view article

Figure 3
The putative presequence-binding grooves of Tim50_new molecules are occupied by secondary structures from neighboring molecules generated by crystal packing. (a) Helix A1 from the neighboring molecule (monomer A) is docked into the putative presequence-binding groove of monomer E of the Tim50_new structure primarily by hydrophobic interactions. Monomer E of Tim50_new belongs to group I and is shown in gold. Helix A1 from the neighboring molecule is shown in light blue and is labeled A1′. The secondary structures A2, B2 and B3 of monomer E are labeled. The residues Tyr223, Tyr227 and Gln230 from A1′, residues Trp207 and Trp213 from B2 and B3 and residues Asn240 and Tyr244 from A2 that are involved in the interactions are labeled. The hydrogen bond between Gln230 from A1 and Asn240 from A2 is indicated by a dotted line. (b) The N-terminal proline-rich loop from the neighboring molecule is inserted into the putative presequence-binding groove of monomer A of the Tim50_new structure by hydrophobic interactions. Monomer A of the Tim50_new structure belongs to group II and is shown in cyan. The N-­terminal proline-rich loop from the neighboring molecule is shown in green. The residues Pro187 and Tyr188 from the N-terminal proline-rich loop, residues Trp207 and Trp213 from B2 and B3 and residue Tyr244 from A2 that are involved in the interactions are labeled.

Journal logoSTRUCTURAL BIOLOGY
COMMUNICATIONS
ISSN: 2053-230X
Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds