064 (3)0.075 (2)
H38A0.6398160.4302540.5946610.089*
H38B0.6431600.5475500.6363360.089*
C370.6393 (3)1.2653 (7)0.4923 (4)0.079 (3)
H37A0.6356911.3522460.4801150.118*
H37B0.6170991.2311230.4961390.118*
H37C0.6575431.2604960.5290350.118*
C360.6507 (2)1.1922 (6)0.4489 (3)0.0521 (18)
H36A0.6323961.1968040.4115720.062*
H36B0.6729931.2262870.4445930.062*
C350.6559 (3)0.2548 (8)0.2510 (4)0.093 (3)
H35A0.6476610.1703370.2550990.139*
H35B0.6416620.2902550.2148430.139*
H35C0.6807520.2521480.2515090.139*
C420.5097 (2)0.4753 (11)0.3589 (5)0.114 (4)
H42A0.5076840.5171060.3221530.137*
H42B0.4964670.3959860.3508560.137*
C410.43599 (19)1.1554 (7)0.3701 (3)0.061 (2)
H41A0.4345341.2419330.3571940.092*
H41B0.4225821.1023130.3388200.092*
H41C0.4260631.1483850.4022550.092*
C430.5483 (3)0.4491 (14)0.3894 (6)0.157 (6)
H43A0.5582900.3960760.3654000.236*
H43B0.5614260.5276350.3968900.236*
H43C0.5502330.4067710.4255320.236*
C450.7358 (3)1.0574 (11)0.2155 (5)0.118 (4)
H45A0.7445941.1282690.1984950.177*
H45B0.7342721.0804330.2533800.177*
H45C0.7520810.9871190.2189520.177*
C440.6990 (2)1.0202 (8)0.1774 (3)0.069 (2)
H44A0.6823021.0904840.1735630.083*
H44B0.7001910.9967530.1389810.083*
C460.5677 (2)0.9358 (10)0.2635 (5)0.097 (3)
H46A0.5573850.9312250.2216380.116*
H46B0.5932890.9178140.2721270.116*
C490.7535 (2)1.0452 (8)0.5228 (5)0.093 (3)
H49A0.7353171.0641570.4864550.112*
H49B0.7769191.0541990.5160840.112*
C480.5108 (2)0.8462 (8)0.2812 (3)0.074 (2)
H48A0.5032090.7751950.3005530.088*
H48B0.5056870.9234200.2992760.088*
C470.5511 (3)0.8370 (9)0.2904 (4)0.094 (3)
H47A0.5629020.8377290.3318840.112*
H47B0.5560700.7554560.2756590.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0947 (5)0.1068 (5)0.0699 (4)0.0250 (4)0.0291 (3)0.0089 (4)
O10.048 (3)0.075 (3)0.062 (3)0.015 (2)0.005 (2)0.025 (3)
C10.040 (4)0.040 (4)0.032 (3)0.004 (3)0.010 (3)0.008 (3)
C40.061 (4)0.036 (4)0.037 (4)0.004 (3)0.022 (3)0.008 (3)
O40.073 (3)0.036 (3)0.045 (3)0.005 (2)0.027 (2)0.001 (2)
C50.038 (4)0.031 (4)0.034 (3)0.004 (3)0.009 (3)0.001 (3)
O50.055 (3)0.063 (3)0.064 (3)0.011 (2)0.023 (2)0.037 (3)
C60.031 (3)0.038 (4)0.038 (4)0.001 (3)0.010 (3)0.007 (3)
O60.047 (3)0.049 (3)0.053 (3)0.000 (2)0.011 (2)0.005 (2)
C70.040 (4)0.033 (4)0.036 (4)0.000 (3)0.010 (3)0.003 (3)
C80.061 (4)0.026 (3)0.047 (4)0.004 (3)0.022 (3)0.009 (3)
C90.051 (4)0.037 (4)0.031 (3)0.004 (3)0.015 (3)0.004 (3)
C510.059 (5)0.087 (5)0.088 (6)0.003 (5)0.011 (5)0.020 (5)
C500.068 (5)0.080 (5)0.089 (6)0.002 (4)0.011 (5)0.005 (5)
C30.062 (4)0.029 (4)0.051 (4)0.006 (3)0.020 (3)0.015 (3)
O30.054 (3)0.061 (3)0.067 (3)0.005 (2)0.007 (3)0.012 (3)
C20.052 (4)0.032 (4)0.040 (4)0.012 (3)0.013 (3)0.001 (3)
I20.1102 (6)0.0870 (5)0.1344 (7)0.0032 (4)0.0338 (5)0.0104 (5)
O20.075 (3)0.031 (3)0.050 (3)0.007 (2)0.026 (2)0.002 (2)
C120.044 (4)0.034 (3)0.034 (3)0.004 (3)0.017 (3)0.002 (3)
C110.046 (4)0.037 (4)0.035 (3)0.000 (3)0.019 (3)0.004 (3)
C100.034 (3)0.036 (3)0.031 (3)0.003 (3)0.008 (3)0.005 (3)
C140.060 (5)0.040 (4)0.047 (4)0.004 (3)0.013 (3)0.012 (3)
C130.049 (4)0.046 (4)0.038 (4)0.003 (3)0.018 (3)0.010 (3)
C150.047 (4)0.046 (4)0.047 (4)0.010 (3)0.015 (3)0.009 (4)
C170.050 (4)0.047 (4)0.031 (3)0.014 (3)0.018 (3)0.004 (3)
C160.043 (4)0.038 (4)0.031 (3)0.003 (3)0.009 (3)0.003 (3)
C220.045 (4)0.052 (4)0.037 (4)0.006 (3)0.015 (3)0.000 (3)
C210.043 (4)0.039 (4)0.025 (3)0.002 (3)0.010 (3)0.001 (3)
C200.040 (4)0.044 (4)0.031 (3)0.007 (3)0.010 (3)0.001 (3)
C190.054 (4)0.034 (3)0.039 (4)0.005 (3)0.014 (3)0.010 (3)
C180.036 (4)0.049 (4)0.031 (3)0.000 (3)0.006 (3)0.002 (3)
C240.046 (4)0.045 (4)0.044 (4)0.002 (3)0.013 (3)0.003 (3)
C230.040 (4)0.044 (4)0.041 (4)0.008 (3)0.013 (3)0.002 (3)
C270.049 (4)0.039 (4)0.035 (4)0.006 (3)0.021 (3)0.008 (3)
C260.051 (4)0.047 (4)0.041 (4)0.001 (3)0.008 (3)0.003 (3)
C250.056 (5)0.046 (4)0.059 (5)0.001 (3)0.018 (4)0.014 (4)
C300.047 (4)0.061 (5)0.052 (4)0.006 (3)0.017 (4)0.024 (4)
C290.042 (4)0.058 (4)0.042 (4)0.003 (3)0.017 (3)0.007 (4)
C280.041 (4)0.047 (4)0.033 (3)0.008 (3)0.017 (3)0.006 (3)
C340.102 (6)0.046 (5)0.058 (5)0.001 (4)0.034 (5)0.003 (4)
C330.047 (4)0.044 (4)0.033 (3)0.009 (3)0.017 (3)0.007 (3)
C320.045 (4)0.039 (4)0.029 (3)0.007 (3)0.015 (3)0.001 (3)
C310.045 (4)0.059 (4)0.044 (4)0.003 (3)0.013 (3)0.020 (4)
C400.061 (5)0.048 (4)0.041 (4)0.004 (3)0.008 (3)0.003 (3)
C390.071 (6)0.150 (9)0.092 (7)0.035 (6)0.015 (5)0.065 (7)
C380.087 (6)0.099 (7)0.044 (4)0.022 (5)0.028 (4)0.029 (5)
C370.131 (8)0.041 (4)0.078 (6)0.014 (5)0.053 (6)0.005 (4)
C360.069 (5)0.033 (4)0.057 (5)0.002 (3)0.023 (4)0.001 (3)
C350.155 (9)0.057 (5)0.076 (6)0.011 (5)0.050 (6)0.014 (5)
C420.089 (7)0.112 (8)0.123 (9)0.045 (6)0.003 (6)0.032 (7)
C410.055 (5)0.069 (5)0.060 (5)0.016 (4)0.017 (4)0.001 (4)
C430.103 (8)0.196 (14)0.153 (12)0.069 (9)0.005 (7)0.071 (10)
C450.078 (7)0.130 (9)0.128 (9)0.044 (6)0.000 (6)0.020 (8)
C440.068 (5)0.074 (5)0.065 (5)0.015 (4)0.020 (4)0.014 (4)
C460.074 (6)0.116 (8)0.105 (8)0.014 (5)0.035 (5)0.009 (6)
C490.058 (5)0.088 (5)0.121 (8)0.003 (5)0.006 (5)0.027 (6)
C480.109 (6)0.062 (5)0.054 (4)0.003 (4)0.030 (5)0.001 (4)
C470.106 (6)0.090 (7)0.081 (7)0.027 (5)0.021 (6)0.008 (5)
Geometric parameters (Å, º) top
I1—C462.149 (10)C27—C261.402 (9)
O1—C291.363 (8)C27—C281.426 (8)
O1—C441.418 (8)C27—C321.446 (8)
C1—C21.373 (8)C26—C251.352 (9)
C1—C101.428 (8)C26—H260.9300
C1—C331.516 (8)C25—H250.9300
C4—C31.360 (9)C30—C311.336 (9)
C4—C51.406 (8)C30—C291.387 (9)
C4—H40.9300C30—H300.9300
O4—C71.375 (7)C29—C281.410 (9)
O4—C361.421 (7)C28—C331.529 (8)
C5—C61.421 (8)C34—C351.479 (11)
C5—C101.436 (8)C34—H34A0.9700
O5—C381.375 (8)C34—H34B0.9700
O5—C131.378 (8)C33—H33A0.9700
C6—C71.373 (8)C33—H33B0.9700
C6—C111.519 (8)C32—C311.425 (9)
O6—C181.355 (7)C31—H310.9300
O6—C401.435 (8)C40—C411.498 (9)
C7—C81.398 (8)C40—H40A0.9700
C8—C91.360 (8)C40—H40B0.9700
C8—H80.9300C39—C381.492 (11)
C9—C101.402 (8)C39—H39A0.9600
C9—H90.9300C39—H39B0.9600
C51—C51i1.509 (16)C39—H39C0.9600
C51—C501.511 (13)C38—H38A0.9700
C51—H51A0.9700C38—H38B0.9700
C51—H51B0.9700C37—C361.462 (10)
C50—C491.495 (12)C37—H37A0.9600
C50—H50A0.9700C37—H37B0.9600
C50—H50B0.9700C37—H37C0.9600
C3—C21.403 (9)C36—H36A0.9700
C3—H30.9300C36—H36B0.9700
O3—C241.380 (8)C35—H35A0.9600
O3—C421.440 (10)C35—H35B0.9600
C2—O21.367 (7)C35—H35C0.9600
I2—C492.116 (11)C42—C431.490 (8)
O2—C341.388 (8)C42—H42A0.9700
C12—C131.394 (9)C42—H42B0.9700
C12—C211.398 (8)C41—H41A0.9600
C12—C111.517 (8)C41—H41B0.9600
C11—H11A0.9700C41—H41C0.9600
C11—H11B0.9700C43—H43A0.9600
C14—C151.344 (9)C43—H43B0.9600
C14—C131.391 (9)C43—H43C0.9600
C14—H140.9300C45—C441.508 (11)
C15—C161.418 (9)C45—H45A0.9600
C15—H150.9300C45—H45B0.9600
C17—C181.394 (9)C45—H45C0.9600
C17—C161.411 (9)C44—H44A0.9700
C17—C221.508 (8)C44—H44B0.9700
C16—C211.453 (8)C46—C471.469 (13)
C22—C231.528 (9)C46—H46A0.9700
C22—H22A0.9700C46—H46B0.9700
C22—H22B0.9700C49—H49A0.9700
C21—C201.423 (9)C49—H49B0.9700
C20—C191.364 (8)C48—C48ii1.490 (16)
C20—H200.9300C48—C471.514 (12)
C19—C181.408 (8)C48—H48A0.9700
C19—H190.9300C48—H48B0.9700
C24—C231.382 (9)C47—H47A0.9700
C24—C25ii1.395 (9)C47—H47B0.9700
C23—C32ii1.399 (8)
C29—O1—C44118.4 (5)C29—C28—C27118.1 (5)
C2—C1—C10119.0 (5)C29—C28—C33119.0 (5)
C2—C1—C33119.2 (6)C27—C28—C33122.6 (5)
C10—C1—C33121.6 (5)O2—C34—C35109.4 (6)
C3—C4—C5121.9 (6)O2—C34—H34A109.8
C3—C4—H4119.0C35—C34—H34A109.8
C5—C4—H4119.0O2—C34—H34B109.8
C7—O4—C36119.6 (5)C35—C34—H34B109.8
C4—C5—C6122.1 (5)H34A—C34—H34B108.2
C4—C5—C10117.0 (5)C1—C33—C28120.2 (5)
C6—C5—C10120.9 (5)C1—C33—H33A107.3
C38—O5—C13121.4 (5)C28—C33—H33A107.3
C7—C6—C5118.4 (5)C1—C33—H33B107.3
C7—C6—C11119.7 (5)C28—C33—H33B107.3
C5—C6—C11121.7 (5)H33A—C33—H33B106.9
C18—O6—C40119.0 (5)C23ii—C32—C31123.6 (6)
C6—C7—O4117.0 (5)C23ii—C32—C27121.3 (5)
C6—C7—C8120.9 (6)C31—C32—C27115.1 (6)
O4—C7—C8122.1 (5)C30—C31—C32122.7 (6)
C9—C8—C7121.2 (6)C30—C31—H31118.6
C9—C8—H8119.4C32—C31—H31118.6
C7—C8—H8119.4O6—C40—C41109.3 (6)
C8—C9—C10121.2 (5)O6—C40—H40A109.8
C8—C9—H9119.4C41—C40—H40A109.8
C10—C9—H9119.4O6—C40—H40B109.8
C51i—C51—C50113.4 (10)C41—C40—H40B109.8
C51i—C51—H51A108.9H40A—C40—H40B108.3
C50—C51—H51A108.9C38—C39—H39A109.5
C51i—C51—H51B108.9C38—C39—H39B109.5
C50—C51—H51B108.9H39A—C39—H39B109.5
H51A—C51—H51B107.7C38—C39—H39C109.5
C49—C50—C51112.3 (8)H39A—C39—H39C109.5
C49—C50—H50A109.1H39B—C39—H39C109.5
C51—C50—H50A109.1O5—C38—C39108.8 (7)
C49—C50—H50B109.1O5—C38—H38A109.9
C51—C50—H50B109.1C39—C38—H38A109.9
H50A—C50—H50B107.9O5—C38—H38B109.9
C4—C3—C2120.9 (6)C39—C38—H38B109.9
C4—C3—H3119.6H38A—C38—H38B108.3
C2—C3—H3119.6C36—C37—H37A109.5
C24—O3—C42117.1 (6)C36—C37—H37B109.5
O2—C2—C1117.1 (5)H37A—C37—H37B109.5
O2—C2—C3122.3 (5)C36—C37—H37C109.5
C1—C2—C3120.6 (6)H37A—C37—H37C109.5
C2—O2—C34120.1 (5)H37B—C37—H37C109.5
C13—C12—C21118.7 (5)O4—C36—C37108.1 (5)
C13—C12—C11119.7 (5)O4—C36—H36A110.1
C21—C12—C11121.6 (5)C37—C36—H36A110.1
C12—C11—C6118.6 (5)O4—C36—H36B110.1
C12—C11—H11A107.7C37—C36—H36B110.1
C6—C11—H11A107.7H36A—C36—H36B108.4
C12—C11—H11B107.7C34—C35—H35A109.5
C6—C11—H11B107.7C34—C35—H35B109.5
H11A—C11—H11B107.1H35A—C35—H35B109.5
C9—C10—C1122.1 (5)C34—C35—H35C109.5
C9—C10—C5117.4 (5)H35A—C35—H35C109.5
C1—C10—C5120.5 (5)H35B—C35—H35C109.5
C15—C14—C13121.2 (6)O3—C42—C43110.1 (8)
C15—C14—H14119.4O3—C42—H42A109.6
C13—C14—H14119.4C43—C42—H42A109.6
O5—C13—C14121.8 (6)O3—C42—H42B109.6
O5—C13—C12117.6 (5)C43—C42—H42B109.6
C14—C13—C12120.6 (6)H42A—C42—H42B108.2
C14—C15—C16122.5 (6)C40—C41—H41A109.5
C14—C15—H15118.7C40—C41—H41B109.5
C16—C15—H15118.7H41A—C41—H41B109.5
C18—C17—C16119.7 (5)C40—C41—H41C109.5
C18—C17—C22117.5 (6)H41A—C41—H41C109.5
C16—C17—C22122.7 (6)H41B—C41—H41C109.5
C17—C16—C15124.3 (6)C42—C43—H43A109.5
C17—C16—C21120.2 (6)C42—C43—H43B109.5
C15—C16—C21115.4 (5)H43A—C43—H43B109.5
C17—C22—C23117.4 (5)C42—C43—H43C109.5
C17—C22—H22A107.9H43A—C43—H43C109.5
C23—C22—H22A107.9H43B—C43—H43C109.5
C17—C22—H22B107.9C44—C45—H45A109.5
C23—C22—H22B107.9C44—C45—H45B109.5
H22A—C22—H22B107.2H45A—C45—H45B109.5
C12—C21—C20121.5 (5)C44—C45—H45C109.5
C12—C21—C16121.6 (6)H45A—C45—H45C109.5
C20—C21—C16116.8 (5)H45B—C45—H45C109.5
C19—C20—C21122.2 (6)O1—C44—C45107.3 (7)
C19—C20—H20118.9O1—C44—H44A110.3
C21—C20—H20118.9C45—C44—H44A110.3
C20—C19—C18120.4 (6)O1—C44—H44B110.3
C20—C19—H19119.8C45—C44—H44B110.3
C18—C19—H19119.8H44A—C44—H44B108.5
O6—C18—C17117.5 (5)C47—C46—I1114.9 (7)
O6—C18—C19122.0 (6)C47—C46—H46A108.6
C17—C18—C19120.5 (6)I1—C46—H46A108.6
O3—C24—C23117.3 (6)C47—C46—H46B108.6
O3—C24—C25ii121.7 (6)I1—C46—H46B108.6
C23—C24—C25ii120.9 (6)H46A—C46—H46B107.5
C24—C23—C32ii118.8 (6)C50—C49—I2114.6 (7)
C24—C23—C22118.3 (6)C50—C49—H49A108.6
C32ii—C23—C22122.7 (6)I2—C49—H49A108.6
C26—C27—C28122.3 (6)C50—C49—H49B108.6
C26—C27—C32115.8 (6)I2—C49—H49B108.6
C28—C27—C32121.9 (5)H49A—C49—H49B107.6
C25—C26—C27123.0 (6)C48ii—C48—C47113.6 (9)
C25—C26—H26118.5C48ii—C48—H48A108.8
C27—C26—H26118.5C47—C48—H48A108.8
C26—C25—C24ii120.1 (6)C48ii—C48—H48B108.8
C26—C25—H25119.9C47—C48—H48B108.8
C24ii—C25—H25119.9H48A—C48—H48B107.7
C31—C30—C29122.6 (6)C46—C47—C48117.1 (8)
C31—C30—H30118.7C46—C47—H47A108.0
C29—C30—H30118.7C48—C47—H47A108.0
O1—C29—C30123.7 (6)C46—C47—H47B108.0
O1—C29—C28116.7 (6)C48—C47—H47B108.0
C30—C29—C28119.6 (6)H47A—C47—H47B107.3
C3—C4—C5—C6178.2 (6)C11—C12—C21—C16178.9 (5)
C3—C4—C5—C100.1 (9)C17—C16—C21—C12179.9 (6)
C4—C5—C6—C7177.0 (6)C15—C16—C21—C122.4 (8)
C10—C5—C6—C71.2 (8)C17—C16—C21—C203.9 (8)
C4—C5—C6—C111.7 (9)C15—C16—C21—C20173.8 (5)
C10—C5—C6—C11176.6 (5)C12—C21—C20—C19177.3 (6)
C5—C6—C7—O4178.4 (5)C16—C21—C20—C191.1 (8)
C11—C6—C7—O42.9 (8)C21—C20—C19—C181.4 (9)
C5—C6—C7—C80.4 (9)C40—O6—C18—C17173.5 (5)
C11—C6—C7—C8175.1 (5)C40—O6—C18—C196.5 (8)
C36—O4—C7—C6161.5 (5)C16—C17—C18—O6178.5 (5)
C36—O4—C7—C820.5 (8)C22—C17—C18—O61.9 (8)
C6—C7—C8—C91.9 (9)C16—C17—C18—C191.6 (9)
O4—C7—C8—C9179.8 (6)C22—C17—C18—C19178.1 (5)
C7—C8—C9—C101.7 (9)C20—C19—C18—O6178.7 (6)
C51i—C51—C50—C49179.0 (9)C20—C19—C18—C171.2 (9)
C5—C4—C3—C20.2 (10)C42—O3—C24—C23162.7 (7)
C10—C1—C2—O2176.8 (5)C42—O3—C24—C25ii20.4 (10)
C33—C1—C2—O21.5 (8)O3—C24—C23—C32ii178.1 (5)
C10—C1—C2—C33.4 (9)C25ii—C24—C23—C32ii1.1 (9)
C33—C1—C2—C3178.7 (6)O3—C24—C23—C224.0 (9)
C4—C3—C2—O2178.6 (6)C25ii—C24—C23—C22173.0 (6)
C4—C3—C2—C11.6 (10)C17—C22—C23—C2468.8 (8)
C1—C2—O2—C34162.9 (6)C17—C22—C23—C32ii117.3 (7)
C3—C2—O2—C3416.9 (9)C28—C27—C26—C25179.4 (6)
C13—C12—C11—C6121.2 (6)C32—C27—C26—C250.9 (9)
C21—C12—C11—C660.6 (8)C27—C26—C25—C24ii0.6 (11)
C7—C6—C11—C12121.4 (6)C44—O1—C29—C300.7 (10)
C5—C6—C11—C1263.3 (8)C44—O1—C29—C28178.0 (6)
C8—C9—C10—C1178.7 (6)C31—C30—C29—O1178.7 (7)
C8—C9—C10—C50.1 (8)C31—C30—C29—C280.1 (11)
C2—C1—C10—C9175.2 (6)O1—C29—C28—C27179.3 (6)
C33—C1—C10—C90.1 (9)C30—C29—C28—C271.9 (9)
C2—C1—C10—C53.6 (8)O1—C29—C28—C337.1 (9)
C33—C1—C10—C5178.8 (5)C30—C29—C28—C33171.6 (6)
C4—C5—C10—C9177.0 (5)C26—C27—C28—C29178.8 (6)
C6—C5—C10—C91.3 (8)C32—C27—C28—C291.5 (9)
C4—C5—C10—C11.9 (8)C26—C27—C28—C337.9 (9)
C6—C5—C10—C1179.8 (5)C32—C27—C28—C33171.8 (5)
C38—O5—C13—C1427.6 (10)C2—O2—C34—C35173.8 (7)
C38—O5—C13—C12154.1 (7)C2—C1—C33—C28113.4 (7)
C15—C14—C13—O5177.4 (6)C10—C1—C33—C2871.5 (8)
C15—C14—C13—C120.8 (10)C29—C28—C33—C1128.3 (6)
C21—C12—C13—O5179.6 (5)C27—C28—C33—C158.4 (8)
C11—C12—C13—O52.2 (9)C26—C27—C32—C23ii0.2 (8)
C21—C12—C13—C141.3 (9)C28—C27—C32—C23ii180.0 (6)
C11—C12—C13—C14179.5 (6)C26—C27—C32—C31179.0 (6)
C13—C14—C15—C161.3 (10)C28—C27—C32—C310.7 (8)
C18—C17—C16—C15173.3 (6)C29—C30—C31—C322.3 (11)
C22—C17—C16—C153.0 (9)C23ii—C32—C31—C30178.1 (7)
C18—C17—C16—C214.1 (9)C27—C32—C31—C302.6 (9)
C22—C17—C16—C21179.5 (5)C18—O6—C40—C41174.7 (5)
C14—C15—C16—C17177.9 (6)C13—O5—C38—C39169.5 (7)
C14—C15—C16—C210.3 (9)C7—O4—C36—C37163.0 (6)
C18—C17—C22—C2370.8 (8)C24—O3—C42—C43168.7 (9)
C16—C17—C22—C23112.8 (7)C29—O1—C44—C45177.6 (7)
C13—C12—C21—C20173.1 (6)C51—C50—C49—I2179.5 (6)
C11—C12—C21—C205.1 (9)I1—C46—C47—C4859.3 (10)
C13—C12—C21—C162.9 (9)C48ii—C48—C47—C4657.8 (9)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Non-bonding interactions between prism[6]arene host and dichlorohexane guest (Å, °) top
π1–π3 are the centroids of the phenyl rings C1–C5,C10, C16–C21 and C23–C27,C32, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H25···Cl10.933.283.776 (5)116
C34—H34A···Cl10.973.454.380 (4)160
C43—H43C···Cl10.963.203.809 (2)123
C46—H46A···O5i0.973.194.140 (7)166
C46—H46B···π10.973.123.926 (6)145
C47—H47A···π30.973.234.044 (8)143
C47—H47B···π20.973.324.079 (7)137
C48—H48A···O410.973.344.278 (7)162
C48—H48B···O50.973.163.881 (7)132
Symmetry code: (i) 1 - x, y, 1/2 - z.
Non-bonding interactions between prism[6]arene host and diiodohexane guest (Å, °) top
π1–π3 are centroids of the phenyl rings C5–C10, C16–C21 and C23–C27,C32, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···I10.933.383.930 (8)120
C36—H36A···I10.973.454.385 (6)163
C41i—H41Bi···I10.963.373.920 (8)118
C46—H46A···O6i0.973.074.015 (12)166
C46—H46B···π10.973.284.019 (8)135
C47—H47A···π20.973.314.098 (10)139
C47—H47B···π30.973.324.059 (11)136
C48—H48A···O30.973.324.271 (10)165
C48—H48B···O60.973.203.936 (10)134
Symmetry code: (i) 1 - x, y, 1/2 - z.
Intermolecular non-bonding interactions between adjacent prism[6]arenes as well as prism[6]arene and solvent diiodohexane (Å, °) top
π is the centroid of the C12–C16phenyl ring.
D—H···AD—HH···AD···AD—H···A
C41—H41C···πi0.962.743.492 (8)136
C44—H44B···I2i0.973.193.952 (9)137
Symmetry code: (i) 1 - x, y, 1/2 - z.
 

Acknowledgements

The support received from Kuwait University Research Administration, made available through Research Grant No. SC05/23 and the Facilities of the RSPU (grant Nos. GS03/08 and GS01/03) are gratefully acknowledged.

Funding information

Funding for this research was provided by: Kuwait University (grant No. GS05/23).

References

First citationDella Sala, P., Del Regno, R., Talotta, C., Capobianco, A., Hickey, N., Geremia, S., De Rosa, M., Spinella, A., Soriente, A., Neri, P. & Gaeta, C. (2020). J. Am. Chem. Soc. 142, 1752–1756.  CrossRef CAS PubMed Google Scholar
First citationDella Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). Chem. Sci. 12, 9952–9961.  CrossRef CAS PubMed Google Scholar
First citationDel Regno, R., Della Sala, P., Hickey, N., Geremia, S., Talotta, C., Neri, P. & Gaeta, C. (2023). Eur. J. Org. Chem. 26, e202300608.  CrossRef Google Scholar
First citationDel Regno, R., Palmieri, A., Della Sala, P., Talotta, C., De Rosa, M., Campanile, G., Argenio, C. & Gaeta, C. (2024). Org. Lett. 26, 8228–8232.  CrossRef CAS PubMed Google Scholar
First citationDel Regno, R., Santonoceta, G. D. G., Della Sala, P., De Rosa, M., Soriente, A., Talotta, C., Spinella, A., Neri, P., Sgarlata, C. & Gaeta, C. (2022). Org. Lett. 24, 2711–2715.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiang, X., Shen, Y., Zhou, D., Ji, J., Wang, H., Zhao, T., Mori, T., Wu, W. & Yang, C. (2022). Chem. Commun. 58, 13584–13587.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.  Google Scholar
First citationVinodh, M., Abdeljaber, N. O., Alipour, F. H. & Al-Azemi, T. F. (2025). CrystEngComm 27, 1873–1878.  CrossRef CAS Google Scholar
First citationYang, L. P. & Jiang, W. (2020). Angew. Chem. Int. Ed. 59, 15794–15796.  CrossRef CAS Google Scholar
First citationYao, H. & Jiang, W. (2020). Naphthol-Based Macrocycles. In Handbook of Macrocyclic Supramolecular Assembly edited by Y. Liu, Y. Chen & H.- Y. Zhang. Singapore: Springer. https://doi. org/10.1007/978-981-15-2686-2_40.  Google Scholar
First citationZhang, G., Cheng, C., Li, Z., Zhao, D. & Han, C. (2024). Org. Biomol. Chem. 22, 3611–3614.  CrossRef CAS PubMed Google Scholar
First citationZhang, G., Li, Z., Pan, Z., Zhao, D. & Han, C. (2023). New J. Chem. 47, 18910–18913.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds