research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767

Structure of the quaternary alloy Zn0.6Mn0.4In2S4 from synchrotron powder diffraction and electron transmission microscopy

aDepartamento de Física, Universidad de Los Andes, Mérida, Venezuela, bDepartamento de Química, Universidad de Los Andes, Mérida, Venezuela, cInstituto de Física, Universidad Nacional Autónoma de México, México DF, México, dEuropean Synchrotron Radiation Facility, Grenoble CEDEX, France, and ePhysics Department, University of Bristol, Bristol BS8 1TL, UK
*Correspondence e-mail: asiloe@ula.ve

(Received 10 June 2005; accepted 11 October 2005)

The aim of the present work was to determine the structure of the quaternary alloy Zn0.6Mn0.4In2S4 and to locate the Mn2+. This was accomplished by means of powder synchrotron X-ray diffraction, high-resolution microscopy and convergent-beam electron diffraction (CBED). The powder X-ray diffraction pattern was indexed in a rhombohedral cell, with cell constants a = 3.875 (2), c = 37.208 (4) Å, and possible space groups R[\bar{3}]m or R3m. Rietveld refinements using different cationic arrangements in these space groups were performed. A model in space group R3m, in which the tetrahedral and octahedral sites were occupied by different proportions of Zn, Mn and In atoms, gave the best result. The Rietveld refinement of this model led to figures of merit Rwp = 9.8%, Rp = 9.1% and χ2 = 11.1. Selected-area electron diffraction patterns and high-resolution transmission electron micrographs along [001] reveal the rhombohedral configuration. CBED patterns perpendicular to [001], showing the distinctive 3m symmetry, confirmed space group R3m and the breaking of the centrosymmetry of the parent compound, ZnIn2S4.

1. Introduction

The quaternary alloy Zn0.6Mn0.4In2S4 is a member of the family of defect semiconductors which originates from the ternary systems ZnIn2S4 and MnIn2S4. These end groups have different crystal structures that show some degree of disorder. There are three structural reports for MnIn2S4. Two of them show a partially inverse spinel structure belonging to the space group Fd[\bar{3}]m, with the lattice parameter a being close to 10.719 Å (Wakaki et al., 1983[Wakaki, M., Ogawa, T. & Arai, T. (1983). Nuovo Cimento D, 2, 1809-1813.]; Lutz & Jun, 1989[Lutz, H. D. & Jun, M. (1989). Z. Anorg. Allg. Chem. 579, 57-67.]). In the third report, MnIn2S4 is a cubic F[\bar{4}]3m structure with a = 10.720 Å (Lutz & Jun, 1989[Lutz, H. D. & Jun, M. (1989). Z. Anorg. Allg. Chem. 579, 57-67.]). The other member, ZnIn2S4, shows a wurtzite-like structure and is considered to be the prototype of layered semiconductors. It has been thoroughly investigated owing to the outstanding anisotropy in its properties, the presence of polytypes and the possibility of intercalating diverse types of species between its layers (Atwood et al., 1984[Atwood, J. L., Davies, J. E. & MacNicold, D. D. (1984). Inclusion Compounds, Vols. I, II, III. New York: Academic Press.]). The range of inter-solubility is not well known; however, the phase diagram of the binary system ZnS–MnS, reported by Sombuthawee et al. (1978[Sombuthawee, C., Bonsall, S. B. & Hummel, F. A. (1978). J. Solid State Chem. 25, 391-399.]), has been used to establish that the ternary system ZnIn2S4–MnIn2S4 should show similar structural characteristics. Therefore, the transition from wurtzite to zinc blende observed in the binary system at 40–50% of MnZn should also be observed in the ternary system for a similar composition. The optical absorption and photoluminescence spectra, interpreted using crystal field analysis (Pineda et al., 1998[Pineda, C., Martín, J. M. & López-Rivera, S. A. (1998). Rev. Mex. Fís. 44, 224-227.]), show that the Mn atoms occupy tetrahedral positions in R[\bar{3}]m symmetry. On the other hand, the magnetic properties, reported by Sagredo et al. (1993[Sagredo, V., Betancourt, L., Chourio, M., Attolini, G. & Pelosi, C. (1993). Jpn J. Appl. Phys. 32, 391-392.]), show that the Mn2+ ions could be placed at random in tetrahedral and octahedral sites in a non-centrosymmetric R3m structure. The analysis of the mid-IR spectra (Fontal et al., 1996[Fontal, B., López-Rivera, S. A., Martínez, L. & Giriat, W. (1996). Semicond. Sci. Technol. 11, 1056-1058.]), in the 800–400 cm−1 region, suggest that the Mn2+ ions replace the Zn2+ ions in the tetrahedral sites, close to the S…S interlayer of the R[\bar{3}]m structure of the parent compound, ZnIn2S4 (Berand & Range, 1994[Berand, N. & Range, K. J. (1994). J. Alloys Compd. 205, 295-301.]). Tatsi et al. (2002[Tatsi, A., Lampakis, D., Liarokapis, E., López-Rivera, S. A. & Martínez, L. (2002). High Pressure Res. 22, 89-93.]) studied the compositions Zn0.6Mn0.4In2S4 and Zn0.7Mn0.3In2S4 under hydrostatic pressures and ambient conditions, and suggest that the crystal structures of these compounds are R[\bar{3}]m. It is evident that contradictory results point towards two different crystal structures: centrosymmetric R[\bar{3}]m and non-centrosymmetric R3m. The difference between the structures is based only on the cation distribution and its degree of disorder in the different crystal sites. The elucidation of the structure to this degree of precision requires the best diffraction data from a highly crystalline material. However, this could be difficult to achieve considering that it is known that ZnIn2S4 exists as different polytypes depending on the method of growth, which generate a large number of crystalline defects that limit the precise knowledge of the distribution of the atoms in the unit cell. On the other hand, when the solid solution Zn0.6Mn0.4In2S4 forms, the material departs from the stoichiometry of the parent compound ZnIn2S4; therefore, it is likely that some cation sites lose the 3m point symmetry owing to the need to place different proportions of Zn, In and Mn in these sites. This might induce a change in the crystal symmetry from R[\bar{3}]m to R3m. Finally, it is necessary to inquire about the likelihood of placing the magnetic ions Mn2+ in tetrahedral sites or octahedral sites in the unit cell of Zn0.6Mn0.4In2S4.

2. Experimental

2.1. Synthesis

Stoichiometric amounts of ZnS, MnS and In2S3 were pulverized to small grain size, mixed and compacted into cylindrical pellets at a pressure of 1300 MPa. These pellets were then placed into quartz capsules under vacuum and heated to 1373 K for 48 h. Yellow sheet-like crystals were grown by the chemical-transport technique using iodine as transporting agent, and heating the sample at 1773 K, above the melting point of ZnIn2S4 (Giriat, 1985[Giriat, W. (1985). Phys. Status Solidi B, 132, K131-K132.]). The chemical composition of the alloy, confirmed from energy dispersive X-ray spectra (EDX) at 20.48 kV in a Jeol 5600 Electron Microscope, gave the atomic ratios Zn:Mn:In:S 0.59:0.39:2.0:4.0, which matched the nominal composition within 0.01. The error in standardless analysis was around 5%.

2.2. X-ray diffraction

For the X-ray analysis, a small quantity of the alloy was ground in an agate mortar and pestle, avoiding any excess of pressure, to prevent the degradation of the crystalline quality of the material. The resulting powder was mounted on a flat zero-background silicon [511] crystal holder, covered with a thin layer of petroleum jelly. Diffraction data were collected on a Siemens D5005 diffractometer, set up in θ/θ reflection mode, equipped with a diffracted-beam graphite monochromator and an X-ray tube (Cu Kα radiation: λ = 1.54059 Å, 30 kV, 15 mA). A fixed aperture and divergence slit of 1 mm, a 0.1 mm monochromator slit, and a 0.6 mm detector slit were used. Patterns were recorded between 5 and 100° 2θ, with increments of 0.02°, counting at each step for 35 s.

For the Rietveld analysis, improved diffraction data were collected on the high-resolution powder diffractometer of beamline ID31 at the European Synchrotron Radiation Facility (ESRF), in Grenoble, France, using a wavelength of 0.499229 (5) Å taken from an undulator source (Fitch, 1996[Fitch, A. N. (1996). Mater. Sci. Forum, 228-231, 219-222.], 2004[Fitch, A. N. (2004). J. Res. Natl Inst. Stand. Technol. 109, 133-142.]). For these experiments, specimens were prepared in borosilicate capillaries, 0.5 mm in diameter, sealed at one end and spun at 100 r.p.m on the axis of the diffractometer to improve randomization of the individual crystallite orientations.

2.3. Electron microscopy

The morphological study and chemical composition analysis of the samples were carried out in a Jeol-5600 Scanning Electron Microscope (SEM) equipped with a Noran X-ray detector. The electron diffraction patterns were obtained in a Jeol CX-100 electron microscope, while the high-resolution electron images and the convergent-beam diffraction patterns were recorded in a Jeol-EX4000 and in a Philips EM-430 electron microscope, respectively. In the latter a double-tilt holder was required. All the micrographs were digitized in a CCD camera. For the different transmission microscopy studies, crystals with exactly defined thickness were used. The crystallographic study was carried out using the CRISP program (Hovmöller, 1992[Hovmöller, S. (1992). Ultramicroscopy, 41, 121-135.]).

3. Results

3.1. X-ray structure analysis

Preliminary experiments using a laboratory diffractometer using Bragg–Brentano reflection symmetry clearly showed that this material is greatly affected by preferred orientation, particularly with reflection 009. Therefore, it was necessary to perform diffraction experiments on the parallel-beam diffractometer of beamline ID31 at the ESRF, which allows the collection of diffraction data in capillary-transmission mode.

The pattern was indexed using the auto-indexing program DICVOL91 (Boultif & Louër, 1991[Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.]) with figures of merit M(20) = 44.0 (de Wolff, 1968[Wolff, P. M. de (1968). J. Appl. Cryst. 1, 108-113.]) and F(30) = 37.7 (Smith & Snyder, 1979[Smith, G. S. & Snyder, R. L. (1979). J. Appl. Cryst. 12, 60-65.]). Cell parameters are a = 3.875 (2) and c = 37.208 (4) Å.

Evaluation of the systematic absences shows that the condition of reflection is −h + k + l = 00l = 3n. This condition establishes that the possible space groups are R3m (No. 160) and R[\bar{3}]m (No. 166). As starting models, those of Berand & Range (1994[Berand, N. & Range, K. J. (1994). J. Alloys Compd. 205, 295-301.]), for space group R[\bar{3}]m, and Lappe et al. (1962[Lappe, F., Niggli, A., Nitsche, R. & White, J. G. (1962). Z. Kristallogr. 117, 146-152.]), for R3m, were used.

Different cationic arrangements were assessed using the Rietveld (1967[Rietveld, H. M. (1967). Acta Cryst. 22, 151-152.]) method. The models were introduced into the program GSAS (Larson & von Dreele, 2001[Larson, A. C. & Von Dreele, R. B. (2001). General Structure Analysis System (GSAS). Report LAUR 86-748, Los Alamos National Laboratory, USA.]) using as starting cell parameters those obtained from the refinement of the laboratory diffraction data. The background was modelled using the automatic linear extrapolation of 15 points throughout the whole pattern. The peak shapes were modeled using a pseudo-Voigt peak shape function that included the axial divergence asymmetry correction (van Laar & Yelon, 1984[Laar, B. van & Yelon, W. B. (1984). J. Appl. Cryst. 17, 47-54.]; Finger et al., 1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]). Two isotropic temperature factors were refined, one for the Zn, Mn and In ions, and the other for the S atoms. Preferred orientation was corrected using the March–Dollase model (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]). However, this problem, particularly deleterious in these types of lamellar materials, is still present, as depicted in the exceptionally intense 009 reflection. Table 1[link] shows the results for the different structural models tested.

Table 1
Allowed cationic distributions for the quaternary alloy Zn0.6Mn0.4In2S4

Models constructed from Berand & Range (1994[Berand, N. & Range, K. J. (1994). J. Alloys Compd. 205, 295-301.]) (R[\bar{3}]m) and Lappe et al. (1962[Lappe, F., Niggli, A., Nitsche, R. & White, J. G. (1962). Z. Kristallogr. 117, 146-152.]) (R3m). Occ. = occupancy; Tet = tetrahedral; Oct = octahedral.

Model Atom Site x y z   Occ. Rwp (%) Rp (%) χ2
R[\bar{3}]m                    
I Zn 6c 0 0 0.77 Tet 0.3      
  Mn           0.2      
  In           0.5      
  In 3a 0 0 0 Oct 1.0 28.5 25.3 92.8
                     
R3m                    
I Zn 3a 0 0 0.40 Tet 0.6      
  Mn           0.4      
  In 3a 0 0 0.17 Oct 1.0      
  In 3a 0 0 0.93 Tet 1.0 16.7 14.3 32.0
                     
II Zn 3a 0 0 0.40 Tet 0.6      
  In           0.4      
  Mn 3a 0 0 0.17 Oct 0.4      
  In           0.6      
  In 3a 0 0 0.93 Tet 1.0 11.3 10.1 14.5
                     
III Zn 3a 0 0 0.40 Tet 0.6      
  In           0.4      
  Mn 3a 0 0 0.17 Oct 0.2      
  In           0.8      
  Mn 3a 0 0 0.93 Tet 0.2      
  In           0.8 16.5 14.0 31.1
                     
IV Zn 3a 0 0 0.40 Tet 0.4      
  Mn           0.2      
  In           0.4      
  Zn 3a 0 0 0.17 Oct 0.2      
  Mn           0.2      
  In           0.6      
  In 3a 0 0 0.93 Tet 1.0 9.8 9.1 11.1
                     
V Zn 3a 0 0 0.40 Tet 0.3      
  Mn           0.2      
  In           0.5      
  Zn 3a 0 0 0.17 Oct 0.3      
  Mn           0.2      
  In           0.5      
  In 3a 0 0 0.93 Tet 1.0 10.9 9.9 13.6
                     
VI Zn 3a 0 0 0.40 Tet 0.6      
  Mn           0.2      
  In           0.2      
  In 3a 0 0 0.17 Oct 1.0      
  Mn 3a 0 0 0.93 Tet 0.2      
  In           0.8 14.9 12.4 25.3
                     
VII Zn 3a 0 0 0.40 Tet 0.4      
  Mn           0.2      
  In           0.4      
  In 3a 0 0 0.17 Oct 0.6      
  Zn 3a 0 0 0.93 Tet 0.2      
  Mn           0.2      
  In           1.0 14.0 12.0 22.3
3.1.1. Centrosymmetric model in the R[\bar{\bf 3}]m space group

Berand & Range (1994[Berand, N. & Range, K. J. (1994). J. Alloys Compd. 205, 295-301.]) and López-Rivera et al. (2001[López-Rivera, S. A., Mora, A. J., Acosta-Najarro, D., Rivera, A. V. & Ávila-Godoy, R. (2001). Semicond. Sci. Technol. 16, 367-371.]) described the structure of the ternary compound ZnIn2S4 in the space group R[\bar{3}]m in terms of a close packing of S atoms, with Zn atoms and half of the In atoms distributed at random in tetrahedral sites, while the other half of the In atoms were placed in octahedral sites. This distribution of ions produces a disordered layered structure. For the Zn0.6Mn0.4In2S4 alloy, the Mn atoms substitute Zn atoms in the structure of ZnIn2S4, preserving the centrosymmetry of the parent structure. As Table 2[link] shows, the fit of this model to the experimental diffraction data was poor, giving high figures of merit Rwp = 28.5% and Rp = 25.3%, for 26 variables. In particular, the reflection 006 has zero calculated intensity and therefore does not fit at all.

Table 2
Final atomic positions and isotropic temperature factors for the quaternary alloy Zn0.6Mn0.4In2S4, space group R3m, Z = 3, a = 3875 (2), c = 37208 (4) Å

Atom Occupancy x y z Uiso2)
Mn(1) 0.2       0.01311
Zn(1) 0.4 0 0 0.392584 0.01311
In(1) 0.4       0.01311
Mn(2) 0.2       0.01311
Zn(2) 0.2 0 0 0.161237 0.01311
In(2) 0.6       0.01311
In(3) 1.0 0 0 0.929657 0.01311
S(1) 1.0 0 0 0.036750 0.01119
S(2) 1.0 0 0 0.288360 0.01119
S(3) 1.0 0 0 0.458145 0.01119
S(4) 1.0 0 0 0.863597 0.01119
3.1.2. Non-centrosymmetric models in the R3m space group

In the model of Lappe et al. (1962[Lappe, F., Niggli, A., Nitsche, R. & White, J. G. (1962). Z. Kristallogr. 117, 146-152.]), all the atoms occupy Wyckoff positions 3a, with the Zn atoms and half of the In atoms placed in separate tetrahedral positions. In this case, different distributions of cations in the tetrahedral and octahedral sites are feasible, which are summarized in Table 1[link]. The cationic distribution in the different models is such that the local 3m symmetry is preserved. The best fit to the experimental data corresponded to model IV, in which the Mn ions occupy tetrahedral and octahedral positions adjacent in the cell, shared with the Zn and In atoms in Zn:Mn:In ratios of 0.4:0.2:0.4 and 0.2:0.2:0.6, respectively. The final Rietveld plot is shown in Fig. 1[link]. There is significant improvement in the fit to the experimental profile, and in particular with the 006 reflection. Table 2[link] shows the final atomic positions and isotropic temperature factors for the Zn0.6Mn0.4In2S4 alloy.

[Figure 1]
Figure 1
Final observed (points), calculated (lines), and difference profiles for the Rietveld refinement of the quaternary alloy Zn0.6Mn0.4In2S4 from high-resolution powder diffraction data. (a) Data from 5 to 20° 2θ. (b) Data from 20 to 45° 2θ.

3.2. Selected-area electron diffraction (SAED)

The reciprocal lattice along the [001] direction for the alloy Zn0.6Mn0.4In2S4 was studied using SAED patterns. Fig. 2[link] shows the pattern recorded on an image plate. The structural analysis, following standard electron diffraction procedures, reveals a rhombohedral unit with a = 3.06 Å.

[Figure 2]
Figure 2
SAED of Zn0.6Mn0.4In2S4 along the [001] direction.

3.3. High-resolution electron microscopy (HRTEM)

A digitalized high-resolution image of the alloy Zn0.6Mn0.4In2S4 along the [001] direction is shown in Fig. 3[link]. Contrast changes due to thickness variations along vertical and horizontal directions are observed. The zone selected at the right of the image was processed with the program CRISP (Hovmöller, 1992[Hovmöller, S. (1992). Ultramicroscopy, 41, 121-135.]) to obtain crystallographic phases imposing the p6 symmetry on the projection. The cell parameter a was found, giving a value of 21.5 Å, a multiple of 3.06 Å, with good discrepancy values of Rsymmetry = 15.3% and φresidual = 0.1.

[Figure 3]
Figure 3
HRTEM of the alloy Zn0.6Mn0.4In2S4.

3.4. Convergent-beam electron diffraction (CBED)

In the CBED patterns, the contrast details arising from the dynamical diffraction effects and the geometrical configurations derived from structural arrays in our samples, in direct and diffracted beams, allow the detection, identification and differentiation of space groups R[\bar{3}]m and R3m by checking the symmetry of the diffraction pattern obtained perpendicular to the [001] direction, as shown in Table 3[link] (Buxton et al., 1976[Buxton, B. F., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). Philos. Trans. R. Soc. London Ser. A, 281, 171-194.]). Fig. 4[link] shows a micrograph for the alloy Zn0.6Mn0.4In2S4 collected at an acceleration potential of 150 kV, using a large convergence angle along [001], with its simulated image placed at its right. The pattern contains both zero-order Laue zone (ZOLZ) and high-order Laue zone (HOLZ) information, and Kikuchi lines. At the zero level, the pattern shows rotational symmetry of order 3, as shown by the triangle in the centre of the micrograph. Three mirror planes intercepting at angles of 120° are also depicted. In Table 3[link], the symmetries of the micrographs with rhombohedral cells perpendicular to [001] are given. All this information clearly points towards a micrograph with point symmetry 3m. Therefore, it can be concluded unambiguously that the structure of the quaternary alloy is non-centrosymmetric R3m.

Table 3
Zone-axis symmetry for the [001] direction for the point groups [\bar{3}]m and 3m from Buxton et al. (1976[Buxton, B. F., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). Philos. Trans. R. Soc. London Ser. A, 281, 171-194.])

Point group [001]
[\bar{3}]m 6mmR
3m 3m
[Figure 4]
Figure 4
CBED patterns of the alloy Zn0.6Mn0.4In2S4 at 150 kV.

4. Conclusions

The quaternary alloy Zn0.6Mn0.4In2S4 shows a rhombohedral layered crystal structure, in space group R3m (160). The sequence of layers is:

[{\rm S In_{tet}S(Zn_{0.2}Mn_{0.2}In_{0.6})_{oct}S(Zn_{0.4}Mn_{0.2}In_{0.4})_{tet}S \ldots SIn_{tet} }.]

A diagram of the layers in the structure along the c axis is shown in Fig. 5[link]. The 3m symmetry of a CBED micrograph with zone-axis [001] confirmed the space-group symmetry R3m. The Zn, Mn and In atoms occupy both tetrahedral and octahedral sites in the structure in a disordered way, but in such proportions that the local [\bar{3}]m symmetry of the parent compound, ZnIn2S4, is broken.

[Figure 5]
Figure 5
A view showing the unit cell of the Zn0.6Mn0.4In2S4 structure (model IV) in the R3m space group.

Supporting information


Computing details top

Program(s) used to refine structure: GSAS.

(I) top
Crystal data top
In2.00Mn0.40S4Zn0.60c = 37.20846 (11) Å
Mr = 419.09V = 483.91 (1) Å3
Trigonal, R3mZ = 3
a = 3.875218 (8) Å
Data collection top
2θmin = 1.002°, 2θmax = 53.052°, 2θstep = 0.002°
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(GP) = 0.000 #5(LX) = 0.245 #6(LY) = 10.010 #7(S/L) = 0.0005 #8(H/L) = 0.0005 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.081 #15(L22) = 0.010 #16(L33) = 0.000 #17(L12) = 0.098 #18(L13) = 0.008 #19(L23) = -0.004 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.09136 parameters
Rwp = 0.0980 restraints
Rexp = 0.030(Δ/σ)max = 2.79
R(F2) = 0.11431Background function: GSAS Background function number 7 with 15 terms. Linear interpolation 1: 367.197 2: 259.848 3: 425.772 4: 414.925 5: 453.275 6: 355.583 7: 421.634 8: 367.229 9: 329.349 10: 302.797 11: 316.815 12: 267.840 13: 237.159 14: 223.553 15: 190.082
26026 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.05095 h= 0.000 k= 0.000 l= 1.000 Prefered orientation correction range: Min= 0.86147, Max= 1.07741
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.00.00.395962 (300.01312 (8)*0.2
Zn10.00.00.395962 (300.01312 (8)*0.4
In10.00.00.395962 (300.01312 (8)*0.4
Mn20.00.00.16463 (7)0.01312 (8)*0.2
Zn20.00.00.16463 (7)0.01312 (8)*0.2
In20.00.00.16463 (7)0.01312 (8)*0.6
In30.00.00.933040.01312 (8)*
S10.00.00.04013 (10)0.01120 (17)*
S20.00.00.29173 (11)0.01120 (17)*
S30.00.00.46154 (12)0.01120 (17)*
S40.00.00.86700 (12)0.01120 (17)*
Geometric parameters (Å, º) top
Mn1—S1i2.3889 (15)S1—Mn1iv2.3889 (15)
Mn1—S1ii2.3889 (15)S1—Mn1v2.3889 (15)
Mn1—S1iii2.3889 (15)S1—Mn1vi2.3889 (15)
Mn1—S32.440 (5)S1—Zn1iv2.3889 (15)
Zn1—S1i2.3889 (15)S1—Zn1v2.3889 (15)
Zn1—S1ii2.3889 (15)S1—Zn1vi2.3889 (15)
Zn1—S1iii2.3889 (15)S1—In1iv2.3889 (15)
Zn1—S32.440 (5)S1—In1v2.3889 (15)
In1—S1i2.3889 (15)S1—In1vi2.3889 (15)
In1—S1ii2.3889 (15)S2—In3vii2.4281 (16)
In1—S1iii2.3889 (15)S2—In3viii2.4281 (16)
In1—S32.440 (5)S2—In3ix2.4281 (16)
Mn2—S3iv2.616 (3)S3—Mn12.440 (5)
Mn2—S3v2.616 (3)S3—Zn12.440 (5)
Mn2—S3vi2.616 (3)S3—In12.440 (5)
Mn2—S4vii2.602 (3)S3—Mn2i2.616 (3)
Mn2—S4viii2.602 (3)S3—Mn2ii2.616 (3)
Mn2—S4ix2.602 (3)S3—Mn2iii2.616 (3)
Zn2—S3iv2.616 (3)S3—Zn2i2.616 (3)
Zn2—S3v2.616 (3)S3—Zn2ii2.616 (3)
Zn2—S3vi2.616 (3)S3—Zn2iii2.616 (3)
Zn2—S4vii2.602 (3)S3—In2i2.616 (3)
Zn2—S4viii2.602 (3)S3—In2ii2.616 (3)
Zn2—S4ix2.602 (3)S3—In2iii2.616 (3)
In2—S3iv2.616 (3)S4—Mn2x2.602 (3)
In2—S3v2.616 (3)S4—Mn2xi2.602 (3)
In2—S3vi2.616 (3)S4—Mn2xii2.602 (3)
In2—S4vii2.602 (3)S4—Zn2x2.602 (3)
In2—S4viii2.602 (3)S4—Zn2xi2.602 (3)
In2—S4ix2.602 (3)S4—Zn2xii2.602 (3)
In3—S2x2.4281 (16)S4—In2x2.602 (3)
In3—S2xi2.4281 (16)S4—In2xi2.602 (3)
In3—S2xii2.4281 (16)S4—In2xii2.602 (3)
In3—S42.457 (5)S4—In32.457 (5)
S1i—Mn1—S1ii108.41 (10)Zn1iv—S1—Zn1v108.41 (10)
S1i—Mn1—S1iii108.41 (10)Zn1iv—S1—Zn1vi108.41 (10)
S1i—Mn1—S3110.52 (10)Zn1iv—S1—In1iv0.0
S1ii—Mn1—S1iii108.41 (10)Zn1iv—S1—In1v108.41 (10)
S1ii—Mn1—S3110.52 (10)Zn1iv—S1—In1vi108.41 (10)
S1iii—Mn1—S3110.52 (10)Zn1v—S1—Zn1vi108.41 (10)
S1i—Zn1—S1ii108.41 (10)Zn1v—S1—In1iv108.41 (10)
S1i—Zn1—S1iii108.41 (10)Zn1v—S1—In1v0.0
S1i—Zn1—S3110.52 (10)Zn1v—S1—In1vi108.41 (10)
S1ii—Zn1—S1iii108.41 (10)Zn1vi—S1—In1iv108.41 (10)
S1ii—Zn1—S3110.52 (10)Zn1vi—S1—In1v108.41 (10)
S1iii—Zn1—S3110.52 (10)Zn1vi—S1—In1vi0.0
S1i—In1—S1ii108.41 (10)In1iv—S1—In1v108.41 (10)
S1i—In1—S1iii108.41 (10)In1iv—S1—In1vi108.41 (10)
S1i—In1—S3110.52 (10)In1v—S1—In1vi108.41 (10)
S1ii—In1—S1iii108.41 (10)In3vii—S2—In3viii105.88 (10)
S1ii—In1—S3110.52 (10)In3vii—S2—In3ix105.88 (10)
S1iii—In1—S3110.52 (10)In3viii—S2—In3ix105.88 (10)
S3iv—Zn2—S3v95.59 (14)Mn1—S3—Zn10.0
S3iv—Zn2—S3vi95.59 (14)Mn1—S3—In10.0
S3iv—Zn2—S4vii84.07 (3)Mn1—S3—Zn2i121.20 (10)
S3iv—Zn2—S4viii84.07 (3)Mn1—S3—Zn2ii121.20 (10)
S3iv—Zn2—S4ix179.4925 (17)Mn1—S3—Zn2iii121.20 (10)
S3v—Zn2—S3vi95.59 (14)Mn1—S3—In2i121.20 (10)
S3v—Zn2—S4vii84.07 (3)Mn1—S3—In2ii121.20 (10)
S3v—Zn2—S4viii179.4929 (17)Mn1—S3—In2iii121.20 (10)
S3v—Zn2—S4ix84.07 (3)Zn1—S3—In10.0
S3vi—Zn2—S4vii179.4933 (17)Zn1—S3—Zn2i121.20 (10)
S3vi—Zn2—S4viii84.07 (3)Zn1—S3—Zn2ii121.20 (10)
S3vi—Zn2—S4ix84.07 (3)Zn1—S3—Zn2iii121.20 (10)
S4vii—Zn2—S4viii96.26 (13)Zn1—S3—In2i121.20 (10)
S4vii—Zn2—S4ix96.26 (13)Zn1—S3—In2ii121.20 (10)
S4viii—Zn2—S4ix96.26 (13)Zn1—S3—In2iii121.20 (10)
S3iv—In2—S3v95.59 (14)In1—S3—Zn2i121.20 (10)
S3iv—In2—S3vi95.59 (14)In1—S3—Zn2ii121.20 (10)
S3iv—In2—S4vii84.07 (3)In1—S3—Zn2iii121.20 (10)
S3iv—In2—S4viii84.07 (3)In1—S3—In2i121.20 (10)
S3iv—In2—S4ix179.4925 (17)In1—S3—In2ii121.20 (10)
S3v—In2—S3vi95.59 (14)In1—S3—In2iii121.20 (10)
S3v—In2—S4vii84.07 (3)Zn2i—S3—Zn2ii95.59 (14)
S3v—In2—S4viii179.4929 (17)Zn2i—S3—Zn2iii95.59 (14)
S3v—In2—S4ix84.07 (3)Zn2i—S3—In2i0.0
S3vi—In2—S4vii179.4933 (17)Zn2i—S3—In2ii95.59 (14)
S3vi—In2—S4viii84.07 (3)Zn2i—S3—In2iii95.59 (14)
S3vi—In2—S4ix84.07 (3)Zn2ii—S3—Zn2iii95.59 (14)
S4vii—In2—S4viii96.26 (13)Zn2ii—S3—In2i95.59 (14)
S4vii—In2—S4ix96.26 (13)Zn2ii—S3—In2ii0.0
S4viii—In2—S4ix96.26 (13)Zn2ii—S3—In2iii95.59 (14)
S2x—In3—S2xi105.88 (10)Zn2iii—S3—In2i95.59 (14)
S2x—In3—S2xii105.88 (10)Zn2iii—S3—In2ii95.59 (14)
S2x—In3—S4112.86 (9)Zn2iii—S3—In2iii0.0
S2xi—In3—S2xii105.88 (10)In2i—S3—In2ii95.59 (14)
S2xi—In3—S4112.86 (9)In2i—S3—In2iii95.59 (14)
S2xii—In3—S4112.86 (9)In2ii—S3—In2iii95.59 (14)
Mn1iv—S1—Mn1v108.41 (10)Zn2x—S4—Zn2xi96.26 (13)
Mn1iv—S1—Mn1vi108.41 (10)Zn2x—S4—Zn2xii96.26 (13)
Mn1iv—S1—Zn1iv0.0Zn2x—S4—In2x0.0
Mn1iv—S1—Zn1v108.41 (10)Zn2x—S4—In2xi96.26 (13)
Mn1iv—S1—Zn1vi108.41 (10)Zn2x—S4—In2xii96.26 (13)
Mn1iv—S1—In1iv0.0Zn2x—S4—In3120.70 (10)
Mn1iv—S1—In1v108.41 (10)Zn2xi—S4—Zn2xii96.26 (13)
Mn1iv—S1—In1vi108.41 (10)Zn2xi—S4—In2x96.26 (13)
Mn1v—S1—Mn1vi108.41 (10)Zn2xi—S4—In2xi0.0
Mn1v—S1—Zn1iv108.41 (10)Zn2xi—S4—In2xii96.26 (13)
Mn1v—S1—Zn1v0.0Zn2xi—S4—In3120.70 (10)
Mn1v—S1—Zn1vi108.41 (10)Zn2xii—S4—In2x96.26 (13)
Mn1v—S1—In1iv108.41 (10)Zn2xii—S4—In2xi96.26 (13)
Mn1v—S1—In1v0.0Zn2xii—S4—In2xii0.0
Mn1v—S1—In1vi108.41 (10)Zn2xii—S4—In3120.70 (10)
Mn1vi—S1—Zn1iv108.41 (10)In2x—S4—In2xi96.26 (13)
Mn1vi—S1—Zn1v108.41 (10)In2x—S4—In2xii96.26 (13)
Mn1vi—S1—Zn1vi0.0In2x—S4—In3120.70 (10)
Mn1vi—S1—In1iv108.41 (10)In2xi—S4—In2xii96.26 (13)
Mn1vi—S1—In1v108.41 (10)In2xi—S4—In3120.70 (10)
Mn1vi—S1—In1vi0.0In2xii—S4—In3120.70 (10)
Symmetry codes: (i) x1/3, y2/3, z+1/3; (ii) x1/3, y+1/3, z+1/3; (iii) x+2/3, y+1/3, z+1/3; (iv) x2/3, y1/3, z1/3; (v) x+1/3, y1/3, z1/3; (vi) x+1/3, y+2/3, z1/3; (vii) x1/3, y2/3, z2/3; (viii) x1/3, y+1/3, z2/3; (ix) x+2/3, y+1/3, z2/3; (x) x2/3, y1/3, z+2/3; (xi) x+1/3, y1/3, z+2/3; (xii) x+1/3, y+2/3, z+2/3.
 

Acknowledgements

We thank the ESRF for providing synchrotron radiation beam time, FONACIT-Venezuela and CDCHT-ULA.

References

First citationAtwood, J. L., Davies, J. E. & MacNicold, D. D. (1984). Inclusion Compounds, Vols. I, II, III. New York: Academic Press.  Google Scholar
First citationBerand, N. & Range, K. J. (1994). J. Alloys Compd. 205, 295–301.  CrossRef CAS Web of Science Google Scholar
First citationBoultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBuxton, B. F., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). Philos. Trans. R. Soc. London Ser. A, 281, 171–194.  CrossRef CAS Web of Science Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFitch, A. N. (1996). Mater. Sci. Forum, 228–231, 219–222.  CrossRef CAS Google Scholar
First citationFitch, A. N. (2004). J. Res. Natl Inst. Stand. Technol. 109, 133–142.  Web of Science CrossRef CAS Google Scholar
First citationFontal, B., López-Rivera, S. A., Martínez, L. & Giriat, W. (1996). Semicond. Sci. Technol. 11, 1056–1058.  CrossRef CAS Web of Science Google Scholar
First citationGiriat, W. (1985). Phys. Status Solidi B, 132, K131–K132.  CrossRef CAS Google Scholar
First citationHovmöller, S. (1992). Ultramicroscopy, 41, 121–135.  CrossRef Web of Science Google Scholar
First citationLaar, B. van & Yelon, W. B. (1984). J. Appl. Cryst. 17, 47–54.  CrossRef Web of Science IUCr Journals Google Scholar
First citationLappe, F., Niggli, A., Nitsche, R. & White, J. G. (1962). Z. Kristallogr. 117, 146–152.  CrossRef CAS Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2001). General Structure Analysis System (GSAS). Report LAUR 86-748, Los Alamos National Laboratory, USA.  Google Scholar
First citationLópez-Rivera, S. A., Mora, A. J., Acosta-Najarro, D., Rivera, A. V. & Ávila-Godoy, R. (2001). Semicond. Sci. Technol. 16, 367–371.  Web of Science CrossRef CAS Google Scholar
First citationLutz, H. D. & Jun, M. (1989). Z. Anorg. Allg. Chem. 579, 57–67.  CrossRef CAS Web of Science Google Scholar
First citationPineda, C., Martín, J. M. & López-Rivera, S. A. (1998). Rev. Mex. Fís. 44, 224–227.  CAS Google Scholar
First citationRietveld, H. M. (1967). Acta Cryst. 22, 151–152.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSagredo, V., Betancourt, L., Chourio, M., Attolini, G. & Pelosi, C. (1993). Jpn J. Appl. Phys. 32, 391–392.  CrossRef CAS Google Scholar
First citationSmith, G. S. & Snyder, R. L. (1979). J. Appl. Cryst. 12, 60–65.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSombuthawee, C., Bonsall, S. B. & Hummel, F. A. (1978). J. Solid State Chem. 25, 391–399.  CrossRef CAS Web of Science Google Scholar
First citationTatsi, A., Lampakis, D., Liarokapis, E., López-Rivera, S. A. & Martínez, L. (2002). High Pressure Res. 22, 89–93.  CrossRef Google Scholar
First citationWakaki, M., Ogawa, T. & Arai, T. (1983). Nuovo Cimento D, 2, 1809–1813.  CrossRef Google Scholar
First citationWolff, P. M. de (1968). J. Appl. Cryst. 1, 108–113.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds