

research communications
Synthesis and κS)(1,10-phenanthroline-κ2N,N′)zinc(II)
analysis of bis(benzothiazole-2-thiolato-aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, and cUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent, 100095, Uzbekistan
*Correspondence e-mail: [email protected]
The coordination complex [Zn(C7H4NS2)2(C12H8N2)] or [Zn(MBT)2(phen)], was synthesized using ethanol solutions of Zn(CH3COO)2·2H2O, 1,10-phenanthroline (phen) and 2-mercaptobenzothiazole (MBTH-neutral). Single-crystal X-ray revealed that the zinc atom resides on a crystallographic twofold axis within the In the complex, the zinc atom coordinates two 2-mercaptobenzothiazolate (MBT; anionic form of MBTH) ligands in a monodentate fashion through their sulfur atoms, while phenanthroline acts as a bidentate ligand, chelating the zinc center. Further structural analysis, including Hirshfeld surface and two-dimensional fingerprint plot studies, indicated the presence of multiple intermolecular interactions, particularly C—H⋯N and C—H⋯π interactions, contributing to the cohesion and packing of the crystal structure.
Keywords: crystal structure; molecular structure; zinc complex; 2-mercaptobenzothiazole; 1,10-phenanthroline; Hirshfeld surface.
CCDC reference: 2388092
1. Chemical context
2-Mercaptobenzothiazole (MBTH) is a heterocyclic aromatic derivative of benzothiazole, containing a fused benzene and thiazole ring. The structural modification significantly alters the chemical properties of the molecule, making MBTH more suitable for industrial applications, particularly as a vulcanization accelerator in the rubber industry (Pattanasiriwisawa et al., 2008). MBTH can exist in two tautomeric forms i.e. thiol and thione due to the presence of the mercapto (–SH) or thione (=S) within the benzothiazole rings (Yekeler & Yekeler, 2006
; Castro et al., 1993
; Rakhmonova et al., 2022
). This allows for flexibility in coordination behavior, making it a versatile ligand in coordination chemistry, capable of forming stable complexes with metal atoms via the exocyclic sulfur atom (Jeannin et al., 1979
; Bravo et al., 1985
), or through its nitrogen atom (Dey et al., 2011
; Li et al., 2013
), and of acting as a chelating ligand depending on the tautomeric state and the coordination environment. This differential binding ability of MBTH derivatives enhances its applicability in the synthesis of metal complexes for optical properties (Dey et al., 2011
) and has applications in electropolymerization (de Fátima Brito Sousa et al., 1997
). The present works describes the molecular and of the zinc complex [Zn(MBT)2(phen)]; in addition to MBTH, 1,10-phenanthroline (phen) was used as a co-ligand for its rigid, planar, bidentate nature, and strong metal-chelating ability, and π-accepting properties. The presence of planar conjugated rings enhances complex stability, supports supramolecular interactions (π–π stacking, C—H⋯π), and improves both the structural and functional aspects of the coordination complex (Bencini et al., 2010
; Chaurasia et al., 2021
).
2. Structural commentary
[Zn(MBT)2(phen)] crystallizes in the monoclinic C2/c. The contains one 2-mercaptobenzothiazolate (MBT; anionic form of MBTH) ligand and half of a phenanthroline ligand, with the central zinc atom located on a crystallographic twofold axis (Fig. 1). The zinc atom displays a distorted tetrahedral geometry and is chelated bidentately by a neutral phenanthroline ligand through two nitrogen donor atoms, with a Zn—N bond length of 2.093 (2) Å. Additionally, it coordinates two MBT ligands in a monodentate fashion via sulfur atoms, exhibiting a Zn—S bond length of 2.2987 (7) Å. This results in a of four for the zinc center. The dihedral angle subtended by the planes through the phenanthroline ligand and the MBT ring is 52.41 (11)°.
![]() | Figure 1 Displacement ellipsoid plot (50% ellipsoid probability level) of [Zn(MBT)2(phen)] showing the atom labeling. Hydrogen atoms are represented as small spheres of arbitrary radii. |
An intramolecular C8—H8⋯N1 contact occurs between the phenanthroline ligand and a nitrogen atom of the MBT ligand (H⋯A = 2.65 Å, Table 1). This distance is consistent with reported values for weak hydrogen-bonding interactions, as C—H⋯N contacts are typically considered significant when the H⋯N distance is less than ∼2.75 Å and the donor (proton)–acceptor angle in a hydrogen bond must be at least 90° (Zefirov & Zorkii, 1974
; Taylor & Kennard, 1982
).
|
3. Supramolecular features
In the crystal, several intermolecular interactions are observed, including C—H⋯N and C—H⋯π interactions, more specifically, C5—H5⋯N1 and C13—H13⋯N1 (Table 1). The molecule also exhibits several C—H⋯π interactions (Nishio et al., 1998
) including two involving the phenanthroline ring system with an MBT ring (C10—H10⋯Cg4iii and C10—H10⋯Cg6iii; Cg4 and Cg6 are the centroids of the C1–C6 and N1/S1/C1–C7 rings, respectively; symmetry codes as in Table 1
). The C—H⋯π interaction occurs between the MBT rings of adjacent molecules (C5—H5⋯Cg2ii; Cg2 is the centroid of the S1/C6/C1/N1/C7 ring; symmetry code as in Table 1
. The packing is shown in Fig. 2
.
![]() | Figure 2 The packing of [Zn(MBT)2(phen)], showing the complex molecules connected by C—H⋯N and C—H⋯π interactions. |
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and 2D fingerprint plot analysis (Spackman & McKinnon, 2002
) were carried out using CrystalExplorer21.5 (Spackman et al., 2021
) to identify and quantify the intermolecular interactions contributing to the Hirshfeld surface of the molecule (Fig. 3
). The structure of [Zn(MBT)2(phen)] primarily exhibits non-classical interactions including C⋯H/H⋯C, S⋯H/H⋯S, H⋯H, and N⋯H/H⋯N contacts. In addition, minor contributions from C⋯C and S⋯S interactions are also observed. The relative contributions of these interactions to the Hirshfeld surface are as follows: C⋯H/H⋯C (40.5%), S⋯H/H⋯S (26.5%), H⋯H (17.0%), N⋯H/H⋯N (8.1%), C⋯C (3.3%), and S⋯S (2.5%). Notably, two distinct red spots appear on the Hirshfeld surface, corresponding to close intermolecular C–H⋯N contacts between adjacent molecules specifically C5—H5⋯N1. Additionally, a single red spot is associated with the C9—H9⋯S2 interaction.
![]() | Figure 3 Hirshfeld surface and two-dimensional fingerprint plots for [Zn(MBT)2(phen)]. |
5. Database survey
A survey conducted using ConQuest software (CSD, Version 5.46, November 2024; Groom et al., 2016) within the Cambridge Structural Database revealed 284 organometallic crystal structures of MBT derivatives. Among these, 26 structures exhibit the thione tautomeric form, while the remaining 258 structures show the thiol tautomeric form. Additionally, five crystal structures containing zinc atoms coordinating mercaptobenzthiazole have been reported (BTZTZN, Ashworth et al., 1976
; RIRGIJ, Jin et al., 2007
; TIFLED, Seo et al., 2023
; WEDVEG, WEDVIK, Baggio et al., 1993
). Among these, two structures are closely related to complex [Zn(MBT)2(phen)], characterized by a of four (WEDVEG, WEDVIK; Baggio et al., 1993
). In both structures, zinc is bonded to two MBT ligands. However, in the first structure, zinc is also bonded to two pyridine ligands monodentately, whereas in the second structure, it is bonded to one bipyridine ligand in a bidentate fashion. Notably, no crystal structures featuring zinc coordinating MBT and phenanthroline have been reported.
6. Synthesis and crystallization
Zn(CH3COO)2·2H2O (0.110 g, 0.5 mmol) and MBT (0.167 g, 1 mmol) were dissolved separately in ethanol (3 mL), mixed together, and stirred for 1 h at 333 K. A solution of phen (0.18 g, 1 mmol) in 3 mL of ethanol was added dropwise to the resulting mixture. The mixture was stirred for an additional 1 h at 333 K. The mixture was then filtered and left to crystallize. Single crystals of the title complex, suitable for X-ray analysis, were obtained by slow evaporation of the solution over a period of 10 days.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
|
Supporting information
CCDC reference: 2388092
https://doi.org/10.1107/S2056989025005468/ox2015sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025005468/ox2015Isup2.hkl
[Zn(C7H4NS2)2(C12H8N2)] | F(000) = 1176 |
Mr = 578.04 | Dx = 1.586 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.9559 (9) Å | Cell parameters from 9995 reflections |
b = 9.8232 (5) Å | θ = 2.3–26.3° |
c = 14.0704 (7) Å | µ = 1.38 mm−1 |
β = 118.642 (1)° | T = 100 K |
V = 2420.7 (2) Å3 | Block, colourless |
Z = 4 | 0.08 × 0.06 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2114 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.086 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.6° |
Tmin = 0.525, Tmax = 0.745 | h = −24→24 |
30934 measured reflections | k = −12→12 |
2479 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0397P)2 + 6.4028P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.53 e Å−3 |
2479 reflections | Δρmin = −0.57 e Å−3 |
160 parameters | Extinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0011 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.500000 | 0.51950 (4) | 0.250000 | 0.01817 (15) | |
S1 | 0.29666 (4) | 0.20222 (7) | 0.13597 (6) | 0.02333 (19) | |
N1 | 0.39011 (12) | 0.3587 (2) | 0.29326 (18) | 0.0182 (5) | |
C1 | 0.35313 (15) | 0.2772 (3) | 0.3346 (2) | 0.0189 (6) | |
N2 | 0.46554 (13) | 0.6818 (2) | 0.31279 (18) | 0.0180 (5) | |
S2 | 0.40002 (4) | 0.40663 (7) | 0.11137 (5) | 0.02157 (18) | |
C2 | 0.36580 (16) | 0.2815 (3) | 0.4411 (2) | 0.0225 (6) | |
H2 | 0.401484 | 0.343781 | 0.491642 | 0.027* | |
C3 | 0.32539 (17) | 0.1932 (3) | 0.4717 (2) | 0.0268 (6) | |
H3 | 0.333635 | 0.195473 | 0.544039 | 0.032* | |
C4 | 0.27273 (17) | 0.1008 (3) | 0.3983 (3) | 0.0294 (7) | |
H4 | 0.245972 | 0.040938 | 0.421358 | 0.035* | |
C5 | 0.25921 (17) | 0.0956 (3) | 0.2922 (2) | 0.0263 (6) | |
H5 | 0.223334 | 0.033212 | 0.242063 | 0.032* | |
C6 | 0.29951 (16) | 0.1843 (3) | 0.2609 (2) | 0.0216 (6) | |
C7 | 0.36666 (15) | 0.3307 (3) | 0.1914 (2) | 0.0184 (5) | |
C10 | 0.43160 (16) | 0.9233 (3) | 0.3852 (2) | 0.0214 (6) | |
H10 | 0.420249 | 1.004882 | 0.410930 | 0.026* | |
C11 | 0.46615 (15) | 0.9288 (3) | 0.3182 (2) | 0.0184 (5) | |
C12 | 0.48230 (15) | 0.8048 (3) | 0.2842 (2) | 0.0168 (5) | |
C13 | 0.48445 (16) | 1.0540 (3) | 0.2834 (2) | 0.0215 (6) | |
H13 | 0.474609 | 1.138154 | 0.307709 | 0.026* | |
C9 | 0.41457 (16) | 0.7996 (3) | 0.4129 (2) | 0.0234 (6) | |
H9 | 0.390538 | 0.794423 | 0.456981 | 0.028* | |
C8 | 0.43297 (16) | 0.6802 (3) | 0.3755 (2) | 0.0213 (6) | |
H8 | 0.421575 | 0.594830 | 0.396097 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0208 (3) | 0.0147 (2) | 0.0191 (3) | 0.000 | 0.00969 (19) | 0.000 |
S1 | 0.0229 (4) | 0.0248 (4) | 0.0183 (4) | −0.0073 (3) | 0.0067 (3) | −0.0024 (3) |
N1 | 0.0168 (11) | 0.0182 (11) | 0.0205 (11) | 0.0002 (9) | 0.0097 (9) | −0.0001 (9) |
C1 | 0.0156 (13) | 0.0179 (13) | 0.0227 (14) | 0.0018 (11) | 0.0088 (11) | 0.0004 (11) |
N2 | 0.0190 (11) | 0.0157 (10) | 0.0193 (11) | −0.0006 (9) | 0.0091 (9) | −0.0010 (9) |
S2 | 0.0231 (4) | 0.0227 (3) | 0.0192 (4) | −0.0037 (3) | 0.0104 (3) | −0.0009 (3) |
C2 | 0.0206 (14) | 0.0247 (14) | 0.0222 (14) | 0.0015 (11) | 0.0102 (12) | −0.0025 (11) |
C3 | 0.0263 (16) | 0.0347 (16) | 0.0240 (15) | 0.0017 (13) | 0.0158 (13) | 0.0015 (12) |
C4 | 0.0263 (16) | 0.0333 (16) | 0.0344 (17) | −0.0019 (13) | 0.0191 (14) | 0.0050 (13) |
C5 | 0.0207 (15) | 0.0267 (15) | 0.0282 (16) | −0.0039 (12) | 0.0092 (12) | 0.0014 (12) |
C6 | 0.0178 (14) | 0.0226 (14) | 0.0221 (14) | −0.0016 (11) | 0.0076 (11) | 0.0003 (11) |
C7 | 0.0171 (13) | 0.0164 (12) | 0.0191 (13) | 0.0028 (10) | 0.0065 (11) | −0.0002 (10) |
C10 | 0.0208 (14) | 0.0207 (13) | 0.0210 (14) | 0.0032 (11) | 0.0087 (12) | −0.0022 (11) |
C11 | 0.0173 (13) | 0.0176 (13) | 0.0166 (13) | 0.0016 (10) | 0.0052 (11) | −0.0009 (10) |
C12 | 0.0127 (12) | 0.0176 (12) | 0.0171 (13) | −0.0009 (10) | 0.0048 (10) | 0.0011 (10) |
C13 | 0.0209 (14) | 0.0149 (12) | 0.0272 (15) | 0.0009 (10) | 0.0104 (12) | −0.0011 (11) |
C9 | 0.0226 (15) | 0.0252 (14) | 0.0247 (15) | 0.0001 (11) | 0.0132 (12) | −0.0013 (12) |
C8 | 0.0211 (14) | 0.0204 (13) | 0.0239 (14) | −0.0011 (11) | 0.0119 (12) | 0.0000 (11) |
Zn1—N2 | 2.093 (2) | C3—C4 | 1.398 (4) |
Zn1—N2i | 2.093 (2) | C4—H4 | 0.9500 |
Zn1—S2i | 2.2987 (7) | C4—C5 | 1.384 (4) |
Zn1—S2 | 2.2987 (7) | C5—H5 | 0.9500 |
S1—C6 | 1.740 (3) | C5—C6 | 1.393 (4) |
S1—C7 | 1.763 (3) | C10—H10 | 0.9500 |
N1—C1 | 1.392 (3) | C10—C11 | 1.411 (4) |
N1—C7 | 1.306 (4) | C10—C9 | 1.368 (4) |
C1—C2 | 1.395 (4) | C11—C12 | 1.402 (4) |
C1—C6 | 1.410 (4) | C11—C13 | 1.434 (4) |
N2—C12 | 1.364 (3) | C12—C12i | 1.442 (5) |
N2—C8 | 1.324 (4) | C13—C13i | 1.353 (6) |
S2—C7 | 1.728 (3) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C2—C3 | 1.387 (4) | C9—C8 | 1.404 (4) |
C3—H3 | 0.9500 | C8—H8 | 0.9500 |
N2—Zn1—N2i | 80.71 (12) | C6—C5—H5 | 120.8 |
N2—Zn1—S2i | 109.67 (6) | C1—C6—S1 | 108.9 (2) |
N2i—Zn1—S2i | 113.49 (6) | C5—C6—S1 | 129.7 (2) |
N2—Zn1—S2 | 113.49 (6) | C5—C6—C1 | 121.4 (3) |
N2i—Zn1—S2 | 109.66 (6) | N1—C7—S1 | 115.3 (2) |
S2—Zn1—S2i | 122.32 (4) | N1—C7—S2 | 125.2 (2) |
C6—S1—C7 | 89.44 (13) | S2—C7—S1 | 119.47 (15) |
C7—N1—C1 | 110.8 (2) | C11—C10—H10 | 120.3 |
N1—C1—C2 | 124.9 (2) | C9—C10—H10 | 120.3 |
N1—C1—C6 | 115.6 (2) | C9—C10—C11 | 119.5 (3) |
C2—C1—C6 | 119.5 (3) | C10—C11—C13 | 123.2 (2) |
C12—N2—Zn1 | 111.95 (17) | C12—C11—C10 | 117.4 (2) |
C8—N2—Zn1 | 129.67 (18) | C12—C11—C13 | 119.4 (2) |
C8—N2—C12 | 118.4 (2) | N2—C12—C11 | 122.7 (2) |
C7—S2—Zn1 | 95.97 (9) | N2—C12—C12i | 117.68 (15) |
C1—C2—H2 | 120.6 | C11—C12—C12i | 119.63 (15) |
C3—C2—C1 | 118.8 (3) | C11—C13—H13 | 119.5 |
C3—C2—H2 | 120.6 | C13i—C13—C11 | 120.94 (16) |
C2—C3—H3 | 119.4 | C13i—C13—H13 | 119.5 |
C2—C3—C4 | 121.3 (3) | C10—C9—H9 | 120.3 |
C4—C3—H3 | 119.4 | C10—C9—C8 | 119.4 (3) |
C3—C4—H4 | 119.7 | C8—C9—H9 | 120.3 |
C5—C4—C3 | 120.6 (3) | N2—C8—C9 | 122.7 (3) |
C5—C4—H4 | 119.7 | N2—C8—H8 | 118.6 |
C4—C5—H5 | 120.8 | C9—C8—H8 | 118.6 |
C4—C5—C6 | 118.3 (3) | ||
Zn1—N2—C12—C11 | −178.7 (2) | C6—C1—C2—C3 | 0.4 (4) |
Zn1—N2—C12—C12i | 1.6 (4) | C7—S1—C6—C1 | 0.1 (2) |
Zn1—N2—C8—C9 | 178.7 (2) | C7—S1—C6—C5 | −179.0 (3) |
Zn1—S2—C7—S1 | −169.30 (14) | C7—N1—C1—C2 | 179.5 (3) |
Zn1—S2—C7—N1 | 9.4 (2) | C7—N1—C1—C6 | −0.2 (3) |
N1—C1—C2—C3 | −179.4 (3) | C10—C11—C12—N2 | 0.4 (4) |
N1—C1—C6—S1 | 0.0 (3) | C10—C11—C12—C12i | −179.9 (3) |
N1—C1—C6—C5 | 179.2 (3) | C10—C11—C13—C13i | −178.0 (3) |
C1—N1—C7—S1 | 0.3 (3) | C10—C9—C8—N2 | −0.9 (4) |
C1—N1—C7—S2 | −178.5 (2) | C11—C10—C9—C8 | 1.0 (4) |
C1—C2—C3—C4 | 0.1 (4) | C12—N2—C8—C9 | 0.5 (4) |
C2—C1—C6—S1 | −179.7 (2) | C12—C11—C13—C13i | 1.4 (5) |
C2—C1—C6—C5 | −0.5 (4) | C13—C11—C12—N2 | −179.1 (3) |
C2—C3—C4—C5 | −0.4 (5) | C13—C11—C12—C12i | 0.6 (4) |
C3—C4—C5—C6 | 0.2 (4) | C9—C10—C11—C12 | −0.8 (4) |
C4—C5—C6—S1 | 179.2 (2) | C9—C10—C11—C13 | 178.7 (3) |
C4—C5—C6—C1 | 0.2 (4) | C8—N2—C12—C11 | −0.3 (4) |
C6—S1—C7—N1 | −0.2 (2) | C8—N2—C12—C12i | −179.9 (3) |
C6—S1—C7—S2 | 178.61 (17) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg2, Cg4 and Cg6 are the centroids of the S1/C6/C1/N1/C7, C1–C6 and N1/S1/C1–C6 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N1 | 0.95 | 2.65 | 3.331 (3) | 130 |
C2—H2···S2ii | 0.95 | 2.98 | 3.745 (3) | 138 |
C5—H5···N1iii | 0.95 | 2.69 | 3.508 (4) | 145 |
C13—H13···N1iv | 0.95 | 2.69 | 3.574 (3) | 155 |
C13—H13···C7iv | 0.95 | 2.74 | 3.416 (4) | 129 |
C9—H9···S2ii | 0.95 | 2.87 | 3.572 (3) | 131 |
C5—H5···Cg2iii | 0.95 | 2.93 | 3.674 (3) | 136 |
C10—H10···Cg4iv | 0.95 | 2.64 | 3.451 (3) | 143 |
C10—H10···Cg6iv | 0.95 | 2.77 | 3.498 (3) | 135 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x, y+1, z. |
Acknowledgements
BT is grateful for a CSIR–TWAS fellowship and also to the Frank H. Allen International Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD).
References
Ashworth, C. C., Bailey, N. A., Johnson, M., McCleverty, J. A., Morrison, N. & Tabbiner, B. (1976). J. Chem. Soc. Chem. Commun. pp. 743–744. Google Scholar
Baggio, R., Garland, M. T. & Perec, M. (1993). J. Chem. Soc. Dalton Trans. pp. 3367–3372. CSD CrossRef Web of Science Google Scholar
Bencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096–2180. CrossRef CAS Google Scholar
Bravo, J., Casas, J. S., Castano, M. V., Gayoso, M., Mascarenhas, Y. P., Sanchez, A., Santos, C. O. P. & Sordo, J. (1985). Inorg. Chem. 24, 3435–3438. Google Scholar
Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castro, R., Garcia-Vazquez, J. A., Romero, J., Sousa, A., McAuliffe, C. A. & Pritchard, R. (1993). Polyhedron 12, 2241–2247. Google Scholar
Chaurasia, R., Pandey, S. K., Singh, D. K., Bharty, M. K., Ganesan, V., Hira, S. K., Manna, P. P., Bharti, A. & Butcher, R. J. (2021). Dalton Trans. 50, 14362–14373. PubMed Google Scholar
de Fátima Brito Sousa, M., Dallan, J., Yamaki, S. B. & Bertazzoli, R. (1997). Electroanalysis 9, 614–618. Google Scholar
Dey, S., Efimov, A., Giri, C., Rissanen, K. & Lemmetyinen, H. (2011). Eur. J. Org. Chem. pp. 6226–6232. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528–3535. CSD CrossRef CAS Web of Science Google Scholar
Jin, Q.-H., Gao, H.-W., Dong, J.-C., Yang, L. & Li, P.-Z. (2007). Z. Krist. New Cryst. Struct. 222, 233–234. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Z., Dellali, A., Malik, J., Motevalli, M., Nix, R. M., Olukoya, T., Peng, Y., Ye, H., Gillin, W. P., Hernández, I. & Wyatt, P. B. (2013). Inorg. Chem. 52, 1379–1387. PubMed Google Scholar
Nishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π interaction: evidence, nature, and consequences. New York: John Wiley & Sons. Google Scholar
Pattanasiriwisawa, W., Siritapetawee, J., Patarapaiboolchai, O. & Klysubun, W. (2008). J. Synchrotron Rad. 15, 510–513. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rakhmonova, D., Gapurova, L., Razzoqova, S., Kadirova, S., Torambetov, B., Kadirova, Z. & Shishkina, S. (2022). Acta Cryst. E78, 231–234. CSD CrossRef IUCr Journals Google Scholar
Seo, H., Kohlbrand, A. J., Stokes, R. W., Chung, J. & Cohen, S. M. (2023). Chem. Commun. 59, 2283–2286. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070. CrossRef CAS Web of Science Google Scholar
Yekeler, H. & Yekeler, M. (2006). J. Mol. Model. 12, 763–768. PubMed Google Scholar
Zefirov, Y. V. & Zorkii, P. M. (1974). J. Struct. Chem. 15, 102–105. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.