research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of 1-(4-fluoro­phen­yl)-3,3-bis­­(methyl­sulfan­yl)prop-2-en-1-one

crossmark logo

aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, bDepartment of Applied Sciences, New Horizon College of Engineering, Bengaluru-560 103, India, cDepartment of Chemistry, T. John Institute of Technology, Bengaluru-560 083, India, dDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and fDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 1 May 2025; accepted 8 May 2025; online 13 May 2025)

The title compound, C11H11FOS2, is a fluorinated chalcone derivative with potential applications in medicinal chemistry and functional materials. The mol­ecular structure includes a planar 4-fluoro­phenyl ring linked by a carbonyl group and an ethenyl spacer to an approximately planar bis­(methyl­sulfan­yl) moiety (r.m.s. deviations from planarity are 0.0106 and 0.0315 Å, respectively). These planar groups are twisted relative to each other, subtending a dihedral angle of 32.23 (4)°. The crystal packing lacks classical hydrogen bonds or aromatic π-stacking, but mol­ecules are connected through weaker C—H⋯O and C—H⋯S contacts into layers parallel to the ab plane and tapes extending along the b-axis direction. The 4-fluoro­phenyl groups on adjacent tapes inter­digitate. Hirshfeld surface analysis shows that the majority (>90%) of inter­molecular contacts involve hydrogen atoms.

1. Chemical context

1-(4-Fluoro­phen­yl)-3,3-bis­(methyl­sulfan­yl)prop-2-en-1-one (I) is a fluorinated chalcone derivative with potential applications in medicinal and functional materials chemistry. Natural and synthetic chalcones have been widely utilized for their broad spectrum of biological activities, which include anti-microbial, anti-cancer, anti-diabetic, anti-inflammatory, anti-oxidant, anti-parasitic, and neuroprotective effects (Lin et al., 2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]; Bhat et al., 2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]; Trivedi et al., 2007[Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472-8474.]; Lahtchev et al., 2008[Lahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220-2228.]; Aneja et al., 2018[Aneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). ChemistrySelect 2018, 3, 2638-2645.]). The presence of fluorine may enhance inter­actions with biological systems, potentially inhibiting enzyme activity or receptors involved in disease processes. In this context, fluorinated chalcone derivatives have shown notable bioactivity (Nakamura et al., 2002[Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699-706.]). The significance of the chalcone scaffold in medicinal chemistry is well established, having been identified as a ‘privileged structure' with considerable therapeutic potential (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]). Several reviews have explored the synthesis, structural diversity, and biological relevance of chalcones and their derivatives, including their roles as anti-infective agents and enzyme inhibitors (Nowakowska, 2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]; Elkanzi et al., 2022[Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769-27786.]; de Mello et al., 2018[de Mello, M. V. P., Abrahim-Vieira, B. A., Domingos, T. F. S., Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & de Souza, A. M. T. (2018). Eur. J. Med. Chem. 150, 920-929.]; Opletalova & Sedivy, 1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]). The methyl­sulfanyl groups also contribute to its chemical reactivity (Nakamura et al., 2002[Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699-706.]), suggesting this class of compounds as promising candidates in the development of advanced functional materials. Examples include applications in optical data storage systems (Corredor et al., 2007[Corredor, C. C., Huang, Z. L., Belfield, K. D., Morales, A. R. & Bondar, M. V. (2007). Chem. Mater. 19, 5165-5173.]), electronics and coatings (Belahlou et al., 2020[Belahlou, H., Waszkowska, K., Bouraiou, A., Bendeif, E., Taboukhat, S., Bouchouit, K. & Sahraoui, B. (2020). Opt. Mater. 108, 110188.]) as well as non-linear optical (NLO) materials (Xu et al., 2020[Xu, Y., Noirbent, G., Brunel, D., Ding, Z., Gigmes, D., Graff, B., Xiao, P., Dumur, F. & Lalevée, J. (2020). Polym. Chem. 11, 5767-5777.]).

[Scheme 1]

In light of the importance of chalcones and their derivatives in several areas of chemistry, physics, medicine, pharmaceuticals and biology, this paper reports the crystal structure and a Hirshfeld-surface analysis of I.

2. Structural commentary

The mol­ecular structure of I consists of a 4-fluoro­phenyl ring bonded to a carbonyl group, which in turn is attached via an ethenyl linker to a bis­(methyl­sulfan­yl) moiety, as shown in Fig. 1[link]. All bond lengths and angles in I fall within normal ranges. The overall geometry is essentially that of two planar groups twisted with respect to each other about the C4—C7 bond [torsion C5—C4—C7—O1 = −28.68 (16)°], with a smaller twist about the C7—C8 bond [O1—C7—C8—C9 = 4.91 (18)°]. These two planar moieties are the 4-fluoro­phenyl group, which is necessarily flat (r.m.s deviation = 0.0106 Å), and the bis­(methyl­sulfan­yl)propenone group (atoms C7, O1, C8, C9, S1, S2, C10, C11), which is also close to planarity [r.m.s. = 0.0315 Å, maximum deviation = 0.0412 (1) Å at C9]. The dihedral angle between these two planar regions is 32.23 (4)°. Representative torsion angles are given in Table 1[link].

Table 1
Conformation-defining torsion angles (°) in I

Atoms Torsion angle Dihedral angle
C5—C4—C7—O1 −28.68 (16)  
C4—C7—C8—C9 −172.66 (10)  
O1—C7—C8—C9 4.91 (18)  
C7—C8—C9—S1 175.43 (9)  
C7—C8—C9—S2 −2.57 (16)  
C8—C9—S1—C10 0.01 (13)  
C8—C9—S2—C11 177.09 (10)  
     
Planar groups    
4-F—Ph/b-MSP   32.23 (4)
4-F—Ph is 4-fluoro­phenyl, atoms C1–C6, F1 and b-MSP is bis­(methyl­sulfan­yl)propenone, atoms C7–C11, O1, S1, S2.
[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I. Hydrogen atoms are drawn as small arbitrary circles.

3. Supra­molecular features

There are no conventional hydrogen bonds in the crystal structure of I, nor any ππ stacking of aromatic rings. There are, however, several weaker C—H⋯O and C—H⋯S close contacts, which are summarized in Table 2[link]. Contacts C2—H2⋯O1i and C10—H10C⋯O1ii [dD⋯A = 3.4530 (15) and 3.4724 (16) Å] join the mol­ecules into layers parallel to the ab plane, as shown in Fig. 2[link]. The C11—H11A⋯S1iii and C11—H11C⋯S2iv contacts [dD⋯A = 3.6032 (14) and 3.6292 (13) Å; all symmetry codes as per Table 2[link]] join mol­ecules into tapes that extend along the b-axis direction, roughly parallel to [307]. The 4-fluoro­phenyl groups of adjacent tapes inter­digitate. These inter­actions are shown in Fig. 3[link]. A Hirshfeld surface analysis conducted using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) shows that over 90% of inter­molecular contacts involve hydrogen. The 2D fingerprint plots of the five most abundant atom–atom contacts are shown in Fig. 4[link].

Table 2
Close contacts (Å, °) in crystalline I

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.53 3.4530 (15) 163
C10—H10C⋯O1ii 0.98 2.50 3.4724 (16) 175
C11—H11A⋯S1iii 0.98 3.01 3.6032 (14) 120
C11—H11C⋯S2iv 0.98 3.01 3.6292 (13) 122
Symmetry codes: (i) x − 1, y, z; (ii) x, y − 1, z; (iii) −x + 2, −y, −z; (iv) −x + 2, −y + 1, −z.
[Figure 2]
Figure 2
A partial packing plot of I viewed normal to the ab plane. C—H⋯O inter­actions that connect the mol­ecules into layers are shown as open dashed lines.
[Figure 3]
Figure 3
A partial packing plot of I viewed approximately perpendicular to [307], showing tapes of mol­ecules inter­acting via C—H⋯S and C—H⋯O contacts. The 4-fluoro­phenyl groups of adjacent tapes inter­digitate.
[Figure 4]
Figure 4
Hirshfeld-surface two-dimensional fingerprint plots showing (a) all contacts, (b) H⋯H contacts, (c) C⋯H contacts, (d) F⋯H contacts, (e) S⋯H contacts, and (f) O⋯H contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a fragment consisting of I but with the fluorine position set to ‘any atom', returned 29 hits, three of which were duplicates. However, only six of these had a hydrogen attached to the central carbon of the propene moiety (i.e., C8 in I). Of these six, KUQQEV (Madan Kumar et al., 2020[Madan Kumar, S., Hemraju, B., Anil, S., Manjunatha, N., Swamy, M., Lokanath, N., Al-Ghorbani, M., Al-Zaqri, N. & Alsalme, A. (2020). Z. Kristallogr. Cryst. Mater. 235, 85-93.]) had chlorine at the ortho position of the benzene ring, while WENVIV (Liao et al., 2006[Liao, J.-P., Zhang, T., Yu, C.-Y. & Huang, Z.-T. (2006). Acta Cryst. E62, o4537-o4538.]) had a 2,6-dimethyl-3,5-di­nitro-4-tBu phenyl group. The remaining four structures with para-substituted phenyl groups are thus the most similar to I. Entry MTBZOE (Mellor & Nyburg, 1971[Mellor, I. P. & Nyburg, S. C. (1971). Acta Cryst. B27, 1954-1958.]) has X = H, OCUSEN (Verma & Singh, 2016[Verma, G. K. & Singh, M. S. (2016). CSD Communication (Refcode OCUSEN). CCDC, Cambridge, England.]) has X = OMe, LUYXAH (Hussain et al., 2018[Hussain, M. V., Kumar, S., Vinayaka, A. C., Babu, T. B., Devika, B. G., Rajesh, B. M. & Doreswamy, B. H. (2018). J. Applicable Chem. 7, 19-28.]) has X = CF3, and AFOMEP (Yu et al., 2013[Yu, G.-N., Xia, J.-H., Xu, Z.-H., Wang, L.-B. & Yu, C.-Y. (2013). Acta Cryst. E69, o1036.]) has X = NO2.

5. Synthesis and crystallization

Synthesis of I was as described in the literature procedure by Huynh et al. (2025[Huynh, T. N. T., Nguyen, K. T., Krongyut, C., Lai, R.-Y., Sukwattanasinitt, M. & Wacharasindhu, S. (2025). Org. Biomol. Chem. 23, 1923-1929.]). The product obtained was purified by column chromatography and recrystallized from chloro­form by slow evaporation, yielding reddish brown crystals (m.p.: 358–359 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp2—H) and 0.98 Å (RCH3). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Table 3
Experimental details

Crystal data
Chemical formula C11H11FOS2
Mr 242.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.6956 (3), 8.6895 (4), 8.9468 (4)
α, β, γ (°) 74.633 (2), 83.237 (2), 73.008 (2)
V3) 551.18 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.24 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.919, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 15392, 2490, 2343
Rint 0.030
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.11
No. of reflections 2490
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.20
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1-(4-Fluorophenyl)-3,3-bis(methylsulfanyl)prop-2-en-1-one top
Crystal data top
C11H11FOS2Z = 2
Mr = 242.32F(000) = 252
Triclinic, P1Dx = 1.460 Mg m3
a = 7.6956 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6895 (4) ÅCell parameters from 9984 reflections
c = 8.9468 (4) Åθ = 2.5–27.5°
α = 74.633 (2)°µ = 0.47 mm1
β = 83.237 (2)°T = 100 K
γ = 73.008 (2)°Irregular block, pale yellow
V = 551.18 (4) Å30.24 × 0.22 × 0.16 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
2490 independent reflections
Radiation source: microsource2343 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.030
φ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.919, Tmax = 0.971k = 1111
15392 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.065H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.2301P]
where P = (Fo2 + 2Fc2)/3
2490 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 100K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73029 (4)0.09565 (3)0.14124 (4)0.02169 (9)
S20.86839 (4)0.38315 (3)0.11708 (3)0.01940 (9)
F10.1801 (1)0.82639 (9)0.51997 (9)0.02883 (18)
O10.60092 (12)0.62516 (11)0.20784 (11)0.02322 (19)
C10.01976 (16)0.75951 (14)0.44890 (14)0.0204 (2)
C20.01958 (16)0.65680 (14)0.35558 (14)0.0204 (2)
H20.1288820.6362030.3372480.024*
C30.14619 (16)0.58411 (14)0.28895 (13)0.0179 (2)
H30.1510920.5097780.2265250.022*
C40.30527 (15)0.61861 (13)0.31233 (13)0.0164 (2)
C50.29726 (16)0.72591 (14)0.40625 (13)0.0189 (2)
H50.4048180.7513050.4216260.023*
C60.13410 (17)0.79576 (14)0.47728 (13)0.0209 (2)
H60.1285430.8664860.5435240.025*
C70.48552 (15)0.54676 (14)0.23854 (13)0.0170 (2)
C80.51887 (15)0.38341 (14)0.21175 (13)0.0175 (2)
H80.4213700.3334000.2301660.021*
C90.68359 (15)0.29796 (14)0.16136 (13)0.0162 (2)
C100.52183 (19)0.04166 (18)0.1997 (2)0.0401 (4)
H10A0.4271600.1148770.1289350.060*
H10B0.4854170.0541330.3054800.060*
H10C0.5383340.0736970.1967460.060*
C111.05048 (17)0.21702 (16)0.06748 (17)0.0281 (3)
H11A1.0119500.1784530.0133650.042*
H11B1.0806200.1250820.1597130.042*
H11C1.1577740.2572880.0291360.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01867 (15)0.01518 (15)0.03124 (17)0.00221 (11)0.00121 (11)0.00935 (11)
S20.01558 (14)0.01870 (15)0.02352 (16)0.00553 (11)0.00205 (10)0.00475 (11)
F10.0243 (4)0.0261 (4)0.0333 (4)0.0021 (3)0.0106 (3)0.0129 (3)
O10.0202 (4)0.0196 (4)0.0332 (5)0.0087 (3)0.0035 (3)0.0104 (4)
C10.0199 (5)0.0162 (5)0.0199 (5)0.0001 (4)0.0050 (4)0.0036 (4)
C20.0182 (5)0.0189 (5)0.0235 (6)0.0045 (4)0.0002 (4)0.0051 (5)
C30.0200 (5)0.0165 (5)0.0182 (5)0.0048 (4)0.0001 (4)0.0064 (4)
C40.0188 (5)0.0133 (5)0.0164 (5)0.0037 (4)0.0001 (4)0.0033 (4)
C50.0217 (6)0.0154 (5)0.0206 (5)0.0053 (4)0.0018 (4)0.0054 (4)
C60.0288 (6)0.0156 (5)0.0181 (5)0.0036 (5)0.0005 (5)0.0067 (4)
C70.0175 (5)0.0158 (5)0.0180 (5)0.0039 (4)0.0013 (4)0.0051 (4)
C80.0168 (5)0.0158 (5)0.0213 (5)0.0058 (4)0.0007 (4)0.0062 (4)
C90.0170 (5)0.0153 (5)0.0165 (5)0.0043 (4)0.0016 (4)0.0039 (4)
C100.0246 (7)0.0231 (7)0.0798 (12)0.0105 (5)0.0089 (7)0.0250 (7)
C110.0165 (6)0.0223 (6)0.0380 (7)0.0008 (5)0.0055 (5)0.0024 (5)
Geometric parameters (Å, º) top
S1—C91.7421 (11)C4—C71.4988 (15)
S1—C101.7831 (14)C5—C61.3856 (16)
S2—C91.7478 (11)C5—H50.9500
S2—C111.8043 (13)C6—H60.9500
F1—C11.3626 (13)C7—C81.4461 (15)
O1—C71.2349 (14)C8—C91.3617 (16)
C1—C21.3740 (17)C8—H80.9500
C1—C61.3772 (18)C10—H10A0.9800
C2—C31.3896 (16)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
C3—C41.3930 (16)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.3959 (15)C11—H11C0.9800
C9—S1—C10104.24 (6)O1—C7—C4119.6 (1)
C9—S2—C11103.35 (6)C8—C7—C4117.69 (10)
F1—C1—C2118.27 (11)C9—C8—C7123.03 (10)
F1—C1—C6118.14 (11)C9—C8—H8118.5
C2—C1—C6123.57 (11)C7—C8—H8118.5
C1—C2—C3117.63 (11)C8—C9—S1123.59 (9)
C1—C2—H2121.2C8—C9—S2121.74 (9)
C3—C2—H2121.2S1—C9—S2114.64 (6)
C2—C3—C4120.99 (11)S1—C10—H10A109.5
C2—C3—H3119.5S1—C10—H10B109.5
C4—C3—H3119.5H10A—C10—H10B109.5
C3—C4—C5119.11 (10)S1—C10—H10C109.5
C3—C4—C7122.54 (10)H10A—C10—H10C109.5
C5—C4—C7118.34 (10)H10B—C10—H10C109.5
C6—C5—C4120.71 (11)S2—C11—H11A109.5
C6—C5—H5119.6S2—C11—H11B109.5
C4—C5—H5119.6H11A—C11—H11B109.5
C1—C6—C5117.96 (11)S2—C11—H11C109.5
C1—C6—H6121.0H11A—C11—H11C109.5
C5—C6—H6121.0H11B—C11—H11C109.5
O1—C7—C8122.67 (10)
F1—C1—C2—C3177.42 (10)C5—C4—C7—O128.68 (16)
C6—C1—C2—C31.11 (18)C3—C4—C7—C831.93 (16)
C1—C2—C3—C41.97 (17)C5—C4—C7—C8148.97 (11)
C2—C3—C4—C51.02 (17)O1—C7—C8—C94.91 (18)
C2—C3—C4—C7178.08 (10)C4—C7—C8—C9172.66 (10)
C3—C4—C5—C60.87 (17)C7—C8—C9—S1175.43 (9)
C7—C4—C5—C6179.99 (10)C7—C8—C9—S22.57 (16)
F1—C1—C6—C5179.24 (10)C10—S1—C9—C80.01 (13)
C2—C1—C6—C50.71 (18)C10—S1—C9—S2178.14 (8)
C4—C5—C6—C11.71 (17)C11—S2—C9—C8177.09 (10)
C3—C4—C7—O1150.42 (11)C11—S2—C9—S11.08 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.533.4530 (15)163
C10—H10C···O1ii0.982.503.4724 (16)175
C11—H11A···S1iii0.983.013.6032 (14)120
C11—H11C···S2iv0.983.013.6292 (13)123
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y, z; (iv) x+2, y+1, z.
Conformation-defining torsion angles (°) in I top
AtomsTorsion angleDihedral angle
C5—C4—C7—O1-28.68 (16)
C4—C7—C8—C9-172.66 (10)
O1—C7—C8—C94.91 (18)
C7—C8—C9—S1175.43 (9)
C7—C8—C9—S2-2.57 (16)
C8—C9—S1—C100.01 (13)
C8—C9—S2—C11177.09 (10)
Planar groups
4-F-Ph/b-MSP32.23 (4)
4-F-Ph is 4-fluorophenyl, atoms C1–C6, F1 and b-MSP is bis(methylsulfanyl)propenone, atoms C7–C11, O1, S1, S2.
Close contacts (Å, °) in crystalline I top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.533.4530 (15)163.1
C10—H10C···O1ii0.982.503.4724 (16)174.8
C11—H11A···S1iii0.983.013.6032 (14)120.1
C11—H11C···S2iv0.983.013.6292 (13)122.5
Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x + 2, -y, -z; (iv) -x + 2, -y + 1, -z.
 

Acknowledgements

One of the authors (HSY) thanks the UGC, New Delhi, for the award of UGC BSR Faculty Fellowship for a period of three years. The D8 Venture diffractometer was funded by the NSF (MRI CHE1625732), and by the University of Kentucky.

References

First citationAneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). ChemistrySelect 2018, 3, 2638–2645.  Google Scholar
First citationBelahlou, H., Waszkowska, K., Bouraiou, A., Bendeif, E., Taboukhat, S., Bouchouit, K. & Sahraoui, B. (2020). Opt. Mater. 108, 110188.  CSD CrossRef Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorredor, C. C., Huang, Z. L., Belfield, K. D., Morales, A. R. & Bondar, M. V. (2007). Chem. Mater. 19, 5165–5173.  CrossRef CAS Google Scholar
First citationde Mello, M. V. P., Abrahim-Vieira, B. A., Domingos, T. F. S., Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & de Souza, A. M. T. (2018). Eur. J. Med. Chem. 150, 920–929.  CrossRef PubMed Google Scholar
First citationElkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, M. V., Kumar, S., Vinayaka, A. C., Babu, T. B., Devika, B. G., Rajesh, B. M. & Doreswamy, B. H. (2018). J. Applicable Chem. 7, 19–28.  CAS Google Scholar
First citationHuynh, T. N. T., Nguyen, K. T., Krongyut, C., Lai, R.-Y., Sukwattanasinitt, M. & Wacharasindhu, S. (2025). Org. Biomol. Chem. 23, 1923–1929.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiao, J.-P., Zhang, T., Yu, C.-Y. & Huang, Z.-T. (2006). Acta Cryst. E62, o4537–o4538.  CSD CrossRef IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMadan Kumar, S., Hemraju, B., Anil, S., Manjunatha, N., Swamy, M., Lokanath, N., Al-Ghorbani, M., Al-Zaqri, N. & Alsalme, A. (2020). Z. Kristallogr. Cryst. Mater. 235, 85–93.  CrossRef CAS Google Scholar
First citationMellor, I. P. & Nyburg, S. C. (1971). Acta Cryst. B27, 1954–1958.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699–706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.  Web of Science CrossRef CAS Google Scholar
First citationVerma, G. K. & Singh, M. S. (2016). CSD Communication (Refcode OCUSEN). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Noirbent, G., Brunel, D., Ding, Z., Gigmes, D., Graff, B., Xiao, P., Dumur, F. & Lalevée, J. (2020). Polym. Chem. 11, 5767–5777.  CrossRef CAS Google Scholar
First citationYu, G.-N., Xia, J.-H., Xu, Z.-H., Wang, L.-B. & Yu, C.-Y. (2013). Acta Cryst. E69, o1036.  CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds