research papers
Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers
aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK, bDiamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK, and cEuropean Synchrotron Radiation Facility, 6 rue J. Horowitz, 38042 Grenoble, France
*Correspondence e-mail: lee.brammer@sheffield.ac.uk
A family of one-dimensional coordination polymers, [Ag4(O2C(CF2)2CF3)4(phenazine)2(arene)n]·m(arene), 1 (arene = toluene or xylene), have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF2)2CF3)4(phenazine)2], 2a and/or 2b, with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b, not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)]·2(toluene), a phase containing toluene coordinated to Ag(I) in an unusual μ:η1,η1 manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.
1. Introduction
Designed solid-state materials are of increasing interest, an important class of which is coordination polymers, in which metal ions or clusters are connected by organic ligands (linkers) to create extended network solids that are periodic and usually crystalline. Porous coordination polymers (PCPs), more commonly known as metal–organic frameworks (MOFs), have enjoyed particular attention due to their potential application in gas sorption and separation (Li et al., 1999; Zhang & Chen, 2009; Sumida et al., 2009; D'Alessandro et al., 2010; Burd et al., 2012; FitzGerald et al., 2013; Huang et al., 2013; Carrington et al., 2014), (Gomez-Lor et al., 2002; Wu et al., 2005; Lee et al., 2009; Li et al., 2009, 2014) and novel optical and magnetic properties (Evans & Lin, 2002; Zhou et al., 2013; Baldoví et al., 2014; Wang et al., 2014). The post-synthetic modification (PSM) of coordination polymers and PCPs has only more recently been the focus of more detailed work (Ingleson et al., 2008; Tanabe et al., 2008; Wang & Cohen, 2009; Nguyen & Cohen, 2010; Vermeulen et al., 2013; Zheng et al., 2013; Li et al., 2013), facilitating the multi-step synthesis of materials (Ingleson et al., 2008; Tanabe et al., 2008; Wang & Cohen, 2009; Nguyen & Cohen, 2010; Vermeulen et al., 2013; Zheng et al., 2013; Li et al., 2013; Libri et al., 2008; Vitórica-Yrezábal et al., 2013), stereo- or regio-selective transformation of ligands (Jones & Bauer, 2009) or the modification of solid-state properties of porous materials (Wang & Cohen, 2009; Nguyen & Cohen, 2010). The flexibility and responsiveness of some MOFs to removal of non-covalently bound solvent or uptake of gas molecules has been described by many groups and was highlighted by Kitagawa and co-workers at an early stage in their 2004 review in which they classified MOFs into first-, second- and third-generation materials, the latter being materials which could undergo structural changes and recover pore integrity as well as retaining or recovering crystallinity during such guest loss/uptake processes (Kitagawa et al., 2004).
More generally, the reactions and structural transformations of coordination polymers include a variety of transformations involving solvation or vice versa during solvent uptake). Reviews by Kole & Vittal (2013) and by Li & Du (2011) consider transformations of this type along with other solid-state transformations, including photochemical transformations and transformations induced by input of heat or mechanochemical energy.
processes, typically involving water, or acetonitrile as the solvent molecule. Such transformations involving coordinated solvent molecules can result in changes in coordination environment at the metal centres wherein terminally coordinated solvent molecules are replaced by bridging (linker) ligands during (andIn recent years, our own work has examined solid–gas and solid–vapour reactions involving molecular crystals of coordination compounds that reversibly react with HCl and HBr gases (Mínguez Espallargas et al., 2006, 2007, 2010, 2011; Vitórica-Yrezábal et al., 2011), and coordination polymers that reversibly take up and release small alcohol molecules (Libri et al., 2008; Vitórica-Yrezábal et al., 2013), in each case requiring changes in metal coordination environments that are accompanied by structural changes and changes in intermolecular interactions (hydrogen bonding and/or halogen bonding). The present study builds upon earlier work that introduced a variety of networks formed by combining silver(I) perfluorocarboxylates with neutral ditopic ligands such as pyrazines and in particular emphasized the silver carboxylate dimer, Ag2(O2CR)2, as a secondary building unit (SBU) that can be linked by ditopic ligands into coordination polymers (Fig. 1). Specifically we report a new family of coordination polymers that involve tetrameric units Ag4(O2CR)4, which arise from fusing of two dimers via additional Ag—O bonds. The tetramers are linked via phenazine ligands to form coordination polymers, and exhibit a variety of chemical and structural transformations that result from loss of arene guests that directly coordinate to Ag(I) centres. This behaviour is related to earlier studies of a family of coordination polymers that comprise tetramethylpyrazine linker ligands (Libri et al., 2008; Vitórica-Yrezábal et al., 2013) rather than phenazine, but here we also report on the transformation between coordination polymer structures, both by heating and vapour-assisted means, in one case leading to a polymorph that is inaccessible in a phase-pure form through direct solution-phase synthesis.
2. Experimental
2.1. Crystal syntheses
All starting materials were purchased from Aldrich, Alfa Aesar or Fluorochem and used as received. Light was excluded from all reactions using foil to minimize decomposition to silver metal. In each case, 0.05 M solutions of the reagents were separately prepared by dissolving silver(I) heptafluorobutanoate (128 mg, 0.400 mmol) or phenazine (72 mg, 0.400 mmol) in 8 ml of solvent. In all cases, large yellow crystals suitable for single-crystal X-ray diffraction were formed within 1 week.
2.1.1. [Ag4(O2C(CF2)2CF3)4(phen)2(tol)]·2(tol), 1-tol·tol
An 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol was layered onto a 0.05 M solution of phenazine (72 mg, 0.400 mmol) in 8 ml toluene. Yield 71% (135 mg, 0.071 mmol). Anal. found: C 37.41, H 1.75, N 2.90; calcd: C 38.15, H 2.01, N 2.92%. Samples allowed to air-dry for more than 10 min: found: C 29.16, H 0.70, N 3.10; calcd. (for [Ag4(O2C(CF2)2CF3)4(phen)2], 2b): C 29.22, H 0.98, N 3.41%. Synthesis was also possible if methanol was replaced by ethanol, n-propanol or 2-propanol.
2.1.2. [Ag4(O2C(CF2)2CF3)4(phenazine)2(p-xylene)2], 1-pxyl
A 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol was layered onto a 0.05 M solution of phenazine (72 mg, 0.400 mmol) in 8 ml p-xylene. Yield 29.6% (55 mg, 0.030 mmol). Anal. found: C 36.24, H 1.70, N 2.51; calcd: C 36.23, H 1.95, N 3.02%. Samples heated at 120°C for 2 h: found: C 29.23, H 0.74, N 3.37; calcd (for [Ag4(O2C(CF2)2CF3)4(phen)2], 2a or 2b): C 29.22, H 0.98, N 3.41%.
2.1.3. [Ag4(O2C(CF2)2CF3)4(phenazine)2(m-xylene)2], 1-mxyl
An 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol was layered onto a 0.05 M solution of phenazine (72 mg, 0.400 mmol) in 8 ml m-xylene. Yield 37.7% (70 mg, 0.038 mmol). Anal. found: C 36.28, H 1.57, N 2.61%; calcd: C 36.23, H 1.95, N 3.02%. Samples heated at 120°C for 2 h: found: C 29.46, H 0.90, N 3.44; calcd: C 29.22, H 0.98, N 3.41% (for [Ag4(O2C(CF2)2CF3)4(phen)2], 2a or 2b). (See the supporting information for a discussion of X-ray powder diffraction and TGA.)
2.1.4. [Ag4(O2C(CF2)2CF3)4(phenazine)2(tol)x((p-xylene)1 − x]·n(toluene)·(2 − n)(p-xylene), 1-pxyl-tol·pxyl·tol
A 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol was layered onto a 0.05 M solution of phenazine (72 mg, 0.400 mmol) in 8 ml of 1:1 toluene:p-xylene. Yield 56.8% (110 mg, 0.057 mmol). Anal. found: C 37.96, H 1.98, N 2.74; calcd: C 38.67, H 2.22, N 2.90% (for x = 0.575, n = 2x; as found by GC (gas chromatography)/NMR).
2.1.5. [Ag4(O2C(CF2)2CF3)4(phenazine)2], 2a
A 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol was layered onto a 0.05 M solution of phenazine (72 mg, 0.4 mmol) in 8 ml of o-xylene. Yield 45.6% (75 mg, 0.046 mmol). Anal. found: C 29.32, H 0.49, N 3.27; calcd: C 29.22, H 0.98, N 3.41%. Synthesis was also possible in comparable yields by layering a 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) in 8 ml methanol onto a 0.05 M solution of phenazine (72 mg, 0.400 mmol) in 8 ml of dichloromethane. Synthesis could also be achieved by slowly evaporating an 0.05 M solution of Ag(O2C(CF2)2CF3) (128 mg, 0.400 mmol) and phenazine (72 mg, 0.40 mmol) in 16 ml of acetone.
2.2. Vapour exposure experiments
In all cases, crystals were removed from the mother liquor and gently dried between filter papers, before being gently ground in an agate pestle and mortar. The powder (approx. 30 mg) was placed in a small sample vial with a plastic lid, pierced once. This vial was placed inside a larger vial containing 1 ml of the relevant solvent, and the larger vial sealed and stored in the dark for 2 weeks.
2.3. Mechanochemistry
100 mg of the dried, yellow microcrystalline 2a was ground gently in an agate pestle and mortar, then placed into a 5 ml capacity (No. 59) Retsch cylindrical stainless steel grinding jar, either dry or with 50 µL acetone. The jar was fixed into a Retsch MM200 mixer mill, and shaken at a rate of 25 Hz for 15 min. The resultant yellow powder was analysed by X-ray powder diffraction.
2.4. Analytical techniques
2.4.1. X-ray crystallography
Single-crystal X-ray data were collected at 100 K for compounds 1-tol·tol, 1-mxyl, 1-pxyl, 1-tolpxyl and 2a on Bruker APEX-II diffractometers, using Mo Kα radiation. Data for 2b, the product of heating 1·tol·tol, were collected on a Rigaku Saturn 724+ CCD diffractometer at Diamond Light Source beamline I19 [λ = 0.6889 (3) Å] (Nowell et al., 2012). Data were collected as a series of five sequences of frames, each covering approximately one hemisphere of The first 20 frames of the first sequence were repeated at the end of data collection as a check for radiation damage. Each frame was collected as a 1 s exposure, with full available attenuation to prevent beam damage. CCD frame data were transformed from Rigaku to Bruker SMART format using the program ECLIPSE (Dawson et al., 2004). Data were corrected for absorption using empirical methods (SADABS), based on symmetry-equivalent reflections combined with measurements at different azimuthal angles (Sheldrick, 1995; Blessing, 1995). Crystal structures were solved and refined against all F2 values, using the SHELXTL program suite (Sheldrick, 2008), or using Olex2 (Dolomanov et al., 2009). Non-H atoms were refined anisotropically (except as noted), and H atoms placed in calculated positions refined using idealized geometries (riding model) and assigned fixed isotropic displacement parameters. Disorder in the fluoroalkyl chains in compounds 1-tol·tol, 1-mxyl, 1-tolpxyl and 2a was modelled in two orientations, dependent upon rotation about the β- and γ-CF2 groups and the terminal CF3 groups. Disordered atoms in the fluoroalkyl chains were modelled isotropically. Toluene molecules in the compound 1-tol·tol are situated on inversion centres that lie at the centre of the six-membered ring. For 1-tol-pxyl·tol·pxyl occupational and positional disorder for toluene/p-xylene guest molecules was dealt with by applying bond distance restraints and assigning fixed occupancies of 0.7215 to methyl C atoms consistent with the spectroscopic/chromatographic determination of the toluene:p-xylene ratio as 0.575:0.425. The non-coordinated were modelled with isotropic displacement parameters. Crystallographic data for all compounds are summarized in Table 1.
|
2.4.2. Powder X-ray diffraction
Samples prepared as described above were loaded into borosilicate capillaries of diameter 0.7 mm (Diamond Light Source and ESRF) or 0.5 mm (University of Sheffield). For in situ heating studies, a small plug of glass wool was added to prevent sample loss from open capillaries during sample spinning. Data were collected on beamline I11 (Thompson et al., 2009, 2011), at Diamond Light Source for the in situ heating study for 1·tol·tol [λ = 0.826008 (2) Å], for compounds 1-tol-pxyl·tol·pxyl, 1·mxyl, 1·pxyl and 2a and for the in situ heating studies for 1·mxyl and 1·pxyl [λ = 0.826136 (2) Å], and for the ex situ alcohol vapour exposure study on 1·tol·tol [λ = 0.82562 (1) Å]. Data were collected using a wide-angle (90°) PSD (position-sensitive detector) (Thompson et al., 2011) comprised of 18 Mythen-2 modules. Each 2 s scan was collected as two 1 s scans with a 0.25° 2θ offset (to account for the gaps between the Mythen-2 modules). These pairs of scans were then summed to give a single data file, used for fitting.
Diffraction data for the products of solvent-assisted transformations of 2b to mixtures of 2b and 2a, as well as for the products of attempted syntheses of 2b were collected on a Stoe Stadi P diffractometer using Cu Kα radiation (λ = 1.5406 Å) in the Department of Materials Science and Engineering, University of Sheffield. Data were collected using a PSD detector with a single scan (5 < 2θ < 40°) at a scan rate of 0.067° min−1, using a rotating capillary.
Diffraction data for samples of 1-tol·tol exposed to xylene vapours were collected at room temperature at λ = 0.3997939 (15) Å; and for the products of mechanochemical experiments on 2a at 0.400021 (9) Å using station ID313 (Fitch, 2004), at the European Synchrotron Radiation Facility (ESRF). The data were collected using a nine-channel multi-analyser crystal (MAC) detector. Using a rotating capillary, 5 scans (−2.5 ≤ 2θ ≤ 18 °) were collected at a speed of 4° min−1. After each scan the capillary was translated such that each scan was on a portion of sample not thus far irradiated. All patterns were summed to give a final pattern used for the data analysis.
Diffraction patterns were indexed and fitted using the TOPAS-Academic program (Coelho, 2007), by Pawley (Pawley, 1981) for data with dmin ≤ 1.55 Å in each case, and (in cases specified) then by (Rietveld, 1969) using starting models from previous single-crystal structure determinations. Full details of refinements and all fitted patterns are included in the supporting information .
2.4.3. Elemental analysis
Elemental analyses were carried out by the University of Sheffield Department of Chemistry elemental analysis service, using a Perkin–Elmer 2400 CHNS/O Series II elemental analyser. Elemental analyses on the 1-arene series of compounds were conducted immediately upon removal of the crystals from the mother liquor; measurements repeated after 30 min refrigeration at 5°C gave consistent values.
2.4.4. 1H NMR spectroscopy
A sample of 1-tol-pxyl·tol·pxyl was air-dried and dissolved in DMSO-d6, then filtered through cotton wool. A 1H NMR spectrum was measured on a Bruker AV 400 MHz spectrometer. The spectrum is reported in the supporting information .
2.4.5. Gas chromatography
Crystals of 1-tol-pxyl·tol·pxyl were dissolved in DMSO with some sonication, sealed in glass vials using crimped caps, and then run through a Perkin–Elmer Autosystem FID microcolumn, heating from 50 to 300°C at 10°C min−1. Retention times were compared to those for pure samples of phenazine, silver(I) heptafluorobutanoate, toluene, xylene (each dissolved in or diluted with DMSO) and pure DMSO. Relative content of guests was determined by direct comparison of peak areas. The gas for 1-tol-pxyl·tol·pxyl can be found in the supporting information .
2.4.6. Thermal analysis
Thermogravimetric analyses were conducted using a Perkin–Elmer Pyris1 TGA model thermogravimetric analyser. Samples were heated from 30 to 400°C at 5°C min−1 under a flow of dry N2 gas. Thermogravimetric traces can be found in the supporting information .
3. Results and discussion
3.1. Synthesis and crystal structures of coordination polymers 1-tol·tol, 1-pxyl, 1-mxyl, 1-tol-pxyl·tol·pxyl, 2a and 2b
A family of one-dimensional coordination polymers [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)]·2(toluene) (1-tol·tol), [Ag4(O2C(CF2)2CF3)4(phenazine)2(m-xylene)2] (1-mxyl) and [Ag4(O2C(CF2)2CF3)4(phenazine)2(p-xylene)2] (1-pxyl) were synthesized by layering a methanol solution of silver heptafluorobutanoate onto a solution of phenazine in the corresponding arene. All compounds were characterized by single-crystal X-ray diffraction, the composition was confirmed by elemental analysis and phase purity was examined by X-ray powder diffraction (see the supporting information ). The mixed-arene coordination polymer [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)n(p-xylene)1 − n]·n(toluene)·(2 − n)(p-xylene) (1-tol-pxyl·tol·pxyl) was prepared in an analogous manner using a 1:1 toluene:p-xylene solvent mixture. When o-xylene is used as the arene, the product is one-dimensional coordination polymer [Ag4(O2C(CF2)2CF3)4(phenazine)2] (2a), which contains no o-xylene. A two-dimensional coordination polymer, 2b, which is a polymorph of 2a, is obtained upon loss of toluene from 1-tol·tol, but could not be prepared from solution-phase synthesis.
The 1-tol·tol (Fig. 2) consists of building blocks of Ag4(O2C(CF2)2CF3)4(phenazine)2, within which two Ag2(O2C(CF2)2CF3)2 dimers are linked by bridging phenazine ligands which are oriented in a face-to-face manner. These building blocks are linked into one-dimensional tapes via pairs of Ag—O bonds, forming the silver(I) carboxylate tetramer illustrated in Fig. 1(b). The one-dimensional tapes are cross-linked via toluene molecules, which bridge silver(I) centres in a μ–η1,η1 manner. Although there are many examples of π-coordination to Ag(I) centres, to the best of our knowledge, this toluene bridging mode has not previously been observed, although bridging in a μ–η2,η2 fashion has been reported (Zhong et al., 2001). The cross-linking creates two-dimensional layers of silver coordination polymer, with an additional two toluene molecules per formula unit residing between the layers (Fig. 2b).
ofAlthough synthesis conditions using p-xylene or m-xylene instead of toluene are otherwise unchanged, the coordination polymers generated, 1-pxyl and 1-mxyl, are similar, but not identical to 1-tol·tol. Each comprises the same polymer tape structure as 1-tol·tol, except that the coordinated m-xylene or p-xylene does not bridge Ag(I) centres, instead coordinating in a η1 fashion only to the outer Ag(I) centres of each silver carboxylate tetramer (Fig. 3). These one-dimensional polymer tapes stack such that there are also no additional guest solvent molecules between polymers. Alternate one-dimensional coordination polymer tapes are mutually rotated by 90° along the polymer axis, such that the orientation of the phenazine ligands is orthogonal in adjacent tapes, which also facilitates edge-to-face C—H⋯π interactions between phenazine ligands and xylenes.
Combining silver heptafluorobutanoate and phenazine in a methanol/1:1 toluene:p-xylene solvent system yielded coordination polymer 1-tol-pxyl·tol·pxyl, [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)n(p-xylene)1 − n]·2n(toluene)·(2 − 2n)(p-xylene), which is isostructural with 1-tol·tol. The proportion of the two arene guests within the crystal at the coordinated and uncoordinated sites could not be determined reliably from the single-crystal diffraction experiment. However, no clear difference between the populations of the two sites was apparent. The relative proportions of the two were analysed, upon dissolution of the coordination polymer, by 1H NMR spectroscopy (integration of signals) and by (peak areas), and toluene:p-xylene ratios of 58:42 and 56:44, respectively, were determined. This suggests at best only a slight preference for toluene inclusion over p-xylene inclusion into 1-tol-pxyl·tol·pxyl. The different crystal structures of 1-tol·tol and 1-pxyl suggest that toluene rather than p-xylene should be present in the bridging coordination sites, but this could not be established crystallographically. In the final model for the the populations of all arene sites were assumed to be identical with a toluene:p-xylene ratio of 57.5:42.5 (i.e. n = 0.575).
Conducting the coordination polymer synthesis using a methanol/o-xylene solvent system yielded the one-dimensional coordination polymer 2a, [Ag4(O2C(CF2)2CF3)4(phenazine)2]; no arene solvent is included in the in contrast to the use of other xylenes or toluene. Like coordination polymers 1-tol·tol, 1-pxyl and 1-myxl, the structure of 2a consists of Ag4(O2C(CF2)2CF3)4 tetramers linked by pairs of parallel phenazine units that bridge between Ag(I) centres to give a one-dimensional coordination polymer tape assembly. However, the tetramer units have a different configuration to those noted previously (Fig. 4), wherein one Ag(I) centre is exclusively coordinated by carboxylate ligands and another forms bonds to two phenazine ligands, whereas all four Ag(I) centres are each bonded to one phenazine ligand in 1-tol·tol, 1-pxyl and 1-myxl. The coordination of phenazine ligands to the tetramer unit in 2a leads to an arrangement in which alternate pairs of phenazine ligands within one tape are oriented orthogonally rather than parallel to other pairs (Fig. 5).
A very small single crystal of the coordination polymer 2b, [Ag4(O2C(CF2)2CF3)4(phenazine)2], a polymorph of 2a, was recovered as a small fragment after heating crystals of 1-tol·tol to remove toluene. Data collection at beamline I19 at Diamond Light Source enabled determination. Unlike 2a the structure of 2b is a two-dimensional coordination polymer comprised of Ag4(O2C(CF2)2CF3)4(phenazine)2 units linked via additional Ag—O bonds (Fig. 6), analogous to that of the previously reported [Ag4(O2C(CF2)2CF3)4(TMP)2] (TMP = tetramethylpyrazine) (Vitórica-Yrezábal et al., 2013).
3.2. Thermal, mechanochemical and vapour-assisted structural transformations
Thermogravimetric analysis of 1-tol·tol and 1-pxyl indicated facile loss of the arene to give materials of the composition of 2a and 2b (Figs. S2 and S3 ), as also confirmed by elemental analysis. Loss of toluene occurs most readily and is complete after 10 min in air at room temperature. Loss of p-xylene was from 1-pxyl complete by 120°C in the TGA (thermogravimetric analysis) experiment, and heating 1-pxyl or 1-mxyl to 120°C for 2 h was shown to be sufficient to remove all xylene with no further losses. These observations led us to investigate further the chemical and structural changes occurring in the arene-loss processes, as well as to investigate their reversal upon exposure to arene vapours and more generally the behaviour of these materials upon exposure to arene or alcohol solvent vapours, and upon grinding, particularly in light of prior results involving reversible (alcohol) vapour uptake and structural conversions by the related ID coordination polymer system [Ag4(O2C(CF2)2CF3)4(TMP)3] (Libri et al., 2008; Vitórica-Yrezábal et al., 2013). A summary of the transformations identified is provided in Fig. 7.
3.2.1. Thermal transformations
Heating a powdered crystalline sample in a capillary during an in situ synchrotron X-ray powder diffraction experiment (Fig. 8) enabled the loss of toluene from 1-tol·tol to be followed and confirmed the sole product to be two-dimensional coordination polymer 2b. Conversion of 1-tol·tol to 2b proceeds directly without any detected crystalline intermediate phases. Rietveld analysis indicated that the starting material had already undergone some toluene loss and conversion to 2b (48%) and indicated full conversion after approximately 100 min of heating, by which time the temperature had been increased to 373 K.
Solid-state conversion of 1-tol·tol to 2b involves breaking of Ag—π(toluene) bonds and the loss of all toluene coupled with the formation of new Ag—O bonds to form the more condensed material 2b. The process resembles that previously observed for conversion of a one-dimensional coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)3] to a two-dimensional layered coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)2] through loss of ligand TMP, which bridges between Ag4(O2C(CF2)2CF3)4(TMP)2 units, and the formation of new Ag—O bonds between the Ag4(O2C(CF2)2CF3)4(TMP)2 units (Vitórica-Yrezábal et al., 2013). In this previous case the transformation was found to be irreversible, and indeed exposure of 2b to toluene vapour did not result in conversion back to 1-tol·tol, but instead left the material unchanged. It is worth noting that phase-pure 2b could only be accessed through heating/solvent loss from 1-tol·tol. Arene loss from 1-tol-pxyl·tol·pxyl was examined in an ex situ diffraction study. A powder sample was allowed to air-dry for 30 min. Analysis by synchrotron X-ray powder diffraction confirmed partial transformation to 2b, but also the presence of an unidentified phase (Fig. S1 ).
In situ X-ray powder diffraction heating studies were also conducted on 1-pxyl (Fig. 9) and 1-mxyl (Fig. S18 ). The samples were heated to 373 K while being monitored by powder diffraction. For 1-pyxl, Pawley and Rietveld fitting of the powder diffraction patterns indicated the formation of both polymorphs 2a and 2b as a result of loss of p-xylene, with polymorph 2a as the major product. Upon complete loss of p-xylene, after 40 min, only 2a and 2b are present, consistent with earlier TGA and elemental analysis results. Rietveld analysis indicated that 2a and 2b are present in the ratio 82:18 in the final product. For 1-mxyl, the starting material used was found to be already a mixture of 1-mxyl, 2a and 2b, suggesting some m-xylene loss prior to the initial diffraction measurement. Heating to 373 K resulted in complete conversion to a mixture of 2a and 2b after 4 min, with 2a again as the major phase, although data quality was sufficient only for Pawley fitting and therefore did not enable quantitative analysis of composition.
The thermal transformation of 1-pxyl (majority phase) and 1-mxyl to a one-dimensional coordination polymer architecture (coordination polymer 2a), consisting of orthogonally packed chains, similar to that of 1-pxyl contrasts with the sole product of heating of 1-tol·tol. The heating of 1-tol·tol, a two-dimensional coordination polymer propagated in one dimension by fused silver-carboxylate tetramers, pre-arranged such that they are co-planar, gives a like product, 2b. This indicates the role of pre-organization of the polymer chains on the polymorph products given, and prompted further investigation on potential inter-conversion between polymorph architectures 2a and 2b (Fig. 10).
3.2.2. Vapour-assisted and mechanochemical transformations
Crystals of 1-tol·tol were dried and exposed to solvent vapour in attempts to facilitate exchange between arene guests, or the inclusion of in the silver carboxylate tetramer. These experiments were followed up (ex situ) by X-ray powder to assess any phase changes.
Crystals of 1-tol·tol exposed to o-xylene vapours gave mixed-phase products of polymorphs 2a and 2b. When exposed to m-xylene, 1-tol·tol lost toluene and was converted to phase 2a, or when exposed to p-xylene, Pawley fitting of the resultant powder pattern indicated the presence of 2a and 2b, along with peaks consistent with 1-pxyl and a further unidentified phase (Fig. S28 ). These vapour-assisted transformations to give the two polymorphs 2a and 2b prompted an investigation into their interconversion. Mechanochemical conversion of 2a into 2b by dry grinding (Fig. S10 ) and by liquid-assisted grinding (LAG) using acetone (Fig. S11 ) was unsuccessful. Similarly, exposure of 2a to toluene vapour resulted in no change in composition. However, exposure of crystals of 2b to alcohol vapour (methanol, ethanol or 2-propanol) for a period of 2 weeks did facilitate a partial transformation to 2a.1 X-ray powder of these samples (ex situ) and Rietveld fitting indicated that after 2 weeks the material comprised approximately 60% two-dimensional polymorph 2b and 40% one-dimensional polymorph 2a. The partial conversion of polymorph 2b to polymorph 2a may suggest that the conversion of 1-tol·tol to 2b by vapour-assisted means may continue on to polymorph 2a. However, a sample of 1-tol·tol gave only phase-pure 2b (Fig. S8 ) when exposed to ethanol vapour for 2 weeks. The tendency of vapour-assisted transformations of materials 1-tol·tol and 2b towards the one-dimensional polymorph 2a may indicate that 2a is thermodynamically the more stable material, but the measurements made are not able to provide full details of the mechanism.2
3.2.3. Arene separation
Separation of isomers of small molecules has been examined for a number of porous materials. Such separations have been demonstrated with zeolites (Bellat et al., 1995), but discrimination between isomers in adsorption has also been reported for MOFs (Alaerts et al., 2008; Gu & Yan, 2010; Bárcia et al., 2011; El Osta et al., 2012; Warren et al., 2014) and crystalline (Lusi & Barbour, 2012, 2013). In the work reported here, it is clear that exposure to different (toluene and xylenes) during synthesis of 1 leads to different structures being formed, depending on the preferred interactions of the arene with the coordination network. Furthermore, exposure to vapours of different xylene isomers leads to different solid-state transformations (e.g. for 1-tol.tol), indicating that there is discrimination between different However, since these observed processes do not involve simple adsorption/desorption of the it is less likely that these materials could be used in their current form for effective separation of xylenes.
4. Conclusions
We have reported a family of one-dimensional silver(I) perfluorocarboxylate coordination polymers constructed from {Ag4(O2C(CF2)2CF3)4(phenazine)2} building blocks linked through additional Ag–O bonds and containing η1-bound including an unusual μ:η1,η1-toluene ligand material 1-tol.tol. All can lose the entrapped and coordinated arene molecules either at ambient temperature or upon mild heating to convert to either a one-dimensional or two-dimensional coordination polymer, 2a and 2b, respectively, which are polymorphs of composition Ag4(O2C(CF2)2CF3)4(phenazine)2. These transformations have been followed by in situ X-ray powder diffraction and TGA. Further exploration of these transformations has been undertaken by examining the exposure of the parent materials and the products to different solvent vapours and in some instances to mechanochemical force. The results, also verified by X-ray powder diffraction, illustrate the potential to harness chemical and structural transformations in the solid state involving labile metal–ligand bonds.
Supporting information
10.1107/S2052252515000147/bi5040sup1.cif
contains datablocks 1-tol.tol, 1-pxyl, 1-mxyl, 2a, 2b, 1-tol-pxyl.tol.pxyl. DOI:XRPD, NMR and TGA data. DOI: 10.1107/S2052252515000147/bi5040sup2.pdf
Data collection: Bruker APEX2 for 1-pxyl. Cell
SAINT v7.60A (Bruker, 2009) for 1-tol.tol, (2a), (2b), 1-tol-pxyl.tol.pxyl; Bruker SAINT for 1-pxyl. Data reduction: SAINT v7.60A (Bruker, 2009) for 1-tol.tol, (2a), (2b), 1-tol-pxyl.tol.pxyl; Bruker SAINT for 1-pxyl; SAINT v7.68A (Bruker, 2009) for 1-mxyl. Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for 1-tol.tol, (2a), (2b); SHELXS97 (Sheldrick, 2008) for 1-pxyl; ShelXT (Sheldrick, 2008) for 1-mxyl; XS (Sheldrick, 2008) for 1-tol-pxyl.tol.pxyl. Program(s) used to refine structure: XL (Sheldrick, 2008) for 1-tol.tol, 1-mxyl, (2a), (2b); SHELXL97 (Sheldrick, 2008) for 1-pxyl; olex2.refine (Bourhis et al., 2013) for 1-tol-pxyl.tol.pxyl. Molecular graphics: Olex2 (Dolomanov et al., 2009) for 1-tol.tol, 1-mxyl, (2a), (2b), 1-tol-pxyl.tol.pxyl; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, and analysis program. J. Appl. Cryst. (2009). 42, 339-341. for 1-pxyl. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for 1-tol.tol, 1-mxyl, (2a), (2b), 1-tol-pxyl.tol.pxyl; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, and analysis program. J. Appl. Cryst. (2009). 42, 339-341. for 1-pxyl.C40H16Ag4F28N4O8·3(C7H8) | Z = 1 |
Mr = 1920.45 | F(000) = 938 |
Triclinic, P1 | Dx = 1.948 Mg m−3 |
a = 10.6531 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2628 (7) Å | Cell parameters from 9937 reflections |
c = 14.4311 (10) Å | θ = 2.4–27.1° |
α = 72.401 (3)° | µ = 1.32 mm−1 |
β = 86.598 (3)° | T = 100 K |
γ = 82.882 (3)° | Plate, yellow |
V = 1637.30 (19) Å3 | 0.41 × 0.14 × 0.11 mm |
Bruker APEX-II CCD diffractometer | 6165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0967 before and 0.0640 after correction. The Ratio of minimum to maximum transmission is 0.8435. The λ/2 correction factor is 0.0015. | h = −13→13 |
Tmin = 0.629, Tmax = 0.746 | k = −14→14 |
25299 measured reflections | l = −18→16 |
7283 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.065 | w = 1/[σ2(Fo2) + (0.065P)2 + 14.5417P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.167 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 2.33 e Å−3 |
7283 reflections | Δρmin = −1.73 e Å−3 |
422 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0027 (6) |
Primary atom site location: structure-invariant direct methods |
C40H16Ag4F28N4O8·3(C7H8) | γ = 82.882 (3)° |
Mr = 1920.45 | V = 1637.30 (19) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.6531 (7) Å | Mo Kα radiation |
b = 11.2628 (7) Å | µ = 1.32 mm−1 |
c = 14.4311 (10) Å | T = 100 K |
α = 72.401 (3)° | 0.41 × 0.14 × 0.11 mm |
β = 86.598 (3)° |
Bruker APEX-II CCD diffractometer | 7283 independent reflections |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0967 before and 0.0640 after correction. The Ratio of minimum to maximum transmission is 0.8435. The λ/2 correction factor is 0.0015. | 6165 reflections with I > 2σ(I) |
Tmin = 0.629, Tmax = 0.746 | Rint = 0.051 |
25299 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.065P)2 + 14.5417P] where P = (Fo2 + 2Fc2)/3 |
7283 reflections | Δρmax = 2.33 e Å−3 |
422 parameters | Δρmin = −1.73 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.96487 (4) | 0.60543 (4) | 0.07877 (3) | 0.02121 (15) | |
Ag2 | 0.74680 (4) | 0.80646 (4) | 0.04403 (4) | 0.02437 (16) | |
N1 | 0.8224 (4) | 0.9992 (5) | 0.0034 (4) | 0.0200 (10) | |
C102 | 0.8218 (5) | 1.0632 (6) | 0.0693 (4) | 0.0205 (12) | |
C105 | 0.9035 (6) | 1.0447 (7) | −0.2535 (5) | 0.0283 (14) | |
H105 | 0.9013 | 1.0027 | −0.3013 | 0.034* | |
C104 | 0.8620 (6) | 0.9905 (6) | −0.1605 (5) | 0.0251 (13) | |
H104 | 0.8322 | 0.9105 | −0.1441 | 0.030* | |
C101 | 0.7755 (6) | 1.0117 (6) | 0.1668 (5) | 0.0244 (13) | |
H101 | 0.7454 | 0.9317 | 0.1860 | 0.029* | |
C100 | 0.7748 (6) | 1.0778 (7) | 0.2320 (5) | 0.0291 (14) | |
H100 | 0.7460 | 1.0424 | 0.2970 | 0.035* | |
C103 | 0.8629 (5) | 1.0530 (6) | −0.0875 (4) | 0.0203 (12) | |
N2 | 1.0849 (5) | 0.7661 (5) | 0.0471 (4) | 0.0206 (10) | |
C204 | 1.1364 (6) | 0.7499 (6) | −0.1133 (5) | 0.0236 (13) | |
H204 | 1.1065 | 0.6699 | −0.0965 | 0.028* | |
C203 | 1.1322 (5) | 0.8165 (6) | −0.0433 (4) | 0.0195 (12) | |
C205 | 1.1833 (6) | 0.8016 (6) | −0.2040 (5) | 0.0266 (14) | |
H205 | 1.1883 | 0.7558 | −0.2498 | 0.032* | |
C202 | 1.0901 (5) | 0.8272 (6) | 0.1140 (4) | 0.0192 (11) | |
C200 | 1.0501 (7) | 0.8366 (7) | 0.2788 (5) | 0.0297 (14) | |
H200 | 1.0206 | 0.8006 | 0.3434 | 0.036* | |
C201 | 1.0471 (6) | 0.7732 (6) | 0.2121 (5) | 0.0253 (13) | |
H201 | 1.0166 | 0.6934 | 0.2307 | 0.030* | |
O1A | 0.7244 (5) | 0.6925 (4) | 0.2018 (4) | 0.0321 (11) | |
O1B | 0.8478 (4) | 0.5114 (4) | 0.2112 (4) | 0.0299 (10) | |
C2 | 0.712 (3) | 0.535 (3) | 0.347 (2) | 0.029 (8)* | 0.469 (9) |
F2A | 0.5919 (11) | 0.5841 (12) | 0.3575 (8) | 0.034 (3)* | 0.469 (9) |
F2B | 0.6988 (11) | 0.3963 (10) | 0.3566 (8) | 0.038 (3)* | 0.469 (9) |
C3 | 0.7956 (14) | 0.5263 (16) | 0.4253 (10) | 0.025 (3)* | 0.469 (9) |
F3B | 0.8276 (12) | 0.6440 (11) | 0.4043 (8) | 0.054 (3)* | 0.469 (9) |
F3A | 0.9053 (11) | 0.4558 (11) | 0.4250 (9) | 0.058 (3)* | 0.469 (9) |
C4 | 0.7439 (18) | 0.483 (2) | 0.5304 (14) | 0.036 (5)* | 0.469 (9) |
F4A | 0.6241 (11) | 0.5183 (13) | 0.5429 (8) | 0.051 (3)* | 0.469 (9) |
F4B | 0.7965 (15) | 0.4043 (15) | 0.5559 (11) | 0.076 (4)* | 0.469 (9) |
F4C | 0.7910 (13) | 0.5866 (13) | 0.5765 (9) | 0.066 (4)* | 0.469 (9) |
C2' | 0.711 (2) | 0.517 (2) | 0.3444 (16) | 0.022 (6)* | 0.531 (9) |
F2Y | 0.5894 (9) | 0.5569 (10) | 0.3481 (7) | 0.027 (2)* | 0.531 (9) |
F2Z | 0.7321 (10) | 0.4027 (9) | 0.3756 (7) | 0.035 (2)* | 0.531 (9) |
C3' | 0.7718 (15) | 0.5810 (16) | 0.4179 (11) | 0.034 (3)* | 0.531 (9) |
F3Z | 0.9006 (10) | 0.5649 (10) | 0.4046 (7) | 0.053 (3)* | 0.531 (9) |
F3Y | 0.7430 (11) | 0.7029 (10) | 0.3976 (8) | 0.059 (3)* | 0.531 (9) |
C4' | 0.7440 (15) | 0.5256 (18) | 0.5249 (12) | 0.034 (4)* | 0.531 (9) |
F4Z | 0.8298 (10) | 0.4907 (10) | 0.5895 (8) | 0.058 (3)* | 0.531 (9) |
F4Y | 0.7017 (13) | 0.3835 (12) | 0.5536 (9) | 0.073 (4)* | 0.531 (9) |
F4X | 0.6399 (10) | 0.5767 (12) | 0.5400 (8) | 0.056 (3)* | 0.531 (9) |
O11A | 0.7273 (4) | 0.7257 (4) | −0.0845 (4) | 0.0300 (10) | |
O11B | 0.8785 (4) | 0.5631 (4) | −0.0531 (3) | 0.0264 (10) | |
C11 | 0.7889 (6) | 0.6323 (6) | −0.0985 (4) | 0.0203 (12)* | |
C12 | 0.7486 (6) | 0.6000 (6) | −0.1894 (5) | 0.0241 (13)* | |
F12A | 0.7128 (4) | 0.7053 (4) | −0.2615 (3) | 0.0358 (9)* | |
F12B | 0.8472 (4) | 0.5373 (4) | −0.2249 (3) | 0.0315 (9)* | |
C13 | 0.6392 (7) | 0.5154 (6) | −0.1695 (5) | 0.0289 (14)* | |
F13B | 0.6670 (4) | 0.4186 (4) | −0.0883 (3) | 0.0394 (10)* | |
C14 | 0.5059 (7) | 0.5761 (7) | −0.1537 (5) | 0.0351 (16)* | |
F13A | 0.6348 (5) | 0.4671 (5) | −0.2435 (4) | 0.0537 (13)* | |
F14A | 0.5007 (5) | 0.6254 (5) | −0.0826 (4) | 0.0532 (12)* | |
F14B | 0.4279 (5) | 0.4871 (5) | −0.1324 (4) | 0.0518 (12)* | |
F14C | 0.4677 (7) | 0.6596 (6) | −0.2356 (5) | 0.0776 (18)* | |
C51 | 0.4944 (6) | 0.8722 (7) | 0.0177 (6) | 0.0344 (16) | |
H51 | 0.4907 | 0.7850 | 0.0295 | 0.041* | |
C50 | 0.5190 (6) | 0.9462 (7) | −0.0749 (6) | 0.0329 (16) | |
H50 | 0.5321 | 0.9091 | −0.1262 | 0.040* | |
C52 | 0.4748 (6) | 0.9244 (7) | 0.0954 (6) | 0.0331 (15) | |
H52 | 0.4580 | 0.8737 | 0.1596 | 0.040* | 0.5 |
C53 | 0.4442 (14) | 0.8510 (17) | 0.1951 (14) | 0.050 (5) | 0.5 |
H53A | 0.4062 | 0.7766 | 0.1938 | 0.076* | 0.5 |
H53B | 0.3841 | 0.9023 | 0.2253 | 0.076* | 0.5 |
H53C | 0.5217 | 0.8251 | 0.2328 | 0.076* | 0.5 |
C60 | 0.4763 (11) | 0.9212 (13) | 0.4467 (8) | 0.077 (4) | |
H60 | 0.4593 | 0.8665 | 0.4113 | 0.092* | 0.5 |
C61 | 0.4998 (12) | 0.8755 (12) | 0.5455 (8) | 0.079 (4) | |
H61 | 0.5006 | 0.7881 | 0.5768 | 0.094* | |
C62 | 0.5216 (12) | 0.9514 (12) | 0.5993 (8) | 0.075 (4) | |
H62 | 0.5352 | 0.9177 | 0.6672 | 0.091* | |
C63 | 0.455 (3) | 0.847 (3) | 0.3874 (19) | 0.097 (9) | 0.5 |
H63A | 0.3803 | 0.8853 | 0.3481 | 0.146* | 0.5 |
H63B | 0.4410 | 0.7629 | 0.4283 | 0.146* | 0.5 |
H63C | 0.5289 | 0.8423 | 0.3444 | 0.146* | 0.5 |
C70 | −0.1021 (16) | 0.086 (2) | 0.4706 (9) | 0.100 (6) | |
H70 | −0.1712 | 0.1490 | 0.4492 | 0.120* | |
C71 | 0.024 (2) | 0.123 (2) | 0.4629 (10) | 0.123 (8) | |
H71 | 0.0352 | 0.2095 | 0.4369 | 0.148* | 0.5 |
C72 | 0.031 (3) | 0.235 (3) | 0.4291 (18) | 0.089 (9) | 0.5 |
H72A | −0.0432 | 0.2808 | 0.4512 | 0.133* | 0.5 |
H72B | 0.0321 | 0.2572 | 0.3580 | 0.133* | 0.5 |
H72C | 0.1080 | 0.2557 | 0.4508 | 0.133* | 0.5 |
C73 | 0.1260 (19) | 0.040 (2) | 0.4912 (11) | 0.129 (8) | |
H73 | 0.2091 | 0.0640 | 0.4858 | 0.154* | |
C1 | 0.7663 (6) | 0.5824 (6) | 0.2403 (5) | 0.0241 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0169 (2) | 0.0206 (2) | 0.0284 (3) | −0.00052 (17) | −0.00182 (17) | −0.01100 (19) |
Ag2 | 0.0220 (3) | 0.0193 (3) | 0.0320 (3) | −0.00102 (18) | −0.00279 (19) | −0.00799 (19) |
N1 | 0.013 (2) | 0.021 (2) | 0.025 (3) | 0.0025 (18) | −0.0050 (19) | −0.007 (2) |
C102 | 0.010 (2) | 0.025 (3) | 0.027 (3) | 0.005 (2) | −0.007 (2) | −0.009 (2) |
C105 | 0.029 (3) | 0.033 (4) | 0.029 (3) | −0.002 (3) | −0.001 (3) | −0.018 (3) |
C104 | 0.019 (3) | 0.030 (3) | 0.031 (3) | −0.005 (2) | −0.002 (2) | −0.015 (3) |
C101 | 0.021 (3) | 0.026 (3) | 0.027 (3) | −0.004 (2) | 0.000 (2) | −0.008 (3) |
C100 | 0.024 (3) | 0.038 (4) | 0.025 (3) | −0.001 (3) | 0.001 (3) | −0.009 (3) |
C103 | 0.010 (3) | 0.021 (3) | 0.029 (3) | 0.005 (2) | −0.007 (2) | −0.008 (2) |
N2 | 0.017 (2) | 0.019 (2) | 0.027 (3) | 0.0021 (19) | −0.004 (2) | −0.010 (2) |
C204 | 0.019 (3) | 0.017 (3) | 0.037 (4) | 0.001 (2) | −0.006 (3) | −0.011 (3) |
C203 | 0.014 (3) | 0.021 (3) | 0.024 (3) | 0.005 (2) | −0.009 (2) | −0.009 (2) |
C205 | 0.026 (3) | 0.034 (4) | 0.023 (3) | 0.005 (3) | −0.003 (2) | −0.018 (3) |
C202 | 0.012 (3) | 0.022 (3) | 0.024 (3) | 0.004 (2) | −0.005 (2) | −0.009 (2) |
C200 | 0.032 (4) | 0.033 (4) | 0.026 (3) | −0.005 (3) | 0.001 (3) | −0.010 (3) |
C201 | 0.023 (3) | 0.025 (3) | 0.028 (3) | −0.003 (2) | −0.003 (2) | −0.007 (3) |
O1A | 0.033 (3) | 0.030 (2) | 0.032 (3) | 0.003 (2) | −0.003 (2) | −0.008 (2) |
O1B | 0.024 (2) | 0.028 (2) | 0.035 (3) | −0.0007 (18) | 0.0032 (19) | −0.007 (2) |
O11A | 0.026 (2) | 0.025 (2) | 0.043 (3) | 0.0048 (18) | −0.010 (2) | −0.016 (2) |
O11B | 0.023 (2) | 0.029 (2) | 0.031 (2) | 0.0119 (18) | −0.0122 (18) | −0.0182 (19) |
C51 | 0.020 (3) | 0.029 (3) | 0.058 (5) | 0.007 (3) | −0.013 (3) | −0.019 (3) |
C50 | 0.017 (3) | 0.045 (4) | 0.043 (4) | 0.009 (3) | −0.012 (3) | −0.024 (3) |
C52 | 0.015 (3) | 0.040 (4) | 0.044 (4) | 0.005 (3) | −0.003 (3) | −0.014 (3) |
C53 | 0.019 (7) | 0.048 (9) | 0.066 (11) | 0.011 (6) | 0.005 (7) | 0.004 (8) |
C60 | 0.067 (7) | 0.095 (9) | 0.059 (7) | 0.030 (6) | −0.005 (5) | −0.025 (6) |
C61 | 0.092 (9) | 0.073 (8) | 0.051 (6) | 0.024 (7) | 0.004 (6) | −0.003 (6) |
C62 | 0.077 (8) | 0.087 (8) | 0.042 (5) | 0.023 (6) | −0.001 (5) | −0.002 (6) |
C63 | 0.14 (3) | 0.088 (19) | 0.070 (16) | 0.019 (18) | −0.004 (16) | −0.038 (14) |
C70 | 0.095 (11) | 0.156 (17) | 0.050 (7) | 0.051 (11) | −0.027 (7) | −0.052 (9) |
C71 | 0.19 (2) | 0.130 (15) | 0.050 (8) | 0.052 (15) | −0.036 (11) | −0.053 (9) |
C72 | 0.076 (17) | 0.13 (3) | 0.051 (14) | 0.006 (18) | 0.000 (12) | −0.028 (16) |
C73 | 0.152 (17) | 0.18 (2) | 0.053 (8) | 0.066 (15) | −0.042 (9) | −0.063 (11) |
Ag1—Ag2 | 2.9871 (6) | C4—F4C | 1.65 (3) |
Ag1—N2 | 2.263 (5) | C2'—F2Y | 1.33 (2) |
Ag1—O1B | 2.269 (5) | C2'—F2Z | 1.22 (2) |
Ag1—O11B | 2.358 (4) | C2'—C3' | 1.65 (3) |
Ag1—O11Bi | 2.467 (4) | C2'—C1 | 1.57 (2) |
Ag2—N1 | 2.305 (5) | C3'—F3Z | 1.372 (19) |
Ag2—O1A | 2.265 (5) | C3'—F3Y | 1.31 (2) |
Ag2—O11A | 2.329 (5) | C3'—C4' | 1.51 (2) |
N1—C102 | 1.354 (8) | C4'—F4Z | 1.284 (19) |
N1—C103 | 1.339 (8) | C4'—F4Y | 1.64 (2) |
C102—C101 | 1.433 (9) | C4'—F4X | 1.224 (19) |
C102—C203ii | 1.432 (9) | O11A—C11 | 1.233 (7) |
C105—C104 | 1.366 (10) | O11B—Ag1i | 2.467 (4) |
C105—C200ii | 1.417 (10) | O11B—C11 | 1.238 (7) |
C104—C103 | 1.434 (9) | C11—C12 | 1.559 (8) |
C101—C100 | 1.364 (9) | C12—F12A | 1.351 (7) |
C100—C205ii | 1.416 (10) | C12—F12B | 1.354 (7) |
C103—C202ii | 1.432 (8) | C12—C13 | 1.555 (9) |
N2—C203 | 1.350 (8) | C13—F13B | 1.355 (8) |
N2—C202 | 1.352 (8) | C13—C14 | 1.533 (10) |
C204—C203 | 1.426 (8) | C13—F13A | 1.343 (8) |
C204—C205 | 1.354 (9) | C14—F14A | 1.302 (9) |
C203—C102ii | 1.432 (9) | C14—F14B | 1.334 (9) |
C205—C100ii | 1.416 (10) | C14—F14C | 1.318 (10) |
C202—C103ii | 1.432 (8) | C51—C50 | 1.374 (11) |
C202—C201 | 1.433 (9) | C51—C52 | 1.409 (10) |
C200—C105ii | 1.417 (10) | C50—C52iii | 1.406 (11) |
C200—C201 | 1.365 (9) | C52—C50iii | 1.406 (11) |
O1A—C1 | 1.233 (8) | C52—C53 | 1.467 (19) |
O1B—C1 | 1.248 (8) | C60—C61 | 1.389 (16) |
C2—F2A | 1.35 (3) | C60—C62iv | 1.389 (18) |
C2—F2B | 1.55 (3) | C60—C63 | 1.41 (3) |
C2—C3 | 1.46 (3) | C61—C62 | 1.364 (18) |
C2—C1 | 1.56 (3) | C62—C60iv | 1.389 (18) |
C3—F3B | 1.35 (2) | C70—C71 | 1.44 (3) |
C3—F3A | 1.33 (2) | C70—C73v | 1.41 (3) |
C3—C4 | 1.54 (2) | C71—C72 | 1.21 (3) |
C4—F4A | 1.31 (2) | C71—C73 | 1.34 (2) |
C4—F4B | 0.97 (2) | C73—C70v | 1.41 (3) |
N2—Ag1—Ag2 | 84.65 (12) | F2Y—C2'—C1 | 108.6 (15) |
N2—Ag1—O1B | 132.37 (18) | F2Z—C2'—F2Y | 112.5 (18) |
N2—Ag1—O11Bi | 101.06 (17) | F2Z—C2'—C3' | 109.6 (16) |
N2—Ag1—O11B | 118.48 (18) | F2Z—C2'—C1 | 117.6 (17) |
O1B—Ag1—Ag2 | 83.74 (12) | C1—C2'—C3' | 105.2 (14) |
O1B—Ag1—O11B | 105.39 (17) | F3Z—C3'—C2' | 106.3 (13) |
O1B—Ag1—O11Bi | 105.18 (16) | F3Z—C3'—C4' | 107.1 (12) |
O11B—Ag1—Ag2 | 82.26 (10) | F3Y—C3'—C2' | 114.9 (14) |
O11Bi—Ag1—Ag2 | 160.24 (10) | F3Y—C3'—F3Z | 104.7 (13) |
O11B—Ag1—O11Bi | 78.39 (15) | F3Y—C3'—C4' | 106.8 (13) |
N1—Ag2—Ag1 | 109.23 (12) | C4'—C3'—C2' | 116.1 (14) |
N1—Ag2—O11A | 115.84 (18) | C3'—C4'—F4Y | 113.7 (13) |
O1A—Ag2—Ag1 | 75.06 (12) | F4Z—C4'—C3' | 123.5 (14) |
O1A—Ag2—N1 | 120.70 (18) | F4Z—C4'—F4Y | 91.6 (12) |
O1A—Ag2—O11A | 122.75 (18) | F4X—C4'—C3' | 105.5 (14) |
O11A—Ag2—Ag1 | 79.12 (11) | F4X—C4'—F4Z | 121.8 (15) |
C102—N1—Ag2 | 121.1 (4) | F4X—C4'—F4Y | 96.0 (13) |
C103—N1—Ag2 | 120.4 (4) | C11—O11A—Ag2 | 126.9 (4) |
C103—N1—C102 | 118.4 (5) | Ag1—O11B—Ag1i | 101.61 (15) |
N1—C102—C101 | 120.7 (6) | C11—O11B—Ag1i | 136.1 (4) |
N1—C102—C203ii | 120.8 (6) | C11—O11B—Ag1 | 121.2 (4) |
C203ii—C102—C101 | 118.5 (5) | O11A—C11—O11B | 130.0 (6) |
C104—C105—C200ii | 120.3 (6) | O11A—C11—C12 | 114.2 (5) |
C105—C104—C103 | 120.8 (6) | O11B—C11—C12 | 115.8 (5) |
C100—C101—C102 | 119.9 (6) | F12A—C12—C11 | 110.8 (5) |
C101—C100—C205ii | 120.7 (6) | F12A—C12—F12B | 107.0 (5) |
N1—C103—C104 | 120.5 (6) | F12A—C12—C13 | 107.8 (5) |
N1—C103—C202ii | 121.1 (5) | F12B—C12—C11 | 110.4 (5) |
C202ii—C103—C104 | 118.4 (6) | F12B—C12—C13 | 106.0 (5) |
C203—N2—Ag1 | 120.9 (4) | C13—C12—C11 | 114.4 (5) |
C203—N2—C202 | 118.6 (5) | F13B—C13—C12 | 107.8 (5) |
C202—N2—Ag1 | 119.4 (4) | F13B—C13—C14 | 107.1 (6) |
C205—C204—C203 | 119.5 (6) | C14—C13—C12 | 117.3 (6) |
N2—C203—C102ii | 120.4 (5) | F13A—C13—C12 | 109.1 (5) |
N2—C203—C204 | 119.9 (6) | F13A—C13—F13B | 107.6 (6) |
C204—C203—C102ii | 119.7 (6) | F13A—C13—C14 | 107.7 (6) |
C204—C205—C100ii | 121.6 (6) | F14A—C14—C13 | 112.2 (6) |
C103ii—C202—C201 | 119.3 (5) | F14A—C14—F14B | 108.6 (6) |
N2—C202—C103ii | 120.5 (5) | F14A—C14—F14C | 111.5 (7) |
N2—C202—C201 | 120.2 (5) | F14B—C14—C13 | 107.9 (6) |
C201—C200—C105ii | 121.3 (6) | F14C—C14—C13 | 109.3 (6) |
C200—C201—C202 | 119.9 (6) | F14C—C14—F14B | 107.2 (7) |
C1—O1A—Ag2 | 127.5 (4) | C50—C51—C52 | 120.6 (7) |
C1—O1B—Ag1 | 115.7 (4) | C51—C50—C52iii | 121.4 (7) |
F2A—C2—F2B | 103.4 (18) | C51—C52—C53 | 123.1 (10) |
F2A—C2—C3 | 115 (2) | C50iii—C52—C51 | 118.0 (7) |
F2A—C2—C1 | 113.3 (19) | C50iii—C52—C53 | 118.9 (10) |
F2B—C2—C1 | 101.8 (16) | C61—C60—C62iv | 118.6 (13) |
C3—C2—F2B | 103.5 (18) | C61—C60—C63 | 124.9 (17) |
C3—C2—C1 | 117.3 (19) | C62iv—C60—C63 | 116.4 (16) |
C2—C3—C4 | 118.3 (16) | C62—C61—C60 | 122.5 (12) |
F3B—C3—C2 | 103.1 (16) | C61—C62—C60iv | 119.0 (11) |
F3B—C3—C4 | 110.2 (14) | C73v—C70—C71 | 122.1 (16) |
F3A—C3—C2 | 114.9 (16) | C72—C71—C70 | 115 (2) |
F3A—C3—F3B | 104.3 (12) | C72—C71—C73 | 123 (3) |
F3A—C3—C4 | 105.2 (14) | C73—C71—C70 | 122 (2) |
C3—C4—F4C | 101.6 (14) | C71—C73—C70v | 116 (2) |
F4A—C4—C3 | 115.5 (16) | O1A—C1—O1B | 130.9 (6) |
F4A—C4—F4C | 92.9 (15) | O1A—C1—C2 | 110.5 (11) |
F4B—C4—C3 | 101.2 (19) | O1A—C1—C2' | 116.8 (10) |
F4B—C4—F4A | 133 (2) | O1B—C1—C2 | 118.3 (11) |
F4B—C4—F4C | 108.0 (19) | O1B—C1—C2' | 112.3 (9) |
F2Y—C2'—C3' | 102.0 (16) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z; (iv) −x+1, −y+2, −z+1; (v) −x, −y, −z+1. |
C20H8Ag2F14N2O4·C8H10 | F(000) = 1808 |
Mr = 928.18 | Dx = 1.992 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1146 (3) Å | Cell parameters from 6610 reflections |
b = 22.7107 (8) Å | θ = 2.7–25.7° |
c = 13.2046 (4) Å | µ = 1.39 mm−1 |
β = 111.785 (2)° | T = 100 K |
V = 3095.07 (17) Å3 | Plate, yellow |
Z = 4 | 0.25 × 0.06 × 0.02 mm |
Bruker APEX-II CCD diffractometer | 7075 independent reflections |
Radiation source: fine-focus sealed tube | 5377 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan SADABS | h = −14→14 |
Tmin = 0.723, Tmax = 0.973 | k = −29→28 |
26785 measured reflections | l = −11→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3 |
7075 reflections | (Δ/σ)max = 0.001 |
453 parameters | Δρmax = 1.07 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
C20H8Ag2F14N2O4·C8H10 | V = 3095.07 (17) Å3 |
Mr = 928.18 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1146 (3) Å | µ = 1.39 mm−1 |
b = 22.7107 (8) Å | T = 100 K |
c = 13.2046 (4) Å | 0.25 × 0.06 × 0.02 mm |
β = 111.785 (2)° |
Bruker APEX-II CCD diffractometer | 7075 independent reflections |
Absorption correction: multi-scan SADABS | 5377 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 0.973 | Rint = 0.051 |
26785 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.07 e Å−3 |
7075 reflections | Δρmin = −1.27 e Å−3 |
453 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.66614 (3) | 0.116999 (15) | 0.90513 (3) | 0.02674 (11) | |
Ag2 | 0.88891 (3) | 0.042561 (14) | 1.04743 (3) | 0.02537 (11) | |
O1A | 0.9705 (3) | 0.13297 (14) | 1.1068 (3) | 0.0312 (7) | |
O1B | 0.7739 (3) | 0.17609 (14) | 1.0506 (2) | 0.0333 (7) | |
C1 | 0.8907 (4) | 0.17241 (19) | 1.1041 (3) | 0.0254 (9) | |
C2 | 0.9517 (4) | 0.2237 (2) | 1.1856 (3) | 0.0280 (9) | |
F2A | 1.0445 (3) | 0.25025 (14) | 1.1596 (2) | 0.0566 (9) | |
F2B | 0.8624 (3) | 0.26464 (15) | 1.1808 (3) | 0.0673 (11) | |
C3 | 1.0148 (5) | 0.2030 (2) | 1.3050 (4) | 0.0399 (12) | |
F3A | 0.9366 (4) | 0.16496 (18) | 1.3254 (3) | 0.0820 (14) | |
F3B | 1.1255 (3) | 0.17528 (16) | 1.3181 (2) | 0.0643 (10) | |
C4 | 1.0483 (5) | 0.2520 (3) | 1.3911 (4) | 0.0450 (13) | |
F4A | 1.1135 (3) | 0.29454 (15) | 1.3676 (2) | 0.0552 (8) | |
F4B | 0.9453 (3) | 0.2730 (2) | 1.4016 (3) | 0.1092 (19) | |
F4C | 1.1243 (4) | 0.23001 (18) | 1.4866 (3) | 0.0702 (11) | |
O11A | 0.9204 (3) | 0.02159 (14) | 0.8838 (2) | 0.0320 (7) | |
O11B | 0.7465 (3) | 0.07380 (15) | 0.7830 (2) | 0.0346 (8) | |
C11 | 0.8356 (4) | 0.03843 (19) | 0.7971 (3) | 0.0262 (9) | |
C12 | 0.8338 (5) | 0.0089 (2) | 0.6899 (4) | 0.0371 (11) | |
F12A | 0.9267 (3) | −0.03270 (14) | 0.7111 (2) | 0.0520 (8) | |
F12B | 0.7176 (3) | −0.01910 (18) | 0.6432 (3) | 0.0690 (10) | |
C13 | 0.8465 (5) | 0.0484 (3) | 0.6010 (4) | 0.0470 (14) | |
F13A | 0.8369 (4) | 0.01506 (17) | 0.5127 (2) | 0.0663 (10) | |
F13B | 0.7516 (4) | 0.08904 (19) | 0.5703 (3) | 0.0757 (12) | |
C14 | 0.9729 (7) | 0.0816 (3) | 0.6332 (5) | 0.0587 (16) | |
F14A | 0.9707 (5) | 0.11881 (19) | 0.5539 (4) | 0.0948 (15) | |
F14B | 0.9938 (4) | 0.11178 (16) | 0.7241 (3) | 0.0689 (11) | |
F14C | 1.0738 (4) | 0.04542 (19) | 0.6485 (4) | 0.0802 (12) | |
N1 | 0.7412 (3) | −0.01523 (16) | 1.0797 (3) | 0.0232 (7) | |
C105 | 0.7189 (4) | −0.1414 (2) | 0.9045 (3) | 0.0281 (9) | |
H105 | 0.7646 | −0.1584 | 0.8635 | 0.034* | |
C102 | 0.6808 (4) | 0.00515 (18) | 1.1442 (3) | 0.0219 (8) | |
C100 | 0.6683 (4) | 0.0776 (2) | 1.2734 (4) | 0.0304 (10) | |
H100 | 0.7008 | 0.1119 | 1.3161 | 0.036* | |
C104 | 0.7626 (4) | −0.0912 (2) | 0.9600 (3) | 0.0260 (9) | |
H104 | 0.8374 | −0.0724 | 0.9564 | 0.031* | |
C103 | 0.6972 (4) | −0.06603 (18) | 1.0240 (3) | 0.0223 (8) | |
C101 | 0.7285 (4) | 0.0565 (2) | 1.2082 (4) | 0.0282 (9) | |
H101 | 0.8027 | 0.0761 | 1.2054 | 0.034* | |
N2 | 0.4799 (3) | 0.07248 (15) | 0.9109 (3) | 0.0223 (7) | |
C201 | 0.4610 (4) | 0.1466 (2) | 1.0338 (3) | 0.0269 (9) | |
H201 | 0.5368 | 0.1657 | 1.0334 | 0.032* | |
C203 | 0.4313 (4) | 0.02373 (18) | 0.8511 (3) | 0.0214 (8) | |
C204 | 0.4916 (4) | 0.0001 (2) | 0.7819 (3) | 0.0261 (9) | |
H204 | 0.5662 | 0.0187 | 0.7778 | 0.031* | |
C202 | 0.4167 (3) | 0.09443 (18) | 0.9719 (3) | 0.0206 (8) | |
C200 | 0.3953 (4) | 0.16938 (19) | 1.0938 (3) | 0.0254 (9) | |
H200 | 0.4258 | 0.2043 | 1.1349 | 0.031* | |
C205 | 0.4426 (4) | −0.0489 (2) | 0.7218 (4) | 0.0309 (10) | |
H205 | 0.4834 | −0.0641 | 0.6756 | 0.037* | |
C56 | 0.5642 (7) | 0.2873 (3) | 0.9283 (5) | 0.0647 (17) | |
H56A | 0.6585 | 0.2836 | 0.9639 | 0.097* | |
H56B | 0.5239 | 0.2802 | 0.9818 | 0.097* | |
H56C | 0.5423 | 0.3270 | 0.8981 | 0.097* | |
C57 | 0.3694 (8) | 0.1162 (3) | 0.5768 (5) | 0.079 (2) | |
H57A | 0.3040 | 0.0912 | 0.5888 | 0.119* | |
H57B | 0.4411 | 0.0917 | 0.5750 | 0.119* | |
H57C | 0.3303 | 0.1371 | 0.5073 | 0.119* | |
C53 | 0.3413 (5) | 0.1845 (3) | 0.7168 (4) | 0.0461 (14) | |
H53 | 0.2527 | 0.1733 | 0.6925 | 0.055* | |
C50 | 0.5950 (4) | 0.2180 (2) | 0.7895 (4) | 0.0378 (12) | |
H50 | 0.6837 | 0.2292 | 0.8153 | 0.045* | |
C51 | 0.5496 (5) | 0.1783 (2) | 0.7064 (4) | 0.0418 (13) | |
H51 | 0.6067 | 0.1627 | 0.6746 | 0.050* | |
C52 | 0.4194 (5) | 0.1599 (2) | 0.6673 (4) | 0.0436 (13) | |
C54 | 0.3878 (5) | 0.2245 (2) | 0.7992 (4) | 0.0412 (12) | |
H54 | 0.3310 | 0.2402 | 0.8312 | 0.049* | |
C55 | 0.5146 (5) | 0.2425 (2) | 0.8371 (4) | 0.0386 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01975 (16) | 0.0317 (2) | 0.02876 (19) | −0.00232 (12) | 0.00900 (13) | −0.00283 (14) |
Ag2 | 0.02144 (16) | 0.0269 (2) | 0.03035 (19) | −0.00039 (12) | 0.01263 (13) | −0.00120 (13) |
O1A | 0.0271 (15) | 0.0278 (17) | 0.0384 (18) | −0.0031 (13) | 0.0119 (13) | −0.0036 (14) |
O1B | 0.0240 (15) | 0.0379 (19) | 0.0324 (17) | −0.0014 (13) | 0.0041 (13) | −0.0057 (14) |
C1 | 0.028 (2) | 0.025 (2) | 0.026 (2) | −0.0055 (17) | 0.0128 (17) | −0.0022 (17) |
C2 | 0.0241 (19) | 0.030 (3) | 0.030 (2) | −0.0054 (17) | 0.0103 (17) | −0.0063 (19) |
F2A | 0.079 (2) | 0.059 (2) | 0.0423 (17) | −0.0437 (18) | 0.0343 (16) | −0.0155 (15) |
F2B | 0.0506 (18) | 0.048 (2) | 0.071 (2) | 0.0188 (15) | −0.0143 (16) | −0.0293 (17) |
C3 | 0.042 (3) | 0.051 (3) | 0.031 (3) | −0.019 (2) | 0.020 (2) | −0.009 (2) |
F3A | 0.114 (3) | 0.097 (3) | 0.0415 (19) | −0.072 (3) | 0.037 (2) | −0.0137 (19) |
F3B | 0.061 (2) | 0.063 (2) | 0.0461 (19) | 0.0202 (17) | −0.0062 (16) | −0.0088 (16) |
C4 | 0.040 (3) | 0.063 (4) | 0.032 (3) | −0.006 (3) | 0.013 (2) | −0.012 (3) |
F4A | 0.062 (2) | 0.055 (2) | 0.0439 (18) | −0.0191 (17) | 0.0132 (15) | −0.0168 (15) |
F4B | 0.043 (2) | 0.193 (5) | 0.092 (3) | −0.006 (3) | 0.0267 (19) | −0.097 (3) |
F4C | 0.080 (2) | 0.089 (3) | 0.0318 (18) | −0.013 (2) | 0.0094 (16) | −0.0063 (18) |
O11A | 0.0314 (15) | 0.0378 (19) | 0.0285 (17) | 0.0108 (14) | 0.0130 (13) | 0.0053 (14) |
O11B | 0.0261 (15) | 0.045 (2) | 0.0360 (18) | 0.0120 (14) | 0.0157 (13) | 0.0032 (15) |
C11 | 0.027 (2) | 0.029 (2) | 0.027 (2) | −0.0027 (17) | 0.0158 (17) | 0.0003 (18) |
C12 | 0.036 (2) | 0.044 (3) | 0.035 (3) | 0.004 (2) | 0.018 (2) | −0.001 (2) |
F12A | 0.074 (2) | 0.049 (2) | 0.0410 (17) | 0.0284 (16) | 0.0298 (16) | 0.0044 (14) |
F12B | 0.064 (2) | 0.090 (3) | 0.052 (2) | −0.028 (2) | 0.0206 (17) | −0.034 (2) |
C13 | 0.050 (3) | 0.057 (4) | 0.038 (3) | 0.021 (3) | 0.022 (2) | 0.004 (3) |
F13A | 0.085 (2) | 0.082 (3) | 0.0302 (17) | 0.007 (2) | 0.0192 (16) | −0.0108 (17) |
F13B | 0.080 (2) | 0.103 (3) | 0.051 (2) | 0.055 (2) | 0.0321 (18) | 0.036 (2) |
C14 | 0.075 (4) | 0.054 (4) | 0.055 (4) | −0.005 (3) | 0.033 (3) | 0.011 (3) |
F14A | 0.128 (4) | 0.087 (3) | 0.091 (3) | −0.008 (3) | 0.066 (3) | 0.033 (2) |
F14B | 0.097 (3) | 0.059 (2) | 0.066 (2) | −0.036 (2) | 0.047 (2) | −0.0163 (18) |
F14C | 0.052 (2) | 0.094 (3) | 0.102 (3) | 0.007 (2) | 0.038 (2) | 0.009 (2) |
N1 | 0.0206 (15) | 0.027 (2) | 0.0242 (18) | 0.0012 (14) | 0.0104 (13) | 0.0018 (15) |
C105 | 0.027 (2) | 0.032 (3) | 0.028 (2) | 0.0035 (18) | 0.0144 (17) | 0.0001 (19) |
C102 | 0.0213 (18) | 0.022 (2) | 0.022 (2) | 0.0004 (16) | 0.0075 (15) | 0.0023 (16) |
C100 | 0.034 (2) | 0.028 (3) | 0.030 (2) | −0.0008 (18) | 0.0120 (18) | −0.0046 (19) |
C104 | 0.0195 (18) | 0.034 (3) | 0.027 (2) | 0.0014 (17) | 0.0122 (16) | 0.0028 (19) |
C103 | 0.0178 (17) | 0.024 (2) | 0.024 (2) | 0.0002 (15) | 0.0060 (15) | 0.0027 (17) |
C101 | 0.027 (2) | 0.028 (2) | 0.031 (2) | −0.0047 (18) | 0.0122 (17) | −0.0032 (18) |
N2 | 0.0192 (15) | 0.026 (2) | 0.0221 (17) | 0.0010 (13) | 0.0078 (13) | 0.0001 (14) |
C201 | 0.0235 (19) | 0.031 (2) | 0.028 (2) | −0.0028 (17) | 0.0110 (17) | −0.0020 (18) |
C203 | 0.0208 (18) | 0.026 (2) | 0.0183 (19) | 0.0023 (16) | 0.0078 (15) | 0.0018 (16) |
C204 | 0.0251 (19) | 0.031 (3) | 0.028 (2) | −0.0015 (17) | 0.0166 (17) | −0.0009 (18) |
C202 | 0.0186 (17) | 0.020 (2) | 0.022 (2) | 0.0025 (15) | 0.0052 (14) | 0.0040 (16) |
C200 | 0.026 (2) | 0.024 (2) | 0.025 (2) | −0.0006 (16) | 0.0087 (16) | −0.0040 (17) |
C205 | 0.033 (2) | 0.036 (3) | 0.028 (2) | 0.0001 (19) | 0.0152 (18) | −0.0052 (19) |
C56 | 0.097 (5) | 0.048 (4) | 0.047 (4) | −0.001 (4) | 0.025 (3) | 0.003 (3) |
C57 | 0.115 (6) | 0.050 (4) | 0.048 (4) | 0.003 (4) | 0.002 (4) | 0.002 (3) |
C53 | 0.025 (2) | 0.055 (4) | 0.051 (3) | 0.003 (2) | 0.006 (2) | 0.023 (3) |
C50 | 0.027 (2) | 0.051 (3) | 0.036 (3) | 0.005 (2) | 0.0134 (19) | 0.019 (2) |
C51 | 0.045 (3) | 0.049 (3) | 0.037 (3) | 0.024 (2) | 0.022 (2) | 0.022 (2) |
C52 | 0.055 (3) | 0.038 (3) | 0.030 (3) | 0.007 (2) | 0.007 (2) | 0.008 (2) |
C54 | 0.039 (3) | 0.049 (3) | 0.043 (3) | 0.017 (2) | 0.024 (2) | 0.019 (2) |
C55 | 0.041 (3) | 0.039 (3) | 0.034 (3) | 0.009 (2) | 0.012 (2) | 0.016 (2) |
Ag1—Ag2 | 3.0110 (4) | C102—C203ii | 1.430 (5) |
Ag1—O1B | 2.284 (3) | C100—H100 | 0.9500 |
Ag1—O11B | 2.330 (3) | C100—C101 | 1.360 (6) |
Ag1—N2 | 2.330 (3) | C100—C205ii | 1.417 (6) |
Ag1—C50 | 2.706 (5) | C104—H104 | 0.9500 |
Ag2—O1A | 2.264 (3) | C104—C103 | 1.424 (6) |
Ag2—O11A | 2.362 (3) | C103—C202ii | 1.439 (5) |
Ag2—O11Ai | 2.452 (3) | C101—H101 | 0.9500 |
Ag2—N1 | 2.262 (3) | N2—C203 | 1.351 (5) |
O1A—C1 | 1.252 (5) | N2—C202 | 1.346 (5) |
O1B—C1 | 1.229 (5) | C201—H201 | 0.9500 |
C1—C2 | 1.560 (6) | C201—C202 | 1.419 (6) |
C2—F2A | 1.344 (5) | C201—C200 | 1.363 (6) |
C2—F2B | 1.344 (5) | C203—C102ii | 1.430 (5) |
C2—C3 | 1.542 (7) | C203—C204 | 1.423 (5) |
C3—F3A | 1.323 (5) | C204—H204 | 0.9500 |
C3—F3B | 1.335 (6) | C204—C205 | 1.358 (6) |
C3—C4 | 1.534 (7) | C202—C103ii | 1.439 (5) |
C4—F4A | 1.312 (6) | C200—C105ii | 1.428 (6) |
C4—F4B | 1.294 (6) | C200—H200 | 0.9500 |
C4—F4C | 1.328 (6) | C205—C100ii | 1.417 (6) |
O11A—Ag2i | 2.452 (3) | C205—H205 | 0.9500 |
O11A—C11 | 1.243 (5) | C56—H56A | 0.9800 |
O11B—C11 | 1.234 (5) | C56—H56B | 0.9800 |
C11—C12 | 1.560 (6) | C56—H56C | 0.9800 |
C12—F12A | 1.350 (5) | C56—C55 | 1.514 (8) |
C12—F12B | 1.365 (6) | C57—H57A | 0.9800 |
C12—C13 | 1.525 (7) | C57—H57B | 0.9800 |
C13—F13A | 1.361 (6) | C57—H57C | 0.9800 |
C13—F13B | 1.346 (6) | C57—C52 | 1.492 (8) |
C13—C14 | 1.511 (9) | C53—H53 | 0.9500 |
C14—F14A | 1.338 (7) | C53—C52 | 1.383 (8) |
C14—F14B | 1.326 (7) | C53—C54 | 1.363 (8) |
C14—F14C | 1.343 (7) | C50—H50 | 0.9500 |
N1—C102 | 1.347 (5) | C50—C51 | 1.365 (8) |
N1—C103 | 1.358 (5) | C50—C55 | 1.386 (7) |
C105—H105 | 0.9500 | C51—H51 | 0.9500 |
C105—C104 | 1.345 (6) | C51—C52 | 1.407 (7) |
C105—C200ii | 1.428 (6) | C54—H54 | 0.9500 |
C102—C101 | 1.422 (6) | C54—C55 | 1.371 (7) |
O1B—Ag1—Ag2 | 75.64 (8) | C104—C105—C200ii | 120.8 (4) |
O1B—Ag1—O11B | 127.83 (11) | C200ii—C105—H105 | 119.6 |
O1B—Ag1—N2 | 114.97 (11) | N1—C102—C101 | 119.6 (4) |
O1B—Ag1—C50 | 85.90 (14) | N1—C102—C203ii | 121.1 (4) |
O11B—Ag1—Ag2 | 75.99 (7) | C101—C102—C203ii | 119.2 (4) |
O11B—Ag1—N2 | 114.41 (12) | C101—C100—H100 | 119.8 |
O11B—Ag1—C50 | 94.21 (13) | C101—C100—C205ii | 120.4 (4) |
N2—Ag1—Ag2 | 105.70 (8) | C205ii—C100—H100 | 119.8 |
N2—Ag1—C50 | 108.02 (13) | C105—C104—H104 | 119.9 |
C50—Ag1—Ag2 | 145.94 (10) | C105—C104—C103 | 120.2 (4) |
O1A—Ag2—Ag1 | 80.66 (8) | C103—C104—H104 | 119.9 |
O1A—Ag2—O11Ai | 103.34 (11) | N1—C103—C104 | 120.1 (4) |
O1A—Ag2—O11A | 108.87 (11) | N1—C103—C202ii | 120.4 (4) |
O11A—Ag2—Ag1 | 84.78 (7) | C104—C103—C202ii | 119.5 (4) |
O11Ai—Ag2—Ag1 | 164.24 (7) | C102—C101—H101 | 119.9 |
O11A—Ag2—O11Ai | 79.50 (11) | C100—C101—C102 | 120.3 (4) |
N1—Ag2—Ag1 | 87.54 (8) | C100—C101—H101 | 119.9 |
N1—Ag2—O1A | 133.34 (12) | C203—N2—Ag1 | 120.2 (2) |
N1—Ag2—O11A | 114.79 (12) | C202—N2—Ag1 | 121.8 (3) |
N1—Ag2—O11Ai | 100.00 (11) | C202—N2—C203 | 118.0 (3) |
C1—O1A—Ag2 | 116.8 (3) | C202—C201—H201 | 119.8 |
C1—O1B—Ag1 | 123.8 (3) | C200—C201—H201 | 119.8 |
O1A—C1—C2 | 113.2 (4) | C200—C201—C202 | 120.3 (4) |
O1B—C1—O1A | 130.6 (4) | N2—C203—C102ii | 121.1 (3) |
O1B—C1—C2 | 116.2 (4) | N2—C203—C204 | 120.2 (3) |
F2A—C2—C1 | 109.7 (3) | C204—C203—C102ii | 118.8 (4) |
F2A—C2—C3 | 107.3 (3) | C203—C204—H204 | 119.9 |
F2B—C2—C1 | 111.1 (3) | C205—C204—C203 | 120.1 (4) |
F2B—C2—F2A | 107.6 (4) | C205—C204—H204 | 119.9 |
F2B—C2—C3 | 107.8 (4) | N2—C202—C103ii | 121.2 (4) |
C3—C2—C1 | 113.2 (4) | N2—C202—C201 | 120.5 (4) |
F3A—C3—C2 | 108.9 (4) | C201—C202—C103ii | 118.3 (4) |
F3A—C3—F3B | 108.0 (5) | C105ii—C200—H200 | 119.6 |
F3A—C3—C4 | 108.6 (4) | C201—C200—C105ii | 120.8 (4) |
F3B—C3—C2 | 108.9 (4) | C201—C200—H200 | 119.6 |
F3B—C3—C4 | 106.7 (4) | C100ii—C205—H205 | 119.4 |
C4—C3—C2 | 115.5 (5) | C204—C205—C100ii | 121.2 (4) |
F4A—C4—C3 | 111.2 (4) | C204—C205—H205 | 119.4 |
F4A—C4—F4C | 106.8 (4) | H56A—C56—H56B | 109.5 |
F4B—C4—C3 | 111.5 (4) | H56A—C56—H56C | 109.5 |
F4B—C4—F4A | 110.0 (5) | H56B—C56—H56C | 109.5 |
F4B—C4—F4C | 108.3 (5) | C55—C56—H56A | 109.5 |
F4C—C4—C3 | 109.0 (5) | C55—C56—H56B | 109.5 |
Ag2—O11A—Ag2i | 100.50 (11) | C55—C56—H56C | 109.5 |
C11—O11A—Ag2i | 141.3 (3) | H57A—C57—H57B | 109.5 |
C11—O11A—Ag2 | 117.5 (3) | H57A—C57—H57C | 109.5 |
C11—O11B—Ag1 | 131.4 (3) | H57B—C57—H57C | 109.5 |
O11A—C11—C12 | 116.9 (4) | C52—C57—H57A | 109.5 |
O11B—C11—O11A | 129.1 (4) | C52—C57—H57B | 109.5 |
O11B—C11—C12 | 113.8 (4) | C52—C57—H57C | 109.5 |
F12A—C12—C11 | 111.3 (4) | C52—C53—H53 | 119.1 |
F12A—C12—F12B | 106.9 (4) | C54—C53—H53 | 119.1 |
F12A—C12—C13 | 106.8 (4) | C54—C53—C52 | 121.9 (5) |
F12B—C12—C11 | 107.6 (4) | Ag1—C50—H50 | 88.7 |
F12B—C12—C13 | 105.5 (4) | C51—C50—Ag1 | 80.6 (3) |
C13—C12—C11 | 118.1 (4) | C51—C50—H50 | 119.3 |
F13A—C13—C12 | 109.4 (5) | C51—C50—C55 | 121.4 (5) |
F13A—C13—C14 | 106.7 (5) | C55—C50—Ag1 | 100.8 (3) |
F13B—C13—C12 | 110.5 (4) | C55—C50—H50 | 119.3 |
F13B—C13—F13A | 108.6 (4) | C50—C51—H51 | 119.5 |
F13B—C13—C14 | 106.6 (5) | C50—C51—C52 | 121.0 (5) |
C14—C13—C12 | 114.8 (5) | C52—C51—H51 | 119.5 |
F14A—C14—C13 | 110.5 (5) | C53—C52—C57 | 122.3 (6) |
F14A—C14—F14C | 106.1 (5) | C53—C52—C51 | 116.5 (5) |
F14B—C14—C13 | 110.1 (5) | C51—C52—C57 | 121.2 (6) |
F14B—C14—F14A | 109.1 (5) | C53—C54—H54 | 119.2 |
F14B—C14—F14C | 108.9 (6) | C53—C54—C55 | 121.6 (5) |
F14C—C14—C13 | 112.0 (5) | C55—C54—H54 | 119.2 |
C102—N1—Ag2 | 119.1 (3) | C50—C55—C56 | 121.6 (5) |
C102—N1—C103 | 118.1 (3) | C54—C55—C56 | 120.8 (5) |
C103—N1—Ag2 | 122.1 (3) | C54—C55—C50 | 117.6 (5) |
C104—C105—H105 | 119.6 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2. |
C8H10·C20H8Ag2F13N2O4·F | F(000) = 1808 |
Mr = 928.18 | Dx = 1.959 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3750 (6) Å | Cell parameters from 9888 reflections |
b = 22.5963 (10) Å | θ = 2.5–27.4° |
c = 13.3460 (7) Å | µ = 1.37 mm−1 |
β = 113.472 (2)° | T = 100 K |
V = 3146.5 (3) Å3 | Plate, yellow |
Z = 4 | 0.42 × 0.2 × 0.12 mm |
Bruker APEX-II CCD diffractometer | 6202 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1011 before and 0.0786 after correction. The Ratio of minimum to maximum transmission is 0.8102. The λ/2 correction factor is 0.0015. | h = −13→14 |
Tmin = 0.604, Tmax = 0.746 | k = −29→28 |
25586 measured reflections | l = −17→17 |
7203 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.074 | w = 1/[σ2(Fo2) + (0.0599P)2 + 35.1346P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.189 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 1.83 e Å−3 |
7203 reflections | Δρmin = −1.21 e Å−3 |
432 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
70 restraints | Extinction coefficient: 0.0017 (3) |
Primary atom site location: structure-invariant direct methods |
C8H10·C20H8Ag2F13N2O4·F | V = 3146.5 (3) Å3 |
Mr = 928.18 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.3750 (6) Å | µ = 1.37 mm−1 |
b = 22.5963 (10) Å | T = 100 K |
c = 13.3460 (7) Å | 0.42 × 0.2 × 0.12 mm |
β = 113.472 (2)° |
Bruker APEX-II CCD diffractometer | 7203 independent reflections |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1011 before and 0.0786 after correction. The Ratio of minimum to maximum transmission is 0.8102. The λ/2 correction factor is 0.0015. | 6202 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.746 | Rint = 0.057 |
25586 measured reflections |
R[F2 > 2σ(F2)] = 0.074 | 70 restraints |
wR(F2) = 0.189 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0599P)2 + 35.1346P] where P = (Fo2 + 2Fc2)/3 |
7203 reflections | Δρmax = 1.83 e Å−3 |
432 parameters | Δρmin = −1.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C50 | 0.5893 (16) | 0.1961 (7) | 0.7566 (12) | 0.081 (5) | |
H50 | 0.6584 | 0.1880 | 0.7381 | 0.098* | |
C51 | 0.4752 (16) | 0.1648 (6) | 0.7062 (10) | 0.081 (5) | |
H51 | 0.4689 | 0.1350 | 0.6561 | 0.097* | |
C52 | 0.3724 (13) | 0.1781 (5) | 0.7311 (9) | 0.066 (3) | |
C53 | 0.3843 (13) | 0.2223 (6) | 0.8074 (9) | 0.068 (4) | |
H53 | 0.3137 | 0.2312 | 0.8232 | 0.081* | |
C54 | 0.4985 (12) | 0.2540 (6) | 0.8614 (9) | 0.065 (3) | |
C55 | 0.6008 (13) | 0.2386 (6) | 0.8327 (10) | 0.078 (4) | |
H55 | 0.6788 | 0.2580 | 0.8667 | 0.093* | |
C56 | 0.5060 (17) | 0.2982 (7) | 0.9399 (12) | 0.095 (5) | |
H56A | 0.5795 | 0.2909 | 1.0064 | 0.142* | |
H56B | 0.4298 | 0.2970 | 0.9544 | 0.142* | |
H56C | 0.5136 | 0.3365 | 0.9119 | 0.142* | |
C57 | 0.2518 (15) | 0.1440 (7) | 0.6749 (11) | 0.089 (5) | |
H57A | 0.1814 | 0.1651 | 0.6805 | 0.133* | |
H57B | 0.2596 | 0.1059 | 0.7086 | 0.133* | |
H57C | 0.2366 | 0.1391 | 0.5992 | 0.133* | |
Ag1 | 0.66604 (5) | 0.11370 (2) | 0.91798 (5) | 0.02997 (18) | |
Ag2 | 0.88961 (5) | 0.03676 (2) | 1.05042 (5) | 0.02780 (17) | |
O1A | 0.7437 (5) | 0.0779 (3) | 0.7928 (5) | 0.0414 (14) | |
O1B | 0.9241 (5) | 0.0290 (3) | 0.8882 (4) | 0.0389 (13) | |
C1 | 0.8442 (7) | 0.0520 (4) | 0.8047 (5) | 0.0353 (17) | |
C2 | 0.8767 (8) | 0.0601 (3) | 0.7040 (5) | 0.055 (3)* | 0.536 (10) |
F2A | 0.8108 (9) | 0.1005 (5) | 0.6278 (10) | 0.076 (4)* | 0.536 (10) |
F2B | 1.0020 (7) | 0.0709 (6) | 0.7293 (10) | 0.073 (4)* | 0.536 (10) |
C3 | 0.8509 (8) | 0.0057 (4) | 0.6287 (8) | 0.081 (7)* | 0.536 (10) |
F3A | 0.9299 (12) | −0.0365 (5) | 0.6917 (9) | 0.076 (4)* | 0.536 (10) |
F3B | 0.8733 (15) | 0.0087 (7) | 0.5368 (9) | 0.101 (5)* | 0.536 (10) |
C4 | 0.7206 (10) | −0.0247 (4) | 0.6015 (7) | 0.070 (6)* | 0.536 (10) |
F4A | 0.6923 (15) | −0.0402 (6) | 0.6870 (7) | 0.077 (4)* | 0.536 (10) |
F4B | 0.6820 (10) | −0.0702 (4) | 0.5301 (5) | 0.167 (5)* | 0.536 (10) |
F4C | 0.6270 (18) | 0.0164 (6) | 0.5647 (17) | 0.139 (9)* | 0.536 (10) |
C2' | 0.8694 (8) | 0.0519 (3) | 0.6996 (5) | 0.053 (3)* | 0.464 (10) |
F2Z | 0.8721 (12) | 0.1073 (4) | 0.6627 (11) | 0.059 (4)* | 0.464 (10) |
F2Y | 0.9865 (9) | 0.0285 (5) | 0.7223 (10) | 0.055 (3)* | 0.464 (10) |
C3' | 0.7753 (9) | 0.0157 (4) | 0.6032 (5) | 0.065 (6)* | 0.464 (10) |
F3Y | 0.8092 (12) | 0.0174 (7) | 0.5171 (9) | 0.070 (4)* | 0.464 (10) |
F3Z | 0.6563 (11) | 0.0389 (9) | 0.5680 (12) | 0.088 (6)* | 0.464 (10) |
C4' | 0.7802 (10) | −0.0517 (4) | 0.6213 (7) | 0.153 (16)* | 0.464 (10) |
F4X | 0.8866 (16) | −0.0850 (10) | 0.6466 (17) | 0.166 (11)* | 0.464 (10) |
F4Y | 0.7418 (13) | −0.0587 (8) | 0.7041 (6) | 0.081 (5)* | 0.464 (10) |
F4Z | 0.6820 (10) | −0.0702 (4) | 0.5301 (5) | 0.167 (5)* | 0.464 (10) |
O11A | 0.7880 (5) | 0.1715 (3) | 1.0595 (5) | 0.0398 (13) | |
O11B | 0.9788 (6) | 0.1261 (2) | 1.1146 (5) | 0.0399 (13) | |
C11 | 0.9043 (7) | 0.1673 (3) | 1.1106 (5) | 0.0322 (16) | |
C12 | 0.9742 (7) | 0.2200 (3) | 1.1832 (5) | 0.033 (6)* | 0.530 (8) |
F12A | 0.9416 (9) | 0.2702 (4) | 1.1236 (8) | 0.061 (3)* | 0.530 (8) |
F12B | 1.1032 (7) | 0.2164 (4) | 1.2222 (7) | 0.044 (2)* | 0.530 (8) |
C13 | 0.9409 (7) | 0.2255 (4) | 1.2839 (6) | 0.053 (5)* | 0.530 (8) |
F13A | 0.9409 (10) | 0.1708 (4) | 1.3248 (10) | 0.054 (3)* | 0.530 (8) |
F13B | 0.8180 (9) | 0.2440 (5) | 1.2429 (12) | 0.094 (5)* | 0.530 (8) |
C14 | 1.0347 (8) | 0.2632 (4) | 1.3780 (5) | 0.047 (5)* | 0.530 (8) |
F14A | 1.1111 (10) | 0.3034 (4) | 1.3589 (8) | 0.056 (3)* | 0.530 (8) |
F14B | 1.0956 (11) | 0.2469 (5) | 1.4836 (7) | 0.085 (4)* | 0.530 (8) |
F14C | 0.9366 (11) | 0.2983 (6) | 1.3734 (10) | 0.085 (4)* | 0.530 (8) |
C12' | 0.9605 (9) | 0.2227 (3) | 1.1808 (6) | 0.032 (7)* | 0.470 (8) |
F12Y | 0.8834 (8) | 0.2705 (5) | 1.1616 (10) | 0.058 (3)* | 0.470 (8) |
F12Z | 1.0681 (8) | 0.2411 (5) | 1.1706 (9) | 0.047 (3)* | 0.470 (8) |
C13' | 1.0047 (10) | 0.2140 (3) | 1.3049 (6) | 0.046 (4)* | 0.470 (8) |
F13Y | 1.1070 (9) | 0.1775 (5) | 1.3423 (12) | 0.078 (4)* | 0.470 (8) |
F13Z | 0.9077 (9) | 0.1846 (6) | 1.3168 (12) | 0.060 (4)* | 0.470 (8) |
C14' | 1.0119 (8) | 0.2710 (4) | 1.3703 (5) | 0.048 (6)* | 0.470 (8) |
F14X | 1.0403 (13) | 0.3214 (4) | 1.3306 (11) | 0.071 (4)* | 0.470 (8) |
F14Y | 1.1248 (9) | 0.2442 (5) | 1.4282 (10) | 0.070 (4)* | 0.470 (8) |
F14Z | 0.9483 (10) | 0.2737 (7) | 1.4367 (9) | 0.078 (4)* | 0.470 (8) |
N1 | 0.4810 (5) | 0.0723 (3) | 0.9186 (4) | 0.0224 (11) | |
C100 | 0.4318 (8) | −0.0471 (3) | 0.7223 (6) | 0.0332 (16) | |
H100 | 0.4685 | −0.0618 | 0.6764 | 0.040* | |
C101 | 0.4856 (7) | 0.0010 (3) | 0.7868 (6) | 0.0273 (14) | |
H101 | 0.5594 | 0.0183 | 0.7859 | 0.033* | |
C102 | 0.4277 (6) | 0.0244 (3) | 0.8547 (5) | 0.0217 (13) | |
C103 | 0.4222 (6) | 0.0945 (3) | 0.9795 (5) | 0.0236 (13) | |
C104 | 0.4702 (7) | 0.1465 (3) | 1.0434 (6) | 0.0273 (14) | |
H104 | 0.5444 | 0.1645 | 1.0449 | 0.033* | |
C105 | 0.4074 (7) | 0.1696 (3) | 1.1021 (6) | 0.0303 (15) | |
H105 | 0.4391 | 0.2036 | 1.1430 | 0.036* | |
N2 | 0.7406 (5) | −0.0179 (2) | 1.0782 (5) | 0.0233 (11) | |
C200 | 0.7050 (7) | −0.1431 (3) | 0.8975 (6) | 0.0312 (15) | |
H200 | 0.7464 | −0.1603 | 0.8571 | 0.037* | |
C201 | 0.7534 (7) | −0.0930 (3) | 0.9554 (6) | 0.0277 (14) | |
H201 | 0.8259 | −0.0754 | 0.9528 | 0.033* | |
C202 | 0.6921 (6) | −0.0673 (3) | 1.0210 (5) | 0.0235 (13) | |
C203 | 0.6839 (6) | 0.0029 (3) | 1.1429 (5) | 0.0225 (13) | |
C204 | 0.7361 (7) | 0.0538 (3) | 1.2106 (6) | 0.0294 (15) | |
H204 | 0.8089 | 0.0721 | 1.2099 | 0.035* | |
C205 | 0.6797 (8) | 0.0751 (4) | 1.2754 (6) | 0.0349 (17) | |
H205 | 0.7138 | 0.1081 | 1.3188 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C50 | 0.104 (11) | 0.092 (10) | 0.080 (9) | 0.058 (9) | 0.071 (9) | 0.053 (8) |
C51 | 0.126 (12) | 0.078 (9) | 0.063 (7) | 0.063 (9) | 0.062 (8) | 0.045 (7) |
C52 | 0.083 (8) | 0.066 (7) | 0.058 (6) | 0.044 (6) | 0.036 (6) | 0.034 (6) |
C53 | 0.086 (8) | 0.082 (8) | 0.050 (6) | 0.057 (7) | 0.043 (6) | 0.037 (6) |
C54 | 0.074 (8) | 0.082 (8) | 0.046 (6) | 0.035 (6) | 0.033 (6) | 0.032 (6) |
C55 | 0.074 (8) | 0.096 (10) | 0.065 (7) | 0.045 (7) | 0.030 (6) | 0.052 (7) |
C56 | 0.130 (14) | 0.095 (11) | 0.076 (9) | 0.013 (10) | 0.059 (9) | 0.017 (8) |
C57 | 0.103 (11) | 0.094 (10) | 0.065 (8) | 0.046 (9) | 0.030 (8) | 0.031 (7) |
Ag1 | 0.0223 (3) | 0.0315 (3) | 0.0353 (3) | −0.0021 (2) | 0.0106 (2) | −0.0010 (2) |
Ag2 | 0.0235 (3) | 0.0269 (3) | 0.0364 (3) | 0.0001 (2) | 0.0155 (2) | 0.0006 (2) |
O1A | 0.029 (3) | 0.058 (4) | 0.040 (3) | 0.017 (3) | 0.017 (2) | 0.008 (3) |
O1B | 0.036 (3) | 0.051 (3) | 0.032 (3) | 0.020 (3) | 0.016 (2) | 0.007 (2) |
C1 | 0.032 (4) | 0.053 (5) | 0.026 (3) | 0.008 (3) | 0.017 (3) | 0.006 (3) |
O11A | 0.032 (3) | 0.040 (3) | 0.038 (3) | −0.004 (2) | 0.004 (2) | −0.006 (2) |
O11B | 0.036 (3) | 0.029 (3) | 0.050 (3) | −0.005 (2) | 0.013 (3) | 0.002 (2) |
C11 | 0.035 (4) | 0.033 (4) | 0.029 (4) | −0.006 (3) | 0.012 (3) | −0.001 (3) |
N1 | 0.019 (3) | 0.027 (3) | 0.022 (3) | 0.002 (2) | 0.009 (2) | 0.003 (2) |
C100 | 0.040 (4) | 0.033 (4) | 0.030 (4) | 0.001 (3) | 0.019 (3) | −0.004 (3) |
C101 | 0.028 (3) | 0.028 (3) | 0.032 (3) | 0.003 (3) | 0.018 (3) | 0.002 (3) |
C102 | 0.022 (3) | 0.021 (3) | 0.020 (3) | 0.004 (2) | 0.006 (2) | 0.006 (2) |
C103 | 0.026 (3) | 0.022 (3) | 0.023 (3) | 0.001 (3) | 0.009 (3) | 0.003 (2) |
C104 | 0.029 (3) | 0.026 (3) | 0.026 (3) | −0.006 (3) | 0.011 (3) | −0.002 (3) |
C105 | 0.036 (4) | 0.025 (3) | 0.029 (4) | 0.000 (3) | 0.012 (3) | −0.005 (3) |
N2 | 0.022 (3) | 0.023 (3) | 0.028 (3) | 0.004 (2) | 0.012 (2) | 0.003 (2) |
C200 | 0.038 (4) | 0.035 (4) | 0.026 (3) | 0.006 (3) | 0.019 (3) | −0.003 (3) |
C201 | 0.027 (3) | 0.030 (4) | 0.031 (3) | 0.000 (3) | 0.016 (3) | 0.001 (3) |
C202 | 0.021 (3) | 0.028 (3) | 0.023 (3) | 0.003 (3) | 0.010 (2) | 0.004 (3) |
C203 | 0.021 (3) | 0.026 (3) | 0.020 (3) | 0.004 (2) | 0.008 (2) | 0.003 (2) |
C204 | 0.027 (3) | 0.029 (4) | 0.035 (4) | −0.004 (3) | 0.015 (3) | −0.003 (3) |
C205 | 0.036 (4) | 0.034 (4) | 0.036 (4) | −0.003 (3) | 0.015 (3) | −0.013 (3) |
C50—C51 | 1.39 (2) | C11—C12' | 1.5396 (10) |
C50—C55 | 1.37 (2) | C12—F12A | 1.3501 (10) |
C51—C52 | 1.370 (17) | C12—F12B | 1.3500 (10) |
C52—C53 | 1.395 (17) | C12—C13 | 1.5399 (10) |
C52—C57 | 1.49 (2) | C13—F13A | 1.3501 (10) |
C53—C54 | 1.404 (19) | C13—F13B | 1.3498 (10) |
C54—C55 | 1.406 (16) | C13—C14 | 1.5402 (10) |
C54—C56 | 1.426 (19) | C14—F14A | 1.3501 (10) |
Ag1—Ag2 | 3.0055 (8) | C14—F14B | 1.3502 (10) |
Ag1—O1A | 2.325 (6) | C14—F14C | 1.3501 (10) |
Ag1—O11A | 2.261 (5) | C12'—F12Y | 1.3498 (10) |
Ag1—N1 | 2.306 (6) | C12'—F12Z | 1.3497 (10) |
Ag2—O1B | 2.355 (5) | C12'—C13' | 1.5400 (10) |
Ag2—O1Bi | 2.447 (5) | C13'—F13Y | 1.3498 (10) |
Ag2—O11B | 2.268 (6) | C13'—F13Z | 1.3499 (10) |
Ag2—N2 | 2.245 (6) | C13'—C14' | 1.5400 (10) |
O1A—C1 | 1.237 (9) | C14'—F14X | 1.3495 (10) |
O1B—Ag2i | 2.447 (5) | C14'—F14Y | 1.3496 (10) |
O1B—C1 | 1.238 (9) | C14'—F14Z | 1.3493 (10) |
C1—C2 | 1.5402 (10) | N1—C102 | 1.362 (9) |
C1—C2' | 1.5400 (10) | N1—C103 | 1.340 (9) |
C2—F2A | 1.3502 (10) | C100—C101 | 1.370 (10) |
C2—F2B | 1.3502 (10) | C100—C205ii | 1.428 (11) |
C2—C3 | 1.5398 (10) | C101—C102 | 1.418 (9) |
C3—F3A | 1.3499 (10) | C102—C203ii | 1.423 (9) |
C3—F3B | 1.3500 (10) | C103—C104 | 1.425 (9) |
C3—C4 | 1.5398 (10) | C103—C202ii | 1.435 (9) |
C4—F4A | 1.3499 (10) | C104—C105 | 1.357 (10) |
C4—F4C | 1.3499 (10) | C105—C200ii | 1.413 (11) |
C2'—F2Z | 1.3498 (10) | N2—C202 | 1.340 (9) |
C2'—F2Y | 1.3499 (10) | N2—C203 | 1.352 (8) |
C2'—C3' | 1.5402 (10) | C200—C105ii | 1.413 (11) |
C3'—F3Y | 1.3503 (10) | C200—C201 | 1.357 (11) |
C3'—F3Z | 1.3501 (10) | C201—C202 | 1.442 (9) |
C3'—C4' | 1.5401 (10) | C202—C103ii | 1.435 (9) |
C4'—F4X | 1.3496 (10) | C203—C102ii | 1.423 (9) |
C4'—F4Y | 1.3497 (10) | C203—C204 | 1.435 (10) |
O11A—C11 | 1.228 (9) | C204—C205 | 1.354 (10) |
O11B—C11 | 1.246 (9) | C205—C100ii | 1.428 (11) |
C11—C12 | 1.5404 (10) | ||
C55—C50—C51 | 120.7 (12) | O11A—C11—O11B | 130.2 (5) |
C52—C51—C50 | 119.5 (14) | O11A—C11—C12 | 117.5 (6) |
C51—C52—C53 | 119.3 (15) | O11A—C11—C12' | 111.7 (7) |
C51—C52—C57 | 117.9 (13) | O11B—C11—C12 | 112.3 (6) |
C53—C52—C57 | 122.7 (12) | O11B—C11—C12' | 118.1 (6) |
C52—C53—C54 | 122.8 (11) | F12A—C12—C11 | 109.1 (7) |
C53—C54—C55 | 115.6 (12) | F12A—C12—C13 | 109.9 (8) |
C53—C54—C56 | 120.4 (12) | F12B—C12—C11 | 113.9 (7) |
C55—C54—C56 | 124.0 (15) | F12B—C12—F12A | 106.23 (11) |
C50—C55—C54 | 122.1 (15) | F12B—C12—C13 | 106.0 (6) |
O1A—Ag1—Ag2 | 75.32 (14) | C13—C12—C11 | 111.5 (5) |
O11A—Ag1—Ag2 | 75.48 (15) | C12—C13—C14 | 115.17 (11) |
O11A—Ag1—O1A | 121.3 (2) | F13A—C13—C12 | 108.5 (8) |
O11A—Ag1—N1 | 119.3 (2) | F13A—C13—C14 | 106.7 (8) |
N1—Ag1—Ag2 | 108.85 (14) | F13B—C13—C12 | 104.2 (9) |
N1—Ag1—O1A | 118.0 (2) | F13B—C13—F13A | 106.30 (11) |
O1Bi—Ag2—Ag1 | 164.85 (13) | F13B—C13—C14 | 115.4 (9) |
O1B—Ag2—Ag1 | 85.09 (13) | F14A—C14—C13 | 120.4 (5) |
O1B—Ag2—O1Bi | 79.81 (19) | F14A—C14—F14B | 106.23 (11) |
O11B—Ag2—Ag1 | 81.59 (15) | F14A—C14—F14C | 100.3 (10) |
O11B—Ag2—O1B | 101.6 (2) | F14B—C14—C13 | 126.9 (8) |
O11B—Ag2—O1Bi | 102.5 (2) | F14C—C14—C13 | 89.8 (8) |
N2—Ag2—Ag1 | 84.12 (14) | F14C—C14—F14B | 106.22 (11) |
N2—Ag2—O1Bi | 102.8 (2) | C11—C12'—C13' | 115.4 (6) |
N2—Ag2—O1B | 121.6 (2) | F12Y—C12'—C11 | 117.0 (8) |
N2—Ag2—O11B | 132.9 (2) | F12Y—C12'—C13' | 102.4 (7) |
C1—O1A—Ag1 | 131.9 (5) | F12Z—C12'—C11 | 111.3 (7) |
Ag2—O1B—Ag2i | 100.19 (19) | F12Z—C12'—F12Y | 106.30 (11) |
C1—O1B—Ag2i | 141.6 (5) | F12Z—C12'—C13' | 103.1 (8) |
C1—O1B—Ag2 | 117.7 (4) | C12'—C13'—C14' | 115.14 (11) |
O1A—C1—O1B | 128.7 (6) | F13Y—C13'—C12' | 109.9 (9) |
O1A—C1—C2 | 111.2 (7) | F13Y—C13'—F13Z | 106.31 (11) |
O1A—C1—C2' | 112.4 (6) | F13Y—C13'—C14' | 117.3 (9) |
O1B—C1—C2 | 119.4 (7) | F13Z—C13'—C12' | 104.9 (9) |
O1B—C1—C2' | 118.9 (7) | F13Z—C13'—C14' | 101.9 (9) |
F2A—C2—C1 | 118.9 (9) | F14X—C14'—C13' | 116.8 (7) |
F2A—C2—C3 | 98.2 (8) | F14X—C14'—F14Y | 106.32 (11) |
F2B—C2—C1 | 113.6 (7) | F14Y—C14'—C13' | 76.9 (8) |
F2B—C2—F2A | 106.23 (11) | F14Z—C14'—C13' | 119.2 (10) |
F2B—C2—C3 | 102.4 (8) | F14Z—C14'—F14X | 119.6 (10) |
C3—C2—C1 | 115.2 (6) | F14Z—C14'—F14Y | 106.34 (11) |
F3A—C3—C2 | 104.5 (9) | C102—N1—Ag1 | 120.0 (4) |
F3A—C3—F3B | 106.29 (11) | C103—N1—Ag1 | 121.8 (4) |
F3A—C3—C4 | 99.9 (10) | C103—N1—C102 | 118.2 (6) |
F3B—C3—C2 | 119.8 (10) | C101—C100—C205ii | 121.1 (7) |
F3B—C3—C4 | 108.7 (10) | C100—C101—C102 | 119.5 (7) |
C4—C3—C2 | 115.19 (11) | N1—C102—C101 | 119.4 (6) |
F4A—C4—C3 | 116.6 (9) | N1—C102—C203ii | 120.7 (6) |
F4A—C4—F4C | 93.8 (15) | C101—C102—C203ii | 119.9 (6) |
F4C—C4—C3 | 108.9 (11) | N1—C103—C104 | 120.4 (6) |
C1—C2'—C3' | 116.3 (6) | N1—C103—C202ii | 120.4 (6) |
F2Z—C2'—C1 | 111.7 (8) | C104—C103—C202ii | 119.1 (6) |
F2Z—C2'—F2Y | 106.30 (11) | C105—C104—C103 | 119.8 (7) |
F2Z—C2'—C3' | 107.2 (8) | C104—C105—C200ii | 121.7 (7) |
F2Y—C2'—C1 | 108.7 (8) | C202—N2—Ag2 | 122.1 (4) |
F2Y—C2'—C3' | 106.0 (7) | C202—N2—C203 | 117.5 (6) |
F3Y—C3'—C2' | 111.0 (9) | C203—N2—Ag2 | 119.8 (4) |
F3Y—C3'—C4' | 99.0 (10) | C201—C200—C105ii | 120.8 (7) |
F3Z—C3'—C2' | 110.6 (11) | C200—C201—C202 | 119.9 (7) |
F3Z—C3'—F3Y | 106.24 (11) | C103ii—C202—C201 | 118.7 (6) |
F3Z—C3'—C4' | 114.0 (12) | N2—C202—C103ii | 121.8 (6) |
C4'—C3'—C2' | 115.11 (11) | N2—C202—C201 | 119.5 (6) |
F4X—C4'—C3' | 124.3 (13) | C102ii—C203—C204 | 118.8 (6) |
F4X—C4'—F4Y | 106.31 (11) | N2—C203—C102ii | 121.3 (6) |
F4Y—C4'—C3' | 104.0 (11) | N2—C203—C204 | 119.9 (6) |
C11—O11A—Ag1 | 125.9 (5) | C205—C204—C203 | 120.3 (7) |
C11—O11B—Ag2 | 117.1 (4) | C204—C205—C100ii | 120.5 (7) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2. |
C20H8Ag2F14N2O4 | F(000) = 3152 |
Mr = 822.02 | Dx = 2.285 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.578 (3) Å | Cell parameters from 3379 reflections |
b = 9.267 (1) Å | θ = 2.4–24.2° |
c = 21.211 (2) Å | µ = 1.78 mm−1 |
β = 118.142 (3)° | T = 100 K |
V = 4779.9 (9) Å3 | Plate, yellow |
Z = 8 | 0.4 × 0.26 × 0.03 mm |
Bruker APEX-II CCD diffractometer | 3234 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1234 before and 0.0609 after correction. The Ratio of minimum to maximum transmission is 0.8098. The λ/2 correction factor is 0.0015. | h = −35→35 |
Tmin = 0.604, Tmax = 0.746 | k = −12→10 |
20167 measured reflections | l = −18→27 |
5445 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.230 | w = 1/[σ2(Fo2) + (0.1406P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5445 reflections | Δρmax = 1.99 e Å−3 |
362 parameters | Δρmin = −1.39 e Å−3 |
59 restraints |
C20H8Ag2F14N2O4 | V = 4779.9 (9) Å3 |
Mr = 822.02 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.578 (3) Å | µ = 1.78 mm−1 |
b = 9.267 (1) Å | T = 100 K |
c = 21.211 (2) Å | 0.4 × 0.26 × 0.03 mm |
β = 118.142 (3)° |
Bruker APEX-II CCD diffractometer | 5445 independent reflections |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1234 before and 0.0609 after correction. The Ratio of minimum to maximum transmission is 0.8098. The λ/2 correction factor is 0.0015. | 3234 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.746 | Rint = 0.064 |
20167 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 59 restraints |
wR(F2) = 0.230 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.99 e Å−3 |
5445 reflections | Δρmin = −1.39 e Å−3 |
362 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.49191 (3) | 0.28619 (8) | 0.08927 (4) | 0.0363 (3) | |
Ag3 | 0.5000 | −0.10850 (9) | 0.2500 | 0.0275 (3) | |
Ag2 | 0.5000 | 0.31447 (10) | 0.2500 | 0.0342 (3) | |
N1 | 0.4913 (3) | 0.2328 (7) | −0.0230 (3) | 0.0230 (15) | |
N2 | 0.4985 (3) | 0.1585 (7) | −0.1475 (3) | 0.0223 (14) | |
C100 | 0.4606 (3) | 0.1248 (8) | −0.0653 (4) | 0.0220 (17) | |
C101 | 0.4222 (3) | 0.0503 (9) | −0.0508 (4) | 0.0280 (19) | |
H101 | 0.4176 | 0.0788 | −0.0109 | 0.034* | |
C102 | 0.3921 (3) | −0.0592 (9) | −0.0917 (4) | 0.0289 (19) | |
H102 | 0.3667 | −0.1069 | −0.0804 | 0.035* | |
C103 | 0.3977 (4) | −0.1049 (8) | −0.1518 (5) | 0.030 (2) | |
H103 | 0.3765 | −0.1834 | −0.1801 | 0.036* | |
C104 | 0.4339 (3) | −0.0358 (9) | −0.1688 (4) | 0.0299 (19) | |
H104 | 0.4380 | −0.0680 | −0.2085 | 0.036* | |
C105 | 0.4653 (3) | 0.0837 (8) | −0.1278 (4) | 0.0211 (17) | |
C106 | 0.5279 (3) | 0.2671 (8) | −0.1055 (4) | 0.0219 (17) | |
C107 | 0.5630 (4) | 0.3496 (9) | −0.1246 (5) | 0.0282 (19) | |
H107 | 0.5633 | 0.3301 | −0.1684 | 0.034* | |
C108 | 0.5955 (3) | 0.4536 (9) | −0.0816 (4) | 0.0274 (18) | |
H108 | 0.6194 | 0.5053 | −0.0942 | 0.033* | |
C109 | 0.5940 (3) | 0.4872 (9) | −0.0158 (4) | 0.0298 (19) | |
H109 | 0.6175 | 0.5602 | 0.0148 | 0.036* | |
C110 | 0.5599 (3) | 0.4166 (8) | 0.0028 (4) | 0.0264 (19) | |
H110 | 0.5587 | 0.4426 | 0.0453 | 0.032* | |
C111 | 0.5256 (3) | 0.3031 (8) | −0.0411 (4) | 0.0241 (18) | |
O1A | 0.5761 (3) | 0.4287 (9) | 0.2651 (3) | 0.058 (2) | |
O1B | 0.5555 (3) | 0.4573 (7) | 0.1511 (3) | 0.0421 (16) | |
C1 | 0.5833 (3) | 0.4787 (7) | 0.2162 (5) | 0.0294 (19) | |
C2 | 0.6290 (3) | 0.5879 (7) | 0.2288 (5) | 0.027 (3)* | 0.437 (8) |
F2A | 0.6397 (6) | 0.6685 (14) | 0.2869 (5) | 0.071 (5)* | 0.437 (8) |
F2B | 0.6150 (5) | 0.6813 (12) | 0.1741 (5) | 0.050 (4)* | 0.437 (8) |
C3 | 0.6821 (4) | 0.5106 (7) | 0.2407 (6) | 0.059 (7)* | 0.437 (8) |
F3A | 0.6721 (5) | 0.4502 (11) | 0.1778 (5) | 0.031 (3)* | 0.437 (8) |
F3B | 0.6941 (8) | 0.4009 (13) | 0.2876 (6) | 0.095 (6)* | 0.437 (8) |
C4 | 0.7316 (3) | 0.6100 (13) | 0.2584 (7) | 0.080 (10)* | 0.437 (8) |
F4A | 0.7240 (8) | 0.7165 (17) | 0.2112 (11) | 0.143 (10)* | 0.437 (8) |
F4B | 0.7749 (4) | 0.5321 (13) | 0.2643 (7) | 0.081 (5)* | 0.437 (8) |
F4C | 0.7494 (8) | 0.684 (2) | 0.3202 (9) | 0.145 (10)* | 0.437 (8) |
C2' | 0.6347 (2) | 0.5756 (7) | 0.2495 (4) | 0.031 (3)* | 0.563 (8) |
F2Y | 0.6730 (4) | 0.5426 (10) | 0.3167 (5) | 0.074 (4)* | 0.563 (8) |
F2Z | 0.6182 (3) | 0.7117 (7) | 0.2521 (5) | 0.034 (2)* | 0.563 (8) |
C3' | 0.6690 (4) | 0.5739 (14) | 0.2094 (5) | 0.078 (7)* | 0.563 (8) |
F3Y | 0.6789 (7) | 0.4321 (14) | 0.2061 (10) | 0.107 (6)* | 0.563 (8) |
F3Z | 0.6333 (5) | 0.6453 (13) | 0.1454 (7) | 0.066 (3)* | 0.563 (8) |
C4' | 0.7241 (3) | 0.6550 (9) | 0.2468 (5) | 0.097 (9)* | 0.563 (8) |
F4X | 0.7613 (6) | 0.5912 (13) | 0.3077 (7) | 0.119 (6)* | 0.563 (8) |
F4Y | 0.7175 (5) | 0.7905 (11) | 0.2648 (7) | 0.094 (5)* | 0.563 (8) |
F4Z | 0.7345 (7) | 0.6679 (16) | 0.1909 (6) | 0.125 (7)* | 0.563 (8) |
O11A | 0.4103 (3) | 0.2031 (6) | 0.0763 (3) | 0.0375 (15) | |
O11B | 0.5568 (2) | 0.1111 (6) | 0.3143 (3) | 0.0334 (14) | |
C11 | 0.5937 (2) | 0.1328 (8) | 0.3760 (4) | 0.031 (2) | |
C12 | 0.6534 (2) | 0.1029 (9) | 0.3921 (4) | 0.037 (5)* | 0.487 (7) |
F12A | 0.6548 (5) | 0.0243 (11) | 0.3394 (6) | 0.072 (4)* | 0.487 (7) |
F12B | 0.6859 (5) | 0.2188 (9) | 0.4018 (6) | 0.053 (3)* | 0.487 (7) |
C13 | 0.6829 (3) | 0.0085 (10) | 0.4595 (4) | 0.038 (5)* | 0.487 (7) |
F13A | 0.7012 (4) | 0.0802 (10) | 0.5220 (5) | 0.053 (3)* | 0.487 (7) |
F13B | 0.6486 (4) | −0.0949 (11) | 0.4600 (5) | 0.055 (4)* | 0.487 (7) |
C14 | 0.7339 (3) | −0.0727 (9) | 0.4667 (4) | 0.055 (6)* | 0.487 (7) |
F14A | 0.7235 (6) | −0.1885 (10) | 0.4236 (7) | 0.079 (5)* | 0.487 (7) |
F14B | 0.7697 (5) | 0.0104 (10) | 0.4561 (6) | 0.076 (4)* | 0.487 (7) |
F14C | 0.7629 (5) | −0.1327 (13) | 0.5320 (5) | 0.080 (4)* | 0.487 (7) |
C12' | 0.6427 (2) | 0.0276 (6) | 0.4028 (4) | 0.024 (3)* | 0.513 (7) |
F12Y | 0.6562 (5) | −0.0261 (12) | 0.4682 (4) | 0.060 (4)* | 0.513 (7) |
F12Z | 0.6332 (4) | −0.0872 (9) | 0.3594 (4) | 0.045 (3)* | 0.513 (7) |
C13' | 0.6898 (3) | 0.1160 (6) | 0.4025 (5) | 0.036 (4)* | 0.513 (7) |
F13Y | 0.6955 (5) | 0.2403 (9) | 0.4385 (5) | 0.060 (4)* | 0.513 (7) |
F13Z | 0.6718 (5) | 0.1532 (11) | 0.3335 (4) | 0.068 (4)* | 0.513 (7) |
C14' | 0.7452 (2) | 0.0365 (8) | 0.4309 (4) | 0.070 (7)* | 0.513 (7) |
F14X | 0.7829 (4) | 0.1284 (12) | 0.4304 (6) | 0.085 (5)* | 0.513 (7) |
F14Y | 0.7646 (5) | −0.0072 (13) | 0.4993 (4) | 0.088 (4)* | 0.513 (7) |
F14Z | 0.7406 (5) | −0.0834 (11) | 0.3924 (5) | 0.067 (4)* | 0.513 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0429 (5) | 0.0470 (5) | 0.0251 (4) | −0.0055 (3) | 0.0211 (3) | −0.0016 (3) |
Ag3 | 0.0368 (6) | 0.0320 (5) | 0.0203 (5) | 0.000 | 0.0189 (4) | 0.000 |
Ag2 | 0.0312 (5) | 0.0350 (6) | 0.0366 (6) | 0.000 | 0.0162 (5) | 0.000 |
N1 | 0.025 (4) | 0.030 (4) | 0.017 (4) | 0.007 (3) | 0.013 (3) | 0.007 (3) |
N2 | 0.022 (3) | 0.029 (3) | 0.019 (3) | 0.005 (3) | 0.012 (3) | 0.005 (3) |
C100 | 0.023 (4) | 0.029 (5) | 0.012 (4) | 0.006 (3) | 0.007 (3) | 0.006 (3) |
C101 | 0.036 (5) | 0.032 (5) | 0.021 (4) | −0.002 (4) | 0.018 (4) | 0.000 (4) |
C102 | 0.027 (4) | 0.037 (5) | 0.023 (5) | 0.001 (4) | 0.013 (4) | 0.003 (4) |
C103 | 0.043 (5) | 0.025 (4) | 0.022 (5) | −0.007 (4) | 0.014 (4) | 0.000 (4) |
C104 | 0.036 (5) | 0.032 (5) | 0.023 (5) | 0.006 (4) | 0.015 (4) | 0.000 (4) |
C105 | 0.026 (4) | 0.024 (4) | 0.016 (4) | 0.008 (3) | 0.012 (3) | 0.007 (3) |
C106 | 0.020 (4) | 0.028 (4) | 0.019 (4) | 0.007 (3) | 0.011 (3) | 0.005 (3) |
C107 | 0.041 (5) | 0.028 (4) | 0.023 (4) | 0.004 (4) | 0.021 (4) | 0.002 (4) |
C108 | 0.031 (5) | 0.029 (4) | 0.030 (5) | −0.001 (4) | 0.021 (4) | −0.003 (4) |
C109 | 0.034 (5) | 0.032 (5) | 0.023 (5) | −0.005 (4) | 0.013 (4) | −0.002 (4) |
C110 | 0.031 (5) | 0.028 (4) | 0.020 (4) | 0.000 (4) | 0.011 (4) | −0.006 (3) |
C111 | 0.026 (4) | 0.028 (4) | 0.018 (4) | 0.007 (3) | 0.011 (4) | 0.008 (3) |
O1A | 0.059 (5) | 0.099 (6) | 0.020 (3) | −0.044 (4) | 0.023 (3) | −0.017 (4) |
O1B | 0.045 (4) | 0.061 (4) | 0.025 (4) | −0.007 (3) | 0.019 (3) | 0.006 (3) |
C1 | 0.032 (5) | 0.030 (5) | 0.031 (5) | −0.004 (4) | 0.019 (4) | −0.013 (4) |
O11A | 0.052 (4) | 0.041 (4) | 0.029 (4) | −0.014 (3) | 0.027 (3) | −0.003 (3) |
O11B | 0.033 (3) | 0.040 (4) | 0.030 (4) | 0.001 (3) | 0.017 (3) | −0.001 (3) |
C11 | 0.033 (5) | 0.041 (5) | 0.021 (5) | 0.012 (4) | 0.016 (4) | 0.004 (4) |
Ag1—Ag2 | 3.3203 (7) | C2—F2A | 1.3498 (10) |
Ag1—N1 | 2.425 (6) | C2—F2B | 1.3495 (10) |
Ag1—O1B | 2.267 (6) | C2—C3 | 1.5395 (10) |
Ag1—O11A | 2.269 (6) | C3—F3A | 1.3498 (10) |
Ag3—N2i | 2.243 (6) | C3—F3B | 1.3495 (10) |
Ag3—N2ii | 2.243 (6) | C3—C4 | 1.5395 (10) |
Ag3—O11B | 2.537 (6) | C4—F4A | 1.3496 (10) |
Ag3—O11Biii | 2.538 (6) | C4—F4B | 1.3497 (10) |
Ag2—Ag1iii | 3.3203 (7) | C4—F4C | 1.3497 (10) |
Ag2—O1A | 2.233 (6) | C2'—F2Y | 1.3505 (10) |
Ag2—O1Aiii | 2.233 (6) | C2'—F2Z | 1.3503 (10) |
Ag2—O11Biii | 2.418 (6) | C2'—C3' | 1.5400 (10) |
Ag2—O11B | 2.418 (6) | C3'—F3Y | 1.3502 (10) |
N1—C100 | 1.344 (10) | C3'—F3Z | 1.410 (18) |
N1—C111 | 1.345 (10) | C3'—C4' | 1.5400 (10) |
N2—Ag3i | 2.243 (6) | C4'—F4X | 1.3500 (10) |
N2—C105 | 1.361 (9) | C4'—F4Y | 1.3499 (10) |
N2—C106 | 1.334 (10) | C4'—F4Z | 1.3499 (10) |
C100—C101 | 1.417 (11) | O11A—C11iii | 1.252 (9) |
C100—C105 | 1.443 (10) | O11B—C11 | 1.239 (9) |
C101—H101 | 0.9500 | C11—O11Aiii | 1.252 (9) |
C101—C102 | 1.339 (11) | C11—C12 | 1.5407 (10) |
C102—H102 | 0.9500 | C11—C12' | 1.5396 (10) |
C102—C103 | 1.420 (11) | C12—F12A | 1.3502 (10) |
C103—H103 | 0.9500 | C12—F12B | 1.3503 (10) |
C103—C104 | 1.368 (11) | C12—C13 | 1.5398 (10) |
C104—H104 | 0.9500 | C13—F13A | 1.3497 (10) |
C104—C105 | 1.423 (11) | C13—F13B | 1.3498 (10) |
C106—C107 | 1.433 (11) | C13—C14 | 1.5396 (10) |
C106—C111 | 1.437 (11) | C14—F14A | 1.3498 (10) |
C107—H107 | 0.9500 | C14—F14B | 1.3497 (10) |
C107—C108 | 1.339 (12) | C14—F14C | 1.3501 (10) |
C108—H108 | 0.9500 | C12'—F12Y | 1.3496 (10) |
C108—C109 | 1.448 (11) | C12'—F12Z | 1.3498 (10) |
C109—H109 | 0.9500 | C12'—C13' | 1.5394 (10) |
C109—C110 | 1.348 (11) | C13'—F13Y | 1.3495 (10) |
C110—H110 | 0.9500 | C13'—F13Z | 1.3495 (10) |
C110—C111 | 1.427 (11) | C13'—C14' | 1.5394 (10) |
O1A—C1 | 1.234 (10) | C14'—F14X | 1.3498 (10) |
O1B—C1 | 1.240 (9) | C14'—F14Y | 1.3496 (10) |
C1—C2 | 1.5398 (10) | C14'—F14Z | 1.3496 (10) |
C1—C2' | 1.5404 (10) | ||
N1—Ag1—Ag2 | 172.14 (15) | F2B—C2—C1 | 113.2 (8) |
O1B—Ag1—Ag2 | 72.05 (15) | F2B—C2—C3 | 107.7 (8) |
O1B—Ag1—N1 | 110.8 (2) | C3—C2—C1 | 111.1 (6) |
O1B—Ag1—O11A | 139.5 (2) | F3A—C3—C2 | 107.2 (9) |
O11A—Ag1—Ag2 | 74.57 (15) | F3A—C3—C4 | 103.5 (9) |
O11A—Ag1—N1 | 105.4 (2) | F3B—C3—C2 | 110.8 (11) |
N2i—Ag3—N2ii | 156.1 (3) | F3B—C3—F3A | 106.32 (11) |
N2ii—Ag3—O11Biii | 113.4 (2) | F3B—C3—C4 | 113.0 (11) |
N2i—Ag3—O11Biii | 86.2 (2) | C4—C3—C2 | 115.24 (11) |
N2ii—Ag3—O11B | 86.2 (2) | F4A—C4—C3 | 116.6 (13) |
N2i—Ag3—O11B | 113.4 (2) | F4A—C4—F4B | 106.30 (11) |
O11B—Ag3—O11Biii | 73.3 (3) | F4A—C4—F4C | 101.9 (17) |
Ag1—Ag2—Ag1iii | 170.95 (4) | F4B—C4—C3 | 110.3 (10) |
O1Aiii—Ag2—Ag1iii | 77.80 (15) | F4C—C4—C3 | 114.6 (13) |
O1Aiii—Ag2—Ag1 | 106.63 (15) | F4C—C4—F4B | 106.31 (11) |
O1A—Ag2—Ag1 | 77.80 (15) | F2Y—C2'—C1 | 116.4 (8) |
O1A—Ag2—Ag1iii | 106.63 (15) | F2Y—C2'—C3' | 101.7 (7) |
O1Aiii—Ag2—O1A | 123.4 (4) | F2Z—C2'—C1 | 107.9 (6) |
O1Aiii—Ag2—O11Biii | 88.5 (3) | F2Z—C2'—F2Y | 106.23 (11) |
O1A—Ag2—O11B | 88.5 (3) | F2Z—C2'—C3' | 109.8 (8) |
O1Aiii—Ag2—O11B | 139.9 (2) | C3'—C2'—C1 | 114.4 (5) |
O1A—Ag2—O11Biii | 139.9 (2) | F3Y—C3'—C2' | 103.3 (11) |
O11B—Ag2—Ag1 | 103.26 (14) | F3Y—C3'—F3Z | 118.2 (11) |
O11Biii—Ag2—Ag1 | 69.36 (14) | F3Y—C3'—C4' | 109.1 (12) |
O11B—Ag2—Ag1iii | 69.36 (14) | F3Z—C3'—C2' | 101.3 (9) |
O11Biii—Ag2—Ag1iii | 103.26 (14) | F3Z—C3'—C4' | 109.7 (10) |
O11B—Ag2—O11Biii | 77.6 (3) | C4'—C3'—C2' | 115.17 (11) |
C100—N1—Ag1 | 121.2 (5) | F4X—C4'—C3' | 113.5 (10) |
C100—N1—C111 | 118.5 (7) | F4Y—C4'—C3' | 111.5 (9) |
C111—N1—Ag1 | 120.1 (5) | F4Y—C4'—F4X | 106.26 (11) |
C105—N2—Ag3i | 120.9 (5) | F4Z—C4'—C3' | 99.1 (9) |
C106—N2—Ag3i | 121.3 (5) | F4Z—C4'—F4X | 120.0 (11) |
C106—N2—C105 | 117.7 (6) | F4Z—C4'—F4Y | 106.27 (11) |
N1—C100—C101 | 121.2 (7) | C11iii—O11A—Ag1 | 122.7 (5) |
N1—C100—C105 | 120.6 (7) | Ag2—O11B—Ag3 | 104.5 (2) |
C101—C100—C105 | 118.2 (7) | C11—O11B—Ag3 | 133.6 (5) |
C100—C101—H101 | 119.1 | C11—O11B—Ag2 | 117.5 (5) |
C102—C101—C100 | 121.8 (7) | O11Aiii—C11—C12 | 114.1 (7) |
C102—C101—H101 | 119.1 | O11Aiii—C11—C12' | 115.3 (7) |
C101—C102—H102 | 119.6 | O11B—C11—O11Aiii | 126.6 (5) |
C101—C102—C103 | 120.8 (8) | O11B—C11—C12 | 117.8 (7) |
C103—C102—H102 | 119.6 | O11B—C11—C12' | 115.4 (7) |
C102—C103—H103 | 120.0 | F12A—C12—C11 | 111.0 (8) |
C104—C103—C102 | 119.9 (8) | F12A—C12—F12B | 106.23 (11) |
C104—C103—H103 | 120.0 | F12A—C12—C13 | 104.7 (7) |
C103—C104—H104 | 119.5 | F12B—C12—C11 | 116.9 (8) |
C103—C104—C105 | 120.9 (7) | F12B—C12—C13 | 106.8 (8) |
C105—C104—H104 | 119.5 | C13—C12—C11 | 110.4 (5) |
N2—C105—C100 | 120.8 (7) | C12—C13—C14 | 115.23 (11) |
N2—C105—C104 | 120.9 (7) | F13A—C13—C12 | 114.9 (8) |
C104—C105—C100 | 118.2 (7) | F13A—C13—F13B | 106.30 (11) |
N2—C106—C107 | 119.5 (7) | F13A—C13—C14 | 104.0 (8) |
N2—C106—C111 | 121.6 (7) | F13B—C13—C12 | 110.3 (8) |
C107—C106—C111 | 118.9 (7) | F13B—C13—C14 | 105.3 (8) |
C106—C107—H107 | 119.5 | F14A—C14—C13 | 115.4 (8) |
C108—C107—C106 | 121.0 (8) | F14A—C14—F14B | 106.30 (11) |
C108—C107—H107 | 119.5 | F14A—C14—F14C | 101.6 (10) |
C107—C108—H108 | 120.1 | F14B—C14—C13 | 114.2 (8) |
C107—C108—C109 | 119.8 (7) | F14B—C14—F14C | 106.26 (11) |
C109—C108—H108 | 120.1 | F14C—C14—C13 | 112.0 (8) |
C108—C109—H109 | 119.4 | F12Y—C12'—C11 | 112.5 (8) |
C110—C109—C108 | 121.2 (8) | F12Y—C12'—F12Z | 106.32 (11) |
C110—C109—H109 | 119.4 | F12Y—C12'—C13' | 112.1 (7) |
C109—C110—H110 | 119.8 | F12Z—C12'—C11 | 113.1 (7) |
C109—C110—C111 | 120.4 (8) | F12Z—C12'—C13' | 108.0 (7) |
C111—C110—H110 | 119.8 | C13'—C12'—C11 | 104.8 (5) |
N1—C111—C106 | 120.7 (7) | C12'—C13'—C14' | 115.25 (11) |
N1—C111—C110 | 120.7 (7) | F13Y—C13'—C12' | 108.9 (8) |
C110—C111—C106 | 118.6 (7) | F13Y—C13'—F13Z | 106.35 (11) |
C1—O1A—Ag2 | 124.7 (5) | F13Y—C13'—C14' | 110.9 (8) |
C1—O1B—Ag1 | 131.2 (5) | F13Z—C13'—C12' | 105.2 (8) |
O1A—C1—O1B | 128.1 (5) | F13Z—C13'—C14' | 109.7 (8) |
O1A—C1—C2 | 123.0 (7) | F14X—C14'—C13' | 108.7 (7) |
O1A—C1—C2' | 108.2 (7) | F14Y—C14'—C13' | 112.5 (8) |
O1B—C1—C2 | 108.8 (7) | F14Y—C14'—F14X | 106.29 (11) |
O1B—C1—C2' | 123.7 (7) | F14Z—C14'—C13' | 111.4 (7) |
F2A—C2—C1 | 109.2 (9) | F14Z—C14'—F14X | 111.4 (9) |
F2A—C2—F2B | 106.33 (11) | F14Z—C14'—F14Y | 106.31 (11) |
F2A—C2—C3 | 109.1 (9) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y, z+1/2; (iii) −x+1, y, −z+1/2. |
C20H8Ag2F14N2O4 | Z = 2 |
Mr = 822.02 | F(000) = 788 |
Triclinic, P1 | Dx = 2.199 Mg m−3 |
a = 10.782 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.006 (4) Å | Cell parameters from 2619 reflections |
c = 12.540 (4) Å | θ = 2.2–21.9° |
α = 71.569 (4)° | µ = 1.72 mm−1 |
β = 76.089 (4)° | T = 173 K |
γ = 62.229 (4)° | Plate, yellow |
V = 1241.5 (7) Å3 | × × mm |
Bruker APEX-II CCD diffractometer | 2491 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 24.3°, θmin = 1.7° |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1443 before and 0.0437 after correction. The Ratio of minimum to maximum transmission is 0.5803. The λ/2 correction factor is 0.0015. | h = −12→9 |
Tmin = 0.432, Tmax = 0.745 | k = −12→12 |
9058 measured reflections | l = −14→14 |
3916 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.272 | w = 1/[σ2(Fo2) + (0.1469P)2 + 9.2164P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3916 reflections | Δρmax = 1.72 e Å−3 |
315 parameters | Δρmin = −1.05 e Å−3 |
48 restraints |
C20H8Ag2F14N2O4 | γ = 62.229 (4)° |
Mr = 822.02 | V = 1241.5 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.782 (3) Å | Mo Kα radiation |
b = 11.006 (4) Å | µ = 1.72 mm−1 |
c = 12.540 (4) Å | T = 173 K |
α = 71.569 (4)° | × × mm |
β = 76.089 (4)° |
Bruker APEX-II CCD diffractometer | 3916 independent reflections |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1443 before and 0.0437 after correction. The Ratio of minimum to maximum transmission is 0.5803. The λ/2 correction factor is 0.0015. | 2491 reflections with I > 2σ(I) |
Tmin = 0.432, Tmax = 0.745 | Rint = 0.036 |
9058 measured reflections |
R[F2 > 2σ(F2)] = 0.080 | 48 restraints |
wR(F2) = 0.272 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.72 e Å−3 |
3916 reflections | Δρmin = −1.05 e Å−3 |
315 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag01 | 0.58225 (12) | 0.83936 (11) | 0.44475 (10) | 0.0713 (5) | |
Ag02 | 0.80940 (11) | 0.55737 (11) | 0.55225 (10) | 0.0692 (4) | |
O001 | 0.7544 (12) | 0.7021 (12) | 0.6690 (10) | 0.096 (4) | |
O002 | 0.5736 (11) | 0.9003 (10) | 0.6089 (9) | 0.081 (3) | |
C001 | 0.6590 (16) | 0.8195 (15) | 0.6746 (9) | 0.068 (4)* | |
C002 | 0.6331 (11) | 0.8577 (11) | 0.7885 (8) | 0.100 (5)* | |
F001 | 0.5656 (13) | 0.9991 (11) | 0.7767 (13) | 0.162 (5)* | |
F002 | 0.7605 (12) | 0.8170 (14) | 0.8201 (14) | 0.184 (6)* | |
C003 | 0.5340 (13) | 0.7913 (12) | 0.8635 (11) | 0.25 (2)* | |
F003 | 0.6040 (14) | 0.6517 (14) | 0.9081 (15) | 0.201 (7)* | |
F004 | 0.4164 (11) | 0.8078 (12) | 0.8294 (11) | 0.142 (4)* | |
C004 | 0.4832 (11) | 0.8217 (12) | 0.9820 (10) | 0.39 (3)* | |
F005 | 0.4111 (18) | 0.7423 (17) | 1.034 (2) | 0.306 (13)* | |
F006 | 0.3872 (17) | 0.9512 (15) | 0.936 (2) | 0.346 (16)* | |
F007 | 0.5936 (14) | 0.8401 (18) | 0.9950 (17) | 0.221 (8)* | |
O003 | 0.9472 (10) | 0.6184 (10) | 0.3905 (8) | 0.069 (3) | |
O004 | 0.7860 (12) | 0.8378 (11) | 0.3320 (9) | 0.086 (3) | |
C005 | 0.9043 (14) | 0.7333 (15) | 0.3255 (8) | 0.066 (4) | |
C006 | 0.9858 (13) | 0.7746 (13) | 0.2118 (7) | 0.079 (14)* | 0.469 (17) |
F008 | 1.1150 (15) | 0.744 (2) | 0.2341 (16) | 0.098 (7)* | 0.469 (17) |
F009 | 0.9308 (18) | 0.9125 (13) | 0.1574 (16) | 0.085 (6)* | 0.469 (17) |
C007 | 0.9895 (14) | 0.6937 (12) | 0.1300 (9) | 0.057 (10)* | 0.469 (17) |
F010 | 0.8594 (13) | 0.708 (2) | 0.1254 (17) | 0.084 (6)* | 0.469 (17) |
F011 | 1.0688 (19) | 0.5539 (15) | 0.166 (3) | 0.145 (11)* | 0.469 (17) |
C008 | 1.0558 (17) | 0.7335 (14) | 0.0085 (7) | 0.10 (2)* | 0.469 (17) |
F012 | 1.098 (2) | 0.8386 (18) | −0.0206 (19) | 0.145 (11)* | 0.469 (17) |
F013 | 1.010 (2) | 0.738 (2) | −0.0845 (14) | 0.214 (18)* | 0.469 (17) |
F014 | 1.1857 (18) | 0.626 (3) | 0.0155 (19) | 0.150 (12)* | 0.469 (17) |
C009 | 1.0038 (11) | 0.7492 (14) | 0.2164 (7) | 0.063 (10)* | 0.531 (17) |
F015 | 1.1404 (13) | 0.6626 (15) | 0.2312 (14) | 0.088 (5)* | 0.531 (17) |
F016 | 0.9949 (19) | 0.8820 (12) | 0.1823 (19) | 0.114 (7)* | 0.531 (17) |
C010 | 0.9708 (13) | 0.7048 (15) | 0.1256 (10) | 0.17 (3)* | 0.531 (17) |
F017 | 0.993 (2) | 0.5676 (14) | 0.161 (2) | 0.131 (8)* | 0.531 (17) |
F018 | 0.8370 (15) | 0.7781 (19) | 0.099 (2) | 0.124 (8)* | 0.531 (17) |
C011 | 1.0486 (15) | 0.7338 (13) | 0.0069 (7) | 0.21 (5)* | 0.531 (17) |
F019 | 1.1743 (14) | 0.734 (2) | 0.004 (2) | 0.141 (9)* | 0.531 (17) |
F020 | 0.9651 (16) | 0.8653 (12) | −0.0471 (17) | 0.136 (9)* | 0.531 (17) |
F021 | 1.0522 (19) | 0.6448 (13) | −0.0484 (13) | 0.104 (7)* | 0.531 (17) |
N001 | 0.7051 (11) | 0.4115 (11) | 0.5664 (9) | 0.058 (3) | |
C012 | 0.4122 (17) | 0.5343 (18) | 0.7763 (14) | 0.084 (5) | |
H012 | 0.3809 | 0.5926 | 0.8280 | 0.101* | |
C013 | 0.5275 (18) | 0.5208 (16) | 0.7066 (13) | 0.078 (4) | |
H013 | 0.5743 | 0.5768 | 0.7038 | 0.094* | |
C014 | 0.5841 (15) | 0.4262 (14) | 0.6358 (11) | 0.058 (3) | |
C015 | 0.7568 (14) | 0.3172 (14) | 0.5026 (12) | 0.062 (3) | |
C016 | 0.8873 (17) | 0.2892 (18) | 0.4344 (15) | 0.084 (5) | |
H016 | 0.9391 | 0.3404 | 0.4314 | 0.101* | |
C017 | 0.939 (2) | 0.193 (2) | 0.3744 (19) | 0.114 (7) | |
H017 | 1.0285 | 0.1731 | 0.3311 | 0.137* | |
N002 | 0.4424 (12) | 0.7423 (12) | 0.4320 (9) | 0.062 (3) | |
C018 | 0.140 (2) | 0.882 (2) | 0.6255 (18) | 0.105 (6) | |
H018 | 0.1033 | 0.9490 | 0.6707 | 0.126* | |
C019 | 0.2628 (18) | 0.8596 (17) | 0.5632 (16) | 0.087 (5) | |
H019 | 0.3143 | 0.9092 | 0.5650 | 0.104* | |
C020 | 0.3183 (15) | 0.7629 (15) | 0.4942 (12) | 0.069 (4) | |
C021 | 0.4894 (14) | 0.6498 (13) | 0.3644 (12) | 0.062 (3) | |
C022 | 0.6171 (16) | 0.6296 (16) | 0.2920 (12) | 0.070 (4) | |
H022 | 0.6678 | 0.6813 | 0.2908 | 0.085* | |
C023 | 0.6667 (19) | 0.5406 (17) | 0.2264 (14) | 0.086 (5) | |
H023 | 0.7544 | 0.5256 | 0.1807 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag01 | 0.0666 (8) | 0.0676 (7) | 0.0905 (9) | −0.0246 (6) | −0.0080 (6) | −0.0392 (6) |
Ag02 | 0.0598 (7) | 0.0678 (7) | 0.0826 (8) | −0.0308 (5) | 0.0046 (5) | −0.0243 (6) |
O001 | 0.091 (8) | 0.091 (8) | 0.098 (8) | −0.011 (6) | −0.020 (6) | −0.047 (7) |
O002 | 0.087 (7) | 0.070 (6) | 0.081 (7) | −0.014 (5) | −0.017 (6) | −0.035 (5) |
O003 | 0.061 (6) | 0.065 (6) | 0.068 (6) | −0.026 (5) | 0.007 (5) | −0.008 (5) |
O004 | 0.077 (7) | 0.074 (7) | 0.086 (7) | −0.022 (6) | 0.003 (6) | −0.018 (6) |
C005 | 0.073 (10) | 0.069 (9) | 0.062 (8) | −0.035 (8) | 0.008 (7) | −0.027 (7) |
N001 | 0.059 (7) | 0.059 (6) | 0.062 (6) | −0.023 (5) | −0.003 (5) | −0.026 (5) |
C012 | 0.082 (11) | 0.105 (12) | 0.091 (11) | −0.053 (9) | 0.030 (9) | −0.065 (10) |
C013 | 0.096 (12) | 0.081 (10) | 0.081 (10) | −0.054 (9) | 0.016 (9) | −0.043 (8) |
C014 | 0.068 (9) | 0.066 (8) | 0.056 (7) | −0.041 (7) | 0.005 (6) | −0.024 (6) |
C015 | 0.052 (8) | 0.073 (8) | 0.076 (9) | −0.033 (7) | 0.002 (6) | −0.034 (7) |
C016 | 0.064 (9) | 0.093 (11) | 0.101 (12) | −0.033 (8) | 0.021 (8) | −0.053 (10) |
C017 | 0.086 (13) | 0.132 (16) | 0.149 (18) | −0.053 (12) | 0.044 (12) | −0.094 (15) |
N002 | 0.064 (7) | 0.072 (7) | 0.059 (6) | −0.030 (6) | −0.002 (5) | −0.027 (6) |
C018 | 0.094 (13) | 0.096 (13) | 0.136 (16) | −0.041 (11) | 0.032 (12) | −0.072 (12) |
C019 | 0.076 (11) | 0.085 (10) | 0.116 (13) | −0.032 (8) | 0.017 (9) | −0.068 (10) |
C020 | 0.065 (9) | 0.063 (8) | 0.075 (9) | −0.019 (7) | 0.003 (7) | −0.031 (7) |
C021 | 0.054 (8) | 0.057 (7) | 0.075 (9) | −0.023 (6) | −0.005 (7) | −0.020 (7) |
C022 | 0.073 (10) | 0.089 (10) | 0.073 (9) | −0.051 (8) | 0.021 (7) | −0.045 (8) |
C023 | 0.096 (12) | 0.082 (10) | 0.096 (11) | −0.055 (9) | 0.029 (9) | −0.043 (9) |
Ag01—Ag02 | 3.0506 (17) | C008—F012 | 1.3498 (11) |
Ag01—O002 | 2.328 (10) | C008—F013 | 1.3498 (11) |
Ag01—O002i | 2.515 (10) | C008—F014 | 1.3499 (11) |
Ag01—O004 | 2.304 (11) | C009—F015 | 1.3501 (11) |
Ag01—N002 | 2.272 (11) | C009—F016 | 1.3501 (11) |
Ag02—O001 | 2.283 (11) | C009—C010 | 1.5400 (11) |
Ag02—O003ii | 2.538 (10) | C010—F017 | 1.3500 (11) |
Ag02—O003 | 2.322 (9) | C010—F018 | 1.3500 (11) |
Ag02—N001 | 2.297 (11) | C010—C011 | 1.5399 (11) |
O001—C001 | 1.232 (17) | C011—F019 | 1.3499 (11) |
O002—Ag01i | 2.515 (10) | C011—F020 | 1.3499 (11) |
O002—C001 | 1.206 (16) | C011—F021 | 1.3499 (11) |
C001—C002 | 1.5400 (11) | N001—C014 | 1.354 (16) |
C002—F001 | 1.3500 (11) | N001—C015 | 1.342 (16) |
C002—F002 | 1.3499 (11) | C012—C013 | 1.31 (2) |
C002—C003 | 1.5399 (11) | C012—C023iii | 1.45 (2) |
C003—F003 | 1.3499 (11) | C013—C014 | 1.406 (18) |
C003—F004 | 1.3500 (11) | C014—C021iii | 1.395 (18) |
C003—C004 | 1.5398 (11) | C015—C016 | 1.41 (2) |
C004—F005 | 1.3499 (11) | C015—C020iii | 1.437 (19) |
C004—F006 | 1.3499 (11) | C016—C017 | 1.33 (2) |
C004—F007 | 1.3499 (11) | C017—C018iii | 1.43 (3) |
O003—Ag02ii | 2.538 (10) | N002—C020 | 1.333 (17) |
O003—C005 | 1.210 (15) | N002—C021 | 1.368 (16) |
O004—C005 | 1.264 (16) | C018—C017iii | 1.43 (3) |
C005—C006 | 1.5399 (11) | C018—C019 | 1.32 (2) |
C005—C009 | 1.5401 (11) | C019—C020 | 1.406 (19) |
C006—F008 | 1.3500 (11) | C020—C015iii | 1.437 (19) |
C006—F009 | 1.3499 (11) | C021—C014iii | 1.395 (18) |
C006—C007 | 1.5399 (11) | C021—C022 | 1.419 (18) |
C007—F010 | 1.3499 (11) | C022—C023 | 1.316 (19) |
C007—F011 | 1.3500 (11) | C023—C012iii | 1.45 (2) |
C007—C008 | 1.5398 (11) | ||
O002—Ag01—Ag02 | 83.4 (2) | F009—C006—F008 | 106.26 (11) |
O002i—Ag01—Ag02 | 161.5 (2) | F009—C006—C007 | 105.7 (11) |
O002—Ag01—O002i | 80.7 (4) | F010—C007—C006 | 111.5 (13) |
O004—Ag01—Ag02 | 76.9 (3) | F010—C007—F011 | 106.26 (11) |
O004—Ag01—O002i | 99.0 (4) | F010—C007—C008 | 108.5 (13) |
O004—Ag01—O002 | 107.7 (4) | F011—C007—C006 | 110.5 (16) |
N002—Ag01—Ag02 | 94.2 (3) | F011—C007—C008 | 104.4 (16) |
N002—Ag01—O002 | 122.0 (4) | C008—C007—C006 | 115.17 (11) |
N002—Ag01—O002i | 102.2 (4) | F012—C008—C007 | 119.7 (11) |
N002—Ag01—O004 | 128.2 (4) | F012—C008—F014 | 96.6 (19) |
O001—Ag02—Ag01 | 74.7 (3) | F013—C008—C007 | 123.8 (13) |
O001—Ag02—O003 | 109.4 (4) | F013—C008—F012 | 106.29 (11) |
O001—Ag02—O003ii | 98.1 (4) | F013—C008—F014 | 106.28 (11) |
O001—Ag02—N001 | 126.2 (4) | F014—C008—C007 | 99.0 (14) |
O003ii—Ag02—Ag01 | 157.2 (2) | F015—C009—C005 | 112.3 (12) |
O003—Ag02—Ag01 | 81.9 (2) | F015—C009—F016 | 106.24 (11) |
O003—Ag02—O003ii | 80.3 (3) | F015—C009—C010 | 105.4 (11) |
N001—Ag02—Ag01 | 99.4 (3) | F016—C009—C005 | 110.4 (13) |
N001—Ag02—O003 | 122.8 (4) | F016—C009—C010 | 113.0 (12) |
N001—Ag02—O003ii | 102.1 (3) | C010—C009—C005 | 109.4 (9) |
C001—O001—Ag02 | 132.8 (9) | F017—C010—C009 | 109.9 (14) |
Ag01—O002—Ag01i | 99.3 (4) | F017—C010—C011 | 110.9 (15) |
C001—O002—Ag01 | 119.3 (8) | F018—C010—C009 | 115.1 (15) |
C001—O002—Ag01i | 138.4 (9) | F018—C010—F017 | 106.26 (11) |
O001—C001—C002 | 114.8 (12) | F018—C010—C011 | 98.7 (14) |
O002—C001—O001 | 128.7 (11) | C011—C010—C009 | 115.17 (11) |
O002—C001—C002 | 115.9 (12) | F019—C011—C010 | 115.4 (11) |
F001—C002—C001 | 111.0 (11) | F019—C011—F021 | 114.8 (16) |
F001—C002—C003 | 108.3 (9) | F020—C011—C010 | 106.3 (14) |
F002—C002—C001 | 107.3 (11) | F020—C011—F019 | 106.27 (11) |
F002—C002—F001 | 106.28 (11) | F020—C011—F021 | 106.27 (11) |
F002—C002—C003 | 119.6 (11) | F021—C011—C010 | 107.1 (12) |
C003—C002—C001 | 104.3 (9) | C014—N001—Ag02 | 119.5 (8) |
F003—C003—C002 | 112.4 (12) | C015—N001—Ag02 | 121.5 (9) |
F003—C003—F004 | 106.28 (11) | C015—N001—C014 | 118.9 (11) |
F003—C003—C004 | 91.5 (12) | C013—C012—C023iii | 119.3 (13) |
F004—C003—C002 | 123.2 (11) | C012—C013—C014 | 122.1 (14) |
F004—C003—C004 | 103.4 (12) | N001—C014—C013 | 121.1 (12) |
C004—C003—C002 | 115.19 (11) | N001—C014—C021iii | 120.2 (11) |
F005—C004—C003 | 103.7 (16) | C021iii—C014—C013 | 118.7 (13) |
F005—C004—F007 | 140.3 (13) | N001—C015—C016 | 122.0 (13) |
F006—C004—C003 | 89.6 (15) | N001—C015—C020iii | 120.1 (12) |
F006—C004—F005 | 106.26 (12) | C016—C015—C020iii | 117.9 (13) |
F006—C004—F007 | 106.29 (11) | C017—C016—C015 | 121.2 (17) |
F007—C004—C003 | 98.5 (10) | C016—C017—C018iii | 120.3 (16) |
Ag02—O003—Ag02ii | 99.7 (3) | C020—N002—Ag01 | 123.0 (9) |
C005—O003—Ag02ii | 132.9 (8) | C020—N002—C021 | 116.9 (12) |
C005—O003—Ag02 | 122.2 (7) | C021—N002—Ag01 | 119.9 (9) |
C005—O004—Ag01 | 127.9 (8) | C019—C018—C017iii | 120.8 (16) |
O003—C005—O004 | 128.7 (8) | C018—C019—C020 | 120.8 (17) |
O003—C005—C006 | 124.3 (11) | N002—C020—C015iii | 121.4 (12) |
O003—C005—C009 | 114.9 (11) | N002—C020—C019 | 119.5 (15) |
O004—C005—C006 | 106.9 (11) | C019—C020—C015iii | 118.9 (14) |
O004—C005—C009 | 116.2 (11) | C014iii—C021—C022 | 118.5 (12) |
C005—C006—C007 | 108.6 (8) | N002—C021—C014iii | 122.2 (12) |
F008—C006—C005 | 106.9 (12) | N002—C021—C022 | 119.3 (12) |
F008—C006—C007 | 113.5 (13) | C023—C022—C021 | 121.2 (14) |
F009—C006—C005 | 116.1 (13) | C022—C023—C012iii | 120.0 (14) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1. |
C40H16Ag4F28N4O8·3(C7.43H8.85) | Z = 1 |
Mr = 1938.33 | F(000) = 945.4382 |
Triclinic, P1 | Dx = 1.985 Mg m−3 |
a = 10.6658 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2395 (14) Å | Cell parameters from 2414 reflections |
c = 14.325 (2) Å | θ = 3.5–24.4° |
α = 72.054 (2)° | µ = 1.33 mm−1 |
β = 86.608 (3)° | T = 100 K |
γ = 83.149 (3)° | Plate, yellow |
V = 1621.6 (4) Å3 | 0.32 × 0.2 × 0.12 mm |
Bruker APEX-II CCD diffractometer | 4917 reflections with I ≥ 2u(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 27.6°, θmin = 3.4° |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0726 before and 0.0556 after correction. The Ratio of minimum to maximum transmission is 0.8234. The λ/2 correction factor is 0.0015. | h = −13→13 |
Tmin = 0.614, Tmax = 0.746 | k = −13→14 |
10048 measured reflections | l = −18→17 |
7080 independent reflections |
Refinement on F2 | 50 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.207 | w = 1/[σ2(Fo2) + (0.1048P)2 + 7.5111P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
7080 reflections | Δρmax = 1.89 e Å−3 |
382 parameters | Δρmin = −1.63 e Å−3 |
36 restraints |
C40H16Ag4F28N4O8·3(C7.43H8.85) | γ = 83.149 (3)° |
Mr = 1938.33 | V = 1621.6 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.6658 (15) Å | Mo Kα radiation |
b = 11.2395 (14) Å | µ = 1.33 mm−1 |
c = 14.325 (2) Å | T = 100 K |
α = 72.054 (2)° | 0.32 × 0.2 × 0.12 mm |
β = 86.608 (3)° |
Bruker APEX-II CCD diffractometer | 7080 independent reflections |
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0726 before and 0.0556 after correction. The Ratio of minimum to maximum transmission is 0.8234. The λ/2 correction factor is 0.0015. | 4917 reflections with I ≥ 2u(I) |
Tmin = 0.614, Tmax = 0.746 | Rint = 0.048 |
10048 measured reflections |
R[F2 > 2σ(F2)] = 0.071 | 36 restraints |
wR(F2) = 0.207 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.89 e Å−3 |
7080 reflections | Δρmin = −1.63 e Å−3 |
382 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.03466 (5) | 0.89440 (5) | 0.42088 (4) | 0.02534 (18) | |
Ag2 | 0.25492 (5) | 0.69489 (5) | 0.45475 (4) | 0.02889 (18) | |
C1 | 0.2340 (7) | 0.9212 (7) | 0.2578 (6) | 0.0285 (16) | |
C2 | 0.2872 (8) | 0.9820 (8) | 0.1529 (6) | 0.0342 (17)* | |
C3 | 0.2133 (14) | 0.9610 (13) | 0.0763 (10) | 0.074 (3)* | |
C4 | 0.2502 (14) | 1.0086 (13) | −0.0316 (10) | 0.073 (3)* | |
C5 | 0.2102 (7) | 0.8690 (7) | 0.5981 (4) | 0.0266 (15) | |
C6 | 0.2502 (4) | 0.8997 (4) | 0.6889 (3) | 0.0364 (18)* | |
C7 | 0.3570 (5) | 0.9859 (4) | 0.6692 (4) | 0.053 (2)* | |
C8 | 0.4914 (5) | 0.9270 (5) | 0.6537 (4) | 0.075 (4)* | |
C100 | −0.1916 (8) | 0.6988 (8) | 0.7048 (6) | 0.0335 (18) | |
H100 | −0.1994 (8) | 0.7452 (8) | 0.7506 (6) | 0.040 (2)* | |
C101 | −0.1401 (7) | 0.7495 (6) | 0.6135 (6) | 0.0248 (15) | |
H101 | −0.1083 (7) | 0.8291 (6) | 0.5968 (6) | 0.0298 (18)* | |
C102 | −0.1343 (6) | 0.6818 (6) | 0.5430 (5) | 0.0216 (14) | |
C103 | −0.0873 (6) | 0.6706 (6) | 0.3873 (5) | 0.0220 (14) | |
C104 | −0.0432 (7) | 0.7234 (7) | 0.2885 (6) | 0.0290 (16) | |
H104 | −0.0129 (7) | 0.8037 (7) | 0.2692 (6) | 0.0348 (19)* | |
C105 | −0.0444 (7) | 0.6604 (8) | 0.2229 (6) | 0.0320 (17) | |
H105 | −0.0141 (7) | 0.6970 (8) | 0.1578 (6) | 0.038 (2)* | |
C106 | −0.0898 (8) | 0.5399 (7) | 0.2482 (6) | 0.0326 (17) | |
H106 | −0.0903 (8) | 0.4973 (7) | 0.2004 (6) | 0.039 (2)* | |
C200 | 0.2329 (7) | 0.4209 (8) | 0.2686 (6) | 0.0318 (17) | |
H200 | 0.2648 (7) | 0.4559 (8) | 0.2038 (6) | 0.038 (2)* | |
C201 | 0.2290 (7) | 0.4886 (7) | 0.3325 (5) | 0.0267 (15) | |
H201 | 0.2579 (7) | 0.5697 (7) | 0.3123 (5) | 0.0321 (18)* | |
C202 | 0.1810 (6) | 0.4377 (7) | 0.4304 (5) | 0.0231 (14) | |
C203 | 0.1340 (6) | 0.4509 (6) | 0.5858 (5) | 0.0222 (14) | |
C204 | 0.1322 (7) | 0.5132 (7) | 0.6590 (6) | 0.0283 (16) | |
H204 | 0.1616 (7) | 0.5939 (7) | 0.6422 (6) | 0.0339 (19)* | |
F2A | 0.4066 (6) | 0.9370 (5) | 0.1434 (4) | 0.0568 (15)* | |
F2B | 0.2859 (6) | 1.1065 (6) | 0.1327 (5) | 0.0637 (16)* | |
F3A | 0.2529 (15) | 0.8028 (14) | 0.1002 (11) | 0.072 (4)* | 0.478 (11) |
F3B | 0.0988 (13) | 0.9349 (12) | 0.0979 (9) | 0.057 (4)* | 0.478 (11) |
F3Y | 0.1675 (14) | 0.8665 (13) | 0.0913 (10) | 0.069 (4)* | 0.522 (11) |
F3Z | 0.0981 (14) | 1.0576 (13) | 0.0725 (10) | 0.075 (4)* | 0.522 (11) |
F4A | 0.3731 (15) | 0.9893 (16) | −0.0452 (11) | 0.070 (4)* | 0.478 (11) |
F4B | 0.202 (2) | 0.912 (2) | −0.0754 (15) | 0.105 (7)* | 0.478 (11) |
F4C | 0.202 (2) | 1.111 (2) | −0.0539 (15) | 0.110 (7)* | 0.478 (11) |
F4X | 0.3050 (16) | 1.1216 (14) | −0.0574 (11) | 0.084 (5)* | 0.522 (11) |
F4Y | 0.1662 (13) | 1.0202 (13) | −0.0954 (10) | 0.068 (4)* | 0.522 (11) |
F4Z | 0.3499 (14) | 0.9236 (15) | −0.0403 (11) | 0.073 (4)* | 0.522 (11) |
F6A | 0.2836 (5) | 0.7942 (4) | 0.7627 (4) | 0.0588 (15)* | |
F6B | 0.1545 (5) | 0.9643 (4) | 0.7246 (4) | 0.0518 (14)* | |
F7A | 0.3330 (7) | 1.0805 (6) | 0.5854 (4) | 0.034 (2)* | 0.657 (17) |
F7B | 0.3588 (12) | 1.0403 (9) | 0.7409 (5) | 0.066 (3)* | 0.657 (17) |
F8A | 0.5299 (12) | 0.8416 (10) | 0.7388 (5) | 0.091 (4)* | 0.657 (17) |
F8B | 0.5013 (8) | 0.8655 (7) | 0.5858 (5) | 0.054 (3)* | 0.657 (17) |
F8C | 0.5688 (10) | 1.0189 (8) | 0.6225 (8) | 0.063 (3)* | 0.657 (17) |
N1 | −0.0845 (6) | 0.7327 (5) | 0.4520 (5) | 0.0244 (13) | |
N2 | 0.1772 (5) | 0.5027 (5) | 0.4947 (4) | 0.0217 (12) | |
O1 | 0.1526 (5) | 0.9897 (5) | 0.2883 (4) | 0.0331 (12) | |
O2 | 0.2765 (5) | 0.8105 (5) | 0.2964 (4) | 0.0351 (13) | |
O3 | 0.1197 (5) | 0.9368 (5) | 0.5529 (4) | 0.0282 (11) | |
O4 | 0.2733 (5) | 0.7774 (5) | 0.5821 (5) | 0.0364 (13) | |
C51 | 0.5055 (9) | 0.6262 (9) | 0.4852 (10) | 0.054 (3) | |
H51 | 0.5088 (9) | 0.7134 (9) | 0.4753 (10) | 0.065 (3)* | |
C50 | 0.4768 (9) | 0.5508 (10) | 0.5756 (10) | 0.058 (3) | |
H50 | 0.4611 (9) | 0.5858 (10) | 0.6282 (10) | 0.070 (4)* | |
C52 | 0.5302 (9) | 0.5791 (10) | 0.4066 (10) | 0.063 (3) | |
H52 | 0.5511 (9) | 0.6320 (10) | 0.3433 (10) | 0.075 (4)* | 0.287500 |
C71 | 0.0972 (19) | 0.4129 (17) | 0.0284 (13) | 0.111 (3)* | |
H71 | 0.1642 (19) | 0.3476 (17) | 0.0491 (13) | 0.133 (4)* | |
C53 | 0.5646 (15) | 0.6560 (17) | 0.3056 (14) | 0.075 (5) | 0.712500 |
H53a | 0.5776 (15) | 0.6022 (17) | 0.2627 (14) | 0.113 (8)* | 0.712500 |
H53b | 0.4963 (15) | 0.7229 (17) | 0.2803 (14) | 0.113 (8)* | 0.712500 |
H53c | 0.6426 (15) | 0.6934 (17) | 0.3072 (14) | 0.113 (8)* | 0.712500 |
C72 | −0.015 (2) | 0.3837 (17) | 0.0373 (14) | 0.111 (3)* | |
H72 | −0.024 (2) | 0.2968 (17) | 0.0658 (14) | 0.133 (4)* | 0.287500 |
C70 | 0.127 (2) | 0.5388 (18) | −0.0111 (14) | 0.111 (3)* | |
H70 | 0.209 (2) | 0.5655 (18) | −0.0183 (14) | 0.133 (4)* | |
C62 | 0.498 (2) | 0.620 (2) | −0.0532 (14) | 0.157 (5)* | |
H62 | 0.495 (2) | 0.707 (2) | −0.0886 (14) | 0.189 (6)* | |
C73 | −0.040 (3) | 0.2577 (19) | 0.0736 (19) | 0.111 (3)* | 0.712500 |
H73a | −0.132 (3) | 0.2535 (19) | 0.0752 (19) | 0.166 (5)* | 0.712500 |
H73b | 0.001 (3) | 0.2108 (19) | 0.0308 (19) | 0.166 (5)* | 0.712500 |
H73c | −0.008 (3) | 0.2208 (19) | 0.1401 (19) | 0.166 (5)* | 0.712500 |
C61 | 0.526 (2) | 0.5827 (19) | 0.0485 (15) | 0.157 (5)* | |
H61 | 0.545 (2) | 0.6404 (19) | 0.0808 (15) | 0.189 (6)* | 0.287500 |
C60 | 0.523 (2) | 0.4521 (18) | 0.0978 (17) | 0.157 (5)* | |
H60 | 0.537 (2) | 0.4206 (18) | 0.1664 (17) | 0.189 (6)* | |
C63 | 0.561 (3) | 0.674 (2) | 0.092 (2) | 0.157 (5)* | 0.712500 |
H63a | 0.577 (3) | 0.633 (2) | 0.162 (2) | 0.236 (8)* | 0.712500 |
H63b | 0.637 (3) | 0.708 (2) | 0.059 (2) | 0.236 (8)* | 0.712500 |
H63c | 0.492 (3) | 0.742 (2) | 0.084 (2) | 0.236 (8)* | 0.712500 |
F8X | 0.480 (3) | 0.934 (2) | 0.5588 (7) | 0.136 (13)* | 0.343 (17) |
F8Y | 0.5296 (18) | 0.8056 (7) | 0.7014 (16) | 0.111 (10)* | 0.343 (17) |
F8Z | 0.5877 (13) | 0.9930 (14) | 0.658 (2) | 0.081 (8)* | 0.343 (17) |
F7Y | 0.317 (3) | 1.1031 (9) | 0.6126 (14) | 0.127 (13)* | 0.343 (17) |
F7Z | 0.3865 (19) | 0.9968 (19) | 0.7563 (7) | 0.061 (6)* | 0.343 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0226 (3) | 0.0238 (3) | 0.0340 (3) | −0.0003 (2) | −0.0011 (2) | −0.0159 (2) |
Ag2 | 0.0271 (3) | 0.0223 (3) | 0.0397 (4) | −0.0006 (2) | −0.0037 (2) | −0.0133 (2) |
C1 | 0.018 (3) | 0.039 (4) | 0.034 (4) | −0.006 (3) | −0.002 (3) | −0.018 (3) |
C5 | 0.027 (4) | 0.025 (3) | 0.031 (4) | −0.007 (3) | −0.003 (3) | −0.010 (3) |
C100 | 0.035 (4) | 0.039 (4) | 0.035 (4) | 0.003 (3) | −0.007 (3) | −0.026 (4) |
C101 | 0.026 (4) | 0.020 (3) | 0.032 (4) | 0.001 (3) | 0.001 (3) | −0.015 (3) |
C102 | 0.021 (3) | 0.020 (3) | 0.026 (4) | 0.002 (3) | −0.007 (3) | −0.011 (3) |
C103 | 0.016 (3) | 0.025 (3) | 0.028 (4) | 0.004 (3) | −0.002 (3) | −0.015 (3) |
C104 | 0.027 (4) | 0.028 (4) | 0.034 (4) | −0.001 (3) | −0.004 (3) | −0.013 (3) |
C105 | 0.031 (4) | 0.041 (4) | 0.029 (4) | −0.006 (3) | −0.004 (3) | −0.016 (3) |
C106 | 0.034 (4) | 0.037 (4) | 0.036 (4) | 0.000 (3) | −0.003 (3) | −0.025 (4) |
C200 | 0.030 (4) | 0.040 (4) | 0.026 (4) | 0.002 (3) | 0.002 (3) | −0.013 (3) |
C201 | 0.022 (4) | 0.030 (4) | 0.029 (4) | 0.001 (3) | −0.002 (3) | −0.011 (3) |
C202 | 0.014 (3) | 0.028 (3) | 0.032 (4) | 0.005 (3) | −0.001 (3) | −0.019 (3) |
C203 | 0.018 (3) | 0.021 (3) | 0.029 (4) | 0.000 (3) | −0.006 (3) | −0.010 (3) |
C204 | 0.023 (4) | 0.029 (4) | 0.038 (4) | 0.000 (3) | −0.006 (3) | −0.018 (3) |
N1 | 0.022 (3) | 0.023 (3) | 0.032 (3) | 0.000 (2) | −0.001 (2) | −0.016 (3) |
N2 | 0.017 (3) | 0.024 (3) | 0.029 (3) | 0.000 (2) | −0.006 (2) | −0.014 (2) |
O1 | 0.028 (3) | 0.032 (3) | 0.040 (3) | 0.000 (2) | 0.005 (2) | −0.013 (2) |
O2 | 0.036 (3) | 0.030 (3) | 0.039 (3) | 0.005 (2) | −0.006 (3) | −0.012 (2) |
O3 | 0.024 (3) | 0.032 (3) | 0.034 (3) | 0.011 (2) | −0.010 (2) | −0.020 (2) |
O4 | 0.031 (3) | 0.030 (3) | 0.053 (4) | 0.010 (2) | −0.016 (3) | −0.023 (3) |
C51 | 0.028 (5) | 0.039 (5) | 0.102 (9) | 0.011 (4) | −0.029 (5) | −0.033 (6) |
C50 | 0.031 (5) | 0.056 (6) | 0.101 (10) | 0.023 (4) | −0.032 (5) | −0.049 (7) |
C52 | 0.026 (5) | 0.053 (6) | 0.108 (10) | 0.014 (4) | −0.020 (5) | −0.026 (6) |
C53 | 0.045 (9) | 0.072 (11) | 0.086 (13) | 0.027 (8) | 0.002 (9) | −0.004 (10) |
Ag1—Ag2 | 2.9984 (8) | C7—F7Z | 1.3500 (10) |
Ag1—N1 | 2.259 (6) | C8—F8A | 1.3498 (10) |
Ag1—O1 | 2.263 (5) | C8—F8B | 1.3491 (10) |
Ag1—O3i | 2.464 (5) | C8—F8C | 1.3500 (10) |
Ag1—O3 | 2.343 (5) | C8—F8X | 1.3504 (10) |
Ag2—N2 | 2.300 (6) | C8—F8Y | 1.3501 (10) |
Ag2—O2 | 2.254 (6) | C8—F8Z | 1.3496 (10) |
Ag2—O4 | 2.314 (6) | C100—C101 | 1.367 (11) |
Ag2—C51 | 2.714 (9) | C100—C200ii | 1.399 (12) |
C1—C2 | 1.551 (11) | C101—C102 | 1.435 (10) |
C1—O1 | 1.242 (9) | C102—C202ii | 1.421 (10) |
C1—O2 | 1.237 (9) | C102—N1 | 1.356 (9) |
C2—C3 | 1.479 (16) | C103—C104 | 1.431 (11) |
C2—F2A | 1.328 (10) | C103—C203ii | 1.441 (9) |
C2—F2B | 1.337 (10) | C103—N1 | 1.324 (9) |
C3—C4 | 1.517 (19) | C104—C105 | 1.341 (11) |
C3—F3A | 1.71 (2) | C105—C106 | 1.426 (11) |
C3—F3B | 1.287 (18) | C106—C204ii | 1.354 (11) |
C3—F3Y | 1.176 (17) | C200—C201 | 1.354 (11) |
C3—F3Z | 1.53 (2) | C201—C202 | 1.431 (10) |
C4—F4A | 1.32 (2) | C202—N2 | 1.336 (9) |
C4—F4B | 1.56 (2) | C203—C204 | 1.427 (10) |
C4—F4C | 1.15 (2) | C203—N2 | 1.335 (9) |
C4—F4X | 1.40 (2) | C51—C50 | 1.353 (17) |
C4—F4Y | 1.285 (18) | C51—C52 | 1.383 (17) |
C4—F4Z | 1.37 (2) | C50—C52iii | 1.414 (15) |
C5—C6 | 1.5398 (10) | C52—C53 | 1.49 (2) |
C5—O3 | 1.235 (8) | C71—C72 | 1.27 (2) |
C5—O4 | 1.235 (9) | C71—C70 | 1.42 (2) |
C6—C7 | 1.5395 (10) | C72—C70iv | 1.39 (2) |
C6—F6A | 1.3499 (10) | C72—C73 | 1.403 (16) |
C6—F6B | 1.3499 (10) | C62—C61 | 1.425 (15) |
C7—C8 | 1.5394 (10) | C62—C60v | 1.22 (3) |
C7—F7A | 1.3499 (10) | C61—C60 | 1.423 (15) |
C7—F7B | 1.3500 (10) | C61—C63 | 1.439 (15) |
C7—F7Y | 1.3498 (10) | ||
N1—Ag1—Ag2 | 85.08 (15) | F8B—C8—F8A | 106.35 (11) |
O1—Ag1—Ag2 | 82.90 (13) | F8C—C8—F8A | 111.7 (9) |
O1—Ag1—N1 | 132.3 (2) | F8C—C8—F8B | 106.31 (11) |
O3—Ag1—Ag2 | 82.43 (11) | F8Y—C8—F8X | 106.22 (11) |
O3i—Ag1—Ag2 | 159.91 (12) | F8Z—C8—F8X | 107.2 (19) |
O3—Ag1—N1 | 118.9 (2) | F8Z—C8—F8Y | 106.28 (11) |
O3i—Ag1—N1 | 101.82 (19) | C200ii—C100—C101 | 120.4 (7) |
O3—Ag1—O1 | 105.0 (2) | C102—C101—C100 | 119.5 (7) |
O3i—Ag1—O1 | 105.06 (19) | C202ii—C102—C101 | 119.4 (6) |
N2—Ag2—Ag1 | 107.97 (14) | N1—C102—C101 | 119.6 (6) |
O2—Ag2—Ag1 | 75.28 (14) | N1—C102—C202ii | 121.0 (6) |
O2—Ag2—N2 | 120.4 (2) | C203ii—C103—C104 | 118.4 (6) |
O4—Ag2—Ag1 | 78.45 (13) | N1—C103—C104 | 120.2 (6) |
O4—Ag2—N2 | 116.8 (2) | N1—C103—C203ii | 121.3 (6) |
O4—Ag2—O2 | 121.8 (2) | C105—C104—C103 | 120.6 (7) |
C51—Ag2—Ag1 | 149.5 (2) | C106—C105—C104 | 121.7 (8) |
C51—Ag2—N2 | 101.7 (3) | C204ii—C106—C105 | 119.5 (7) |
C51—Ag2—O2 | 95.8 (3) | C201—C200—C100ii | 122.1 (7) |
C51—Ag2—O4 | 82.1 (3) | C202—C201—C200 | 119.8 (7) |
O1—C1—C2 | 115.0 (7) | C201—C202—C102ii | 118.6 (6) |
O2—C1—C2 | 114.6 (7) | N2—C202—C102ii | 120.7 (7) |
O2—C1—O1 | 130.3 (8) | N2—C202—C201 | 120.6 (7) |
C3—C2—C1 | 112.3 (8) | C204—C203—C103ii | 118.2 (6) |
F2A—C2—C1 | 111.1 (7) | N2—C203—C103ii | 120.3 (6) |
F2A—C2—C3 | 108.3 (8) | N2—C203—C204 | 121.5 (6) |
F2B—C2—C1 | 111.5 (7) | C203—C204—C106ii | 121.6 (7) |
F2B—C2—C3 | 106.8 (8) | C102—N1—Ag1 | 121.0 (5) |
F2B—C2—F2A | 106.7 (7) | C103—N1—Ag1 | 120.0 (5) |
C4—C3—C2 | 121.6 (12) | C103—N1—C102 | 117.8 (6) |
F3B—C3—F3A | 86.4 (11) | C202—N2—Ag2 | 121.6 (5) |
F3Z—C3—F3Y | 102.7 (13) | C203—N2—Ag2 | 119.5 (4) |
F4B—C4—F4A | 101.4 (14) | C203—N2—C202 | 118.8 (6) |
F4C—C4—F4A | 118.9 (18) | C1—O1—Ag1 | 116.8 (5) |
F4C—C4—F4B | 118.9 (18) | C1—O2—Ag2 | 127.4 (5) |
F4Y—C4—F4X | 107.2 (13) | C5—O3—Ag1i | 135.6 (4) |
F4Z—C4—F4X | 102.6 (13) | C5—O3—Ag1 | 121.3 (4) |
F4Z—C4—F4Y | 111.0 (14) | C5—O4—Ag2 | 128.1 (4) |
O3—C5—C6 | 116.4 (5) | C50—C51—Ag2 | 89.0 (6) |
O4—C5—C6 | 114.3 (6) | C52—C51—Ag2 | 97.0 (6) |
O4—C5—O3 | 129.3 (5) | C52—C51—C50 | 121.4 (10) |
C7—C6—C5 | 114.6 (4) | C52iii—C50—C51 | 121.2 (11) |
F6A—C6—C5 | 111.6 (5) | C50iii—C52—C51 | 117.4 (12) |
F6A—C6—C7 | 109.1 (4) | C70—C71—C72 | 122.9 (19) |
F6B—C6—C5 | 111.3 (5) | C70iv—C72—C71 | 129.1 (19) |
F6B—C6—C7 | 103.4 (4) | C72iv—C70—C71 | 108.0 (17) |
F6B—C6—F6A | 106.27 (10) | C60v—C62—C61 | 124 (2) |
C8—C7—C6 | 117.2 (4) | C60—C61—C62 | 114.7 (14) |
F7B—C7—F7A | 106.26 (11) | C61—C60—C62v | 121 (2) |
F7Z—C7—F7Y | 106.28 (11) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z. |
Experimental details
(1-tol.tol) | (1-pxyl) | (1-mxyl) | (2a) | |
Crystal data | ||||
Chemical formula | C40H16Ag4F28N4O8·3(C7H8) | C20H8Ag2F14N2O4·C8H10 | C8H10·C20H8Ag2F13N2O4·F | C20H8Ag2F14N2O4 |
Mr | 1920.45 | 928.18 | 928.18 | 822.02 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c | Monoclinic, P21/c | Monoclinic, C2/c |
Temperature (K) | 100 | 100 | 100 | 100 |
a, b, c (Å) | 10.6531 (7), 11.2628 (7), 14.4311 (10) | 11.1146 (3), 22.7107 (8), 13.2046 (4) | 11.3750 (6), 22.5963 (10), 13.3460 (7) | 27.578 (3), 9.267 (1), 21.211 (2) |
α, β, γ (°) | 72.401 (3), 86.598 (3), 82.882 (3) | 90, 111.785 (2), 90 | 90, 113.472 (2), 90 | 90, 118.142 (3), 90 |
V (Å3) | 1637.30 (19) | 3095.07 (17) | 3146.5 (3) | 4779.9 (9) |
Z | 1 | 4 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.32 | 1.39 | 1.37 | 1.78 |
Crystal size (mm) | 0.41 × 0.14 × 0.11 | 0.25 × 0.06 × 0.02 | 0.42 × 0.2 × 0.12 | 0.4 × 0.26 × 0.03 |
Data collection | ||||
Diffractometer | Bruker APEX-II CCD diffractometer | Bruker APEX-II CCD diffractometer | Bruker APEX-II CCD diffractometer | Bruker APEX-II CCD diffractometer |
Absorption correction | Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0967 before and 0.0640 after correction. The Ratio of minimum to maximum transmission is 0.8435. The λ/2 correction factor is 0.0015. | Multi-scan SADABS | Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1011 before and 0.0786 after correction. The Ratio of minimum to maximum transmission is 0.8102. The λ/2 correction factor is 0.0015. | Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1234 before and 0.0609 after correction. The Ratio of minimum to maximum transmission is 0.8098. The λ/2 correction factor is 0.0015. |
Tmin, Tmax | 0.629, 0.746 | 0.723, 0.973 | 0.604, 0.746 | 0.604, 0.746 |
No. of measured, independent and observed reflections | 25299, 7283, 6165 [I > 2σ(I)] | 26785, 7075, 5377 [I > 2σ(I)] | 25586, 7203, 6202 [I > 2σ(I)] | 20167, 5445, 3234 [I > 2σ(I)] |
Rint | 0.051 | 0.051 | 0.057 | 0.064 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 | 0.650 | 0.649 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.167, 1.09 | 0.041, 0.122, 1.05 | 0.074, 0.189, 1.12 | 0.068, 0.230, 1.02 |
No. of reflections | 7283 | 7075 | 7203 | 5445 |
No. of parameters | 422 | 453 | 432 | 362 |
No. of restraints | 0 | 0 | 70 | 59 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.065P)2 + 14.5417P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0599P)2 + 35.1346P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.1406P)2] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.33, −1.73 | 1.07, −1.27 | 1.83, −1.21 | 1.99, −1.39 |
(2b) | (1-tol-pxyl.tol.pxyl) | |
Crystal data | ||
Chemical formula | C20H8Ag2F14N2O4 | C40H16Ag4F28N4O8·3(C7.43H8.85) |
Mr | 822.02 | 1938.33 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 173 | 100 |
a, b, c (Å) | 10.782 (3), 11.006 (4), 12.540 (4) | 10.6658 (15), 11.2395 (14), 14.325 (2) |
α, β, γ (°) | 71.569 (4), 76.089 (4), 62.229 (4) | 72.054 (2), 86.608 (3), 83.149 (3) |
V (Å3) | 1241.5 (7) | 1621.6 (4) |
Z | 2 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.72 | 1.33 |
Crystal size (mm) | × × | 0.32 × 0.2 × 0.12 |
Data collection | ||
Diffractometer | Bruker APEX-II CCD diffractometer | Bruker APEX-II CCD diffractometer |
Absorption correction | Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1443 before and 0.0437 after correction. The Ratio of minimum to maximum transmission is 0.5803. The λ/2 correction factor is 0.0015. | Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0726 before and 0.0556 after correction. The Ratio of minimum to maximum transmission is 0.8234. The λ/2 correction factor is 0.0015. |
Tmin, Tmax | 0.432, 0.745 | 0.614, 0.746 |
No. of measured, independent and observed reflections | 9058, 3916, 2491 [I > 2σ(I)] | 10048, 7080, 4917 [I ≥ 2u(I)] |
Rint | 0.036 | 0.048 |
(sin θ/λ)max (Å−1) | 0.579 | 0.652 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.080, 0.272, 1.05 | 0.071, 0.207, 1.02 |
No. of reflections | 3916 | 7080 |
No. of parameters | 315 | 382 |
No. of restraints | 48 | 36 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.1469P)2 + 9.2164P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.1048P)2 + 7.5111P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.72, −1.05 | 1.89, −1.63 |
Computer programs: Bruker APEX2, SAINT v7.60A (Bruker, 2009), Bruker SAINT, SAINT v7.68A (Bruker, 2009), SHELXS (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), ShelXT (Sheldrick, 2008), XS (Sheldrick, 2008), XL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), olex2.refine (Bourhis et al., 2013), Olex2 (Dolomanov et al., 2009), O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution,
and analysis program. J. Appl. Cryst. (2009). 42, 339-341..Footnotes
‡Current address: School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
§Present address: Johnson Matthey Technology Centre, Savannah, GA, USA.
3The beamline at ESRF was moved in 2014 from station ID31 to ID22.
1Since 2a can be formed in solution in the presence of methanol, without formation of 2b, it is possible that 2b converts to 2a by surface recrystallization in the presence of alcohols.
2Mechanistic details are difficult to establish in the absence of in situ microscopy measurements (e.g. AFM), as illustrated by the findings of Khlobystov and co-workers (Thompson et al., 2004; Cui et al., 2009).
Acknowledgements
We are grateful to Diamond Light Source and the European Synchrotron Radiation Facility for beam time (beamlines I11, I19 and ID31, respectively) and to Dr Dave Allan for assistance at I19. Dr Nik Reeves-McLaren at the Department of Materials Science and Engineering at the University of Sheffield is also acknowledged for providing access to the Stoe Stadi P X-ray powder diffractometer. We acknowledge the University of Sheffield for funding. IJVY thanks EPSRC for a PhD studentship (grant EP/F02195X/1: `Diffraction for chemical reactions') and for a Doctoral Prize Fellowship.
References
Alaerts, L., Maes, M., Giebeler, L., Jacobs, P. A., Martens, J. A., Denayer, J. F. M., Kirschhock, C. E. A. & De Vos, D. E. (2008). J. Am. Chem. Soc. 130, 14170–14178. Web of Science CSD CrossRef PubMed CAS Google Scholar
Baldoví, J. J., Coronado, E., Gaita-Ariño, A., Gamer, C., Giménez-Marqués, M. & Mínguez Espallargas, G. (2014). Chem. Eur. J. 20, 10695–10702. Web of Science PubMed Google Scholar
Bárcia, P. S., Guimarães, D., Mendes, P. A. P., Silva, J. A. C., Guillerm, V., Chevreau, H., Serre, C. & Rodrigues, A. E. (2011). Microporous Mesoporous Mater. 139, 67–73. Google Scholar
Bellat, J.-P., Simonot-Grange, M.-H. & Jullian, S. (1995). Zeolites, 15, 124–130. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. B. B51, 33–38. CrossRef Web of Science IUCr Journals Google Scholar
Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666. Web of Science CSD CrossRef CAS PubMed Google Scholar
Carrington, E. J., Vitórica-Yrezábal, I. J. & Brammer, L. (2014). Acta Cryst. B70, 404–422. Web of Science CrossRef IUCr Journals Google Scholar
Coelho, A. A. (2007). TOPAS-Academic, Version 4.1, see https://www.topas-academic.net . Google Scholar
Cui, X., Khlobystov, A. N., Chen, X., Marsh, D. H., Blake, A. J., Lewis, W., Champness, N. R., Roberts, C. J. & Schröder, M. (2009). Chem. Eur. J. 15, 8861–8873. Web of Science CSD CrossRef PubMed CAS Google Scholar
D'Alessandro, D. M., Smit, B. & Long, J. R. (2010). Angew. Chem. Int. Ed. 49, 6058–6082. CAS Google Scholar
Dawson, A., Allan, D. R., Parsons, S. & Ruf, M. (2004). J. Appl. Cryst. 37, 410–416. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Osta, R., Carlin-Sinclair, A., Guillou, N., Walton, R. I., Vermoortele, F., Maes, M., de Vos, D. & Millange, F. (2012). Chem. Mater. 24, 2781–2791. Web of Science CSD CrossRef CAS Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Fitch, A. N. (2004). J. Res. Natl Inst. Stand. Technol. 109, 133–142. Web of Science CrossRef CAS Google Scholar
FitzGerald, S. A., Pierce, C. J., Rowsell, J. L. C., Bloch, E. D. & Mason, J. A. (2013). J. Am. Chem. Soc. 135, 9458–9464. Web of Science CrossRef CAS PubMed Google Scholar
Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C. & Snejko, N. (2002). Inorg. Chem. 41, 2429–2432. Web of Science PubMed CAS Google Scholar
Gu, Z. Y. & Yan, X. P. (2010). Angew. Chem. Int. Ed. 49, 1477–1480. Web of Science CrossRef CAS Google Scholar
Huang, Y.-L., Gong, Y.-N., Jiang, L. & Lu, T.-B. (2013). Chem. Commun. 49, 1753–1755. Web of Science CSD CrossRef CAS Google Scholar
Ingleson, M. J., Barrio, J. P., Guilbaud, J.-B., Khimyak, Y. Z. & Rosseinsky, M. (2008). J. Chem. Commun. pp. 2680–2682. Web of Science CrossRef Google Scholar
Jones, S. C. & Bauer, C. A. (2009). J. Am. Chem. Soc. 131, 12516–12517. Web of Science CrossRef PubMed CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Kole, G. K. & Vittal, J. J. (2013). Chem. Soc. Rev. 42, 1755–1775. Web of Science CrossRef CAS PubMed Google Scholar
Lee, J.-Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459. Web of Science CrossRef PubMed CAS Google Scholar
Li, C.-P. & Du, M. (2011). Chem. Commun. 47, 5958–5972. Web of Science CrossRef CAS Google Scholar
Li, H., Eddaoudi, M., O'Keefe, M. & Yaghi, O. M. (1999). Nature, 402, 276–279. CAS Google Scholar
Li, J., Huang, P., Wu, X.-R., Tao, J., Huang, R.-B. & Zheng, L.-S. (2013). Chem. Sci. 4, 3232–3238. Web of Science CSD CrossRef CAS Google Scholar
Li, J.-R., Kuppler, R. J. & Zhou, H.-C. (2009). Chem. Soc. Rev. 38, 1477–1504. Web of Science CrossRef PubMed CAS Google Scholar
Li, L., Matsuda, R., Tanaka, I., Sato, H., Kanoo, P., Jeon, H. J., Foo, M. L., Wakamiya, A., Murata, Y. & Kitagawa, S. (2014). J. Am. Chem. Soc. 136, 7543–7546. Web of Science CSD CrossRef CAS PubMed Google Scholar
Libri, S., Mahler, M., Mínguez Espallargas, G., Singh, D. C. N. G., Soleimannejad, J., Adams, H., Burgard, M. D., Rath, N. P., Brunelli, M. & Brammer, L. (2008). Angew. Chem. Int. Ed. 47, 1693–1697. Web of Science CSD CrossRef CAS Google Scholar
Lusi, M. & Barbour, L. J. (2012). Angew. Chem. Int. Ed. 51, 3928–3931. Web of Science CrossRef CAS Google Scholar
Lusi, M. & Barbour, L. J. (2013). Chem. Commun. 49, 2634–2636. Web of Science CSD CrossRef CAS Google Scholar
Mínguez Espallargas, G., Brammer, L., van de Streek, J., Shankland, K., Florence, A. J. & Adams, H. (2006). J. Am. Chem. Soc. 128, 9584–9585. PubMed Google Scholar
Mínguez Espallargas, G., Florence, A. J., van de Streek, J. & Brammer, L. (2011). CrystEngComm, 13, 4400–4404. Google Scholar
Mínguez Espallargas, G., Hippler, M., Florence, A. J., Fernandes, P., van de Streek, J., Brunelli, M., David, W. I. F., Shankland, K. & Brammer, L. (2007). J. Am. Chem. Soc. 129, 15606–15614. Web of Science PubMed Google Scholar
Mínguez Espallargas, G., van de Streek, J., Fernandes, P., Florence, A. J., Brunelli, M., Shankland, K. & Brammer, L. (2010). Angew. Chem. Int. Ed. 49, 8892–8896. Google Scholar
Nguyen, J. G. & Cohen, S. M. (2010). J. Am. Chem. Soc. 132, 4560–4561. Web of Science CrossRef CAS PubMed Google Scholar
Nowell, H., Barnett, S. A., Christensen, K. E., Teat, S. J. & Allan, D. R. (2012). J. Synchrotron Rad. 19, 435–441. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1995). SADABS, Empirical Absorption Correction Program. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sumida, K., Hill, M. R., Horike, S., Dailly, A. & Long, J. R. (2009). J. Am. Chem. Soc. 131, 15120–15121. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tanabe, K. K., Wang, Z. & Cohen, S. M. (2008). J. Am. Chem. Soc. 130, 8508–8517. Web of Science CSD CrossRef PubMed CAS Google Scholar
Thompson, C., Champness, N. R., Khlobystov, A. N., Roberts, C. J., Schroder, M., Tendler, S. J. B. & Wilkinson, M. J. (2004). J. Microsc. 214, 261–271. Web of Science CrossRef PubMed CAS Google Scholar
Thompson, S. P., Parker, J. E., Marchal, J., Potter, J., Birt, A., Yuan, F., Fearn, R. D., Lennie, A. R., Street, S. R. & Tang, C. C. (2011). J. Synchrotron Rad. 18, 637–648. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, S. P., Parker, J. E., Potter, J., Hill, T. P., Birt, A., Cobb, T. M., Yuan, F. & Tang, C. C. (2009). Rev. Sci. Instrum. 80, 075107. Web of Science CrossRef PubMed Google Scholar
Vermeulen, N. A., Karagiaridi, O., Sarjeant, A. A., Stern, C. L., Hupp, J. T., Farha, O. K. & Stoddart, J. F. (2013). J. Am. Chem. Soc. 135, 14916–14919. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vitórica-Yrezábal, I. J., Mínguez Espallargas, G., Soleimannejad, J., Florence, A. J., Fletcher, A. J. & Brammer, L. (2013). Chem. Sci. 4, 696–708. Google Scholar
Vitórica-Yrezábal, I. J., Sullivan, R. A., Purver, S. L., Curfs, C., Tang, C. C. & Brammer, L. (2011). CrystEngComm, 13, 3189–3196. Google Scholar
Wang, Z. & Cohen, S. M. (2009). J. Am. Chem. Soc. 131, 16675–16677. Web of Science CrossRef PubMed CAS Google Scholar
Wang, C., Liu, D., Xie, Z. & Lin, W. (2014). Inorg. Chem. 53, 1331–1338. Web of Science CSD CrossRef CAS PubMed Google Scholar
Warren, J. E., Perkins, C. G., Jelfs, K. E., Boldrin, P., Chater, P. A., Miller, G. J., Manning, T. D., Briggs, M. E., Stylianou, K. C., Claridge, J. B. & Rosseinsky, M. J. (2014). Angew. Chem. Int. Ed. 53, 4592–4596. Web of Science CSD CrossRef CAS Google Scholar
Wu, C.-D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940–8941. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J.-P. & Chen, X.-M. (2009). J. Am. Chem. Soc. 131, 5516–5521. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zheng, S.-T., Zhao, X., Lau, S., Fuhr, A., Feng, P. & Bu, X. (2013). J. Am. Chem. Soc. 135, 10270–10273. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhong, J. C., Munakata, M., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Konaka, H. (2001). Inorg. Chem. 40, 3191–3199. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhou, J.-M., Shi, W., Xu, N. & Cheng, P. (2013). Inorg. Chem. 52, 8082–8090. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.