research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of di­phenyl­methyl 2-(3,5-di­meth­­oxy­phen­yl)acetate and di­phenyl­methyl 2-(3,4,5-tri­meth­­oxy­phen­yl)acetate

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: [email protected]

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 April 2025; accepted 31 May 2025; online 12 June 2025)

The title compounds, C23H22O4, (I), and C24H24O5, (II), differ in the presence of a meth­oxy group instead of a hydrogen atom between two meth­oxy groups attached to the phenyl ring of the phenyl acetate moiety, which affects not only the symmetry and number of formula units [triclinic, P1, Z = 2 for (I); monoclinic, P21/n, Z = 4 for (II)], but also the mol­ecular conformations. An overlay of the two mol­ecular structures reveals a large root-mean-square-deviation of 2.4 Å. Intra and inter­molecular C—H⋯O hydrogen bonds are responsible for the consolidation of the mol­ecular conformations and the crystal packing of both structures. Their inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing.

1. Chemical context

Esters are fundamental synthons or synthetic targets, as they are widely found in bioactive natural compounds and thus are important in both pharmaceutical and industrial applications. Esterifications are typically carried out under mild conditions, making them suitable for the synthesis of sensitive and labile compounds (Chiodi & Ishihara, 2024[Chiodi, D. & Ishihara, Y. (2024). Eur. J. Med. Chem. 273, 116364.]).

[Scheme 1]

In the present work, the synthesis, structural and Hirshfeld surface analysis of the esters di­phenyl­methyl 2-(3,5-di­meth­oxy­phen­yl)acetate, (I)[link], and di­phenyl­methyl-2-(3,4,5-tri­meth­oxy­phen­yl)acetate, (II)[link], are reported.

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are illustrated in Figs. 1[link] and 2[link]. Although the two mol­ecules differ only in the presence of a meth­oxy group instead of a hydrogen atom in between two meth­oxy groups, they adopt different conformations, as an overlay plot of the two mol­ecules shows (Fig. 3[link]); the root-mean-square-deviation is 2.4 Å. The dimeth­oxy phenyl ring in (I)[link] is planar with a maximum deviation of −0.005 (3) Å for atom C1 and its attached atoms of the meth­oxy groups (O3, C22; O4, C23) deviate by 0.015 (2), 0.228 (4), −0.020 (2) and 0.005 (4) Å, respectively, from this plane. The acetate moiety (C7/C8/O1/C9/O2) in (I)[link] is nearly planar with a maximum deviation of −0.110 (2) Å for atom O2 from the best plane. This moiety forms a dihedral angle of 83.7 (1)° with respect to the dimeth­oxy phenyl ring. The two phenyl rings (C10–C15; C16–C21) of the di­phenyl­methyl moiety in (I)[link] are oriented at a dihedral angle of 71.1 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with displacement ellipsoids drawn at the 30% probability level. The intra­molecular C—H⋯O inter­action is shown as a dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] with displacement ellipsoids drawn at the 30% probability level. Intra­molecular C—H⋯O inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
Superposition of mol­ecules (I)[link] (violet) and (II)[link] (yellow), except for the meth­oxy group [O5–C24 in (II)]. The overlay plot was produced with Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]).

The trimeth­oxy phenyl ring in (II)[link] is planar with a maximum deviation of 0.007 (2) Å for atom C1 and its attached meth­oxy atoms (O3, C22; O4, C23; O5 C24) deviate by 0.015 (2), 0.038 (3), 0.031 (2), −0.067 (3), 0.076 (2) and −1.165 (5) Å, respectively, from this plane. The acetate moiety (C7/C8/O1/C9/O2) in (II)[link] is planar with a maximum deviation of 0.005 (2) Å for atom C9. This moiety forms a dihedral angle of 71.4 (1)° with respect to the trimeth­oxy phenyl ring. The two phenyl rings (C10–C15; C16–C21) in (II)[link] are oriented at a dihedral angle of 65.6 (2)°.

Weak intra­molecular C—H⋯O hydrogen bonds between the methine H atom of the di­phenyl­methyl entity consolidate the mol­ecular conformation in both cases (Figs. 1[link], 2[link]; Tables 1[link], 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.98 2.30 2.667 (3) 101
C9—H9⋯O2i 0.98 2.50 3.444 (3) 162
Symmetry code: (i) [-x, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.98 2.24 2.691 (3) 107
C21—H21⋯O1 0.93 2.39 2.740 (3) 102
C19—H19⋯O4i 0.93 2.50 3.427 (3) 175
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules associate pairwise via C9—H9⋯O2i hydrogen bonds (Table 1[link]) into inversion dimers with an R22 (10) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), as shown in Fig. 4[link]. In the crystal of (II)[link], mol­ecules associate into a C(13) chain by C19—H19⋯O4i hydrogen bonds running in anti-parallel manner along [101] (Table 2[link]; Fig. 5[link]).

[Figure 4]
Figure 4
The formation of a centrosymmetric dimer in the crystal structure of (I)[link] through C—H⋯O hydrogen bonds (dashed lines). [Symmetry code: (b) −x, −y + 2, −z + 1]
[Figure 5]
Figure 5
The crystal packing of (II)[link] viewed approximately down the b axis. C—H⋯O inter­molecular hydrogen bonds are shown as dashed lines; for clarity H atoms not involved in these hydrogen bonds have been omitted.

4. Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions in the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) was carried out with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The HS mapped over dnorm for (I)[link] and (II)[link] are illustrated in Figs. 6[link] and 7[link], respectively, with a colour scheme to indicate contacts shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega 6, 31211-31225.]).

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over dnorm for (I)[link].
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm for (II)[link].

The associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) provide qu­anti­tative information about the non-covalent inter­actions in the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378-392.]). The overall two-dimensional fingerprint plot for compound (I)[link] is shown in Fig. 8[link]a. H⋯H and H⋯C/C⋯H contacts are the main contributors to the crystal packing, followed by H⋯O/O⋯H, C⋯C and O⋯C/C⋯O contacts for compound (I)[link], as shown in Fig. 8[link]bf. In compound (II)[link], the overall two-dimensional fingerprint is shown in Fig. 9[link]a. Again, H⋯H and H⋯C/C⋯H contacts are the main contributors to the crystal packing, followed by H⋯O/O⋯H, O⋯C/C⋯O and C⋯C contacts (Fig. 9[link]bf). The HS analysis confirms the importance of H-atom contacts in establishing the packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C and (f) O⋯C/C⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for compound (II)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) O⋯C/C⋯O and (f) C⋯C inter­actions.

5. Synthesis and crystallization

For the synthesis of (I)[link], a mixture containing 3,5-di­meth­oxy­phenyl­acetic acid (0.1 mmol), benzhydrol (0.1 mmol), N,N′-di­cyclo­hexyl­carbodi­imide (0.4 g), and 4-di­methyl­amino­pyridine (0.8 g) was placed into a 250 ml round-bottom flask. To this, 100 ml of di­chloro­methane were added, and the reaction mixture was refluxed on a water bath at 321 K for 9–11 h. After completion of the reaction, as monitored by thin-layer chromatography (TLC), the precipitate formed was filtered off, and the solvent was evaporated to dryness. The crude product was then purified by column chromatography using a solvent system of ethyl acetate and petroleum ether in a 1:4 (v:v) ratio. The separated product was dried in vacuo, giving colourless crystals with 85% yield.

For the synthesis of (II)[link], a mixture containing 3,4,5-di­meth­oxy­phenyl­acetic acid (0.1 mmol), benzhydrol (0.1 mmol), N,N′-di­cyclo­hexyl­carbodi­imide (0.4 g), and 4-di­methyl­amino­pyridine (0.8 g) was placed into a 250 ml round-bottom flask. To this, 100 ml of di­chloro­methane was added, and the reaction mixture was refluxed on a water bath at 321 K for 9–11 h. Upon completion of the reaction, as monitored by thin-layer chromatography (TLC), the precipitate formed was filtered off, and the solvent was evaporated to dryness. The crude product was then purified by column chromatography using a solvent system of ethyl acetate and petroleum ether in a 1:4 (v:v) ratio. The resulting compound was obtained as colourless crystals with a 90% yield.

For (I)[link] and (II)[link], the solid products were recrystallized from methanol to obtain crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both (I)[link] and (II)[link], H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H22O4 C24H24O5
Mr 362.40 392.43
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 300 300
a, b, c (Å) 8.5327 (12), 11.0216 (15), 11.4369 (16) 17.2290 (14), 5.5037 (5), 22.1140 (18)
α, β, γ (°) 111.817 (4), 96.977 (4), 99.925 (4) 90, 92.256 (2), 90
V3) 963.1 (2) 2095.3 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.19 × 0.18 × 0.17 0.28 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.674, 0.746 0.694, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24070, 4782, 2717 39211, 5016, 2516
Rint 0.047 0.074
(sin θ/λ)max−1) 0.668 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.202, 1.04 0.057, 0.176, 1.00
No. of reflections 4782 5016
No. of parameters 245 263
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.45 0.25, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Diphenylmethyl 2-(3,5-dimethoxyphenyl)acetate (I) top
Crystal data top
C23H22O4Z = 2
Mr = 362.40F(000) = 384
Triclinic, P1Dx = 1.250 Mg m3
a = 8.5327 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0216 (15) ÅCell parameters from 6939 reflections
c = 11.4369 (16) Åθ = 2.5–24.7°
α = 111.817 (4)°µ = 0.09 mm1
β = 96.977 (4)°T = 300 K
γ = 99.925 (4)°Block, colourless
V = 963.1 (2) Å30.19 × 0.18 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2717 reflections with I > 2σ(I)
Radiation source: i-mu-s microfocus sourceRint = 0.047
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.674, Tmax = 0.746k = 1414
24070 measured reflectionsl = 1515
4782 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.4138P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.68 e Å3
4782 reflectionsΔρmin = 0.45 e Å3
245 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.060 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06071 (19)0.86788 (15)0.68377 (15)0.0598 (5)
O20.1148 (3)0.8780 (2)0.5309 (2)0.0948 (8)
O30.3040 (3)0.37482 (19)0.13567 (18)0.0835 (6)
O40.7070 (2)0.5897 (2)0.31738 (19)0.0879 (7)
C10.2464 (3)0.5223 (2)0.3518 (2)0.0593 (6)
H10.1437640.5043690.3572910.071*
C20.3584 (3)0.4594 (2)0.2359 (2)0.0606 (6)
C30.5109 (3)0.4842 (2)0.2268 (2)0.0630 (7)
H30.5858150.4422420.1492460.076*
C40.5514 (3)0.5729 (2)0.3353 (2)0.0616 (6)
C50.4413 (3)0.6365 (2)0.4506 (2)0.0592 (6)
H50.4698080.6957590.5223590.071*
C60.2869 (3)0.6112 (2)0.4585 (2)0.0536 (6)
C70.1637 (3)0.6853 (2)0.5823 (2)0.0599 (6)
H7A0.2188760.6999260.6540030.072*
H7B0.0883450.6303950.5885220.072*
C80.0708 (3)0.8180 (2)0.59202 (19)0.0504 (5)
C90.1649 (3)0.9959 (2)0.7017 (2)0.0504 (5)
H90.1433041.0107260.6225240.060*
C100.3389 (3)0.9848 (2)0.72620 (19)0.0503 (5)
C110.3878 (3)0.9112 (3)0.7918 (3)0.0698 (7)
H110.3112650.8620250.8187000.084*
C120.5495 (4)0.9096 (3)0.8181 (3)0.0836 (9)
H120.5811820.8604090.8636660.100*
C130.6628 (4)0.9794 (3)0.7781 (3)0.0797 (8)
H130.7716320.9784490.7966760.096*
C140.6161 (4)1.0504 (3)0.7110 (3)0.0831 (9)
H140.6931591.0973070.6825590.100*
C150.4544 (3)1.0536 (3)0.6845 (3)0.0683 (7)
H150.4236661.1023710.6382110.082*
C160.1289 (2)1.1093 (2)0.8108 (2)0.0495 (5)
C170.1159 (3)1.1014 (3)0.9267 (2)0.0660 (7)
H170.1292861.0245380.9385630.079*
C180.0833 (4)1.2066 (3)1.0257 (3)0.0804 (8)
H180.0723811.1993101.1028840.096*
C190.0673 (4)1.3205 (3)1.0099 (3)0.0890 (9)
H190.0444471.3910481.0759390.107*
C200.0848 (5)1.3307 (3)0.8974 (4)0.1044 (11)
H200.0766281.4095020.8874180.125*
C210.1145 (4)1.2251 (3)0.7976 (3)0.0816 (8)
H210.1248981.2330510.7206040.098*
C220.4026 (5)0.3230 (4)0.0098 (3)0.1043 (11)
H22A0.3504620.2656980.0506690.156*
H22B0.5065720.2722580.0087310.156*
H22C0.4170520.3961790.0134180.156*
C230.7547 (4)0.6812 (3)0.4234 (3)0.0870 (9)
H23A0.8651850.6838670.3986470.130*
H23B0.7457380.6524390.4930800.130*
H23C0.6853710.7692320.4505100.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0603 (10)0.0519 (9)0.0560 (9)0.0077 (7)0.0144 (7)0.0265 (7)
O20.0892 (14)0.0892 (14)0.0945 (14)0.0230 (11)0.0352 (11)0.0600 (12)
O30.0963 (15)0.0707 (12)0.0643 (12)0.0199 (11)0.0146 (10)0.0064 (10)
O40.0588 (11)0.0948 (15)0.0795 (13)0.0157 (10)0.0064 (9)0.0086 (11)
C10.0568 (14)0.0500 (13)0.0629 (15)0.0052 (11)0.0025 (11)0.0198 (11)
C20.0688 (16)0.0474 (13)0.0523 (13)0.0033 (11)0.0076 (11)0.0113 (11)
C30.0616 (15)0.0540 (14)0.0518 (13)0.0018 (11)0.0054 (11)0.0094 (11)
C40.0525 (13)0.0567 (14)0.0604 (14)0.0013 (11)0.0010 (11)0.0156 (12)
C50.0613 (14)0.0504 (13)0.0503 (13)0.0010 (11)0.0037 (11)0.0106 (10)
C60.0553 (13)0.0443 (12)0.0510 (12)0.0028 (10)0.0016 (10)0.0178 (10)
C70.0621 (14)0.0548 (14)0.0528 (13)0.0013 (11)0.0053 (11)0.0222 (11)
C80.0526 (12)0.0509 (12)0.0396 (11)0.0018 (10)0.0014 (9)0.0171 (9)
C90.0516 (12)0.0467 (12)0.0463 (11)0.0011 (9)0.0035 (9)0.0211 (10)
C100.0530 (12)0.0456 (12)0.0405 (11)0.0050 (10)0.0025 (9)0.0092 (9)
C110.0599 (15)0.0807 (18)0.0779 (17)0.0186 (13)0.0100 (13)0.0422 (15)
C120.0680 (18)0.100 (2)0.091 (2)0.0334 (17)0.0089 (16)0.0436 (18)
C130.0581 (16)0.087 (2)0.0780 (19)0.0231 (15)0.0132 (14)0.0135 (16)
C140.0626 (17)0.090 (2)0.092 (2)0.0100 (15)0.0275 (15)0.0309 (18)
C150.0651 (16)0.0708 (17)0.0677 (16)0.0103 (13)0.0143 (13)0.0286 (13)
C160.0382 (10)0.0517 (12)0.0535 (12)0.0034 (9)0.0027 (9)0.0223 (10)
C170.0748 (17)0.0646 (16)0.0555 (14)0.0150 (13)0.0068 (12)0.0235 (12)
C180.0821 (19)0.089 (2)0.0578 (16)0.0175 (16)0.0107 (14)0.0180 (15)
C190.082 (2)0.076 (2)0.090 (2)0.0287 (16)0.0146 (17)0.0090 (17)
C200.140 (3)0.076 (2)0.115 (3)0.052 (2)0.036 (2)0.042 (2)
C210.106 (2)0.0687 (18)0.0843 (19)0.0332 (16)0.0236 (17)0.0395 (16)
C220.130 (3)0.094 (2)0.0564 (17)0.018 (2)0.0113 (18)0.0010 (16)
C230.0724 (18)0.089 (2)0.096 (2)0.0257 (16)0.0198 (16)0.0289 (18)
Geometric parameters (Å, º) top
O1—C81.317 (2)C11—H110.9300
O1—C91.460 (3)C12—C131.359 (4)
O2—C81.197 (3)C12—H120.9300
O3—C21.372 (3)C13—C141.357 (4)
O3—C221.427 (4)C13—H130.9300
O4—C41.374 (3)C14—C151.385 (4)
O4—C231.416 (3)C14—H140.9300
C1—C61.378 (3)C15—H150.9300
C1—C21.390 (3)C16—C211.364 (3)
C1—H10.9300C16—C171.376 (3)
C2—C31.374 (3)C17—C181.384 (4)
C3—C41.391 (3)C17—H170.9300
C3—H30.9300C18—C191.360 (4)
C4—C51.377 (3)C18—H180.9300
C5—C61.392 (3)C19—C201.356 (5)
C5—H50.9300C19—H190.9300
C6—C71.504 (3)C20—C211.381 (4)
C7—C81.496 (3)C20—H200.9300
C7—H7A0.9700C21—H210.9300
C7—H7B0.9700C22—H22A0.9600
C9—C161.510 (3)C22—H22B0.9600
C9—C101.511 (3)C22—H22C0.9600
C9—H90.9800C23—H23A0.9600
C10—C111.375 (3)C23—H23B0.9600
C10—C151.378 (3)C23—H23C0.9600
C11—C121.381 (4)
C8—O1—C9117.82 (16)C13—C12—C11120.6 (3)
C2—O3—C22118.2 (2)C13—C12—H12119.7
C4—O4—C23117.6 (2)C11—C12—H12119.7
C6—C1—C2120.2 (2)C14—C13—C12119.6 (3)
C6—C1—H1119.9C14—C13—H13120.2
C2—C1—H1119.9C12—C13—H13120.2
O3—C2—C3124.4 (2)C13—C14—C15120.5 (3)
O3—C2—C1115.1 (2)C13—C14—H14119.8
C3—C2—C1120.5 (2)C15—C14—H14119.8
C2—C3—C4119.0 (2)C10—C15—C14120.4 (3)
C2—C3—H3120.5C10—C15—H15119.8
C4—C3—H3120.5C14—C15—H15119.8
O4—C4—C5124.0 (2)C21—C16—C17118.3 (2)
O4—C4—C3114.8 (2)C21—C16—C9120.0 (2)
C5—C4—C3121.2 (2)C17—C16—C9121.6 (2)
C4—C5—C6119.3 (2)C16—C17—C18120.8 (3)
C4—C5—H5120.3C16—C17—H17119.6
C6—C5—H5120.3C18—C17—H17119.6
C1—C6—C5119.9 (2)C19—C18—C17119.9 (3)
C1—C6—C7120.6 (2)C19—C18—H18120.0
C5—C6—C7119.5 (2)C17—C18—H18120.0
C8—C7—C6112.35 (18)C20—C19—C18119.7 (3)
C8—C7—H7A109.1C20—C19—H19120.2
C6—C7—H7A109.1C18—C19—H19120.2
C8—C7—H7B109.1C19—C20—C21120.6 (3)
C6—C7—H7B109.1C19—C20—H20119.7
H7A—C7—H7B107.9C21—C20—H20119.7
O2—C8—O1122.9 (2)C16—C21—C20120.7 (3)
O2—C8—C7124.7 (2)C16—C21—H21119.7
O1—C8—C7112.15 (18)C20—C21—H21119.7
O1—C9—C16109.94 (18)O3—C22—H22A109.5
O1—C9—C10107.36 (16)O3—C22—H22B109.5
C16—C9—C10112.50 (17)H22A—C22—H22B109.5
O1—C9—H9109.0O3—C22—H22C109.5
C16—C9—H9109.0H22A—C22—H22C109.5
C10—C9—H9109.0H22B—C22—H22C109.5
C11—C10—C15118.3 (2)O4—C23—H23A109.5
C11—C10—C9122.4 (2)O4—C23—H23B109.5
C15—C10—C9119.2 (2)H23A—C23—H23B109.5
C10—C11—C12120.5 (3)O4—C23—H23C109.5
C10—C11—H11119.7H23A—C23—H23C109.5
C12—C11—H11119.7H23B—C23—H23C109.5
C22—O3—C2—C38.9 (4)O1—C9—C10—C1133.9 (3)
C22—O3—C2—C1170.5 (2)C16—C9—C10—C1187.2 (3)
C6—C1—C2—O3178.9 (2)O1—C9—C10—C15147.8 (2)
C6—C1—C2—C30.6 (4)C16—C9—C10—C1591.1 (2)
O3—C2—C3—C4179.6 (2)C15—C10—C11—C121.8 (4)
C1—C2—C3—C40.1 (4)C9—C10—C11—C12176.5 (2)
C23—O4—C4—C51.8 (4)C10—C11—C12—C130.9 (5)
C23—O4—C4—C3178.6 (2)C11—C12—C13—C140.4 (5)
C2—C3—C4—O4179.1 (2)C12—C13—C14—C150.8 (5)
C2—C3—C4—C50.5 (4)C11—C10—C15—C141.4 (4)
O4—C4—C5—C6179.4 (2)C9—C10—C15—C14176.9 (2)
C3—C4—C5—C60.2 (4)C13—C14—C15—C100.1 (4)
C2—C1—C6—C50.9 (3)O1—C9—C16—C21135.5 (2)
C2—C1—C6—C7176.7 (2)C10—C9—C16—C21104.9 (3)
C4—C5—C6—C10.5 (3)O1—C9—C16—C1747.0 (3)
C4—C5—C6—C7177.1 (2)C10—C9—C16—C1772.6 (3)
C1—C6—C7—C891.1 (3)C21—C16—C17—C182.3 (4)
C5—C6—C7—C886.6 (3)C9—C16—C17—C18179.8 (2)
C9—O1—C8—O26.4 (3)C16—C17—C18—C191.5 (4)
C9—O1—C8—C7178.60 (19)C17—C18—C19—C200.6 (5)
C6—C7—C8—O220.2 (4)C18—C19—C20—C211.7 (6)
C6—C7—C8—O1164.9 (2)C17—C16—C21—C201.2 (4)
C8—O1—C9—C1698.7 (2)C9—C16—C21—C20178.7 (3)
C8—O1—C9—C10138.7 (2)C19—C20—C21—C160.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.982.302.667 (3)101
C9—H9···O2i0.982.503.444 (3)162
Symmetry code: (i) x, y+2, z+1.
Diphenylmethyl 2-(3,4,5-trimethoxyphenyl)acetate (II) top
Crystal data top
C24H24O5F(000) = 832
Mr = 392.43Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.2290 (14) ÅCell parameters from 5708 reflections
b = 5.5037 (5) Åθ = 2.4–21.2°
c = 22.1140 (18) ŵ = 0.09 mm1
β = 92.256 (2)°T = 300 K
V = 2095.3 (3) Å3Block, colourless
Z = 40.28 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2516 reflections with I > 2σ(I)
Radiation source: i-mu-s microfocus sourceRint = 0.074
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2221
Tmin = 0.694, Tmax = 0.746k = 77
39211 measured reflectionsl = 2229
5016 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.6429P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.176(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.25 e Å3
5016 reflectionsΔρmin = 0.18 e Å3
263 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0182 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61673 (10)0.1274 (3)0.05557 (6)0.0636 (5)
O20.58110 (11)0.1961 (3)0.00128 (7)0.0774 (5)
O30.85376 (10)0.5998 (4)0.03155 (8)0.0798 (6)
O40.82226 (11)0.0249 (4)0.17236 (8)0.0859 (6)
O50.90848 (10)0.3195 (4)0.11910 (8)0.0862 (6)
C10.72746 (12)0.4012 (4)0.04036 (9)0.0546 (6)
H10.7068900.5014780.0111770.066*
C20.80384 (13)0.4295 (5)0.05603 (10)0.0565 (6)
C30.83399 (13)0.2815 (5)0.10043 (10)0.0610 (7)
C40.78760 (14)0.1072 (5)0.12858 (10)0.0613 (6)
C50.71122 (13)0.0768 (4)0.11256 (9)0.0575 (6)
H50.6801530.0409840.1315080.069*
C60.68155 (12)0.2237 (4)0.06806 (9)0.0507 (6)
C70.59898 (12)0.1867 (5)0.04865 (9)0.0554 (6)
H7A0.5771060.3417460.0372500.066*
H7B0.5675370.1221300.0822640.066*
C80.59723 (12)0.0140 (5)0.00406 (9)0.0494 (5)
C90.61902 (14)0.0116 (4)0.11119 (9)0.0580 (6)
H90.6037570.1791390.1015900.070*
C100.70113 (14)0.0137 (4)0.13712 (9)0.0573 (6)
C110.75246 (16)0.1724 (5)0.12627 (12)0.0738 (7)
H110.7366530.3026500.1019740.089*
C120.82733 (18)0.1664 (6)0.15134 (14)0.0893 (9)
H120.8617750.2915150.1434540.107*
C130.85089 (19)0.0237 (7)0.18780 (14)0.0899 (10)
H130.9010140.0265770.2050060.108*
C140.8005 (2)0.2082 (7)0.19871 (13)0.0912 (10)
H140.8165130.3369630.2234140.109*
C150.72640 (18)0.2053 (5)0.17351 (12)0.0768 (8)
H150.6928210.3332340.1809210.092*
C160.56005 (13)0.0950 (4)0.15319 (9)0.0559 (6)
C170.54475 (15)0.0247 (5)0.20629 (11)0.0732 (7)
H170.5715370.1667550.2162490.088*
C180.49038 (16)0.0633 (6)0.24472 (12)0.0839 (9)
H180.4809670.0197060.2803260.101*
C190.45026 (16)0.2707 (6)0.23110 (13)0.0812 (8)
H190.4137340.3302330.2571960.097*
C200.46445 (17)0.3897 (6)0.17866 (14)0.0851 (8)
H200.4368270.5304480.1688890.102*
C210.51904 (16)0.3054 (5)0.13979 (12)0.0711 (7)
H210.5282920.3903020.1044340.085*
C220.82561 (16)0.7587 (5)0.01338 (12)0.0789 (8)
H22A0.8662260.8680810.0265800.118*
H22B0.7824080.8500000.0033310.118*
H22C0.8091950.6650360.0472050.118*
C230.78071 (19)0.2196 (5)0.19993 (13)0.0898 (9)
H23A0.8120690.2950900.2295610.135*
H23B0.7681190.3367890.1696950.135*
H23C0.7337210.1591750.2192720.135*
C240.96593 (19)0.1834 (11)0.08755 (19)0.179 (2)
H24A1.0158230.2199680.1031540.268*
H24B0.9660390.2240120.0453310.268*
H24C0.9552120.0133110.0926160.268*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0941 (12)0.0551 (10)0.0410 (8)0.0129 (9)0.0040 (8)0.0041 (7)
O20.1106 (14)0.0619 (12)0.0595 (10)0.0110 (11)0.0007 (9)0.0093 (9)
O30.0633 (11)0.0989 (14)0.0781 (12)0.0191 (10)0.0144 (9)0.0194 (11)
O40.0838 (12)0.1052 (15)0.0708 (11)0.0005 (11)0.0304 (9)0.0254 (11)
O50.0574 (10)0.1270 (17)0.0761 (12)0.0066 (11)0.0265 (9)0.0072 (11)
C10.0535 (13)0.0660 (15)0.0450 (12)0.0037 (12)0.0079 (10)0.0004 (11)
C20.0489 (13)0.0717 (16)0.0492 (12)0.0056 (12)0.0053 (10)0.0017 (12)
C30.0485 (13)0.0861 (18)0.0494 (13)0.0002 (13)0.0144 (10)0.0036 (13)
C40.0641 (15)0.0761 (17)0.0447 (12)0.0082 (13)0.0145 (11)0.0032 (12)
C50.0586 (14)0.0704 (16)0.0439 (12)0.0009 (12)0.0068 (10)0.0011 (11)
C60.0466 (12)0.0655 (15)0.0402 (11)0.0031 (11)0.0045 (9)0.0066 (11)
C70.0457 (12)0.0795 (16)0.0409 (11)0.0010 (11)0.0004 (9)0.0031 (11)
C80.0405 (11)0.0641 (16)0.0441 (12)0.0016 (11)0.0061 (9)0.0060 (12)
C90.0848 (17)0.0471 (13)0.0419 (12)0.0093 (12)0.0001 (11)0.0049 (10)
C100.0752 (16)0.0541 (14)0.0428 (12)0.0080 (13)0.0068 (11)0.0048 (11)
C110.0811 (19)0.0673 (18)0.0720 (17)0.0013 (15)0.0073 (14)0.0010 (14)
C120.078 (2)0.093 (2)0.096 (2)0.0014 (17)0.0086 (17)0.0139 (19)
C130.079 (2)0.113 (3)0.0759 (19)0.034 (2)0.0136 (16)0.029 (2)
C140.101 (2)0.101 (3)0.0714 (18)0.041 (2)0.0015 (17)0.0027 (18)
C150.095 (2)0.0737 (19)0.0624 (15)0.0222 (16)0.0108 (15)0.0083 (14)
C160.0619 (14)0.0592 (15)0.0461 (12)0.0111 (12)0.0039 (10)0.0006 (11)
C170.0686 (16)0.0880 (19)0.0632 (15)0.0053 (15)0.0052 (13)0.0181 (15)
C180.0687 (17)0.119 (3)0.0645 (17)0.0058 (18)0.0144 (14)0.0183 (17)
C190.0638 (17)0.107 (2)0.0728 (18)0.0014 (17)0.0071 (14)0.0101 (18)
C200.085 (2)0.089 (2)0.082 (2)0.0120 (17)0.0052 (16)0.0068 (17)
C210.0866 (18)0.0663 (17)0.0603 (15)0.0007 (15)0.0017 (14)0.0045 (13)
C220.0846 (18)0.085 (2)0.0675 (16)0.0140 (16)0.0031 (14)0.0134 (15)
C230.121 (2)0.080 (2)0.0706 (17)0.0092 (19)0.0276 (17)0.0136 (16)
C240.060 (2)0.334 (7)0.144 (4)0.053 (3)0.020 (2)0.058 (4)
Geometric parameters (Å, º) top
O1—C81.330 (3)C12—C131.372 (4)
O1—C91.448 (2)C12—H120.9300
O2—C81.191 (3)C13—C141.363 (4)
O3—C21.369 (3)C13—H130.9300
O3—C221.423 (3)C14—C151.373 (4)
O4—C41.367 (3)C14—H140.9300
O4—C231.414 (3)C15—H150.9300
O5—C31.379 (3)C16—C211.382 (3)
O5—C241.405 (4)C16—C171.381 (3)
C1—C21.383 (3)C17—C181.377 (4)
C1—C61.384 (3)C17—H170.9300
C1—H10.9300C18—C191.362 (4)
C2—C31.392 (3)C18—H180.9300
C3—C41.381 (3)C19—C201.362 (4)
C4—C51.386 (3)C19—H190.9300
C5—C61.387 (3)C20—C211.380 (4)
C5—H50.9300C20—H200.9300
C6—C71.516 (3)C21—H210.9300
C7—C81.505 (3)C22—H22A0.9600
C7—H7A0.9700C22—H22B0.9600
C7—H7B0.9700C22—H22C0.9600
C9—C101.506 (3)C23—H23A0.9600
C9—C161.521 (3)C23—H23B0.9600
C9—H90.9800C23—H23C0.9600
C10—C111.381 (4)C24—H24A0.9600
C10—C151.386 (3)C24—H24B0.9600
C11—C121.384 (4)C24—H24C0.9600
C11—H110.9300
C8—O1—C9118.49 (18)C14—C13—C12119.7 (3)
C2—O3—C22118.07 (19)C14—C13—H13120.1
C4—O4—C23118.7 (2)C12—C13—H13120.1
C3—O5—C24114.6 (2)C13—C14—C15120.5 (3)
C2—C1—C6120.1 (2)C13—C14—H14119.7
C2—C1—H1119.9C15—C14—H14119.7
C6—C1—H1119.9C14—C15—C10120.7 (3)
O3—C2—C1124.6 (2)C14—C15—H15119.7
O3—C2—C3115.68 (19)C10—C15—H15119.7
C1—C2—C3119.7 (2)C21—C16—C17118.0 (2)
C4—C3—O5119.9 (2)C21—C16—C9122.7 (2)
C4—C3—C2119.9 (2)C17—C16—C9119.3 (2)
O5—C3—C2120.0 (2)C18—C17—C16120.9 (3)
O4—C4—C3115.3 (2)C18—C17—H17119.5
O4—C4—C5124.2 (2)C16—C17—H17119.5
C3—C4—C5120.5 (2)C19—C18—C17120.6 (3)
C4—C5—C6119.4 (2)C19—C18—H18119.7
C4—C5—H5120.3C17—C18—H18119.7
C6—C5—H5120.3C20—C19—C18119.0 (3)
C1—C6—C5120.3 (2)C20—C19—H19120.5
C1—C6—C7119.7 (2)C18—C19—H19120.5
C5—C6—C7119.9 (2)C19—C20—C21121.2 (3)
C8—C7—C6110.59 (17)C19—C20—H20119.4
C8—C7—H7A109.5C21—C20—H20119.4
C6—C7—H7A109.5C20—C21—C16120.2 (3)
C8—C7—H7B109.5C20—C21—H21119.9
C6—C7—H7B109.5C16—C21—H21119.9
H7A—C7—H7B108.1O3—C22—H22A109.5
O2—C8—O1123.4 (2)O3—C22—H22B109.5
O2—C8—C7125.8 (2)H22A—C22—H22B109.5
O1—C8—C7110.8 (2)O3—C22—H22C109.5
O1—C9—C10108.75 (18)H22A—C22—H22C109.5
O1—C9—C16108.58 (19)H22B—C22—H22C109.5
C10—C9—C16114.24 (17)O4—C23—H23A109.5
O1—C9—H9108.4O4—C23—H23B109.5
C10—C9—H9108.4H23A—C23—H23B109.5
C16—C9—H9108.4O4—C23—H23C109.5
C11—C10—C15118.5 (2)H23A—C23—H23C109.5
C11—C10—C9121.8 (2)H23B—C23—H23C109.5
C15—C10—C9119.7 (2)O5—C24—H24A109.5
C10—C11—C12120.4 (3)O5—C24—H24B109.5
C10—C11—H11119.8H24A—C24—H24B109.5
C12—C11—H11119.8O5—C24—H24C109.5
C13—C12—C11120.2 (3)H24A—C24—H24C109.5
C13—C12—H12119.9H24B—C24—H24C109.5
C11—C12—H12119.9
C22—O3—C2—C10.3 (3)C6—C7—C8—O179.9 (2)
C22—O3—C2—C3179.0 (2)C8—O1—C9—C10116.5 (2)
C6—C1—C2—O3179.7 (2)C8—O1—C9—C16118.7 (2)
C6—C1—C2—C31.0 (3)O1—C9—C10—C1127.6 (3)
C24—O5—C3—C492.2 (4)C16—C9—C10—C1193.8 (3)
C24—O5—C3—C292.1 (4)O1—C9—C10—C15153.1 (2)
O3—C2—C3—C4178.8 (2)C16—C9—C10—C1585.5 (3)
C1—C2—C3—C40.0 (4)C15—C10—C11—C120.0 (4)
O3—C2—C3—O53.1 (3)C9—C10—C11—C12179.3 (2)
C1—C2—C3—O5175.7 (2)C10—C11—C12—C130.7 (4)
C23—O4—C4—C3175.0 (2)C11—C12—C13—C140.8 (4)
C23—O4—C4—C55.7 (4)C12—C13—C14—C150.0 (5)
O5—C3—C4—O42.9 (3)C13—C14—C15—C100.8 (4)
C2—C3—C4—O4178.7 (2)C11—C10—C15—C140.8 (4)
O5—C3—C4—C5176.3 (2)C9—C10—C15—C14178.5 (2)
C2—C3—C4—C50.6 (4)O1—C9—C16—C216.0 (3)
O4—C4—C5—C6179.0 (2)C10—C9—C16—C21115.6 (2)
C3—C4—C5—C60.2 (3)O1—C9—C16—C17172.25 (19)
C2—C1—C6—C51.4 (3)C10—C9—C16—C1766.2 (3)
C2—C1—C6—C7177.4 (2)C21—C16—C17—C180.1 (4)
C4—C5—C6—C10.8 (3)C9—C16—C17—C18178.4 (2)
C4—C5—C6—C7178.0 (2)C16—C17—C18—C190.1 (4)
C1—C6—C7—C887.0 (3)C17—C18—C19—C200.3 (4)
C5—C6—C7—C891.8 (2)C18—C19—C20—C210.7 (4)
C9—O1—C8—O20.4 (3)C19—C20—C21—C160.7 (4)
C9—O1—C8—C7179.34 (18)C17—C16—C21—C200.3 (4)
C6—C7—C8—O299.8 (3)C9—C16—C21—C20177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.982.242.691 (3)107
C21—H21···O10.932.392.740 (3)102
C19—H19···O4i0.932.503.427 (3)175
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: [email protected].

References

First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega 6, 31211–31225.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationChiodi, D. & Ishihara, Y. (2024). Eur. J. Med. Chem. 273, 116364.  CrossRef PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds