research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure analysis of bis­­(benzo­thia­zole-2-thiol­ato-κS)(1,10-phen­anthroline-κ2N,N′)zinc(II)

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, and cUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent, 100095, Uzbekistan
*Correspondence e-mail: [email protected]

Edited by Y. Ozawa, University of Hyogo, Japan (Received 9 May 2025; accepted 18 June 2025; online 24 June 2025)

The coordination complex [Zn(C7H4NS2)2(C12H8N2)] or [Zn(MBT)2(phen)], was synthesized using ethanol solutions of Zn(CH3COO)2·2H2O, 1,10-phenanthroline (phen) and 2-mercaptobenzo­thia­zole (MBTH-neutral). Single-crystal X-ray diffraction analysis revealed that the zinc atom resides on a crystallographic twofold axis within the asymmetric unit. In the complex, the zinc atom coordinates two 2-mercaptobenzo­thia­zolate (MBT; anionic form of MBTH) ligands in a monodentate fashion through their sulfur atoms, while phenanthroline acts as a bidentate ligand, chelating the zinc center. Further structural analysis, including Hirshfeld surface and two-dimensional fingerprint plot studies, indicated the presence of multiple inter­molecular inter­actions, particularly C—H⋯N and C—H⋯π interactions, contributing to the cohesion and packing of the crystal structure.

1. Chemical context

2-Mercaptobenzo­thia­zole (MBTH) is a heterocyclic aromatic derivative of benzo­thia­zole, containing a fused benzene and thia­zole ring. The structural modification significantly alters the chemical properties of the mol­ecule, making MBTH more suitable for industrial applications, particularly as a vulcanization accelerator in the rubber industry (Pattanasiriwisawa et al., 2008[Pattanasiriwisawa, W., Siritapetawee, J., Patarapaiboolchai, O. & Klysubun, W. (2008). J. Synchrotron Rad. 15, 510-513.]). MBTH can exist in two tautomeric forms i.e. thiol and thione due to the presence of the mercapto (–SH) or thione (=S) functional group within the benzo­thia­zole rings (Yekeler & Yekeler, 2006[Yekeler, H. & Yekeler, M. (2006). J. Mol. Model. 12, 763-768.]; Castro et al., 1993[Castro, R., Garcia-Vazquez, J. A., Romero, J., Sousa, A., McAuliffe, C. A. & Pritchard, R. (1993). Polyhedron 12, 2241-2247.]; Rakhmonova et al., 2022[Rakhmonova, D., Gapurova, L., Razzoqova, S., Kadirova, S., Torambetov, B., Kadirova, Z. & Shishkina, S. (2022). Acta Cryst. E78, 231-234.]). This tautomerism allows for flexibility in coordination behavior, making it a versatile ligand in coordination chemistry, capable of forming stable complexes with metal atoms via the exocyclic sulfur atom (Jeannin et al., 1979[Jeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528-3535.]; Bravo et al., 1985[Bravo, J., Casas, J. S., Castano, M. V., Gayoso, M., Mascarenhas, Y. P., Sanchez, A., Santos, C. O. P. & Sordo, J. (1985). Inorg. Chem. 24, 3435-3438.]), or through its nitro­gen atom (Dey et al., 2011[Dey, S., Efimov, A., Giri, C., Rissanen, K. & Lemmetyinen, H. (2011). Eur. J. Org. Chem. pp. 6226-6232.]; Li et al., 2013[Li, Z., Dellali, A., Malik, J., Motevalli, M., Nix, R. M., Olukoya, T., Peng, Y., Ye, H., Gillin, W. P., Hernández, I. & Wyatt, P. B. (2013). Inorg. Chem. 52, 1379-1387.]), and of acting as a chelating ligand depending on the tautomeric state and the coordination environment. This differential binding ability of MBTH derivatives enhances its applicability in the synthesis of metal complexes for optical properties (Dey et al., 2011[Dey, S., Efimov, A., Giri, C., Rissanen, K. & Lemmetyinen, H. (2011). Eur. J. Org. Chem. pp. 6226-6232.]) and has applications in electropolymerization (de Fátima Brito Sousa et al., 1997[de Fátima Brito Sousa, M., Dallan, J., Yamaki, S. B. & Bertazzoli, R. (1997). Electroanalysis 9, 614-618.]). The present works describes the molecular and crystal structure of the zinc complex [Zn(MBT)2(phen)]; in addition to MBTH, 1,10-phenanthroline (phen) was used as a co-ligand for its rigid, planar, bidentate nature, and strong metal-chelating ability, and π-accepting properties. The presence of planar conjugated rings enhances complex stability, supports supra­molecular inter­actions (ππ stacking, C—H⋯π), and improves both the structural and functional aspects of the coordination complex (Bencini et al., 2010[Bencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096-2180.]; Chaurasia et al., 2021[Chaurasia, R., Pandey, S. K., Singh, D. K., Bharty, M. K., Ganesan, V., Hira, S. K., Manna, P. P., Bharti, A. & Butcher, R. J. (2021). Dalton Trans. 50, 14362-14373.]).

[Scheme 1]

2. Structural commentary

[Zn(MBT)2(phen)] crystallizes in the monoclinic crystal system, space group C2/c. The asymmetric unit contains one 2-mercaptobenzothiazolate (MBT; anionic form of MBTH) ligand and half of a phenanthroline ligand, with the central zinc atom located on a crystallographic twofold axis (Fig. 1[link]). The zinc atom displays a distorted tetra­hedral geometry and is chelated bidentately by a neutral phenanthroline ligand through two nitro­gen donor atoms, with a Zn—N bond length of 2.093 (2) Å. Additionally, it coordinates two MBT ligands in a monodentate fashion via sulfur atoms, exhibiting a Zn—S bond length of 2.2987 (7) Å. This results in a coordination number of four for the zinc center. The dihedral angle subtended by the planes through the phenanthroline ligand and the MBT ring is 52.41 (11)°.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% ellipsoid probability level) of [Zn(MBT)2(phen)] showing the atom labeling. Hydrogen atoms are represented as small spheres of arbitrary radii.

An intra­molecular C8—H8⋯N1 contact occurs between the phenanthroline ligand and a nitro­gen atom of the MBT ligand (H⋯A = 2.65 Å, Table 1[link]). This distance is consistent with reported values for weak hydrogen-bonding inter­actions, as C—H⋯N contacts are typically considered significant when the H⋯N distance is less than ∼2.75 Å and the donor (proton)–acceptor angle in a hydrogen bond must be at least 90° (Zefirov & Zorkii, 1974[Zefirov, Y. V. & Zorkii, P. M. (1974). J. Struct. Chem. 15, 102-105.]; Taylor & Kennard, 1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg4 and Cg6 are the centroids of the S1/C6/C1/N1/C7, C1–C6 and N1/S1/C1–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1 0.95 2.65 3.331 (3) 130
C2—H2⋯S2i 0.95 2.98 3.745 (3) 138
C5—H5⋯N1ii 0.95 2.69 3.508 (4) 145
C13—H13⋯N1iii 0.95 2.69 3.574 (3) 155
C13—H13⋯C7iii 0.95 2.74 3.416 (4) 129
C9—H9⋯S2i 0.95 2.87 3.572 (3) 131
C5—H5⋯Cg2ii 0.95 2.93 3.674 (3) 136
C10—H10⋯Cg4iii 0.95 2.64 3.451 (3) 143
C10—H10⋯Cg6iii 0.95 2.77 3.498 (3) 135
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y+1, z].

3. Supra­molecular features

In the crystal, several inter­molecular inter­actions are observed, including C—H⋯N and C—H⋯π inter­actions, more specifically, C5—H5⋯N1 and C13—H13⋯N1 (Table 1[link]). The mol­ecule also exhibits several C—H⋯π inter­actions (Nishio et al., 1998[Nishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π interaction: evidence, nature, and consequences. New York: John Wiley & Sons.]) including two involving the phenanthroline ring system with an MBT ring (C10—H10⋯Cg4iii and C10—H10⋯Cg6iii; Cg4 and Cg6 are the centroids of the C1–C6 and N1/S1/C1–C7 rings, respectively; symmetry codes as in Table 1[link]). The C—H⋯π inter­action occurs between the MBT rings of adjacent mol­ecules (C5—H5⋯Cg2ii; Cg2 is the centroid of the S1/C6/C1/N1/C7 ring; symmetry code as in Table 1[link]. The packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
The packing of [Zn(MBT)2(phen)], showing the complex mol­ecules connected by C—H⋯N and C—H⋯π inter­actions.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) and 2D fingerprint plot analysis (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378-392.]) were carried out using CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to identify and qu­antify the inter­molecular inter­actions contributing to the Hirshfeld surface of the mol­ecule (Fig. 3[link]). The structure of [Zn(MBT)2(phen)] primarily exhibits non-classical inter­actions including C⋯H/H⋯C, S⋯H/H⋯S, H⋯H, and N⋯H/H⋯N contacts. In addition, minor contributions from C⋯C and S⋯S inter­actions are also observed. The relative contributions of these inter­actions to the Hirshfeld surface are as follows: C⋯H/H⋯C (40.5%), S⋯H/H⋯S (26.5%), H⋯H (17.0%), N⋯H/H⋯N (8.1%), C⋯C (3.3%), and S⋯S (2.5%). Notably, two distinct red spots appear on the Hirshfeld surface, corresponding to close inter­molecular C–H⋯N contacts between adjacent mol­ecules specifically C5—H5⋯N1. Additionally, a single red spot is associated with the C9—H9⋯S2 inter­action.

[Figure 3]
Figure 3
Hirshfeld surface and two-dimensional fingerprint plots for [Zn(MBT)2(phen)].

5. Database survey

A survey conducted using ConQuest software (CSD, Version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) within the Cambridge Structural Database revealed 284 organometallic crystal structures of MBT derivatives. Among these, 26 structures exhibit the thione tautomeric form, while the remaining 258 structures show the thiol tautomeric form. Additionally, five crystal structures containing zinc atoms coordinating mercaptobenzthia­zole have been reported (BTZTZN, Ashworth et al., 1976[Ashworth, C. C., Bailey, N. A., Johnson, M., McCleverty, J. A., Morrison, N. & Tabbiner, B. (1976). J. Chem. Soc. Chem. Commun. pp. 743-744.]; RIRGIJ, Jin et al., 2007[Jin, Q.-H., Gao, H.-W., Dong, J.-C., Yang, L. & Li, P.-Z. (2007). Z. Krist. New Cryst. Struct. 222, 233-234.]; TIFLED, Seo et al., 2023[Seo, H., Kohlbrand, A. J., Stokes, R. W., Chung, J. & Cohen, S. M. (2023). Chem. Commun. 59, 2283-2286.]; WEDVEG, WEDVIK, Baggio et al., 1993[Baggio, R., Garland, M. T. & Perec, M. (1993). J. Chem. Soc. Dalton Trans. pp. 3367-3372.]). Among these, two structures are closely related to complex [Zn(MBT)2(phen)], characterized by a coordination number of four (WEDVEG, WEDVIK; Baggio et al., 1993[Baggio, R., Garland, M. T. & Perec, M. (1993). J. Chem. Soc. Dalton Trans. pp. 3367-3372.]). In both structures, zinc is bonded to two MBT ligands. However, in the first structure, zinc is also bonded to two pyridine ligands monodentately, whereas in the second structure, it is bonded to one bi­pyridine ligand in a bidentate fashion. Notably, no crystal structures featuring zinc coordinating MBT and phenanthroline have been reported.

6. Synthesis and crystallization

Zn(CH3COO)2·2H2O (0.110 g, 0.5 mmol) and MBT (0.167 g, 1 mmol) were dissolved separately in ethanol (3 mL), mixed together, and stirred for 1 h at 333 K. A solution of phen (0.18 g, 1 mmol) in 3 mL of ethanol was added dropwise to the resulting mixture. The mixture was stirred for an additional 1 h at 333 K. The mixture was then filtered and left to crystallize. Single crystals of the title complex, suitable for X-ray analysis, were obtained by slow evaporation of the solution over a period of 10 days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C7H4NS2)2(C12H8N2)]
Mr 578.04
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 19.9559 (9), 9.8232 (5), 14.0704 (7)
β (°) 118.642 (1)
V3) 2420.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.38
Crystal size (mm) 0.08 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.525, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 30934, 2479, 2114
Rint 0.086
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.08
No. of reflections 2479
No. of parameters 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.57
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis(benzothiazole-2-thiolato-κS)(1,10-phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[Zn(C7H4NS2)2(C12H8N2)]F(000) = 1176
Mr = 578.04Dx = 1.586 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.9559 (9) ÅCell parameters from 9995 reflections
b = 9.8232 (5) Åθ = 2.3–26.3°
c = 14.0704 (7) ŵ = 1.38 mm1
β = 118.642 (1)°T = 100 K
V = 2420.7 (2) Å3Block, colourless
Z = 40.08 × 0.06 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2114 reflections with I > 2σ(I)
φ and ω scansRint = 0.086
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.6°
Tmin = 0.525, Tmax = 0.745h = 2424
30934 measured reflectionsk = 1212
2479 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0397P)2 + 6.4028P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.53 e Å3
2479 reflectionsΔρmin = 0.57 e Å3
160 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0011 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.51950 (4)0.2500000.01817 (15)
S10.29666 (4)0.20222 (7)0.13597 (6)0.02333 (19)
N10.39011 (12)0.3587 (2)0.29326 (18)0.0182 (5)
C10.35313 (15)0.2772 (3)0.3346 (2)0.0189 (6)
N20.46554 (13)0.6818 (2)0.31279 (18)0.0180 (5)
S20.40002 (4)0.40663 (7)0.11137 (5)0.02157 (18)
C20.36580 (16)0.2815 (3)0.4411 (2)0.0225 (6)
H20.4014840.3437810.4916420.027*
C30.32539 (17)0.1932 (3)0.4717 (2)0.0268 (6)
H30.3336350.1954730.5440390.032*
C40.27273 (17)0.1008 (3)0.3983 (3)0.0294 (7)
H40.2459720.0409380.4213580.035*
C50.25921 (17)0.0956 (3)0.2922 (2)0.0263 (6)
H50.2233340.0332120.2420630.032*
C60.29951 (16)0.1843 (3)0.2609 (2)0.0216 (6)
C70.36666 (15)0.3307 (3)0.1914 (2)0.0184 (5)
C100.43160 (16)0.9233 (3)0.3852 (2)0.0214 (6)
H100.4202491.0048820.4109300.026*
C110.46615 (15)0.9288 (3)0.3182 (2)0.0184 (5)
C120.48230 (15)0.8048 (3)0.2842 (2)0.0168 (5)
C130.48445 (16)1.0540 (3)0.2834 (2)0.0215 (6)
H130.4746091.1381540.3077090.026*
C90.41457 (16)0.7996 (3)0.4129 (2)0.0234 (6)
H90.3905380.7944230.4569810.028*
C80.43297 (16)0.6802 (3)0.3755 (2)0.0213 (6)
H80.4215750.5948300.3960970.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0208 (3)0.0147 (2)0.0191 (3)0.0000.00969 (19)0.000
S10.0229 (4)0.0248 (4)0.0183 (4)0.0073 (3)0.0067 (3)0.0024 (3)
N10.0168 (11)0.0182 (11)0.0205 (11)0.0002 (9)0.0097 (9)0.0001 (9)
C10.0156 (13)0.0179 (13)0.0227 (14)0.0018 (11)0.0088 (11)0.0004 (11)
N20.0190 (11)0.0157 (10)0.0193 (11)0.0006 (9)0.0091 (9)0.0010 (9)
S20.0231 (4)0.0227 (3)0.0192 (4)0.0037 (3)0.0104 (3)0.0009 (3)
C20.0206 (14)0.0247 (14)0.0222 (14)0.0015 (11)0.0102 (12)0.0025 (11)
C30.0263 (16)0.0347 (16)0.0240 (15)0.0017 (13)0.0158 (13)0.0015 (12)
C40.0263 (16)0.0333 (16)0.0344 (17)0.0019 (13)0.0191 (14)0.0050 (13)
C50.0207 (15)0.0267 (15)0.0282 (16)0.0039 (12)0.0092 (12)0.0014 (12)
C60.0178 (14)0.0226 (14)0.0221 (14)0.0016 (11)0.0076 (11)0.0003 (11)
C70.0171 (13)0.0164 (12)0.0191 (13)0.0028 (10)0.0065 (11)0.0002 (10)
C100.0208 (14)0.0207 (13)0.0210 (14)0.0032 (11)0.0087 (12)0.0022 (11)
C110.0173 (13)0.0176 (13)0.0166 (13)0.0016 (10)0.0052 (11)0.0009 (10)
C120.0127 (12)0.0176 (12)0.0171 (13)0.0009 (10)0.0048 (10)0.0011 (10)
C130.0209 (14)0.0149 (12)0.0272 (15)0.0009 (10)0.0104 (12)0.0011 (11)
C90.0226 (15)0.0252 (14)0.0247 (15)0.0001 (11)0.0132 (12)0.0013 (12)
C80.0211 (14)0.0204 (13)0.0239 (14)0.0011 (11)0.0119 (12)0.0000 (11)
Geometric parameters (Å, º) top
Zn1—N22.093 (2)C3—C41.398 (4)
Zn1—N2i2.093 (2)C4—H40.9500
Zn1—S2i2.2987 (7)C4—C51.384 (4)
Zn1—S22.2987 (7)C5—H50.9500
S1—C61.740 (3)C5—C61.393 (4)
S1—C71.763 (3)C10—H100.9500
N1—C11.392 (3)C10—C111.411 (4)
N1—C71.306 (4)C10—C91.368 (4)
C1—C21.395 (4)C11—C121.402 (4)
C1—C61.410 (4)C11—C131.434 (4)
N2—C121.364 (3)C12—C12i1.442 (5)
N2—C81.324 (4)C13—C13i1.353 (6)
S2—C71.728 (3)C13—H130.9500
C2—H20.9500C9—H90.9500
C2—C31.387 (4)C9—C81.404 (4)
C3—H30.9500C8—H80.9500
N2—Zn1—N2i80.71 (12)C6—C5—H5120.8
N2—Zn1—S2i109.67 (6)C1—C6—S1108.9 (2)
N2i—Zn1—S2i113.49 (6)C5—C6—S1129.7 (2)
N2—Zn1—S2113.49 (6)C5—C6—C1121.4 (3)
N2i—Zn1—S2109.66 (6)N1—C7—S1115.3 (2)
S2—Zn1—S2i122.32 (4)N1—C7—S2125.2 (2)
C6—S1—C789.44 (13)S2—C7—S1119.47 (15)
C7—N1—C1110.8 (2)C11—C10—H10120.3
N1—C1—C2124.9 (2)C9—C10—H10120.3
N1—C1—C6115.6 (2)C9—C10—C11119.5 (3)
C2—C1—C6119.5 (3)C10—C11—C13123.2 (2)
C12—N2—Zn1111.95 (17)C12—C11—C10117.4 (2)
C8—N2—Zn1129.67 (18)C12—C11—C13119.4 (2)
C8—N2—C12118.4 (2)N2—C12—C11122.7 (2)
C7—S2—Zn195.97 (9)N2—C12—C12i117.68 (15)
C1—C2—H2120.6C11—C12—C12i119.63 (15)
C3—C2—C1118.8 (3)C11—C13—H13119.5
C3—C2—H2120.6C13i—C13—C11120.94 (16)
C2—C3—H3119.4C13i—C13—H13119.5
C2—C3—C4121.3 (3)C10—C9—H9120.3
C4—C3—H3119.4C10—C9—C8119.4 (3)
C3—C4—H4119.7C8—C9—H9120.3
C5—C4—C3120.6 (3)N2—C8—C9122.7 (3)
C5—C4—H4119.7N2—C8—H8118.6
C4—C5—H5120.8C9—C8—H8118.6
C4—C5—C6118.3 (3)
Zn1—N2—C12—C11178.7 (2)C6—C1—C2—C30.4 (4)
Zn1—N2—C12—C12i1.6 (4)C7—S1—C6—C10.1 (2)
Zn1—N2—C8—C9178.7 (2)C7—S1—C6—C5179.0 (3)
Zn1—S2—C7—S1169.30 (14)C7—N1—C1—C2179.5 (3)
Zn1—S2—C7—N19.4 (2)C7—N1—C1—C60.2 (3)
N1—C1—C2—C3179.4 (3)C10—C11—C12—N20.4 (4)
N1—C1—C6—S10.0 (3)C10—C11—C12—C12i179.9 (3)
N1—C1—C6—C5179.2 (3)C10—C11—C13—C13i178.0 (3)
C1—N1—C7—S10.3 (3)C10—C9—C8—N20.9 (4)
C1—N1—C7—S2178.5 (2)C11—C10—C9—C81.0 (4)
C1—C2—C3—C40.1 (4)C12—N2—C8—C90.5 (4)
C2—C1—C6—S1179.7 (2)C12—C11—C13—C13i1.4 (5)
C2—C1—C6—C50.5 (4)C13—C11—C12—N2179.1 (3)
C2—C3—C4—C50.4 (5)C13—C11—C12—C12i0.6 (4)
C3—C4—C5—C60.2 (4)C9—C10—C11—C120.8 (4)
C4—C5—C6—S1179.2 (2)C9—C10—C11—C13178.7 (3)
C4—C5—C6—C10.2 (4)C8—N2—C12—C110.3 (4)
C6—S1—C7—N10.2 (2)C8—N2—C12—C12i179.9 (3)
C6—S1—C7—S2178.61 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg4 and Cg6 are the centroids of the S1/C6/C1/N1/C7, C1–C6 and N1/S1/C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···N10.952.653.331 (3)130
C2—H2···S2ii0.952.983.745 (3)138
C5—H5···N1iii0.952.693.508 (4)145
C13—H13···N1iv0.952.693.574 (3)155
C13—H13···C7iv0.952.743.416 (4)129
C9—H9···S2ii0.952.873.572 (3)131
C5—H5···Cg2iii0.952.933.674 (3)136
C10—H10···Cg4iv0.952.643.451 (3)143
C10—H10···Cg6iv0.952.773.498 (3)135
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

BT is grateful for a CSIR–TWAS fellowship and also to the Frank H. Allen Inter­national Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD).

References

First citationAshworth, C. C., Bailey, N. A., Johnson, M., McCleverty, J. A., Morrison, N. & Tabbiner, B. (1976). J. Chem. Soc. Chem. Commun. pp. 743–744.  Google Scholar
First citationBaggio, R., Garland, M. T. & Perec, M. (1993). J. Chem. Soc. Dalton Trans. pp. 3367–3372.  CSD CrossRef Web of Science Google Scholar
First citationBencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096–2180.  CrossRef CAS Google Scholar
First citationBravo, J., Casas, J. S., Castano, M. V., Gayoso, M., Mascarenhas, Y. P., Sanchez, A., Santos, C. O. P. & Sordo, J. (1985). Inorg. Chem. 24, 3435–3438.  Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, R., Garcia-Vazquez, J. A., Romero, J., Sousa, A., McAuliffe, C. A. & Pritchard, R. (1993). Polyhedron 12, 2241–2247.  Google Scholar
First citationChaurasia, R., Pandey, S. K., Singh, D. K., Bharty, M. K., Ganesan, V., Hira, S. K., Manna, P. P., Bharti, A. & Butcher, R. J. (2021). Dalton Trans. 50, 14362–14373.  PubMed Google Scholar
First citationde Fátima Brito Sousa, M., Dallan, J., Yamaki, S. B. & Bertazzoli, R. (1997). Electroanalysis 9, 614–618.  Google Scholar
First citationDey, S., Efimov, A., Giri, C., Rissanen, K. & Lemmetyinen, H. (2011). Eur. J. Org. Chem. pp. 6226–6232.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528–3535.  CSD CrossRef CAS Web of Science Google Scholar
First citationJin, Q.-H., Gao, H.-W., Dong, J.-C., Yang, L. & Li, P.-Z. (2007). Z. Krist. New Cryst. Struct. 222, 233–234.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Z., Dellali, A., Malik, J., Motevalli, M., Nix, R. M., Olukoya, T., Peng, Y., Ye, H., Gillin, W. P., Hernández, I. & Wyatt, P. B. (2013). Inorg. Chem. 52, 1379–1387.  PubMed Google Scholar
First citationNishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π interaction: evidence, nature, and consequences. New York: John Wiley & Sons.  Google Scholar
First citationPattanasiriwisawa, W., Siritapetawee, J., Patarapaiboolchai, O. & Klysubun, W. (2008). J. Synchrotron Rad. 15, 510–513.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRakhmonova, D., Gapurova, L., Razzoqova, S., Kadirova, S., Torambetov, B., Kadirova, Z. & Shishkina, S. (2022). Acta Cryst. E78, 231–234.  CSD CrossRef IUCr Journals Google Scholar
First citationSeo, H., Kohlbrand, A. J., Stokes, R. W., Chung, J. & Cohen, S. M. (2023). Chem. Commun. 59, 2283–2286.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science Google Scholar
First citationYekeler, H. & Yekeler, M. (2006). J. Mol. Model. 12, 763–768.  PubMed Google Scholar
First citationZefirov, Y. V. & Zorkii, P. M. (1974). J. Struct. Chem. 15, 102–105.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds