research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 3-(2-{3-[2-(2-oxooxazolidin-3-yl)eth­­oxy]quinoxalin-2-yl­­oxy}eth­yl)oxazolidin-2-one

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research, Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP., Rabat, Morocco
*Correspondence e-mail: nourelhoda.mustaphi@fsr.um5.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 April 2025; accepted 25 April 2025; online 2 May 2025)

In the title compound, C18H20N4O6, one of the oxazolidine rings adopts a twisted conformation and the other is a shallow envelope. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (48.4%) and H⋯O/O⋯H (29.1%) contacts.

1. Chemical context

Quinoxaline and its derivatives are widely used in various fields, including medicine (Kaushal et al., 2019[Kaushal, T., Srivastava, G., Sharma, A. & Singh Negi, A. (2019). Bioorg. Med. Chem. 27, 16-35.]; Montana et al., 2019[Montana, M., Mathias, F., Terme, T. & Vanelle, P. (2019). Eur. J. Med. Chem. 163, 136-147.]), pharmacology, mol­ecular biology, neuroscience, immunology, microbiology, agriculture, chemistry, toxicology, materials science, and biochemistry (Balderas-Renteria et al., 2012[Balderas-Renteria, I., Gonzalez-Barranco, P., Garcia, A., Banik, B. K. & Rivera, G. (2012). Curr. Med. Chem. 19, 4377-4398.]; Pereira et al., 2015[Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664-672.]; Zeb et al., 2014[Zeb, A., Hameed, A., Khan, L., Khan, I. K., Dalvandi, K., Choudhary, M. I. & Basha, F. Z. (2014). Med. Chem. 10, 724-729.]; Tangherlini et al., 2019[Tangherlini, G., Kalinin, D. V., Schepmann, D., Che, T., Mykicki, N., Ständer, S., Loser, K. & Wünsch, B. (2019). J. Med. Chem. 62, 893-907.]; Vieira et al., 2014[Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287-293.]; Zheng et al., 2002[Zheng, H., Jiang, C., Chiu, M. H., Covey, J. M. & Chan, K. K. (2002). Drug Metab. Dispos. 30, 344-348.]).

The quinoxaline mol­ecule has been utilized as a precursor for synthesizing bioactive derivatives, with several research teams emphasizing its potential applications in the pharmaceutical and therapeutic fields (Raoa et al., 2010[Raoa, G. K., Kotnal, R. B. & Sanjay Paib, P. N. (2010). J. Chem. Pharm. Res. 2, 368-373.]; Yousra et al., 2023[Yousra, S., El Ghayati, L., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y. & Sebbar, N. K. (2023). Acta Cryst. E79, 895-898.]). Different synthesis methodologies have been detailed in the literature, reflecting extensive research efforts to elucidate these compounds' properties and applications (e.g., Gu et al., 2017[Gu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X. & Wang, S. (2017). Molecules, 22, 1154.]). Building on our previous research into the synthesis of quinoxaline derivatives (Yousra et al., 2023[Yousra, S., El Ghayati, L., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y. & Sebbar, N. K. (2023). Acta Cryst. E79, 895-898.]), we have synthesized the title compound, C18H20N4O6 (I), and we now describe its synthesis, crystal structure and Hirshfeld surface.

[Scheme 1]

2. Structural commentary

Compound (I) contains an almost planar quinoxaline fused ring and two oxazolidine rings (Fig. 1[link]), where the oxazolidine (C, N3/O3/C13–C15) and (D, N4/O5/C16–C18) rings are in half-chair [with a puckering parameter value of φ = 305.0 (4)°] and shallow envelope conformations, respectively. In ring D, atom N4 is at the flap position and is 0.0849 (11) Å away from the best least-squares plane of the other four atoms. The almost planar A (N1/N2/C3–C6) and B (C5–C10) rings are oriented at a dihedral angle of 1.46 (4)°. Atoms O1, O2 and C11 are −0.094 (1), 0.059 (1) and 0.070 (1) Å, respectively, away from the best least-squares plane of ring A. The side chains both have antigauche conformations as indicated by the following torsion angles: C3—O1—C2—C1 = −162.00 (10), O1—C2—C1—N3 = −55.36 (14), C4—O2—C11—C12 = −174.35 (9) and O2—C11—C12—N4 = −57.76 (13)°. The dihedral angles between the quinoxaline ring and the pendant oxazolidine C and D rings (all atoms) are 85.72 (6) and 56.91 (7)°, respectively; the equivalent angle between the oxazolidine rings is 89.98 (9)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with 50% probability ellipsoids.

3. Supra­molecular features

In the crystal structure of (I), the molecules are linked by C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). Aromatic ππ stacking inter­actions between the quinoxaline A and B rings of adjacent mol­ecules with a shortest inter­centroid distance of 3.5155 (7) Å may help to consolidate the packing. No C—H⋯π inter­actions could be identified.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O6i 0.99 2.37 3.189 (2) 140
C10—H10⋯O5ii 0.95 2.56 3.4935 (18) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram viewed down the a-axis direction. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to investigate the inter­molecular inter­actions in the crystal of (I). The HS is shown in Fig. 3[link], where the bright-red spots correspond to the respective donors and/or acceptors. According to the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), the inter­molecular H⋯H and H⋯O/O⋯H contacts make the most important contributions to the HS of 48.4% and 29.1%, respectively (Fig. 4[link]). All other contact types contribute 5% or less to the surface.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C, (e) H⋯C/C⋯H, (f) H⋯N/N⋯H, (g) C⋯N/N⋯C, (h) C⋯O/O⋯C, (i) N⋯N, (j) N⋯O/O⋯N and (k) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD) (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to January 2024) using the search fragment (II) yielded 25 hits of which those most similar to the title mol­ecule have the formula (III) with R = Me and R′ = CH2CO2H (CSD refcode DEZJAW; Missioui et al., 2018[Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData 3, x180882.]) or benzyl (DUSHUV; Ramli et al., 2010[Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.]) with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019[Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490-5498.]), with R = Ph and R′ = CH2 (cyclo-CHCH2O) and R′ = benzyl (PUGGII; Benzeid et al., 2009[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.]). As expected, in all these hits, the di­hydro­quinoxaline ring system is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitro­gen atom bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms.

[Scheme 2]

6. Synthesis and crystallization

A solution of quinoxaline-2,3-dione (0.29 g, 1.00 mmol) in di­methyl­formamide (15 ml) was prepared. To this solution, tetra-n-butyl­ammonium bromide (0.1 mmol), 2.2 equivalents of bis­(2-chloro­eth­yl)amine hydro­chloride, and 2.00 equivalents of potassium carbonate were added. The mixture was stirred at 353 K for 6 h. After stirring, the salts were removed by filtration, and the solution was evaporated under reduced pressure. The resulting residue was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water. The mixture obtained was then chromatographed on a silica gel column using an eluent of ethyl acetate and hexane in a 4:1 ratio. The solid isolate was recrystallized from an ethanol solution, resulting in crystals of (I) with a yield of 56%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH) and 0.99 Å (for CH2) and they were refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C18H20N4O6
Mr 388.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 160
a, b, c (Å) 6.6576 (1), 17.1463 (2), 15.8105 (2)
β (°) 98.935 (1)
V3) 1782.92 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.93
Crystal size (mm) 0.25 × 0.21 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.845, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 23056, 3781, 3577
Rint 0.027
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.06
No. of reflections 3781
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one top
Crystal data top
C18H20N4O6F(000) = 816
Mr = 388.38Dx = 1.447 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.6576 (1) ÅCell parameters from 17516 reflections
b = 17.1463 (2) Åθ = 3.8–79.5°
c = 15.8105 (2) ŵ = 0.93 mm1
β = 98.935 (1)°T = 160 K
V = 1782.92 (4) Å3Plate, colourless
Z = 40.25 × 0.21 × 0.10 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3781 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3577 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 77.4°, θmin = 3.8°
ω scansh = 88
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2024)
k = 2121
Tmin = 0.845, Tmax = 0.932l = 1719
23056 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6483P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.35 e Å3
3781 reflectionsΔρmin = 0.29 e Å3
254 parametersExtinction correction: SHELXL2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0023 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34531 (13)0.47199 (5)0.72202 (5)0.02841 (19)
O20.29395 (12)0.35049 (4)0.62370 (5)0.02608 (19)
O30.35795 (16)0.33324 (6)0.96229 (7)0.0444 (3)
O40.66392 (15)0.37070 (6)0.93404 (7)0.0451 (3)
O50.74284 (18)0.16514 (7)0.76528 (7)0.0527 (3)
O60.62002 (19)0.11202 (8)0.63787 (7)0.0587 (3)
N10.28423 (15)0.55758 (6)0.60819 (6)0.0269 (2)
N20.25336 (14)0.42434 (6)0.50000 (6)0.0253 (2)
N30.37902 (16)0.44689 (6)0.89855 (7)0.0322 (2)
N40.44993 (17)0.20867 (6)0.69704 (7)0.0331 (2)
C10.4760 (2)0.51244 (7)0.86354 (8)0.0342 (3)
H1A0.6165390.4976670.8570600.041*
H1B0.4841890.5565020.9043930.041*
C20.3645 (2)0.53887 (7)0.77796 (8)0.0328 (3)
H2A0.2283800.5592100.7842330.039*
H2B0.4414420.5807930.7542160.039*
C30.30273 (16)0.48736 (7)0.63769 (7)0.0252 (2)
C40.28227 (16)0.41917 (6)0.58255 (7)0.0241 (2)
C50.23938 (16)0.49903 (7)0.46633 (8)0.0261 (2)
C60.25158 (16)0.56504 (7)0.51985 (8)0.0266 (2)
C70.23349 (18)0.64004 (7)0.48354 (9)0.0316 (3)
H70.2402830.6847070.5194260.038*
C80.20594 (18)0.64869 (8)0.39597 (9)0.0354 (3)
H80.1935590.6994450.3716270.043*
C90.19602 (19)0.58335 (8)0.34250 (9)0.0358 (3)
H90.1783410.5900800.2821610.043*
C100.21172 (18)0.50923 (8)0.37678 (8)0.0314 (3)
H100.2039010.4650900.3400910.038*
C110.27737 (18)0.28136 (6)0.57133 (7)0.0266 (2)
H11A0.3950000.2772580.5402090.032*
H11B0.1512170.2828990.5289620.032*
C120.27329 (19)0.21297 (7)0.63101 (8)0.0298 (3)
H12A0.1497950.2165670.6585250.036*
H12B0.2639470.1642110.5970810.036*
C130.4844 (2)0.38405 (7)0.93076 (8)0.0335 (3)
C140.1517 (2)0.36156 (10)0.94072 (11)0.0483 (4)
H14A0.0778580.3565490.9901930.058*
H14B0.0772520.3320430.8918360.058*
C150.1730 (2)0.44643 (9)0.91721 (10)0.0429 (3)
H15A0.0735650.4612430.8665180.051*
H15B0.1575560.4814790.9655470.051*
C160.6022 (2)0.15857 (8)0.69375 (8)0.0366 (3)
C170.6778 (4)0.22219 (12)0.82074 (12)0.0720 (6)
H17A0.7737920.2666600.8281250.086*
H17B0.6707340.1992760.8776810.086*
C180.4690 (3)0.24899 (9)0.77867 (9)0.0520 (4)
H18A0.3619990.2326370.8119840.062*
H18B0.4637200.3062970.7710040.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (5)0.0205 (4)0.0264 (4)0.0002 (3)0.0047 (3)0.0015 (3)
O20.0325 (4)0.0185 (4)0.0268 (4)0.0001 (3)0.0032 (3)0.0000 (3)
O30.0531 (6)0.0357 (5)0.0436 (5)0.0012 (4)0.0054 (4)0.0096 (4)
O40.0414 (6)0.0437 (6)0.0480 (6)0.0111 (4)0.0001 (4)0.0032 (5)
O50.0546 (7)0.0533 (6)0.0442 (6)0.0125 (5)0.0111 (5)0.0030 (5)
O60.0615 (7)0.0665 (8)0.0468 (6)0.0281 (6)0.0044 (5)0.0123 (6)
N10.0261 (5)0.0223 (5)0.0326 (5)0.0002 (4)0.0051 (4)0.0015 (4)
N20.0236 (5)0.0241 (5)0.0280 (5)0.0001 (3)0.0028 (4)0.0012 (4)
N30.0364 (6)0.0299 (5)0.0304 (5)0.0043 (4)0.0053 (4)0.0020 (4)
N40.0451 (6)0.0238 (5)0.0285 (5)0.0043 (4)0.0010 (4)0.0016 (4)
C10.0425 (7)0.0263 (6)0.0330 (6)0.0020 (5)0.0034 (5)0.0029 (5)
C20.0464 (7)0.0216 (5)0.0300 (6)0.0009 (5)0.0051 (5)0.0039 (5)
C30.0233 (5)0.0232 (5)0.0295 (6)0.0001 (4)0.0054 (4)0.0003 (4)
C40.0220 (5)0.0207 (5)0.0297 (6)0.0002 (4)0.0047 (4)0.0011 (4)
C50.0202 (5)0.0262 (6)0.0318 (6)0.0001 (4)0.0042 (4)0.0044 (4)
C60.0204 (5)0.0255 (6)0.0342 (6)0.0005 (4)0.0053 (4)0.0042 (4)
C70.0263 (6)0.0252 (6)0.0436 (7)0.0005 (4)0.0061 (5)0.0059 (5)
C80.0275 (6)0.0324 (6)0.0464 (7)0.0019 (5)0.0057 (5)0.0153 (5)
C90.0300 (6)0.0417 (7)0.0354 (6)0.0012 (5)0.0042 (5)0.0130 (5)
C100.0281 (6)0.0348 (6)0.0310 (6)0.0006 (5)0.0032 (5)0.0040 (5)
C110.0305 (6)0.0205 (5)0.0280 (5)0.0003 (4)0.0024 (4)0.0025 (4)
C120.0343 (6)0.0217 (5)0.0328 (6)0.0017 (4)0.0032 (5)0.0002 (4)
C130.0436 (7)0.0298 (6)0.0257 (6)0.0017 (5)0.0007 (5)0.0019 (5)
C140.0453 (8)0.0538 (9)0.0464 (8)0.0081 (7)0.0084 (6)0.0063 (7)
C150.0377 (7)0.0479 (8)0.0438 (8)0.0052 (6)0.0090 (6)0.0029 (6)
C160.0415 (7)0.0344 (7)0.0331 (6)0.0043 (5)0.0033 (5)0.0041 (5)
C170.1003 (15)0.0538 (10)0.0487 (9)0.0250 (10)0.0297 (10)0.0142 (8)
C180.0775 (11)0.0436 (8)0.0309 (7)0.0155 (8)0.0045 (7)0.0085 (6)
Geometric parameters (Å, º) top
O1—C21.4416 (14)C5—C61.4079 (17)
O1—C31.3454 (14)C5—C101.4100 (17)
O2—C41.3418 (13)C6—C71.4057 (16)
O2—C111.4403 (13)C7—H70.9500
O3—C131.3589 (17)C7—C81.3762 (19)
O3—C141.447 (2)C8—H80.9500
O4—C131.2101 (17)C8—C91.399 (2)
O5—C161.3563 (17)C9—H90.9500
O5—C171.425 (2)C9—C101.3792 (18)
O6—C161.2100 (18)C10—H100.9500
N1—C31.2901 (15)C11—H11A0.9900
N1—C61.3857 (16)C11—H11B0.9900
N2—C41.2924 (15)C11—C121.5080 (16)
N2—C51.3846 (15)C12—H12A0.9900
N3—C11.4483 (17)C12—H12B0.9900
N3—C131.3421 (16)C14—H14A0.9900
N3—C151.4474 (18)C14—H14B0.9900
N4—C121.4480 (16)C14—C151.514 (2)
N4—C161.3359 (17)C15—H15A0.9900
N4—C181.4522 (17)C15—H15B0.9900
C1—H1A0.9900C17—H17A0.9900
C1—H1B0.9900C17—H17B0.9900
C1—C21.5084 (18)C17—C181.516 (3)
C2—H2A0.9900C18—H18A0.9900
C2—H2B0.9900C18—H18B0.9900
C3—C41.4521 (15)
C3—O1—C2115.92 (9)C5—C10—H10120.0
C4—O2—C11116.75 (9)C9—C10—C5119.93 (12)
C13—O3—C14108.53 (11)C9—C10—H10120.0
C16—O5—C17109.50 (12)O2—C11—H11A110.4
C3—N1—C6116.22 (10)O2—C11—H11B110.4
C4—N2—C5116.25 (10)O2—C11—C12106.71 (9)
C13—N3—C1122.03 (11)H11A—C11—H11B108.6
C13—N3—C15111.99 (11)C12—C11—H11A110.4
C15—N3—C1125.10 (11)C12—C11—H11B110.4
C12—N4—C18124.44 (11)N4—C12—C11113.52 (10)
C16—N4—C12122.74 (11)N4—C12—H12A108.9
C16—N4—C18112.25 (11)N4—C12—H12B108.9
N3—C1—H1A109.0C11—C12—H12A108.9
N3—C1—H1B109.0C11—C12—H12B108.9
N3—C1—C2112.93 (11)H12A—C12—H12B107.7
H1A—C1—H1B107.8O4—C13—O3121.80 (12)
C2—C1—H1A109.0O4—C13—N3128.51 (13)
C2—C1—H1B109.0N3—C13—O3109.68 (12)
O1—C2—C1107.19 (10)O3—C14—H14A110.7
O1—C2—H2A110.3O3—C14—H14B110.7
O1—C2—H2B110.3O3—C14—C15105.00 (12)
C1—C2—H2A110.3H14A—C14—H14B108.8
C1—C2—H2B110.3C15—C14—H14A110.7
H2A—C2—H2B108.5C15—C14—H14B110.7
O1—C3—C4115.02 (10)N3—C15—C14100.55 (11)
N1—C3—O1122.32 (10)N3—C15—H15A111.7
N1—C3—C4122.65 (11)N3—C15—H15B111.7
O2—C4—C3115.00 (10)C14—C15—H15A111.7
N2—C4—O2122.56 (10)C14—C15—H15B111.7
N2—C4—C3122.44 (10)H15A—C15—H15B109.4
N2—C5—C6121.22 (10)O6—C16—O5122.03 (13)
N2—C5—C10119.43 (11)O6—C16—N4127.85 (13)
C6—C5—C10119.35 (11)N4—C16—O5110.11 (12)
N1—C6—C5121.12 (10)O5—C17—H17A110.4
N1—C6—C7119.09 (11)O5—C17—H17B110.4
C7—C6—C5119.78 (11)O5—C17—C18106.47 (13)
C6—C7—H7120.0H17A—C17—H17B108.6
C8—C7—C6119.93 (12)C18—C17—H17A110.4
C8—C7—H7120.0C18—C17—H17B110.4
C7—C8—H8119.7N4—C18—C17101.14 (13)
C7—C8—C9120.54 (11)N4—C18—H18A111.5
C9—C8—H8119.7N4—C18—H18B111.5
C8—C9—H9119.8C17—C18—H18A111.5
C10—C9—C8120.46 (12)C17—C18—H18B111.5
C10—C9—H9119.8H18A—C18—H18B109.4
O1—C3—C4—O24.66 (14)C6—C5—C10—C90.28 (17)
O1—C3—C4—N2175.86 (10)C6—C7—C8—C90.10 (18)
O2—C11—C12—N457.76 (13)C7—C8—C9—C100.64 (19)
O3—C14—C15—N319.93 (15)C8—C9—C10—C50.44 (19)
O5—C17—C18—N46.2 (2)C10—C5—C6—N1178.23 (10)
N1—C3—C4—O2176.22 (10)C10—C5—C6—C70.82 (16)
N1—C3—C4—N23.25 (18)C11—O2—C4—N21.41 (15)
N1—C6—C7—C8178.43 (10)C11—O2—C4—C3179.12 (9)
N2—C5—C6—N11.99 (16)C12—N4—C16—O5177.58 (11)
N2—C5—C6—C7178.96 (10)C12—N4—C16—O61.4 (2)
N2—C5—C10—C9179.50 (11)C12—N4—C18—C17178.95 (14)
N3—C1—C2—O155.36 (14)C13—O3—C14—C1517.07 (15)
C1—N3—C13—O3177.45 (11)C13—N3—C1—C2132.78 (12)
C1—N3—C13—O42.1 (2)C13—N3—C15—C1417.38 (15)
C1—N3—C15—C14173.26 (12)C14—O3—C13—O4173.94 (13)
C2—O1—C3—N11.41 (16)C14—O3—C13—N36.47 (15)
C2—O1—C3—C4179.46 (10)C15—N3—C1—C258.87 (16)
C3—O1—C2—C1162.00 (10)C15—N3—C13—O37.71 (15)
C3—N1—C6—C50.10 (16)C15—N3—C13—O4171.84 (14)
C3—N1—C6—C7178.95 (10)C16—O5—C17—C183.4 (2)
C4—O2—C11—C12174.35 (9)C16—N4—C12—C11102.91 (14)
C4—N2—C5—C61.41 (16)C16—N4—C18—C177.40 (18)
C4—N2—C5—C10178.81 (10)C17—O5—C16—O6177.74 (17)
C5—N2—C4—O2178.41 (9)C17—O5—C16—N41.34 (19)
C5—N2—C4—C31.03 (16)C18—N4—C12—C1186.40 (16)
C5—C6—C7—C80.63 (17)C18—N4—C16—O55.86 (17)
C6—N1—C3—O1176.48 (9)C18—N4—C16—O6173.16 (16)
C6—N1—C3—C42.57 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O6i0.992.373.189 (2)140
C10—H10···O5ii0.952.563.4935 (18)168
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBalderas-Renteria, I., Gonzalez-Barranco, P., Garcia, A., Banik, B. K. & Rivera, G. (2012). Curr. Med. Chem. 19, 4377–4398.  CAS PubMed Google Scholar
First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X. & Wang, S. (2017). Molecules, 22, 1154.  CrossRef PubMed Google Scholar
First citationKaushal, T., Srivastava, G., Sharma, A. & Singh Negi, A. (2019). Bioorg. Med. Chem. 27, 16–35.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMissioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData 3, x180882.  Google Scholar
First citationMontana, M., Mathias, F., Terme, T. & Vanelle, P. (2019). Eur. J. Med. Chem. 163, 136–147.  CrossRef CAS PubMed Google Scholar
First citationPereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664–672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaoa, G. K., Kotnal, R. B. & Sanjay Paib, P. N. (2010). J. Chem. Pharm. Res. 2, 368–373.  Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTangherlini, G., Kalinin, D. V., Schepmann, D., Che, T., Mykicki, N., Ständer, S., Loser, K. & Wünsch, B. (2019). J. Med. Chem. 62, 893–907.  CrossRef CAS PubMed Google Scholar
First citationVieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousra, S., El Ghayati, L., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y. & Sebbar, N. K. (2023). Acta Cryst. E79, 895–898.  CrossRef IUCr Journals Google Scholar
First citationZeb, A., Hameed, A., Khan, L., Khan, I. K., Dalvandi, K., Choudhary, M. I. & Basha, F. Z. (2014). Med. Chem. 10, 724–729.  CrossRef CAS PubMed Google Scholar
First citationZheng, H., Jiang, C., Chiu, M. H., Covey, J. M. & Chan, K. K. (2002). Drug Metab. Dispos. 30, 344–348.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds