research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 3| May 2015| Pages 341-351
ISSN: 2052-2525

Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

CROSSMARK_Color_square_no_text.svg

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560 012, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Edited by A. D. Bond, University of Copenhagen, Denmark (Received 14 October 2014; accepted 7 February 2015; online 10 April 2015)

Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular inter­actions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

1. Introduction

There is a renewed interest in understanding the chemical factors that govern the phenomenon of co-crystallization (Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]; Wood et al., 2014[Wood, P. A., Feeder, N., Furlow, M., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2014). CrystEngComm, 16, 5839-5848.]; Mukherjee et al., 2014[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228-239.]; Aitipamula, Chow & Tan, 2014[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451-3465.]; Bučar et al., 2013[Bučar, D.-K., Day, G. M., Halasz, I., Zhang, G. G. Z., Sander, J. R. G., Reid, D. G., MacGillivray, L. R., Duer, M. J. & Jones, W. (2013). Chem. Sci. 4, 4417-4425.]; Seaton & Parkin, 2011[Seaton, C. C. & Parkin, A. (2011). Cryst. Growth Des. 11, 1502-1511.]; Braga et al., 2010[Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715-7717.]; Friščić & Jones, 2009[Friščić, T. & Jones, W. (2009). Cryst. Growth Des. 9, 1621-1637.]; Lu et al., 2008[Lu, E., Rodríguez-Hornedo, N. & Suryanarayanan, R. (2008). CrystEngComm, 10, 665-668.]; Aakeröy et al., 2008[Aakeröy, C. B., Desper, J., Fasulo, M. E., Hussain, I., Levin, B. & Schultheiss, N. (2008). CrystEngComm, 10, 1816-1821.]; Chadwick et al., 2007[Chadwick, K., Davey, R. & Cross, W. (2007). CrystEngComm, 9, 732-734.]; Friščić et al., 2006[Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546-7550.]; Shan et al., 2002[Shan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372-2373.]), owing largely to its potential importance in the pharma­ceutical industry (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Aakeröy et al., 2014[Aakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870-5877.]; Brittain, 2012[Brittain, H. G. (2012). Cryst. Growth Des. 12, 5823-5832.]; Babu & Nangia, 2011[Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662-2679.]; Chen et al., 2011[Chen, J., Sarma, B., Evans, J. M. B. & Myerson, A. S. (2011). Cryst. Growth Des. 11, 887-895.]; Schultheiss & Newman, 2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]; Shan & Zaworotko, 2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]; Blagden et al., 2007[Blagden, N., de Matas, M., Gavan, P. T. & York, P. (2007). Adv. Drug Deliv. Rev. 59, 617-630.]; Trask & Jones, 2005[Trask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41-70.]). Co-crystallization is a supramolecular reaction to form multi-component organic adducts such as co-crystals, solid solutions, eutectics etc. (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]). Whether a co-crystal or a eutectic is formed depends on the dominance of hetero- and homomolecular interactions, respectively, for a given combination of materials. Several aspects play a role in the formation of co-crystals and eutectics, such as the nature and influence of the molecular components in invoking intermolecular interactions and supramolecular synthons, functional group disposition and complementarity, interaction strength, and efficient packing. However, there is no general recipe to obtain selectively or reliably either co-crystals or eutectics on demand. Investigations into this effect are important to save time, money and effort in targeted co-crystal or eutectic screens.

The literature describes numerous failed co-crystallization experiments (for example, Alhalaweh et al., 2012[Alhalaweh, A., George, S., Basavoju, S., Childs, S. L., Rizvi, S. A. A. & Velaga, S. P. (2012). CrystEngComm, 14, 5078-5088.]; Arenas-García et al., 2012[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]; Seaton & Parkin, 2011[Seaton, C. C. & Parkin, A. (2011). Cryst. Growth Des. 11, 1502-1511.]; Caira et al., 2012[Caira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N. & Aucamp, M. (2012). CrystEngComm, 14, 2541-2551.]; Mohammad et al., 2011[Mohammad, M. A., Alhalaweh, A. & Velaga, S. P. (2011). Int. J. Pharm. 407, 63-71.]; Karki et al., 2010[Karki, S., Friščić, T., Fábián, L. & Jones, W. (2010). CrystEngComm, 12, 4038-4041.]), which did not investigate the potential formation of eutectics. Given their potential importance in the pharmaceutical and materials fields (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Griffini et al., 2014[Griffini, G., Brambilla, L., Levi, M., Castiglioni, C., Del Zoppo, M. & Turri, S. (2014). RSC Adv. 4, 9893-9897.]; Huang et al., 2013[Huang, X., Qin, D., Zhang, X., Luo, Y., Huang, S., Li, D. & Meng, Q. (2013). RSC Adv. 3, 6922-6929.]; Yan et al., 2011[Yan, D., Delori, A., Lloyd, G. O., Friščić, T., Day, G. M., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2011). Angew. Chem. Int. Ed. 50, 12483-12486.]; Morimoto & Irie, 2010[Morimoto, M. & Irie, M. (2010). J. Am. Chem. Soc. 132, 14172-14178.]; Karaipekli & Sarı, 2010[Karaipekli, A. & Sarı, A. (2010). J. Ind. Engineering Chem. 16, 767-773.]; Schultheiss & Newman, 2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]; Moore & Wildfong, 2009[Moore, M. D. & Wildfong, P. L. D. (2009). J. Pharm. Innov. 4, 36-49.]), there is a need for more studies of the attributes that govern co-crystal/eutectic formation. Exploring systems with subtle differences in hydrogen-bonding functional groups can serve as a lead, since these groups can steer supramolecular growth as either a co-crystal or a eutectic for a given combination (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]). In this context, we have selected cyclic carboximides for an in-depth co-crystallization study with carboxylic acids. The latter class of compounds has a wide variety of applications, particularly in the pharmaceutical field, as drugs, salts and co-formers, excipients etc. (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Aitipamula, Wong et al., 2014[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2014). Cryst. Growth Des. 14, 2542-2556.]; Ballatore et al., 2013[Ballatore, C., Huryn, D. M. & Smith, A. B. III (2013). ChemMedChem, 8, 385-395.]; Losev et al., 2013[Losev, E. A., Mikhailenko, M. A., Achkasov, A. F. & Boldyreva, E. V. (2013). New J. Chem. 13, 1973-1981.]; Ebenezer & Muthiah, 2012[Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.], Reddy et al., 2011[Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). J. Pharm. Sci. 100, 3160-3176.]; Seaton, 2011[Seaton, C. C. (2011). CrystEngComm, 13, 6583-6592.]; Moffat et al., 2011[Moffat, A. C., Osselton, M. D. & Widdop, B. (2011). Editors. Clarke's Analysis of Drugs and Poisons, 4th ed. London: Pharmaceutical Press.]; Rowe et al., 2006[Rowe, R. C., Sheskey, P. J. & Owen, S. C. (2006). Editors. Handbook of Pharmaceutical Excipients, 5th ed. London: Pharmaceutical Press and Washington, DC: American Pharma­ceutical Association.]; Caira et al., 1995[Caira, M. R., Nassimbeni, L. R. & Wildervanck, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 2213-2216.]; Gould, 1986[Gould, P. L. (1986). Int. J. Pharm. 33, 201-217.]). Likewise, amide (primary and secondary) and imide functionalities are found in several drugs and are amenable to both salt and co-crystal formation (Buist et al., 2013[Buist, A. R., Kennedy, A. R., Shankland, K., Shankland, N. & Spillman, M. J. (2013). Cryst. Growth Des. 13, 5121-5127.]; Sanphui et al., 2013[Sanphui, P., Babu, N. J. & Nangia, A. (2013). Cryst. Growth Des. 13, 2208-2219.]; Nanubolu et al., 2012[Nanubolu, J. B., Sridhar, B. & Ravikumar, K. (2012). CrystEngComm, 14, 2571-2578.]; Cherukuvada & Nangia, 2012[Cherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579-2588.]; Moffat et al., 2011[Moffat, A. C., Osselton, M. D. & Widdop, B. (2011). Editors. Clarke's Analysis of Drugs and Poisons, 4th ed. London: Pharmaceutical Press.]; Cherukuvada et al., 2011[Cherukuvada, S., Babu, N. J. & Nangia, A. (2011). J. Pharm. Sci. 100, 3233-3244.]). Therefore, the study of the interactions and compatibility of amide/imide–carboxylic acid combinations has direct practical significance.

Co-crystallization of carboxylic acids with amides has been studied extensively (Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]; Kaur & Row, 2012[Kaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744-2747.]; Babu et al., 2012[Babu, N. J., Sanphui, P. & Nangia, A. (2012). Chem. Asian J. 7, 2274-2285.]; Cherukuvada & Nangia, 2012[Cherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579-2588.]; Reddy et al., 2007[Reddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505-513.]; McMahon et al., 2005[McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L. & Zaworotko, M. J. (2005). Z. Kristallogr. 220, 340-350.]; Leiserowitz & Nader, 1977[Leiserowitz, L. & Nader, F. (1977). Acta Cryst. B33, 2719-2733.]), whereas only limited studies of carboxylic acid/imide combinations are found in the literature. The prospect for co-crystal formation involving carboximide and carboxylic acid groups has been considered (Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]), and it was suggested that these groups are not expected to interact within co-crystals. Moragues-Bartolome et al. (2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) reported the co-crystallization of saturated cyclic imides (succinimide and glutarimide) with a variety of aliphatic and aromatic monocarboxylic acids and obtained only one co-crystal, namely succinimide–2,4-di­hydroxy­benzoic acid (SM–24DHBA), as shown in Fig. 1[link]. Based on the steric hindrance of the extra imide carbonyl group and the low stabilizing features of imide–acid and acid-supported imide–imide hydrogen-bonding motifs (named Thetero and Thomo units, respectively; Fig. 2[link]) compared with amides, they deduced that the formation of cyclic imide–carboxylic acid co-crystals is unlikely. The study considered carboxylic acid–imide combinations, of which the majority had hydrogen-bond acceptor groups (fluoro, nitro etc.) on the acid partner. Since the hydrogen-bond demands of the extra imide carbonyl acceptor cannot be complemented by acceptor groups on the partner molecules, co-crystal formation is curtailed due to high-energy interactions (repulsions) associated with acceptor–acceptor (carbonyl versus fluoro/nitro) combinations. It is understandable that a hydrogen-bond donor like hydroxyl can satisfy the imide carbonyl and therefore lead to the SM–24DHBA co-crystal (Figs. 1[link] and 2[link]c).

[Figure 1]
Figure 1
The succinimide–2,4-dihydroxybenzoic acid (SM–24DHBA) co-crystal (Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]). The structure shows acid-flanked imide homodimers (Thomo units, Fig. 2[link]) propagated by hydroxyl–carbonyl hydrogen bonds (dotted lines) involving the para-hydroxyl group of 24DHBA. We designate this as polymorph I, with polymorph II reported herein.
[Figure 2]
Figure 2
(a) The tetrameric unit of two carboxylic acid–imide heterodimers. (b) The tetrameric unit of an acid-flanked imide homodimer. Both (a) and (b) have been calculated to be less stable (Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) and hence less likely to occur in co-crystals. (c) The reported SM–24DHBA co-crystal shows the Thomo unit, with the crucial stabilization and propagation of the unit via para-OH⋯carbonyl (imide) hydrogen bonds. Dashed lines indicate hydrogen bonds.

In the context of eutectics as alternative supramolecular assemblies to co-crystals (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]), and with the hypothesis that auxiliary interactions play a crucial role, we undertook the task of establishing the nature of different imide–carboxylic acid combinations. We selected for study three cyclic imides (succinimide, glutarimide and maleimide, which is unsaturated) and seven hydroxybenzoic acids, in addition to the parent benzoic acid (Fig. 3[link]). The rationale for the selection of hydroxybenzoic acids is that the presence of hydroxyl group(s) on the benzoic acid molecule would instigate auxiliary interactions with the extra imide carbonyl, thereby facilitating supramolecular growth units beyond Thetero or Thomo units (Fig. 2[link]). We devised a scheme of dimeric and tetrameric hydrogen-bonded units that could form in carboxylic acid/imide combinations (Fig. 4[link]). We perceive that the supramolecular propagation of these units should lead to the formation of co-crystals, with eutectics being formed otherwise (Fig. 4[link]). We were successful in obtaining several co-crystals and eutectics of cyclic imide–hydroxybenzoic acids. We also obtained a new polymorph for the reported succin­imide–2,4-dihydroxybenzoic acid co-crystal (SM–24DHBA) and a new dimorphic pair of 2:1 succinimide–3,4,5-tri­hydroxy­benzoic acid co-crystals. This work demonstrates that the presence or absence of hydroxyl group(s) dictates the formation or non-formation of imide–carboxylic acid co-crystals in the systems studied here.

[Figure 3]
Figure 3
Molecular structures and acronyms. Moragues-Bartolome et al. (2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) previously obtained a co-crystal for the SM–24DHBA combination and reported that the SM–BA and GM–BA combinations lead to physical mixtures.
[Figure 4]
Figure 4
(a) The homodimeric and (b) the heterodimeric primary recognition units of cyclic imide–hydroxybenzoic acid combinations. (c) A tetrameric unit comprising a hydroxyl-supported imide homodimer (Thomo-II) can propagate through carboxylic acid homodimers to form co-crystals. (d) and (e) Similarly, the progression of tetrameric units can result in co-crystals. (f) Propagation of the Thetero unit can take place through OH substitution at meta-positions (indicated by red circles), which confers stronger O—Hhydroxyl⋯O=Cimide auxiliary interactions (compared with C—H⋯O=C) and therefore gives rise to co-crystals. Dashed lines indicate hydrogen bonds. Eutectics, which are hallmarked by finite and discrete units, can be formed for combinations where tetrameric units are not stabilized and/or propagated.

2. Results and discussion

We performed co-crystallization by solution crystallization, following both neat (Trask & Jones, 2005[Trask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41-70.]) and liquid-assisted grinding (Friščić et al., 2006[Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546-7550.]; Shan et al., 2002[Shan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372-2373.]) of all combinations (see §S1 in the supporting information for experimental details). Ground products were subjected to powder X-ray diffraction (PXRD) and melting-point determination to ascertain co-crystal/eutectic formation, on the basis that the former exhibit distinct PXRD patterns and melting behaviour while the latter display only a depression of the melting point compared with the parent materials (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]). X-ray single-crystal structures were determined for co-crystals (except for a few where suitable single crystals were not obtained) and phase diagrams were constructed for eutectics. The results of the co-crystallization experiments are listed in Table 1[link]. Benzoic acid and the mono-hydroxybenzoic acids, except the 4-hydroxy isomer, gave eutectics with all three cyclic imides (Table 1[link]). Along with 4-hydroxybenzoic acid (4HBA), all the di- and tri-hydroxybenzoic acids resulted in co-crystals with all three imides. A new polymorph of the reported succinimide–24DHBA co-crystal and a dimorphic pair of 2:1 succinimide–345THBA co-crystals were also obtained (Table 1[link]). Crystallographic parameters of the co-crystals are given in §S2 of the supporting information . Comparison of the experimental PXRD patterns with the respective parent materials is provided in §§S3 and S4 of the supporting information in order to differentiate the co-crystal- and eutectic-forming combinations.

Table 1
Crystallization results for the imide–carboxylic acid combinations

  Succinimide (SM) Maleimide (MM) Glutarimide (GM)
Benzoic acid (BA) Eutectic Eutectic Eutectic
2-Hydroxybenzoic acid (2HBA) Eutectic Eutectic Eutectic
3-Hydroxybenzoic acid (3HBA) Eutectic Eutectic Eutectic
4-Hydroxybenzoic acid (4HBA) 1:1 Co-crystal 1:1 Co-crystal 1:2 Co-crystal
2,4-Dihydroxybenzoic acid (24DHBA) 1:1 Co-crystal (two polymorphs) 1:1 Co-crystal Co-crystal (by PXRD)
3,4-Dihydroxybenzoic acid (34DHBA) 1:2 Co-crystal Co-crystal (by PXRD) Co-crystal (by PXRD)
3,5-Dihydroxybenzoic acid (35DHBA) 1:3:3 Co-crystal hydrate 1:3:3 Co-crystal hydrate 1:1 Co-crystal
3,4,5-Trihydroxybenzoic acid (345THBA) 2:1 Co-crystal (two polymorphs) Co-crystal (by PXRD) Co-crystal (by PXRD)

2.1. Rationale for the formation of co-crystals or eutectics

The primary supramolecular recognition units in an imide–carboxylic acid combination are imide–imide, acid–acid and acid (COOH)–imide (CONH or COCH) centrosymmetric ring dimer motifs (Figs. 4[link]a and 4[link]b). If these units, either homo- or heterodimers, can extend through auxiliary interactions (such as O—H/C—Hcarboxylic acid⋯O=Cimide) to form Thomo or Thetero tetramers and then propagate, the formation of a co-crystal is facile, as per Fig. 4[link]. On the other hand, a eutectic mixture results if the units remain finite and discrete in the supramolecular lattice (Cherukuvada & Nangia, 2014[Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906-923.]; Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]). We observed several intriguing results from the co-crystallization experiments: (i) all cyclic imides formed co-crystals with para-hydroxy substituted and di- or tri-hydroxy benzoic acids; (ii) non-formation of co-crystals in the case of benzoic acid and ortho- or meta-hydroxybenzoic acids, which instead formed eutectics; (iii) polymorphism in co-crystals; (iv) variable stoichiometry co-crystals; and (v) diverse co-crystal architectures. These features can be rationalized as follows.

First, the geometric positioning of a para-hydroxyl group aptly fits and promotes the supramolecular geometry of the Thomo unit (Figs. 2[link] and 4[link]) to give co-crystals. By contrast, ortho- or meta-hydroxyl substitution provides no energetic stabilization to either Thetero or Thomo supramolecular growth units and hence results in eutectic phases with all three cyclic imides. In the ortho-position, the hydroxyl group always participates in intramolecular hydrogen bonding with the carboxylic acid (O—Hhydroxyl⋯O=Cacid), such that it is unavailable for auxiliary interactions with the imide carbonyl group, and therefore propagation of Thetero or Thomo units does not take place. Although it would seem that the meta-hydroxyl substituent could promote the Thomo unit, geometric reasons appear to resist supramolecular growth into a co-crystal. On the other hand, a meta-hydroxyl group fits the geometry and can stabilize the Thetero unit. However, the stabilizing interactions from a lone meta-hydroxyl group seem to be insufficient and an additional substitution at the other meta-position is required for the Thetero unit to propagate into a co-crystal (Fig. 4[link]f). Thus, 35DHBA can distinctly form a Thetero unit in its co-crystals and indeed it is found in the 1:1 GM–35DHBA co-crystal (as described later). It should be noted that a para-hydroxyl group does not suit the Thetero unit and so cannot result in co-crystals for the same geometric reasons. In view of the above, it is obvious that unsubstituted benzoic acid forms only eutectics with the three cyclic imides. The hydrogen-bond demands of the additional strong imide carbonyl may not be satisfied by weak C—H donors (of benzoic acid) nor even by a strong hydroxyl group donor in a certain geometry (ortho- or meta-position of substituted benzoic acid), such that these combinations cannot make co-crystal growth units and therefore form eutectics.

Secondly, the crystal structure of the reported SM–24DHBA co-crystal (Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) (Fig. 1[link]) supports our explanation of co-crystal/eutectic formation for different imide–carboxylic acid combinations in this study. Based on the above, it is reasonable to expect that all three imides can form co-crystals with the para-hydroxy substituted benzoic acids considered (Table 1[link]). On the other hand, several co-crystals were obtained with supramolecular patterns different from those illustrated in Figs. 2[link] and 4[link], and they crystallized in different polymorphs and multiple stoichiometries. The crystal structures of the obtained cyclic imide–hydroxybenzoic acid co-crystals are discussed next, followed by phase diagrams for the eutectic-forming combinations.

2.2. Succinimide–hydroxybenzoic acid co-crystals

2.2.1. 1:1 SM–4HBA

In this crystal structure, Thomo-IV units (composed of succinimide C—H⋯O homodimers and imide–hydroxyphenyl heterodimers) propagate into tapes through carboxylic acid dimers (Fig. 5[link]). Such tapes extend into two-dimensional sheets through O—Hhydroxy⋯O=Cimide and multiple C—H⋯O hydrogen bonds. The hydroxyl group clearly plays a major role in invoking auxiliary interactions and sustaining both the one- and two-dimensional motifs.

[Figure 5]
Figure 5
The structure of the 1:1 SM–4HBA co-crystal. Thomo-IV units are connected by 4HBA carboxylic acid homodimers to make parallel tapes that extend into a sheet through O—Hhydroxy⋯O=Cimide and multiple C—H⋯O interactions. The strong imide carbonyl acceptors are involved in multifurcated hydrogen bonds. Dotted lines indicate hydrogen bonds.
2.2.2. 1:1 SM–24DHBA, polymorph II

Crystallization of a 1:1 SM–24DHBA ground mixture in an effort to reproduce the reported 1:1 co-crystal (polymorph I; Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) resulted in a new polymorph of the co-crystal (polymorph II). This dimorphic pair represents a case of conformational and synthon polymorphism (Aitipamula, Chow & Tan, 2014[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451-3465.]; Aitipamula, Wong et al., 2014[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2014). Cryst. Growth Des. 14, 2542-2556.]). The polymorphs differ in the conformation of the para-hydroxyl group, which is trans to the carbonyl of the acid group in polymorph I, and cis in polymorph II (Figs. 1[link] and 6[link]). Whereas polymorph I shows the acid-flanked imide homodimer (Thomo-I unit, Fig. 1[link]), polymorph II displays no imide or acid homodimer (Fig. 6[link]). Instead, imide–hydroxyphenyl SM–24DHBA heterodimers permit the extra imide carbonyl and free acid groups to form hydrogen bonds with each other, propagating into a zigzag tape. Such tapes extend into a sheet structure through hydroxy–carbonylimide and C—H⋯O interactions. The absence of strong imide N—H⋯O or acid homodimers or imide–acid heterodimers in the co-crystal seems to be compensated by maximal intermolecular hydrogen bonding.

[Figure 6]
Figure 6
The structure of polymorph II of the 1:1 SM–24DHBA co-crystal. Parallel zigzag tapes formed by imide–hydroxyphenyl heterodimers between SM and 24DHBA molecules extend into a sheet through acid–carbonyl, hydroxyl–carbonyl and C—H⋯O interactions. The para-hydroxyl conformation in 24DHBA is cis with respect to the carbonyl of the acid group. Dotted lines indicate hydrogen bonds.
2.2.3. 1:2 SM–34DHBA

Crystallization of a 1:1 SM–34DHBA ground mixture from acetonitrile resulted in a co-crystal with 1:2 stoichiometry. In the crystal structure of 1:2 SM–34DHBA, N—H⋯O dimers between inversion-related SM molecules make Thomo-II units with their peripheral carbonyls hydrogen-bonded to hydroxyl groups of 34DHBA molecules (Fig. 7[link]). These units propagate through acid homodimers between symmetry-independent 34DHBA molecules which have differences in their hydroxyl conformations (cis–cis in one case and trans–trans in the other with respect to the carbonyl of the acid group).

[Figure 7]
Figure 7
The structure of the 1:2 SM–34DHBA co-crystal. Thomo-II units propagate into tapes through acid homodimers formed by symmetry-independent 34DHBA molecules (shown in different colours), which have different hydroxyl conformations. Dotted lines indicate hydrogen bonds.
2.2.4. 1:3:3 SM–35DHBA–H2O

Co-crystallization of SM and 35DHBA was expected to provide a 1:1 co-crystal having exclusively Thetero units, as per the geometric features outlined in Fig. 4[link]. Interestingly, however, a hydrated co-crystal with stoichiometry 1:3:3 SM–35DHBA–H2O was obtained upon crystallization from methanol. In the crystal structure, planar hexameric motifs of 35DHBA molecules make voids that are filled by succinimide N—H⋯O dimers and water molecules (Fig. 8[link]). The co-crystal is stabilized by forming a network of O—H⋯O interactions involving the hydroxyl groups and water molecules. On the basis of constructing an extended in-plane hydrogen-bond network, the hydroxyl groups of one of the three symmetry-independent 35DHBA molecules appear to be disordered.

[Figure 8]
Figure 8
The structure of the 1:3:3 SM–35DHBA–H2O co-crystal hydrate. Parallel hexameric motifs formed by symmetry-independent 35DHBA molecules (shown in different colours) make voids for the succinimide and water molecules. Dotted lines indicate hydrogen bonds. The disorder of the H atoms is not shown.
2.2.5. 2:1 SM–345THBA polymorphs

Crystallization of a 1:1 SM–345THBA ground mixture from methanol resulted in two polymorphs of a 2:1 co-crystal, designated polymorph I (space group P212121) and polymorph II (space group [P {\overline 1}]). In polymorph I, the hydroxyl groups of 345THBA have a cis–cis–trans geometry, while they have an all-trans geometry in polymorph II (Fig. 9[link]). In polymorph I, N—H⋯O dimers between SM molecules permit the peripheral imide carbonyls to accept hydrogen bonds from acid and hydroxyl OH groups and propagate a tape (Fig. 9[link]a). In polymorph II, N—H⋯O dimers between inversion-related SM molecules make Thomo-II units with the peripheral carbonyls, supported by hydrogen bonds from the hydroxyl groups of 345THBA molecules (Fig. 9[link]b). Additionally, the outlying imide carbonyl of each SM molecule accepts a hydrogen bond from the imide NH of another SM molecule in an orthogonal manner. This dimorphic pair of co-crystals also exhibits conformational and synthon polymorphism (Aitipamula, Chow & Tan, 2014[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451-3465.]; Aitipamula, Wong et al., 2014[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2014). Cryst. Growth Des. 14, 2542-2556.]).

[Figure 9]
Figure 9
(a) Polymorph I of the 2:1 SM–345THBA co-crystal. An infinite tape is formed by N—H⋯O dimers between symmetry-independent SM molecules (shown in different colours), with peripheral imide carbonyls involved in hydrogen bonding with the acid and hydroxyl OH groups of the 345THBA molecules. The hydroxyl groups of 345THBA adopt a cis–cis–trans conformation. (b) In polymorph II, one of the symmetry-independent SM molecules (shown in green) forms Thomo-II units, and makes an N—H⋯O bond with the other symmetry-independent SM molecule (shown in magenta) through its peripheral imide in an orthogonal fashion. The hydroxyl groups adopt an all trans conformation. Dotted lines indicate hydrogen bonds.

2.3. Maleimide–hydroxybenzoic acid co-crystals

2.3.1. 1:1 MM–4HBA

Crystallization of a 1:1 MM–4HBA ground mixture from methanol resulted in a 1:1 co-crystal. The structure exhibits similarity to the 1:1 SM–4HBA co-crystal in that the tapes formed by C—H⋯O-connected maleimide molecules and 4HBA carboxylic acid dimers, joined by imide–hydroxyphenyl interactions, extend into a sheet structure through O— Hhydroxyl⋯O=Cimide and multiple C—H⋯O interactions (Fig. 10[link]). Further, akin to SM–4HBA, the MM–4HBA co-crystal features maximal intermolecular hydrogen bonding to compensate for the lack of strong imide N—H⋯O homodimers.

[Figure 10]
Figure 10
The structure of the 1:1 MM–4HBA co-crystal. Parallel tapes consisting of imide C—H⋯O-connected maleimide molecules and acid homodimers joined by imide–hydroxyphenyl heterodimers extend into a sheet through O—Hhydroxy⋯O=Cimide and multiple C—H⋯O interactions. Dotted lines indicate hydrogen bonds.
2.3.2. 1:1 MM–24DHBA

Crystallization of a 1:1 MM–24DHBA ground mixture from methanol resulted in a 1:1 co-crystal. Interestingly, the structure has no resemblance to either of the two 1:1 SM–24DHBA co-crystal polymorphs. Instead, it exhibits similarity with the MM–4HBA and SM–4HBA co-crystals, more so with the former in that both of them lack the centrosymmetric imide C—H⋯O homodimers which are characteristic of the SM–4HBA co-crystal. Overall, the co-crystal forms a sheet structure akin to MM–4HBA, sustained by imide–hydroxyphenyl and C—H⋯O interactions (Fig. 11[link]).

[Figure 11]
Figure 11
The structure of the 1:1 MM–24DHBA co-crystal. Parallel tapes consisting of imide C—H⋯O-connected maleimide molecules and acid homodimers attached through imide–hydroxyphenyl heterodimers extend into a sheet through O—Hhydroxy⋯O=Cimide and multiple C—H⋯O interactions. Dotted lines indicate hydrogen bonds.
2.3.3. 1:3:3 MM–35DHBA–H2O

Similar to SM–35DHBA, a co-crystal trihydrate with stoichiometry 1:3:3 MM–35DHBA–H2O was obtained when a 1:1 MM–35DHBA ground mixture was crystallized from methanol. The structure is closely comparable with (but not entirely identical to) SM–35DHBA–H2O, in which hexameric motifs of 35DHBA molecules make voids for succinimide N—H⋯O dimers and water molecules (Fig. 12[link]). In this case, all of the hydroxyl groups and water molecules appear to be disordered within the planar hydrogen-bond networks. Compared with SM–35DHBA, the layers of 35DHBA molecules are aligned slightly differently, as a result of accommodating the MM molecule rather than the SM molecule within the voids.

[Figure 12]
Figure 12
The structure of the 1:3:3 MM–35DHBA–H2O co-crystal hydrate. The structure is comparable with that of SM–35DHBA–H2O. Parallel hexameric motifs formed by two sets of unique 35DHBA molecules (shown in different colours) make voids for the maleimide and water molecules. Dotted lines indicate hydrogen bonds. The disorder of the H atoms is not shown.
2.3.4. MM–34DHBA and MM–345THBA combinations

Although no crystal structures could be determined because of a lack of diffraction-quality single crystals, distinct PXRD patterns compared with their parent compounds establish these as co-crystal-forming combinations (see supporting information ).

2.4. Glutarimide–hydroxybenzoic acid co-crystals

2.4.1. 1:2 GM–4HBA

Crystallization of a 1:1 GM–4HBA ground mixture from methanol resulted in a co-crystal with 1:2 stoichiometry. The structure displays non-planar Thomo-II units formed by N—H⋯O dimers between GM molecules, and acid homodimers formed between 4HBA molecules connected through carbonyl–hydroxyl interactions (Fig. 13[link]). The 4HBA molecules form two pairs of homodimers in which the component 4HBA molecules have different hydroxyl conformations (cis in one molecule and trans in the other, within a given pair).

[Figure 13]
Figure 13
The structure of the 1:2 GM–4HBA co-crystal. Non-planar Thomo-II units are formed by N—H⋯O dimers between symmetry-independent GM molecules (shown in different colours). Acid homodimers between independent 4HBA molecules are connected through O—Hhydroxy⋯O=Cimide interactions. Dotted lines indicate hydrogen bonds.
2.4.2. 1:1 GM–35DHBA co-crystal

Crystallization of a 1:1 GM–4HBA ground mixture from methanol resulted in a 1:1 co-crystal. The crystal structure includes Thetero units consisting of imide–acid ring heterodimers which are propagated by hydrogen bonds between the peripheral carbonyls of GM and the meta-hydroxyl groups of 35DHBA (Fig. 14[link]).

[Figure 14]
Figure 14
The structure of the 1:1 GM–35DHBA co-crystal. The glutarimide and 35DHBA molecules form Thetero units through imide–acid ring dimers, which propagate through meta O—Hhydroxyl⋯O=Cimide interactions. Dotted lines indicate hydrogen bonds.
2.4.3. GM–24DHBA/34DHBA/345THBA

Moragues-Bartolome et al. (2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) reported the formation of a new solid for the GM–24DHBA combination but could not produce single crystals suitable for structure determination. Similarly, we could not obtain crystal structures of these combinations, but their distinct PXRD patterns compared with their parent compounds (see supporting information ) establish them to be co-crystal-forming combinations.

2.5. Binary phase diagrams of eutectic-forming combinations

Moragues-Bartolome et al. (2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) concluded that the benzoic acid–succinimide/glutarimide combination did not form co-crystals. We corroborate this result, but in addition can demonstrate the formation of eutectic mixtures by constructing phase diagrams. The thermal behaviour of different molar compositions (1:1, 1:2, 2:1, 1:3, 3:1, 1:4, 4:1) for each of the combinations was analysed on a melting-point apparatus and the solidus–liquidus events were plotted. Based on the single invariant low melting point observed in all compositions, and the characteristic `V'-type phase diagram, co-crystal formation in any stoichiometric ratio is ruled out. The eutectic composition for each of the combinations was determined from the meeting of the solidus and liquidus points. All three cyclic imides formed eutectics with benzoic acid and 2- and 3-hydroxybenzoic acids, and the phase diagrams are given in Figs. 15[link]–17[link][link]. The structural basis for the eutectic mixtures is the possibility of finite Thomo or Thetero units, as discussed before.

[Figure 15]
Figure 15
Binary phase diagrams of eutectic systems of (a) SM–BA, (b) SM–2HBA and (c) SM–3HBA combinations. Solidus points are shown in red and liquidus points in green.
[Figure 16]
Figure 16
Binary phase diagrams of eutectic systems of (a) MM–BA, (b) MM–2HBA and (c) MM–3HBA combinations. Solidus points are shown in red and liquidus points in green.
[Figure 17]
Figure 17
Binary phase diagrams of eutectic systems of (a) GM–BA, (b) GM–2HBA and (c) GM–3HBA combinations. Solidus points are shown in red and liquidus points in green.

3. Conclusions

We have carried out an extensive study of the supramolecular compatibility of various cyclic imide–aromatic carboxylic acid combinations in terms of the formation of co-crystals and eutectic mixtures. Several co-crystals and eutectics were obtained, in accordance with our supramolecular design schematics. It appears convincing that, in general, all the cyclic imide–hydroxybenzoic acid co-crystals manifest as per Figs. 2[link] and 4[link]. However, the co-crystal architecture schematized is an ideal situation and suits only 1:1 stoichiometries, if any. The strength and conformational flexibility associated with the hydroxyl group and the crystallization milieu factors (solvent, temperature, supersaturation etc.) facilitate co-crystal formation in different architectures (polymorphic arrangements), with different conformers (multiple stoichiometry), and sometimes including water of crystallization (Thakuria et al., 2012[Thakuria, R., Cherukuvada, S. & Nangia, A. (2012). Cryst. Growth Des. 12, 3944-3953.]). Earlier studies from our group have shown that the relative differences in the propensity to form supramolecular synthons and in the induction strength complementarity of hydrogen-bonding functional groups guide the formation of co-crystals and eutectics in a mutually exclusive manner for a given combination (Cherukuvada & Row, 2014[Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187-4198.]; Prasad et al., 2014[Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930-9938.]). In this work, we have provided a rationale for their formation in the systems studied on the basis of an additional functional group (in this case hydroxyl) and its geometric disposition and resultant supramolecular effect in different combinations. The observation of a sharp melting point lower than those of the individual components, and the coexistence of individual components (as per PXRD patterns), in the medicinally relevant systems studied here strengthens the prospects of eutectics for pharmaceutical applications. This work improves our understanding of the requisites for selective co-crystal or eutectic formation for a combination with extensive hydrogen-bonding prospects.

Supporting information


Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO CCD (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO CCD (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO RED (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for SM-345THBAI. Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for SM-345THBAI; SHELXL2013 (Sheldrick, 2013) for SM-35DHBA, MM-35DHBA. Molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993) for SM-345THBAI. Software used to prepare material for publication: PLATON (Spek, 2003) for SM-4HBA, SM-24DHBA, SM-34DHBA, SM-345THBAII, MM-4HBA, MM-24DHBA, GM-4HBA, GM-35DHBA; WinGX (Farrugia, 1999) for SM-345THBAI.

(SM-4HBA) top
Crystal data top
C7H6O3·C4H5NO2Z = 2
Mr = 237.21F(000) = 248
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5133 (3) ÅCell parameters from 8365 reflections
b = 8.1853 (5) Åθ = 3.4–29.9°
c = 11.4965 (6) ŵ = 0.12 mm1
α = 103.458 (5)°T = 100 K
β = 93.925 (4)°Block, colourless
γ = 113.018 (5)°0.43 × 0.24 × 0.23 mm
V = 539.85 (6) Å3
Data collection top
Xcalibur, Eos, Nova
diffractometer
Rint = 0.035
Mirror monochromatorθmax = 30.2°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 89
Tmin = 0.843, Tmax = 1.000k = 1111
13046 measured reflectionsl = 1615
1903 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1643P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H6O3·C4H5NO2γ = 113.018 (5)°
Mr = 237.21V = 539.85 (6) Å3
Triclinic, P1Z = 2
a = 6.5133 (3) ÅMo Kα radiation
b = 8.1853 (5) ŵ = 0.12 mm1
c = 11.4965 (6) ÅT = 100 K
α = 103.458 (5)°0.43 × 0.24 × 0.23 mm
β = 93.925 (4)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
13046 measured reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1903 independent reflections
Tmin = 0.843, Tmax = 1.000Rint = 0.035
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
1903 reflectionsΔρmin = 0.26 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08575 (19)0.07710 (15)0.85791 (10)0.0154 (3)
C20.15232 (19)0.13804 (15)0.74955 (10)0.0154 (3)
C70.00327 (19)0.16678 (15)0.67570 (10)0.0161 (3)
H70.14470.14840.69630.019*
C60.05023 (19)0.22189 (16)0.57288 (10)0.0164 (3)
H60.05410.24140.52490.020*
C50.26237 (19)0.24835 (15)0.54103 (10)0.0151 (3)
C40.4203 (2)0.22114 (16)0.61406 (11)0.0176 (3)
H40.56160.23960.59330.021*
C30.3650 (2)0.16646 (16)0.71759 (10)0.0175 (3)
H30.46990.14850.76620.021*
C80.0155 (2)0.38221 (16)0.15958 (11)0.0171 (3)
C90.2032 (2)0.37489 (17)0.09818 (11)0.0189 (3)
H9A0.26530.27530.02300.023*
H9B0.17730.49080.08030.023*
C100.3636 (2)0.34070 (17)0.18976 (11)0.0199 (3)
H10A0.41440.43880.21060.024*
H10B0.49510.22350.15690.024*
C110.22631 (19)0.33794 (15)0.29932 (11)0.0161 (3)
N10.01497 (17)0.36098 (14)0.27538 (9)0.0166 (2)
O20.24039 (14)0.05279 (12)0.92336 (7)0.0194 (2)
O10.10420 (14)0.04944 (11)0.88444 (7)0.0192 (2)
O30.30534 (14)0.29955 (12)0.43755 (7)0.0181 (2)
O40.18793 (14)0.40198 (13)0.11986 (8)0.0249 (2)
O50.28862 (14)0.31711 (12)0.39538 (8)0.0220 (2)
H2O0.181 (3)0.017 (3)0.9919 (19)0.059 (6)*
H3O0.438 (3)0.304 (2)0.4229 (16)0.045 (5)*
H1N0.085 (3)0.354 (2)0.3261 (15)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0167 (6)0.0134 (5)0.0155 (6)0.0062 (5)0.0029 (4)0.0028 (4)
C20.0169 (6)0.0135 (5)0.0154 (6)0.0060 (4)0.0035 (4)0.0037 (4)
C70.0136 (6)0.0175 (6)0.0185 (6)0.0073 (5)0.0058 (4)0.0057 (5)
C60.0150 (6)0.0198 (6)0.0167 (6)0.0090 (5)0.0022 (4)0.0063 (5)
C50.0174 (6)0.0148 (5)0.0132 (5)0.0063 (5)0.0042 (4)0.0044 (4)
C40.0143 (6)0.0231 (6)0.0187 (6)0.0092 (5)0.0063 (4)0.0085 (5)
C30.0166 (6)0.0212 (6)0.0175 (6)0.0098 (5)0.0027 (4)0.0075 (5)
C80.0188 (6)0.0180 (6)0.0173 (6)0.0096 (5)0.0048 (5)0.0063 (4)
C90.0200 (6)0.0248 (6)0.0178 (6)0.0137 (5)0.0037 (5)0.0087 (5)
C100.0165 (6)0.0257 (6)0.0202 (6)0.0108 (5)0.0026 (5)0.0082 (5)
C110.0159 (6)0.0151 (5)0.0196 (6)0.0077 (5)0.0048 (5)0.0062 (4)
N10.0147 (5)0.0230 (5)0.0167 (5)0.0106 (4)0.0037 (4)0.0087 (4)
O20.0197 (4)0.0268 (5)0.0166 (4)0.0121 (4)0.0052 (3)0.0106 (4)
O10.0167 (4)0.0259 (5)0.0177 (4)0.0092 (4)0.0063 (3)0.0098 (3)
O30.0155 (4)0.0282 (5)0.0162 (4)0.0111 (4)0.0068 (3)0.0120 (3)
O40.0204 (5)0.0390 (5)0.0241 (5)0.0170 (4)0.0111 (4)0.0151 (4)
O50.0202 (4)0.0334 (5)0.0218 (5)0.0156 (4)0.0100 (3)0.0156 (4)
Geometric parameters (Å, º) top
C1—O11.2409 (14)C4—C31.3882 (17)
C1—O21.3202 (14)C8—O41.2075 (15)
C1—C21.4774 (16)C8—N11.3996 (15)
C2—C71.4017 (17)C8—C91.5189 (16)
C2—C31.4017 (17)C9—C101.5290 (16)
C7—C61.3799 (16)C10—C111.5038 (16)
C6—C51.4008 (16)C11—O51.2281 (15)
C5—O31.3620 (14)C11—N11.3708 (15)
C5—C41.4000 (17)
O1—C1—O2122.58 (11)C3—C4—C5119.71 (11)
O1—C1—C2121.77 (10)C4—C3—C2120.57 (11)
O2—C1—C2115.64 (10)O4—C8—N1124.10 (11)
C7—C2—C3118.95 (11)O4—C8—C9128.45 (11)
C7—C2—C1118.84 (10)N1—C8—C9107.45 (10)
C3—C2—C1122.21 (10)C8—C9—C10105.04 (9)
C6—C7—C2120.97 (11)C11—C10—C9105.13 (9)
C7—C6—C5119.69 (10)O5—C11—N1124.12 (11)
O3—C5—C4122.50 (10)O5—C11—C10126.99 (11)
O3—C5—C6117.40 (10)N1—C11—C10108.89 (10)
C4—C5—C6120.10 (11)C11—N1—C8113.45 (10)
O1—C1—C2—C70.59 (16)C7—C2—C3—C40.37 (17)
O2—C1—C2—C7179.97 (10)C1—C2—C3—C4179.05 (10)
O1—C1—C2—C3178.83 (10)O4—C8—C9—C10178.00 (12)
O2—C1—C2—C30.61 (16)N1—C8—C9—C101.86 (12)
C3—C2—C7—C60.10 (17)C8—C9—C10—C112.17 (12)
C1—C2—C7—C6179.34 (10)C9—C10—C11—O5178.82 (11)
C2—C7—C6—C50.47 (17)C9—C10—C11—N11.79 (13)
C7—C6—C5—O3178.86 (10)O5—C11—N1—C8179.94 (10)
C7—C6—C5—C40.77 (17)C10—C11—N1—C80.65 (13)
O3—C5—C4—C3179.11 (10)O4—C8—N1—C11179.07 (11)
C6—C5—C4—C30.50 (17)C9—C8—N1—C110.81 (13)
C5—C4—C3—C20.08 (17)
(SM-24DHBA) top
Crystal data top
C7H6O4·C4H5NO2Z = 2
Mr = 253.21F(000) = 264
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7358 (8) ÅCell parameters from 2754 reflections
b = 6.9119 (8) Åθ = 3.4–29.8°
c = 12.3937 (9) ŵ = 0.13 mm1
α = 74.468 (9)°T = 100 K
β = 85.298 (8)°Block, colourless
γ = 73.28 (1)°0.35 × 0.29 × 0.10 mm
V = 532.43 (10) Å3
Data collection top
Xcalibur, Eos, Nova
diffractometer
1690 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 25.0°, θmin = 3.2°
Tmin = 0.755, Tmax = 1.000h = 88
4016 measured reflectionsk = 86
1861 independent reflectionsl = 1413
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.0119P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
1861 reflectionsΔρmax = 0.55 e Å3
179 parametersΔρmin = 0.37 e Å3
Crystal data top
C7H6O4·C4H5NO2γ = 73.28 (1)°
Mr = 253.21V = 532.43 (10) Å3
Triclinic, P1Z = 2
a = 6.7358 (8) ÅMo Kα radiation
b = 6.9119 (8) ŵ = 0.13 mm1
c = 12.3937 (9) ÅT = 100 K
α = 74.468 (9)°0.35 × 0.29 × 0.10 mm
β = 85.298 (8)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
1861 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1690 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 1.000Rint = 0.026
4016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.55 e Å3
1861 reflectionsΔρmin = 0.37 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4868 (4)0.3357 (4)0.9082 (2)0.0164 (6)
C20.4839 (4)0.4529 (4)0.7903 (2)0.0158 (6)
C70.6636 (4)0.5087 (4)0.7433 (2)0.0156 (6)
C60.6622 (4)0.6255 (4)0.6330 (2)0.0164 (6)
H60.78060.66270.60180.020*
C50.4856 (4)0.6862 (4)0.5699 (2)0.0154 (6)
C40.3066 (4)0.6303 (4)0.6141 (2)0.0164 (6)
H40.18880.67080.57030.020*
C30.3067 (4)0.5146 (4)0.7231 (2)0.0151 (6)
H70.18800.47660.75290.018*
C80.1714 (4)0.0580 (4)0.1998 (2)0.0157 (6)
C90.0237 (4)0.1237 (4)0.1334 (2)0.0180 (6)
H9A0.00150.07610.06540.022*
H9B0.07940.27450.11370.022*
C100.1733 (4)0.0187 (4)0.2119 (2)0.0190 (6)
H10A0.30330.12050.21990.023*
H10B0.20120.08890.18370.023*
C110.0603 (4)0.0744 (4)0.3217 (2)0.0175 (6)
N10.1352 (4)0.0449 (4)0.3068 (2)0.0166 (5)
O10.6438 (3)0.2770 (3)0.96707 (16)0.0209 (5)
O20.3116 (3)0.2956 (3)0.94891 (16)0.0213 (5)
O40.8403 (3)0.4514 (3)0.80187 (16)0.0204 (5)
O30.4780 (3)0.8045 (3)0.46181 (16)0.0191 (5)
O50.3385 (3)0.0884 (3)0.16640 (16)0.0194 (5)
O60.1252 (3)0.1641 (3)0.41058 (17)0.0242 (5)
H1N0.224 (6)0.086 (5)0.355 (3)0.020 (9)*
H2O0.318 (7)0.227 (6)1.0147 (14)0.058 (14)*
H4O0.811 (8)0.394 (7)0.8659 (17)0.070 (16)*
H3O0.618 (6)0.815 (6)0.442 (3)0.035 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (14)0.0158 (13)0.0144 (13)0.0051 (11)0.0023 (11)0.0009 (10)
C20.0205 (14)0.0132 (12)0.0132 (13)0.0060 (11)0.0018 (11)0.0018 (10)
C70.0161 (13)0.0157 (13)0.0145 (13)0.0062 (10)0.0015 (10)0.0006 (10)
C60.0175 (13)0.0164 (13)0.0149 (13)0.0090 (11)0.0046 (11)0.0002 (10)
C50.0239 (14)0.0113 (12)0.0101 (12)0.0054 (11)0.0003 (11)0.0008 (10)
C40.0182 (14)0.0174 (13)0.0128 (13)0.0053 (11)0.0012 (11)0.0015 (10)
C30.0190 (14)0.0148 (12)0.0119 (13)0.0081 (10)0.0019 (10)0.0013 (10)
C80.0199 (14)0.0136 (12)0.0134 (13)0.0060 (11)0.0028 (11)0.0022 (10)
C90.0187 (14)0.0195 (14)0.0148 (13)0.0048 (11)0.0024 (11)0.0023 (11)
C100.0192 (14)0.0172 (13)0.0200 (14)0.0063 (11)0.0018 (11)0.0021 (11)
C110.0202 (14)0.0148 (13)0.0158 (14)0.0050 (11)0.0023 (11)0.0005 (10)
N10.0167 (12)0.0186 (12)0.0118 (12)0.0063 (9)0.0011 (10)0.0025 (9)
O10.0188 (10)0.0248 (11)0.0155 (10)0.0072 (8)0.0031 (8)0.0031 (8)
O20.0217 (11)0.0271 (11)0.0124 (10)0.0103 (9)0.0002 (8)0.0034 (8)
O40.0156 (10)0.0276 (11)0.0140 (10)0.0080 (8)0.0030 (8)0.0042 (8)
O30.0220 (11)0.0210 (10)0.0125 (9)0.0097 (8)0.0005 (8)0.0029 (8)
O50.0196 (10)0.0234 (10)0.0148 (10)0.0103 (8)0.0011 (8)0.0009 (8)
O60.0254 (11)0.0270 (11)0.0165 (10)0.0126 (9)0.0027 (8)0.0054 (8)
Geometric parameters (Å, º) top
C1—O11.239 (3)C5—C41.397 (4)
C1—O21.319 (3)C4—C31.373 (4)
C1—C21.468 (4)C8—O51.223 (3)
C2—C31.407 (4)C8—N11.366 (3)
C2—C71.409 (4)C8—C91.498 (4)
C7—O41.348 (3)C9—C101.539 (4)
C7—C61.388 (4)C10—C111.505 (4)
C6—C51.376 (4)C11—O61.224 (3)
C5—O31.366 (3)C11—N11.380 (4)
O1—C1—O2121.3 (2)C6—C5—C4121.3 (2)
O1—C1—C2122.5 (3)C3—C4—C5119.2 (3)
O2—C1—C2116.1 (2)C4—C3—C2120.9 (2)
C3—C2—C7118.9 (2)O5—C8—N1124.0 (3)
C3—C2—C1122.3 (2)O5—C8—C9127.0 (2)
C7—C2—C1118.8 (2)N1—C8—C9109.0 (2)
O4—C7—C6118.0 (2)C8—C9—C10104.5 (2)
O4—C7—C2122.2 (2)C11—C10—C9104.2 (2)
C6—C7—C2119.9 (2)O6—C11—N1124.2 (3)
C5—C6—C7119.9 (2)O6—C11—C10127.2 (3)
O3—C5—C6121.4 (2)N1—C11—C10108.6 (2)
O3—C5—C4117.4 (2)C8—N1—C11113.1 (2)
O1—C1—C2—C3178.4 (3)C6—C5—C4—C30.8 (4)
O2—C1—C2—C31.7 (4)C5—C4—C3—C20.2 (4)
O1—C1—C2—C72.8 (4)C7—C2—C3—C41.0 (4)
O2—C1—C2—C7177.2 (2)C1—C2—C3—C4177.8 (2)
C3—C2—C7—O4178.6 (2)O5—C8—C9—C10172.3 (3)
C1—C2—C7—O42.5 (4)N1—C8—C9—C107.6 (3)
C3—C2—C7—C61.0 (4)C8—C9—C10—C117.3 (3)
C1—C2—C7—C6177.9 (2)C9—C10—C11—O6175.9 (3)
O4—C7—C6—C5179.6 (2)C9—C10—C11—N14.8 (3)
C2—C7—C6—C50.0 (4)O5—C8—N1—C11175.0 (3)
C7—C6—C5—O3178.8 (2)C9—C8—N1—C114.9 (3)
C7—C6—C5—C40.9 (4)O6—C11—N1—C8179.5 (3)
O3—C5—C4—C3178.8 (2)C10—C11—N1—C80.1 (3)
(SM-34DHBA) top
Crystal data top
2(C7H6O4)·C4H5NO2F(000) = 848
Mr = 407.33Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4761 reflections
a = 6.7323 (2) Åθ = 3.1–29.9°
b = 12.1142 (5) ŵ = 0.13 mm1
c = 21.2077 (8) ÅT = 100 K
β = 97.146 (3)°Block, colourless
V = 1716.19 (11) Å30.33 × 0.15 × 0.11 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
2818 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.0°, θmin = 2.6°
Tmin = 0.880, Tmax = 1.000h = 88
10777 measured reflectionsk = 1413
3365 independent reflectionsl = 2526
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.035P)2 + 0.5769P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3365 reflectionsΔρmax = 0.27 e Å3
290 parametersΔρmin = 0.22 e Å3
Crystal data top
2(C7H6O4)·C4H5NO2V = 1716.19 (11) Å3
Mr = 407.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7323 (2) ŵ = 0.13 mm1
b = 12.1142 (5) ÅT = 100 K
c = 21.2077 (8) Å0.33 × 0.15 × 0.11 mm
β = 97.146 (3)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
3365 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2818 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.040
10777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
3365 reflectionsΔρmin = 0.22 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4685 (2)0.76778 (14)0.13733 (8)0.0159 (4)
C20.6615 (2)0.70887 (14)0.14576 (8)0.0158 (4)
C30.7557 (3)0.68234 (15)0.20625 (8)0.0169 (4)
H30.69860.70440.24200.020*
C40.9328 (3)0.62371 (15)0.21354 (9)0.0186 (4)
H40.99360.60580.25400.022*
C51.0206 (2)0.59129 (15)0.16052 (8)0.0163 (4)
C60.9297 (3)0.62091 (15)0.10000 (8)0.0165 (4)
C70.7513 (3)0.67771 (15)0.09250 (8)0.0174 (4)
H70.69040.69540.05200.021*
C80.0216 (3)0.93239 (15)0.12621 (8)0.0161 (4)
C90.2137 (2)0.99223 (14)0.12435 (8)0.0154 (4)
C100.3007 (2)1.04901 (14)0.07059 (8)0.0152 (4)
H100.23821.04990.03390.018*
C110.4801 (3)1.10383 (15)0.07225 (8)0.0157 (4)
C120.5755 (2)1.10051 (15)0.12748 (8)0.0161 (4)
C130.4885 (3)1.04325 (15)0.18033 (8)0.0178 (4)
H130.55201.04070.21680.021*
C140.3080 (2)0.98998 (15)0.17906 (8)0.0166 (4)
H140.24930.95250.21490.020*
C150.1838 (3)0.81744 (16)0.34921 (8)0.0199 (4)
H15A0.07930.84930.31910.024*
H15B0.19470.73930.34020.024*
C160.1407 (3)0.83545 (15)0.41635 (9)0.0192 (4)
C170.4443 (3)0.92048 (15)0.41182 (9)0.0181 (4)
C180.3845 (3)0.87644 (16)0.34617 (8)0.0204 (4)
H18A0.48430.82520.33440.024*
H18B0.36920.93610.31540.024*
N10.2959 (2)0.89362 (13)0.44855 (7)0.0187 (4)
O10.38957 (17)0.80267 (11)0.08513 (6)0.0195 (3)
O20.38602 (18)0.77968 (11)0.18979 (6)0.0195 (3)
O31.19142 (18)0.53090 (11)0.16778 (6)0.0215 (3)
O41.02518 (19)0.58628 (12)0.05054 (6)0.0247 (3)
O50.06585 (18)0.89639 (11)0.17626 (6)0.0202 (3)
O60.04641 (19)0.91969 (11)0.07084 (6)0.0216 (3)
O70.57499 (19)1.16596 (11)0.02385 (6)0.0216 (3)
O80.75181 (18)1.15372 (11)0.13133 (6)0.0213 (3)
O90.00706 (18)0.80537 (11)0.43979 (6)0.0254 (3)
O100.59488 (18)0.97186 (11)0.43126 (6)0.0237 (3)
H1N0.300 (3)0.9184 (16)0.4864 (9)0.019 (5)*
H2O0.266 (4)0.822 (2)0.1810 (13)0.066 (8)*
H3O1.225 (3)0.519 (2)0.1302 (11)0.046 (7)*
H4O0.983 (4)0.627 (2)0.0116 (12)0.059 (8)*
H6O0.167 (4)0.881 (2)0.0760 (11)0.051 (7)*
H7O0.512 (3)1.1660 (17)0.0093 (10)0.033 (6)*
H8O0.792 (3)1.1900 (19)0.0954 (11)0.037 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (9)0.0132 (9)0.0197 (9)0.0021 (7)0.0045 (7)0.0011 (8)
C20.0157 (9)0.0132 (9)0.0191 (9)0.0004 (7)0.0045 (7)0.0005 (8)
C30.0189 (9)0.0162 (9)0.0167 (9)0.0002 (7)0.0063 (7)0.0012 (8)
C40.0203 (9)0.0188 (10)0.0164 (9)0.0014 (8)0.0014 (7)0.0012 (8)
C50.0140 (8)0.0138 (9)0.0211 (9)0.0022 (7)0.0021 (7)0.0009 (8)
C60.0166 (9)0.0164 (9)0.0176 (9)0.0019 (7)0.0059 (7)0.0002 (8)
C70.0170 (9)0.0189 (10)0.0157 (9)0.0015 (7)0.0001 (7)0.0024 (8)
C80.0159 (9)0.0161 (9)0.0166 (9)0.0017 (7)0.0030 (7)0.0008 (8)
C90.0145 (8)0.0142 (9)0.0173 (9)0.0007 (7)0.0012 (7)0.0030 (8)
C100.0150 (8)0.0177 (9)0.0139 (9)0.0011 (7)0.0049 (7)0.0014 (8)
C110.0172 (9)0.0146 (9)0.0148 (9)0.0002 (7)0.0005 (7)0.0001 (8)
C120.0138 (8)0.0157 (9)0.0192 (9)0.0011 (7)0.0033 (7)0.0028 (8)
C130.0178 (9)0.0209 (10)0.0155 (9)0.0000 (7)0.0053 (7)0.0006 (8)
C140.0191 (9)0.0156 (9)0.0147 (9)0.0001 (7)0.0010 (7)0.0008 (8)
C150.0203 (9)0.0196 (10)0.0192 (9)0.0011 (8)0.0002 (7)0.0016 (8)
C160.0189 (9)0.0171 (10)0.0216 (10)0.0010 (8)0.0025 (8)0.0002 (8)
C170.0177 (9)0.0168 (9)0.0207 (9)0.0009 (8)0.0058 (7)0.0016 (8)
C180.0223 (9)0.0224 (10)0.0171 (9)0.0002 (8)0.0051 (8)0.0010 (8)
N10.0178 (8)0.0235 (9)0.0155 (8)0.0053 (7)0.0050 (6)0.0028 (7)
O10.0168 (6)0.0251 (7)0.0166 (7)0.0059 (5)0.0029 (5)0.0018 (6)
O20.0174 (6)0.0231 (7)0.0191 (7)0.0057 (6)0.0069 (5)0.0026 (6)
O30.0184 (6)0.0287 (8)0.0178 (7)0.0097 (6)0.0033 (5)0.0005 (6)
O40.0243 (7)0.0327 (8)0.0182 (7)0.0127 (6)0.0072 (6)0.0018 (7)
O50.0172 (6)0.0249 (7)0.0187 (7)0.0055 (5)0.0030 (5)0.0015 (6)
O60.0179 (6)0.0290 (8)0.0190 (7)0.0079 (6)0.0064 (5)0.0002 (6)
O70.0220 (7)0.0271 (8)0.0164 (7)0.0079 (6)0.0056 (6)0.0048 (6)
O80.0171 (6)0.0283 (8)0.0191 (7)0.0094 (6)0.0048 (5)0.0050 (6)
O90.0210 (7)0.0304 (8)0.0260 (7)0.0092 (6)0.0077 (6)0.0064 (6)
O100.0178 (7)0.0299 (8)0.0243 (7)0.0077 (6)0.0058 (5)0.0037 (6)
Geometric parameters (Å, º) top
C1—O11.241 (2)C9—C101.396 (2)
C1—O21.312 (2)C10—C111.383 (2)
C1—C21.474 (2)C11—O71.366 (2)
C2—C31.396 (3)C11—C121.405 (2)
C2—C71.398 (2)C12—O81.362 (2)
C3—C41.380 (2)C12—C131.385 (3)
C4—C51.391 (2)C13—C141.379 (2)
C5—O31.355 (2)C15—C161.504 (2)
C5—C61.398 (2)C15—C181.537 (2)
C6—O41.3627 (19)C16—O91.222 (2)
C6—C71.376 (2)C16—N11.370 (2)
C8—O51.228 (2)C17—O101.217 (2)
C8—O61.322 (2)C17—N11.380 (2)
C8—C91.479 (2)C17—C181.499 (3)
C9—C141.391 (2)
O1—C1—O2122.69 (15)C10—C9—C8122.66 (15)
O1—C1—C2123.10 (15)C11—C10—C9119.64 (15)
O2—C1—C2114.21 (16)O7—C11—C10125.02 (15)
C3—C2—C7119.20 (16)O7—C11—C12115.03 (15)
C3—C2—C1121.05 (15)C10—C11—C12119.93 (16)
C7—C2—C1119.75 (16)O8—C12—C13118.19 (15)
C4—C3—C2120.59 (15)O8—C12—C11121.91 (16)
C3—C4—C5120.20 (17)C13—C12—C11119.89 (15)
O3—C5—C4120.04 (16)C14—C13—C12120.23 (16)
O3—C5—C6120.73 (15)C13—C14—C9120.14 (17)
C4—C5—C6119.23 (16)C16—C15—C18104.27 (15)
O4—C6—C7123.60 (16)O9—C16—N1124.03 (16)
O4—C6—C5115.66 (15)O9—C16—C15127.20 (17)
C7—C6—C5120.69 (15)N1—C16—C15108.76 (14)
C6—C7—C2120.04 (17)O10—C17—N1124.08 (17)
O5—C8—O6123.00 (16)O10—C17—C18127.80 (15)
O5—C8—C9121.40 (15)N1—C17—C18108.12 (15)
O6—C8—C9115.60 (16)C17—C18—C15105.20 (14)
C14—C9—C10120.16 (16)C16—N1—C17113.62 (15)
C14—C9—C8117.18 (16)
O1—C1—C2—C3172.54 (17)C8—C9—C10—C11179.60 (16)
O2—C1—C2—C37.9 (2)C9—C10—C11—O7176.99 (16)
O1—C1—C2—C78.2 (3)C9—C10—C11—C121.1 (3)
O2—C1—C2—C7171.37 (16)O7—C11—C12—O81.4 (2)
C7—C2—C3—C41.6 (3)C10—C11—C12—O8179.68 (16)
C1—C2—C3—C4177.65 (16)O7—C11—C12—C13177.65 (16)
C2—C3—C4—C50.7 (3)C10—C11—C12—C130.6 (3)
C3—C4—C5—O3178.06 (16)O8—C12—C13—C14178.71 (16)
C3—C4—C5—C61.4 (3)C11—C12—C13—C140.4 (3)
O3—C5—C6—O40.7 (2)C12—C13—C14—C90.9 (3)
C4—C5—C6—O4179.84 (16)C10—C9—C14—C130.4 (3)
O3—C5—C6—C7176.90 (16)C8—C9—C14—C13179.40 (16)
C4—C5—C6—C72.6 (3)C18—C15—C16—O9177.86 (18)
O4—C6—C7—C2179.03 (17)C18—C15—C16—N11.5 (2)
C5—C6—C7—C21.6 (3)O10—C17—C18—C15179.07 (18)
C3—C2—C7—C60.4 (3)N1—C17—C18—C151.4 (2)
C1—C2—C7—C6178.81 (16)C16—C15—C18—C171.71 (19)
O5—C8—C9—C1410.6 (3)O9—C16—N1—C17178.68 (18)
O6—C8—C9—C14168.66 (16)C15—C16—N1—C170.7 (2)
O5—C8—C9—C10169.60 (17)O10—C17—N1—C16179.97 (17)
O6—C8—C9—C1011.1 (2)C18—C17—N1—C160.4 (2)
C14—C9—C10—C110.6 (3)
(SM-345THBAI) top
Crystal data top
C7H6O5·2(C4H5NO2)Z = 4
Mr = 368.30F(000) = 768
Orthorhombic, P212121Dx = 1.571 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 7.0213 (3) ŵ = 0.13 mm1
b = 8.8214 (4) ÅT = 130 K
c = 25.1416 (12) ÅNeedle, colourless
V = 1557.21 (12) Å30.24 × 0.22 × 0.22 mm
Data collection top
Oxford Xcalibur,Eos(Nova) CCD detector
diffractometer
2707 independent reflections
Radiation source: Enhance (Mo) X-ray Source2504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction,2009)
h = 88
Tmin = 0.969, Tmax = 0.974k = 1010
8817 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.3109P]
where P = (Fo2 + 2Fc2)/3
2996 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H6O5·2(C4H5NO2)V = 1557.21 (12) Å3
Mr = 368.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0213 (3) ŵ = 0.13 mm1
b = 8.8214 (4) ÅT = 130 K
c = 25.1416 (12) Å0.24 × 0.22 × 0.22 mm
Data collection top
Oxford Xcalibur,Eos(Nova) CCD detector
diffractometer
2707 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction,2009)
2504 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.974Rint = 0.049
8817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
2996 reflectionsΔρmin = 0.18 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6257 (4)0.6065 (3)0.16074 (12)0.0223 (6)
C20.5509 (4)0.7513 (3)0.13873 (12)0.0209 (6)
C30.5294 (4)0.7680 (3)0.08363 (12)0.0216 (6)
H30.56610.68860.06030.026*
C40.4543 (4)0.9015 (3)0.06350 (11)0.0212 (6)
C50.4023 (4)1.0186 (3)0.09735 (12)0.0210 (6)
C60.4229 (4)1.0007 (3)0.15270 (12)0.0220 (6)
C70.4981 (4)0.8683 (3)0.17280 (12)0.0224 (6)
H70.51410.85680.21010.027*
C80.0785 (4)0.7070 (3)0.19000 (12)0.0217 (6)
C90.1375 (5)0.5951 (3)0.23168 (12)0.0268 (7)
H9A0.03280.57730.25730.032*
H9B0.25060.63200.25130.032*
C100.1842 (5)0.4503 (3)0.20119 (12)0.0270 (7)
H10A0.31640.41730.20850.032*
H10B0.09600.36760.21120.032*
C110.1604 (4)0.4914 (3)0.14361 (12)0.0222 (6)
C120.0584 (4)0.9525 (3)0.05917 (12)0.0221 (6)
C130.1106 (5)1.0672 (3)0.01756 (13)0.0279 (7)
H13A0.21311.02810.00570.033*
H13B0.00121.09320.00460.033*
C140.1790 (5)1.2053 (3)0.04908 (12)0.0278 (7)
H14A0.10241.29600.04010.033*
H14B0.31461.22690.04150.033*
C150.1520 (4)1.1621 (3)0.10662 (12)0.0227 (6)
N10.0951 (4)0.6384 (3)0.14103 (10)0.0221 (6)
N20.0814 (4)1.0162 (3)0.10858 (10)0.0222 (6)
O10.6475 (3)0.5817 (2)0.20822 (9)0.0304 (5)
O20.6653 (3)0.5055 (2)0.12357 (9)0.0294 (5)
O30.4285 (3)0.9259 (2)0.01020 (8)0.0277 (5)
O40.3309 (3)1.1469 (2)0.07485 (8)0.0258 (5)
O50.3622 (3)1.1207 (2)0.18242 (9)0.0283 (5)
O60.1904 (3)0.4127 (2)0.10476 (9)0.0299 (5)
O70.0230 (3)0.8369 (2)0.19628 (9)0.0276 (5)
O80.0026 (3)0.8226 (2)0.05214 (8)0.0256 (5)
O90.1864 (3)1.2368 (2)0.14620 (9)0.0283 (5)
H1N0.069 (6)0.687 (4)0.1118 (17)0.057 (13)*
H2N0.051 (7)0.965 (5)0.1414 (19)0.078 (15)*
H2O0.711 (6)0.419 (5)0.1397 (19)0.071 (14)*
H3O0.453 (6)0.834 (4)0.0057 (14)0.041 (11)*
H4O0.300 (6)1.225 (5)0.0992 (18)0.064 (14)*
H5O0.368 (6)1.096 (5)0.2184 (17)0.057 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (15)0.0199 (14)0.0252 (16)0.0016 (12)0.0008 (12)0.0005 (13)
C20.0191 (13)0.0192 (14)0.0244 (16)0.0011 (12)0.0004 (12)0.0012 (13)
C30.0233 (14)0.0205 (14)0.0210 (15)0.0005 (12)0.0005 (12)0.0044 (12)
C40.0225 (14)0.0241 (14)0.0170 (14)0.0027 (13)0.0021 (12)0.0009 (13)
C50.0221 (14)0.0184 (13)0.0226 (16)0.0013 (12)0.0002 (12)0.0022 (13)
C60.0233 (14)0.0202 (14)0.0225 (15)0.0006 (12)0.0013 (12)0.0030 (13)
C70.0239 (15)0.0243 (15)0.0188 (15)0.0002 (13)0.0003 (12)0.0021 (12)
C80.0226 (14)0.0222 (15)0.0203 (15)0.0003 (12)0.0028 (13)0.0006 (12)
C90.0375 (18)0.0249 (15)0.0182 (15)0.0042 (14)0.0012 (13)0.0018 (13)
C100.0383 (17)0.0251 (15)0.0177 (15)0.0051 (14)0.0001 (14)0.0021 (13)
C110.0228 (14)0.0227 (14)0.0212 (16)0.0005 (13)0.0015 (13)0.0004 (13)
C120.0215 (14)0.0240 (15)0.0208 (15)0.0034 (12)0.0003 (12)0.0021 (13)
C130.0368 (19)0.0263 (15)0.0205 (16)0.0014 (14)0.0022 (13)0.0043 (14)
C140.0377 (18)0.0235 (15)0.0222 (17)0.0008 (14)0.0020 (14)0.0035 (13)
C150.0226 (14)0.0233 (14)0.0224 (16)0.0000 (13)0.0003 (13)0.0014 (13)
N10.0280 (14)0.0219 (13)0.0162 (13)0.0026 (11)0.0007 (11)0.0003 (12)
N20.0274 (13)0.0202 (12)0.0190 (13)0.0022 (11)0.0012 (11)0.0010 (11)
O10.0416 (13)0.0300 (11)0.0195 (11)0.0041 (11)0.0022 (10)0.0016 (10)
O20.0405 (13)0.0239 (11)0.0237 (12)0.0090 (11)0.0026 (10)0.0022 (10)
O30.0419 (13)0.0247 (11)0.0167 (11)0.0039 (10)0.0021 (10)0.0002 (9)
O40.0352 (12)0.0231 (11)0.0191 (12)0.0077 (10)0.0005 (10)0.0010 (9)
O50.0401 (13)0.0254 (11)0.0195 (12)0.0078 (10)0.0018 (10)0.0029 (10)
O60.0410 (13)0.0268 (11)0.0219 (11)0.0057 (10)0.0037 (10)0.0040 (10)
O70.0377 (12)0.0224 (10)0.0227 (12)0.0059 (10)0.0018 (10)0.0005 (10)
O80.0347 (12)0.0214 (10)0.0208 (12)0.0019 (10)0.0010 (10)0.0014 (9)
O90.0384 (13)0.0217 (10)0.0248 (12)0.0042 (10)0.0022 (10)0.0003 (10)
Geometric parameters (Å, º) top
C1—O11.223 (4)C10—H10A0.9900
C1—O21.321 (4)C10—H10B0.9900
C1—C21.487 (4)C11—O61.217 (4)
C2—C71.391 (4)C11—N11.377 (4)
C2—C31.401 (4)C12—O81.224 (3)
C3—C41.386 (4)C12—N21.373 (4)
C3—H30.9500C12—C131.501 (4)
C4—O31.369 (3)C13—C141.531 (4)
C4—C51.387 (4)C13—H13A0.9900
C5—O41.361 (3)C13—H13B0.9900
C5—C61.408 (4)C14—C151.508 (4)
C6—O51.364 (3)C14—H14A0.9900
C6—C71.378 (4)C14—H14B0.9900
C7—H70.9500C15—O91.217 (4)
C8—O71.220 (3)C15—N21.380 (4)
C8—N11.377 (4)N1—H1N0.87 (4)
C8—C91.498 (4)N2—H2N0.97 (5)
C9—C101.526 (4)O2—H2O0.92 (5)
C9—H9A0.9900O3—H3O0.92 (4)
C9—H9B0.9900O4—H4O0.95 (4)
C10—C111.502 (4)O5—H5O0.93 (4)
O1—C1—O2122.9 (3)C9—C10—H10B110.8
O1—C1—C2124.1 (3)H10A—C10—H10B108.8
O2—C1—C2113.0 (3)O6—C11—N1123.9 (3)
C7—C2—C3120.1 (3)O6—C11—C10128.1 (3)
C7—C2—C1120.1 (3)N1—C11—C10108.1 (2)
C3—C2—C1119.7 (3)O8—C12—N2123.5 (3)
C4—C3—C2119.4 (3)O8—C12—C13127.5 (3)
C4—C3—H3120.3N2—C12—C13109.0 (3)
C2—C3—H3120.3C12—C13—C14104.6 (3)
O3—C4—C3122.8 (3)C12—C13—H13A110.8
O3—C4—C5116.7 (3)C14—C13—H13A110.8
C3—C4—C5120.6 (3)C12—C13—H13B110.8
O4—C5—C4117.5 (3)C14—C13—H13B110.8
O4—C5—C6122.8 (3)H13A—C13—H13B108.9
C4—C5—C6119.7 (3)C15—C14—C13104.8 (2)
O5—C6—C7125.2 (3)C15—C14—H14A110.8
O5—C6—C5115.0 (3)C13—C14—H14A110.8
C7—C6—C5119.8 (3)C15—C14—H14B110.8
C6—C7—C2120.3 (3)C13—C14—H14B110.8
C6—C7—H7119.8H14A—C14—H14B108.9
C2—C7—H7119.8O9—C15—N2123.1 (3)
O7—C8—N1123.7 (3)O9—C15—C14128.5 (3)
O7—C8—C9128.1 (3)N2—C15—C14108.4 (3)
N1—C8—C9108.2 (2)C8—N1—C11113.6 (3)
C8—C9—C10105.1 (2)C8—N1—H1N121 (3)
C8—C9—H9A110.7C11—N1—H1N125 (3)
C10—C9—H9A110.7C12—N2—C15113.1 (3)
C8—C9—H9B110.7C12—N2—H2N124 (3)
C10—C9—H9B110.7C15—N2—H2N123 (3)
H9A—C9—H9B108.8C1—O2—H2O109 (3)
C11—C10—C9105.0 (2)C4—O3—H3O105 (2)
C11—C10—H10A110.8C5—O4—H4O115 (3)
C9—C10—H10A110.8C6—O5—H5O110 (3)
C11—C10—H10B110.8
O1—C1—C2—C70.9 (4)C1—C2—C7—C6177.8 (3)
O2—C1—C2—C7178.5 (3)O7—C8—C9—C10177.6 (3)
O1—C1—C2—C3179.4 (3)N1—C8—C9—C101.9 (3)
O2—C1—C2—C30.1 (4)C8—C9—C10—C113.4 (3)
C7—C2—C3—C40.4 (4)C9—C10—C11—O6176.7 (3)
C1—C2—C3—C4178.1 (3)C9—C10—C11—N13.7 (3)
C2—C3—C4—O3179.8 (3)O8—C12—C13—C14177.3 (3)
C2—C3—C4—C50.7 (4)N2—C12—C13—C143.2 (3)
O3—C4—C5—O40.1 (4)C12—C13—C14—C152.6 (3)
C3—C4—C5—O4179.5 (3)C13—C14—C15—O9179.7 (3)
O3—C4—C5—C6179.3 (3)C13—C14—C15—N21.3 (3)
C3—C4—C5—C61.1 (4)O7—C8—N1—C11180.0 (3)
O4—C5—C6—O51.3 (4)C9—C8—N1—C110.5 (3)
C4—C5—C6—O5178.1 (3)O6—C11—N1—C8177.7 (3)
O4—C5—C6—C7179.3 (3)C10—C11—N1—C82.7 (3)
C4—C5—C6—C71.3 (4)O8—C12—N2—C15177.9 (3)
O5—C6—C7—C2178.3 (3)C13—C12—N2—C152.6 (3)
C5—C6—C7—C21.1 (4)O9—C15—N2—C12178.3 (3)
C3—C2—C7—C60.6 (4)C14—C15—N2—C120.8 (3)
(SM-345THBAII) top
Crystal data top
C7H6O5·2(C4H5NO2)Z = 2
Mr = 368.30F(000) = 384
Triclinic, P1Dx = 1.546 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9225 (4) ÅCell parameters from 3114 reflections
b = 11.7839 (10) Åθ = 2.4–26.3°
c = 13.8540 (16) ŵ = 0.13 mm1
α = 97.248 (8)°T = 110 K
β = 96.773 (8)°Needle, colourless
γ = 90.663 (6)°0.22 × 0.20 × 0.18 mm
V = 791.35 (13) Å3
Data collection top
Xcalibur, Eos, Nova
diffractometer
2784 independent reflections
Radiation source: Mova (Mo) X-ray SourceRint = 0.070
Mirror monochromatorθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 66
Tmin = 0.578, Tmax = 1.000k = 1414
11875 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.100H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.237 w = 1/[σ2(Fo2) + (0.020P)2 + 7.7428P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3095 reflectionsΔρmax = 0.45 e Å3
287 parametersΔρmin = 0.43 e Å3
Crystal data top
C7H6O5·2(C4H5NO2)γ = 90.663 (6)°
Mr = 368.30V = 791.35 (13) Å3
Triclinic, P1Z = 2
a = 4.9225 (4) ÅMo Kα radiation
b = 11.7839 (10) ŵ = 0.13 mm1
c = 13.8540 (16) ÅT = 110 K
α = 97.248 (8)°0.22 × 0.20 × 0.18 mm
β = 96.773 (8)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
11875 measured reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2784 independent reflections
Tmin = 0.578, Tmax = 1.000Rint = 0.070
Refinement top
R[F2 > 2σ(F2)] = 0.1000 restraints
wR(F2) = 0.237H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
3095 reflectionsΔρmin = 0.43 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7316 (11)0.9583 (5)0.0802 (4)0.0179 (12)
C20.5366 (11)0.9285 (5)0.1466 (4)0.0174 (12)
C30.4732 (12)0.8153 (5)0.1564 (4)0.0187 (13)
C40.2850 (12)0.7925 (5)0.2193 (4)0.0189 (13)
C50.1650 (12)0.8832 (5)0.2731 (4)0.0205 (13)
C60.2288 (12)0.9949 (5)0.2630 (4)0.0189 (13)
C70.4142 (12)1.0193 (5)0.1993 (4)0.0170 (12)
C80.0109 (13)0.4023 (6)0.2508 (5)0.0281 (15)
C90.0264 (14)0.3118 (6)0.1641 (5)0.0331 (16)
H9A0.07570.23720.18420.040*
H9B0.14400.30340.13270.040*
C100.2585 (16)0.3516 (7)0.0935 (6)0.0345 (17)
C110.3673 (14)0.4558 (6)0.1533 (5)0.0291 (15)
C120.4141 (12)0.7142 (5)0.4424 (4)0.0198 (13)
C130.5938 (14)0.6479 (5)0.4966 (5)0.0245 (14)
C140.7113 (14)0.7380 (5)0.5680 (5)0.0229 (14)
C150.6339 (12)0.8503 (5)0.5354 (4)0.0195 (13)
N10.2042 (12)0.4772 (5)0.2395 (4)0.0299 (13)
N20.4518 (10)0.8286 (4)0.4676 (4)0.0211 (11)
H2N0.36810.88270.44290.025*
O10.7865 (8)1.0580 (3)0.0710 (3)0.0190 (9)
O20.8417 (9)0.8700 (3)0.0314 (3)0.0217 (10)
O30.2041 (9)0.6856 (4)0.2356 (3)0.0244 (10)
O40.0146 (8)0.8636 (4)0.3375 (3)0.0210 (10)
O50.1138 (9)1.0842 (4)0.3155 (3)0.0235 (10)
O60.1870 (10)0.4114 (4)0.3207 (4)0.0374 (12)
O70.5656 (9)0.5104 (4)0.1284 (3)0.0290 (11)
O80.7131 (8)0.9439 (3)0.5643 (3)0.0222 (10)
O90.2568 (9)0.6749 (4)0.3852 (3)0.0257 (10)
H1N0.22 (2)0.539 (9)0.280 (8)0.08 (4)*
H2O0.961 (16)0.901 (6)0.003 (6)0.04 (2)*
H30.528 (13)0.748 (5)0.113 (5)0.019 (16)*
H3O0.296 (19)0.645 (8)0.209 (7)0.06 (3)*
H4O0.048 (17)0.794 (8)0.343 (6)0.05 (3)*
H5O0.034 (17)1.055 (7)0.340 (6)0.04 (2)*
H70.461 (13)1.096 (6)0.195 (5)0.019 (16)*
H10A0.195 (14)0.376 (6)0.037 (5)0.030 (19)*
H10B0.403 (17)0.294 (7)0.083 (6)0.05 (2)*
H13A0.732 (15)0.610 (6)0.448 (5)0.031 (19)*
H13B0.492 (15)0.597 (6)0.523 (5)0.03 (2)*
H14A0.623 (14)0.745 (6)0.635 (5)0.028 (19)*
H14B0.918 (13)0.728 (5)0.564 (4)0.018 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.012 (3)0.019 (3)0.021 (3)0.001 (2)0.002 (2)0.002 (2)
C20.010 (3)0.022 (3)0.019 (3)0.006 (2)0.002 (2)0.000 (2)
C30.018 (3)0.019 (3)0.019 (3)0.003 (2)0.005 (2)0.001 (2)
C40.016 (3)0.019 (3)0.022 (3)0.004 (2)0.004 (2)0.002 (2)
C50.018 (3)0.026 (3)0.018 (3)0.004 (2)0.007 (2)0.001 (2)
C60.014 (3)0.020 (3)0.021 (3)0.003 (2)0.002 (2)0.004 (2)
C70.014 (3)0.013 (3)0.023 (3)0.000 (2)0.003 (2)0.000 (2)
C80.025 (4)0.026 (3)0.035 (4)0.001 (3)0.009 (3)0.007 (3)
C90.026 (4)0.031 (4)0.042 (4)0.003 (3)0.008 (3)0.004 (3)
C100.033 (4)0.032 (4)0.037 (4)0.010 (3)0.007 (3)0.002 (3)
C110.030 (4)0.024 (3)0.035 (4)0.003 (3)0.013 (3)0.006 (3)
C120.017 (3)0.019 (3)0.023 (3)0.001 (2)0.004 (2)0.003 (2)
C130.025 (4)0.015 (3)0.033 (4)0.001 (3)0.011 (3)0.002 (3)
C140.026 (4)0.018 (3)0.026 (4)0.000 (3)0.009 (3)0.001 (3)
C150.018 (3)0.019 (3)0.022 (3)0.002 (2)0.004 (2)0.000 (2)
N10.035 (3)0.019 (3)0.036 (3)0.001 (2)0.014 (3)0.003 (2)
N20.025 (3)0.014 (3)0.026 (3)0.003 (2)0.011 (2)0.001 (2)
O10.013 (2)0.020 (2)0.024 (2)0.0015 (16)0.0076 (17)0.0009 (17)
O20.021 (2)0.017 (2)0.028 (2)0.0044 (17)0.0108 (19)0.0001 (18)
O30.025 (2)0.016 (2)0.034 (3)0.0067 (18)0.016 (2)0.0001 (19)
O40.017 (2)0.022 (2)0.026 (2)0.0068 (18)0.0109 (18)0.0004 (18)
O50.022 (2)0.020 (2)0.028 (3)0.0064 (18)0.0109 (19)0.0040 (18)
O60.035 (3)0.037 (3)0.039 (3)0.002 (2)0.001 (2)0.002 (2)
O70.029 (3)0.021 (2)0.038 (3)0.006 (2)0.009 (2)0.003 (2)
O80.023 (2)0.013 (2)0.032 (3)0.0056 (17)0.0133 (19)0.0003 (17)
O90.025 (2)0.021 (2)0.031 (3)0.0092 (18)0.012 (2)0.0048 (18)
Geometric parameters (Å, º) top
C1—O11.228 (7)C10—H10A0.95 (7)
C1—O21.324 (7)C10—H10B0.97 (8)
C1—C21.475 (8)C11—O71.215 (8)
C2—C31.393 (8)C11—N11.352 (9)
C2—C71.400 (8)C12—O91.226 (7)
C3—C41.391 (8)C12—N21.370 (7)
C3—H30.99 (6)C12—C131.497 (9)
C4—O31.371 (7)C13—C141.525 (8)
C4—C51.402 (8)C13—H13A0.96 (7)
C5—O41.366 (7)C13—H13B0.87 (7)
C5—C61.377 (9)C14—C151.510 (8)
C6—O51.369 (7)C14—H14A0.97 (7)
C6—C71.394 (8)C14—H14B1.02 (6)
C7—H70.94 (7)C15—O81.210 (7)
C8—O61.214 (8)C15—N21.377 (8)
C8—N11.394 (9)N1—H1N0.87 (11)
C8—C91.495 (9)N2—H2N0.8800
C9—C101.532 (10)O2—H2O0.90 (8)
C9—H9A0.9900O3—H3O0.75 (9)
C9—H9B0.9900O4—H4O0.85 (9)
C10—C111.531 (9)O5—H5O0.92 (8)
O1—C1—O2122.8 (5)C9—C10—H10B108 (5)
O1—C1—C2122.0 (5)H10A—C10—H10B118 (6)
O2—C1—C2115.2 (5)O7—C11—N1125.4 (6)
C3—C2—C7121.0 (5)O7—C11—C10126.4 (7)
C3—C2—C1121.9 (5)N1—C11—C10108.1 (6)
C7—C2—C1117.1 (5)O9—C12—N2124.5 (6)
C4—C3—C2119.3 (5)O9—C12—C13126.9 (5)
C4—C3—H3115 (4)N2—C12—C13108.7 (5)
C2—C3—H3124 (4)C12—C13—C14104.8 (5)
O3—C4—C3125.3 (5)C12—C13—H13A107 (4)
O3—C4—C5114.9 (5)C14—C13—H13A113 (4)
C3—C4—C5119.8 (6)C12—C13—H13B107 (5)
O4—C5—C6118.3 (5)C14—C13—H13B116 (5)
O4—C5—C4121.1 (5)H13A—C13—H13B109 (6)
C6—C5—C4120.5 (5)C15—C14—C13104.1 (5)
O5—C6—C5121.0 (5)C15—C14—H14A103 (4)
O5—C6—C7118.5 (5)C13—C14—H14A115 (4)
C5—C6—C7120.4 (5)C15—C14—H14B111 (3)
C6—C7—C2118.9 (5)C13—C14—H14B111 (3)
C6—C7—H7120 (4)H14A—C14—H14B112 (5)
C2—C7—H7121 (4)O8—C15—N2125.3 (6)
O6—C8—N1124.2 (6)O8—C15—C14126.5 (5)
O6—C8—C9128.7 (6)N2—C15—C14108.2 (5)
N1—C8—C9107.1 (6)C11—N1—C8114.6 (6)
C8—C9—C10105.9 (6)C11—N1—H1N121 (7)
C8—C9—H9A110.6C8—N1—H1N124 (7)
C10—C9—H9A110.6C12—N2—C15113.1 (5)
C8—C9—H9B110.6C12—N2—H2N123.5
C10—C9—H9B110.6C15—N2—H2N123.5
H9A—C9—H9B108.7C1—O2—H2O105 (5)
C11—C10—C9103.6 (6)C4—O3—H3O105 (7)
C11—C10—H10A108 (4)C5—O4—H4O116 (6)
C9—C10—H10A112 (4)C6—O5—H5O107 (5)
C11—C10—H10B106 (5)
O1—C1—C2—C3179.5 (6)C1—C2—C7—C6179.9 (5)
O2—C1—C2—C30.3 (8)O6—C8—C9—C10173.0 (7)
O1—C1—C2—C70.1 (8)N1—C8—C9—C108.6 (8)
O2—C1—C2—C7179.7 (5)C8—C9—C10—C118.2 (8)
C7—C2—C3—C40.2 (9)C9—C10—C11—O7174.7 (7)
C1—C2—C3—C4179.2 (5)C9—C10—C11—N15.2 (8)
C2—C3—C4—O3179.9 (6)O9—C12—C13—C14171.7 (6)
C2—C3—C4—C51.0 (9)N2—C12—C13—C147.9 (7)
O3—C4—C5—O41.1 (8)C12—C13—C14—C1510.8 (7)
C3—C4—C5—O4178.1 (6)C13—C14—C15—O8170.7 (6)
O3—C4—C5—C6179.8 (5)C13—C14—C15—N210.4 (7)
C3—C4—C5—C61.0 (9)O7—C11—N1—C8179.9 (6)
O4—C5—C6—O50.6 (9)C10—C11—N1—C80.1 (8)
C4—C5—C6—O5179.7 (5)O6—C8—N1—C11175.8 (6)
O4—C5—C6—C7179.0 (5)C9—C8—N1—C115.6 (8)
C4—C5—C6—C70.1 (9)O9—C12—N2—C15178.2 (6)
O5—C6—C7—C2178.9 (5)C13—C12—N2—C151.4 (7)
C5—C6—C7—C20.7 (9)O8—C15—N2—C12175.2 (6)
C3—C2—C7—C60.7 (9)C14—C15—N2—C125.9 (7)
(SM-35DHBA) top
Crystal data top
3(C7H6O4)·C4H5NO2·3(H2O)Z = 2
Mr = 615.49F(000) = 644
Triclinic, P1Dx = 1.535 Mg m3
a = 9.3161 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2092 (3) ÅCell parameters from 9808 reflections
c = 13.7362 (7) Åθ = 2.7–26.0°
α = 102.926 (3)°µ = 0.13 mm1
β = 104.398 (4)°T = 100 K
γ = 96.571 (3)°Block, colorless
V = 1332.01 (11) Å30.20 × 0.18 × 0.15 mm
Data collection top
Xcalibur, Eos, Nova
diffractometer
4753 reflections with I > 2σ(I)
Radiation source: Mova (Mo) X-ray SourceRint = 0.030
Mirror monochromatorθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1011
Tmin = 0.898, Tmax = 1.000k = 813
9808 measured reflectionsl = 1614
5225 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3023P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
5225 reflectionsΔρmax = 0.39 e Å3
388 parametersΔρmin = 0.45 e Å3
Crystal data top
3(C7H6O4)·C4H5NO2·3(H2O)γ = 96.571 (3)°
Mr = 615.49V = 1332.01 (11) Å3
Triclinic, P1Z = 2
a = 9.3161 (5) ÅMo Kα radiation
b = 11.2092 (3) ŵ = 0.13 mm1
c = 13.7362 (7) ÅT = 100 K
α = 102.926 (3)°0.20 × 0.18 × 0.15 mm
β = 104.398 (4)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
5225 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
4753 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1.000Rint = 0.030
9808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0741 restraint
wR(F2) = 0.174H-atom parameters constrained
S = 1.21Δρmax = 0.39 e Å3
5225 reflectionsΔρmin = 0.45 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. There are two planar H-bond networks. The network containing O1/O2/O3/O4, O9/O10/O11/O12 and O2W is ordered. The network containing O5/O6/O7/O8 and O1W is apparently the same, but disordered over two inversion-related orientations in space group P-1. A l l H atoms in this plane (apart from H2W1, which points out of the plane) are refined with occupancy 0.5. The alternative H-bond sequences are: (1) ··· O7—H7A —> O1W-H1W2 —> O8—H8B —> O8 (2) ··· O7 <—- H1W3-O1W <—- H8A—O8 <— H8B—O8

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0730 (3)0.5967 (3)0.4358 (2)0.0124 (6)
C20.0226 (3)0.4978 (2)0.3361 (2)0.0121 (6)
C30.1309 (3)0.4527 (3)0.2915 (2)0.0119 (6)
H30.20190.48180.32590.014*
C40.1786 (3)0.3646 (3)0.1961 (2)0.0122 (6)
C50.0749 (3)0.3202 (3)0.1464 (2)0.0130 (6)
H50.10830.25950.08120.016*
C60.0775 (3)0.3652 (3)0.1927 (2)0.0116 (6)
C70.1280 (3)0.4551 (3)0.2883 (2)0.0119 (6)
H70.23260.48630.31980.014*
C80.9347 (3)0.8679 (3)0.3753 (2)0.0169 (6)
C90.8862 (3)0.7717 (3)0.2743 (2)0.0168 (6)
C100.7336 (3)0.7256 (3)0.2297 (2)0.0161 (6)
H100.66220.75230.26450.019*
C110.6874 (3)0.6396 (3)0.1330 (2)0.0168 (6)
C120.7912 (3)0.5985 (3)0.0820 (2)0.0174 (6)
H120.75850.53960.01580.021*
C130.9436 (3)0.6452 (3)0.1293 (2)0.0149 (6)
C140.9929 (3)0.7316 (3)0.2254 (2)0.0151 (6)
H141.09730.76300.25730.018*
C150.2003 (3)0.8580 (3)0.6852 (2)0.0138 (6)
C160.2481 (3)0.9530 (3)0.7869 (2)0.0131 (6)
C170.3999 (3)1.0043 (3)0.8306 (2)0.0126 (6)
H170.47240.97910.79610.015*
C180.4436 (3)1.0931 (2)0.9259 (2)0.0116 (6)
C190.3384 (3)1.1306 (3)0.9768 (2)0.0138 (6)
H190.36971.19031.04250.017*
C200.1865 (3)1.0797 (3)0.9304 (2)0.0115 (6)
C210.1405 (3)0.9898 (3)0.8357 (2)0.0122 (6)
H210.03700.95410.80470.015*
C220.5419 (3)0.7198 (3)0.4556 (2)0.0166 (6)
C230.6328 (4)0.6825 (3)0.5465 (2)0.0215 (7)
H23A0.72170.65070.53090.026*
H23B0.57140.61720.56450.026*
C240.6812 (4)0.8017 (3)0.6352 (2)0.0227 (7)
H24A0.64650.78990.69550.027*
H24B0.79220.82710.65810.027*
C250.6077 (3)0.8971 (3)0.5903 (2)0.0170 (6)
N10.5296 (3)0.8419 (2)0.4875 (2)0.0171 (5)
H1N0.47710.88130.44660.021*
O10.0248 (2)0.64003 (19)0.47538 (15)0.0160 (4)
O20.2149 (2)0.6330 (2)0.47655 (16)0.0212 (5)
H2O0.23080.68880.53220.032*
O1W0.3370 (3)0.6994 (3)0.17910 (19)0.0380 (7)
H1W10.38170.68540.23630.057*
H1W20.24480.66930.14770.057*0.5
H1W30.39920.66730.15010.057*0.5
O30.3288 (2)0.3226 (2)0.15043 (16)0.0189 (5)
H3O0.34180.27000.09340.028*
O2W0.4732 (3)0.4073 (2)0.25096 (18)0.0266 (5)
H2W10.47750.48140.28540.040*
H2W20.53590.38110.21940.040*
O40.1787 (2)0.3223 (2)0.14297 (16)0.0193 (5)
H4O0.26650.35710.17920.029*
O3W0.2182 (3)0.9504 (2)0.13650 (18)0.0266 (5)
H3W10.12590.92880.10170.040*
H3W20.26410.96250.20060.040*
O50.8412 (3)0.9056 (2)0.42000 (18)0.0238 (5)
O61.0782 (3)0.9090 (2)0.41235 (19)0.0262 (5)
H6O1.09560.96260.46940.039*
O70.5372 (2)0.5958 (2)0.08567 (19)0.0256 (5)
H7A0.46480.62420.11900.031*0.5
H7B0.50510.53690.01950.031*0.5
O81.0460 (2)0.6055 (2)0.07869 (17)0.0184 (5)
H8A1.15050.63730.10960.022*0.5
H8B1.01250.54620.01280.022*0.5
O90.2989 (2)0.8157 (2)0.64583 (16)0.0209 (5)
O100.0584 (2)0.8234 (2)0.64233 (16)0.0192 (5)
H10O0.04330.76980.58550.029*
O110.5926 (2)1.14531 (19)0.97078 (16)0.0158 (4)
H11O0.64371.11480.93230.024*
O120.0806 (2)1.11887 (19)0.97762 (16)0.0155 (4)
H12O0.12341.17291.03390.023*
O130.4861 (2)0.6548 (2)0.36649 (16)0.0199 (5)
O140.6153 (3)1.0055 (2)0.63426 (17)0.0212 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (14)0.0116 (13)0.0103 (13)0.0014 (11)0.0028 (11)0.0008 (11)
C20.0177 (15)0.0092 (13)0.0089 (13)0.0021 (11)0.0039 (11)0.0016 (10)
C30.0115 (14)0.0119 (13)0.0124 (13)0.0031 (11)0.0053 (11)0.0006 (11)
C40.0088 (13)0.0122 (13)0.0138 (14)0.0004 (10)0.0014 (11)0.0023 (11)
C50.0165 (15)0.0101 (13)0.0100 (13)0.0014 (11)0.0031 (11)0.0011 (10)
C60.0109 (14)0.0124 (13)0.0125 (13)0.0029 (10)0.0062 (11)0.0019 (11)
C70.0089 (13)0.0133 (13)0.0120 (13)0.0009 (10)0.0018 (11)0.0021 (11)
C80.0174 (15)0.0166 (14)0.0199 (15)0.0045 (12)0.0099 (12)0.0057 (12)
C90.0184 (16)0.0152 (14)0.0221 (16)0.0057 (12)0.0103 (13)0.0094 (12)
C100.0144 (15)0.0151 (14)0.0230 (16)0.0037 (11)0.0111 (12)0.0064 (12)
C110.0132 (15)0.0178 (15)0.0227 (16)0.0049 (12)0.0073 (12)0.0086 (12)
C120.0183 (16)0.0178 (15)0.0185 (15)0.0054 (12)0.0064 (12)0.0068 (12)
C130.0149 (15)0.0172 (14)0.0185 (15)0.0073 (11)0.0099 (12)0.0083 (12)
C140.0118 (14)0.0159 (14)0.0201 (15)0.0038 (11)0.0060 (12)0.0071 (12)
C150.0152 (15)0.0133 (14)0.0110 (13)0.0004 (11)0.0028 (11)0.0015 (11)
C160.0153 (15)0.0106 (13)0.0118 (14)0.0017 (11)0.0031 (11)0.0009 (11)
C170.0126 (14)0.0144 (14)0.0108 (13)0.0030 (11)0.0055 (11)0.0003 (11)
C180.0093 (13)0.0095 (13)0.0132 (14)0.0002 (10)0.0006 (11)0.0011 (11)
C190.0177 (15)0.0118 (13)0.0095 (13)0.0011 (11)0.0026 (11)0.0002 (11)
C200.0111 (14)0.0103 (13)0.0146 (14)0.0026 (10)0.0050 (11)0.0043 (11)
C210.0100 (14)0.0117 (13)0.0125 (13)0.0006 (10)0.0024 (11)0.0001 (11)
C220.0142 (15)0.0167 (14)0.0214 (16)0.0017 (11)0.0107 (12)0.0037 (12)
C230.0221 (17)0.0196 (16)0.0218 (16)0.0070 (13)0.0042 (13)0.0038 (13)
C240.0226 (17)0.0233 (16)0.0172 (16)0.0032 (13)0.0022 (13)0.0045 (13)
C250.0141 (15)0.0197 (16)0.0177 (15)0.0003 (12)0.0075 (12)0.0037 (12)
N10.0190 (13)0.0163 (12)0.0169 (13)0.0045 (10)0.0052 (10)0.0054 (10)
O10.0158 (11)0.0167 (10)0.0123 (10)0.0033 (8)0.0040 (8)0.0028 (8)
O20.0146 (11)0.0229 (12)0.0130 (10)0.0058 (9)0.0006 (8)0.0117 (9)
O1W0.0325 (15)0.0540 (18)0.0212 (13)0.0087 (13)0.0005 (11)0.0131 (12)
O30.0104 (10)0.0218 (11)0.0158 (11)0.0013 (8)0.0022 (8)0.0088 (9)
O2W0.0330 (14)0.0185 (11)0.0265 (13)0.0030 (10)0.0144 (11)0.0039 (9)
O40.0112 (11)0.0228 (11)0.0190 (11)0.0018 (9)0.0060 (9)0.0055 (9)
O3W0.0301 (14)0.0286 (13)0.0164 (11)0.0005 (10)0.0044 (10)0.0020 (10)
O50.0203 (12)0.0248 (12)0.0254 (12)0.0040 (9)0.0118 (10)0.0011 (10)
O60.0189 (12)0.0270 (12)0.0274 (13)0.0008 (10)0.0089 (10)0.0039 (10)
O70.0114 (11)0.0308 (13)0.0344 (14)0.0044 (9)0.0088 (10)0.0053 (11)
O80.0123 (11)0.0210 (11)0.0210 (11)0.0030 (9)0.0080 (9)0.0000 (9)
O90.0204 (12)0.0203 (11)0.0162 (11)0.0017 (9)0.0063 (9)0.0070 (9)
O100.0164 (11)0.0201 (11)0.0122 (10)0.0019 (9)0.0016 (8)0.0050 (8)
O110.0082 (10)0.0200 (11)0.0146 (10)0.0004 (8)0.0033 (8)0.0040 (8)
O120.0116 (10)0.0171 (10)0.0156 (10)0.0011 (8)0.0060 (8)0.0017 (8)
O130.0198 (12)0.0195 (11)0.0172 (11)0.0016 (9)0.0054 (9)0.0004 (9)
O140.0255 (12)0.0158 (11)0.0204 (11)0.0017 (9)0.0062 (9)0.0022 (9)
Geometric parameters (Å, º) top
C1—O11.262 (3)C18—C191.389 (4)
C1—O21.278 (4)C19—C201.392 (4)
C1—C21.486 (4)C19—H190.9500
C2—C71.383 (4)C20—O121.370 (3)
C2—C31.391 (4)C20—C211.389 (4)
C3—C41.386 (4)C21—H210.9500
C3—H30.9500C22—O131.224 (4)
C4—O31.361 (3)C22—N11.368 (4)
C4—C51.390 (4)C22—C231.496 (4)
C5—C61.385 (4)C23—C241.528 (4)
C5—H50.9500C23—H23A0.9900
C6—O41.365 (3)C23—H23B0.9900
C6—C71.398 (4)C24—C251.498 (4)
C7—H70.9500C24—H24A0.9900
C8—O51.244 (4)C24—H24B0.9900
C8—O61.294 (4)C25—O141.216 (4)
C8—C91.483 (4)C25—N11.379 (4)
C9—C101.385 (4)N1—H1N0.8800
C9—C141.393 (4)O2—H2O0.8400
C10—C111.388 (4)O1W—H1W10.8500
C10—H100.9500O1W—H1W20.8500
C11—O71.367 (4)O1W—H1W30.8500
C11—C121.390 (4)O3—H3O0.8400
C12—C131.390 (4)O2W—H2W10.8500
C12—H120.9500O2W—H2W20.8501
C13—O81.371 (3)O4—H4O0.8400
C13—C141.384 (4)O3W—H3W10.8500
C14—H140.9500O3W—H3W20.8500
C15—O91.263 (4)O6—H6O0.8400
C15—O101.280 (4)O7—H7A0.9500
C15—C161.483 (4)O7—H7B0.9500
C16—C211.389 (4)O8—H8A0.9500
C16—C171.389 (4)O8—H8B0.9500
C17—C181.389 (4)O10—H10O0.8400
C17—H170.9500O11—H11O0.8400
C18—O111.370 (3)O12—H12O0.8400
O1—C1—O2123.7 (3)O11—C18—C19119.1 (2)
O1—C1—C2119.0 (3)O11—C18—C17119.8 (3)
O2—C1—C2117.3 (2)C19—C18—C17121.1 (3)
C7—C2—C3121.5 (3)C18—C19—C20119.3 (3)
C7—C2—C1119.6 (3)C18—C19—H19120.3
C3—C2—C1118.9 (3)C20—C19—H19120.3
C4—C3—C2118.9 (3)O12—C20—C21119.3 (3)
C4—C3—H3120.5O12—C20—C19120.1 (2)
C2—C3—H3120.5C21—C20—C19120.6 (3)
O3—C4—C3119.3 (3)C20—C21—C16119.0 (3)
O3—C4—C5120.0 (2)C20—C21—H21120.5
C3—C4—C5120.7 (3)C16—C21—H21120.5
C6—C5—C4119.5 (3)O13—C22—N1123.9 (3)
C6—C5—H5120.3O13—C22—C23127.3 (3)
C4—C5—H5120.3N1—C22—C23108.8 (3)
O4—C6—C5119.3 (2)C22—C23—C24104.7 (2)
O4—C6—C7119.9 (3)C22—C23—H23A110.8
C5—C6—C7120.8 (3)C24—C23—H23A110.8
C2—C7—C6118.5 (3)C22—C23—H23B110.8
C2—C7—H7120.7C24—C23—H23B110.8
C6—C7—H7120.7H23A—C23—H23B108.9
O5—C8—O6123.2 (3)C25—C24—C23104.9 (3)
O5—C8—C9121.0 (3)C25—C24—H24A110.8
O6—C8—C9115.8 (3)C23—C24—H24A110.8
C10—C9—C14121.5 (3)C25—C24—H24B110.8
C10—C9—C8118.5 (3)C23—C24—H24B110.8
C14—C9—C8120.0 (3)H24A—C24—H24B108.9
C9—C10—C11118.6 (3)O14—C25—N1124.5 (3)
C9—C10—H10120.7O14—C25—C24127.3 (3)
C11—C10—H10120.7N1—C25—C24108.3 (3)
O7—C11—C10119.8 (3)C22—N1—C25113.3 (3)
O7—C11—C12119.1 (3)C22—N1—H1N123.4
C10—C11—C12121.1 (3)C25—N1—H1N123.4
C13—C12—C11118.9 (3)C1—O2—H2O109.5
C13—C12—H12120.5H1W1—O1W—H1W2122.3
C11—C12—H12120.5H1W1—O1W—H1W390.8
O8—C13—C14119.9 (3)H1W2—O1W—H1W3115.0
O8—C13—C12118.9 (3)C4—O3—H3O109.5
C14—C13—C12121.2 (3)H2W1—O2W—H2W2126.7
C13—C14—C9118.6 (3)C6—O4—H4O109.5
C13—C14—H14120.7H3W1—O3W—H3W2133.3
C9—C14—H14120.7C8—O6—H6O109.5
O9—C15—O10123.7 (3)C11—O7—H7A120.0
O9—C15—C16119.5 (3)C11—O7—H7B120.0
O10—C15—C16116.9 (3)H7A—O7—H7B120.0
C21—C16—C17121.4 (3)C13—O8—H8A120.0
C21—C16—C15119.6 (3)C13—O8—H8B120.0
C17—C16—C15119.0 (3)H8A—O8—H8B120.0
C16—C17—C18118.6 (3)C15—O10—H10O109.5
C16—C17—H17120.7C18—O11—H11O109.5
C18—C17—H17120.7C20—O12—H12O109.5
O1—C1—C2—C7175.8 (3)C12—C13—C14—C90.1 (4)
O2—C1—C2—C74.2 (4)C10—C9—C14—C131.0 (4)
O1—C1—C2—C32.4 (4)C8—C9—C14—C13177.6 (3)
O2—C1—C2—C3177.6 (3)O9—C15—C16—C21173.1 (3)
C7—C2—C3—C41.2 (4)O10—C15—C16—C216.8 (4)
C1—C2—C3—C4177.0 (2)O9—C15—C16—C177.7 (4)
C2—C3—C4—O3178.2 (2)O10—C15—C16—C17172.5 (3)
C2—C3—C4—C51.1 (4)C21—C16—C17—C180.8 (4)
O3—C4—C5—C6178.9 (3)C15—C16—C17—C18180.0 (2)
C3—C4—C5—C60.4 (4)C16—C17—C18—O11179.9 (2)
C4—C5—C6—O4179.3 (2)C16—C17—C18—C190.1 (4)
C4—C5—C6—C70.4 (4)O11—C18—C19—C20178.7 (2)
C3—C2—C7—C60.4 (4)C17—C18—C19—C201.1 (4)
C1—C2—C7—C6177.8 (2)C18—C19—C20—O12177.6 (2)
O4—C6—C7—C2179.2 (2)C18—C19—C20—C211.8 (4)
C5—C6—C7—C20.4 (4)O12—C20—C21—C16178.3 (2)
O5—C8—C9—C100.9 (4)C19—C20—C21—C161.1 (4)
O6—C8—C9—C10178.9 (3)C17—C16—C21—C200.2 (4)
O5—C8—C9—C14179.5 (3)C15—C16—C21—C20179.4 (3)
O6—C8—C9—C140.2 (4)O13—C22—C23—C24176.5 (3)
C14—C9—C10—C111.4 (4)N1—C22—C23—C243.4 (3)
C8—C9—C10—C11177.2 (3)C22—C23—C24—C252.9 (3)
C9—C10—C11—O7177.8 (3)C23—C24—C25—O14179.6 (3)
C9—C10—C11—C121.0 (4)C23—C24—C25—N11.5 (3)
O7—C11—C12—C13178.7 (3)O13—C22—N1—C25177.3 (3)
C10—C11—C12—C130.1 (4)C23—C22—N1—C252.7 (3)
C11—C12—C13—O8179.5 (3)O14—C25—N1—C22178.2 (3)
C11—C12—C13—C140.3 (4)C24—C25—N1—C220.7 (4)
O8—C13—C14—C9179.0 (3)
(MM-4HBA) top
Crystal data top
C7H6O3·C4H3NO2F(000) = 488
Mr = 235.19Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1917 reflections
a = 10.8426 (8) Åθ = 3.7–29.2°
b = 6.5202 (4) ŵ = 0.12 mm1
c = 16.1326 (13) ÅT = 100 K
β = 106.391 (8)°Block, colourless
V = 1094.16 (14) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Four-circle
diffractometer
2375 independent reflections
Radiation source: Mova (Mo) X-ray SourceRint = 0.026
Mirror monochromatorθmax = 30.1°, θmin = 2.6°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1314
Tmin = 0.474, Tmax = 1.000k = 88
5081 measured reflectionsl = 2221
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.089P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2375 reflectionsΔρmax = 0.15 e Å3
166 parametersΔρmin = 0.17 e Å3
Crystal data top
C7H6O3·C4H3NO2V = 1094.16 (14) Å3
Mr = 235.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8426 (8) ŵ = 0.12 mm1
b = 6.5202 (4) ÅT = 100 K
c = 16.1326 (13) Å0.25 × 0.22 × 0.20 mm
β = 106.391 (8)°
Data collection top
Four-circle
diffractometer
5081 measured reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2375 independent reflections
Tmin = 0.474, Tmax = 1.000Rint = 0.026
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
2375 reflectionsΔρmin = 0.17 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31889 (18)0.4495 (3)0.03777 (10)0.0494 (4)
C20.17956 (17)0.4137 (2)0.06675 (10)0.0454 (4)
C30.13011 (17)0.2167 (3)0.06916 (10)0.0490 (4)
H30.18710.10360.05300.059*
C40.00044 (17)0.1836 (2)0.09470 (11)0.0483 (4)
H40.03350.04840.09560.058*
C50.08335 (16)0.3480 (2)0.11905 (10)0.0460 (4)
C60.03574 (19)0.5444 (2)0.11860 (12)0.0535 (5)
H60.09280.65680.13670.064*
C70.09476 (18)0.5762 (3)0.09171 (11)0.0520 (5)
H70.12740.71170.09020.062*
C80.10180 (18)0.3047 (3)0.29425 (12)0.0592 (5)
H80.19190.32770.27970.071*
C90.0123 (2)0.4464 (3)0.31673 (12)0.0595 (5)
H90.02710.58900.32140.071*
C100.11522 (18)0.3474 (2)0.33368 (11)0.0512 (5)
C110.03821 (17)0.1033 (3)0.29552 (11)0.0513 (4)
O10.36003 (13)0.63172 (19)0.02864 (9)0.0671 (4)
O20.39267 (13)0.2937 (2)0.02309 (9)0.0656 (4)
O30.21367 (11)0.3237 (2)0.14545 (9)0.0611 (4)
O40.08623 (14)0.06413 (19)0.27932 (10)0.0725 (4)
O50.22094 (13)0.42560 (18)0.35488 (9)0.0695 (4)
N10.09208 (15)0.1432 (2)0.31986 (10)0.0518 (4)
H1N0.149 (2)0.055 (3)0.3259 (11)0.060 (6)*
H2O0.4818 (11)0.325 (4)0.0054 (19)0.152 (12)*
H3O0.228 (3)0.190 (5)0.1421 (17)0.124 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0419 (10)0.0525 (10)0.0522 (9)0.0074 (8)0.0105 (8)0.0006 (8)
C20.0398 (9)0.0476 (9)0.0485 (8)0.0050 (7)0.0118 (7)0.0021 (7)
C30.0401 (9)0.0451 (9)0.0580 (9)0.0002 (7)0.0077 (8)0.0014 (7)
C40.0432 (9)0.0379 (8)0.0613 (10)0.0057 (7)0.0105 (8)0.0006 (7)
C50.0349 (8)0.0440 (9)0.0578 (9)0.0022 (7)0.0107 (8)0.0051 (7)
C60.0452 (10)0.0384 (9)0.0746 (11)0.0019 (7)0.0132 (9)0.0010 (8)
C70.0467 (10)0.0403 (9)0.0685 (11)0.0077 (8)0.0156 (9)0.0053 (8)
C80.0406 (10)0.0546 (10)0.0794 (12)0.0069 (8)0.0122 (9)0.0142 (9)
C90.0558 (12)0.0423 (9)0.0776 (12)0.0050 (9)0.0145 (10)0.0076 (9)
C100.0452 (10)0.0410 (9)0.0620 (10)0.0025 (8)0.0065 (8)0.0053 (7)
C110.0426 (10)0.0446 (9)0.0629 (10)0.0028 (8)0.0089 (8)0.0082 (8)
O10.0478 (7)0.0605 (8)0.0894 (9)0.0152 (7)0.0135 (7)0.0003 (7)
O20.0383 (7)0.0655 (9)0.0877 (9)0.0013 (6)0.0095 (7)0.0045 (7)
O30.0346 (7)0.0451 (7)0.0983 (10)0.0014 (5)0.0102 (7)0.0009 (6)
O40.0541 (8)0.0485 (7)0.1072 (11)0.0121 (6)0.0104 (8)0.0047 (7)
O50.0480 (8)0.0487 (7)0.1006 (10)0.0114 (6)0.0027 (7)0.0000 (7)
N10.0375 (8)0.0368 (7)0.0745 (10)0.0023 (6)0.0049 (7)0.0025 (7)
Geometric parameters (Å, º) top
C1—O11.263 (2)C6—C71.374 (3)
C1—O21.273 (2)C8—C91.314 (3)
C1—C21.469 (2)C8—C111.481 (2)
C2—C71.386 (2)C9—C101.480 (3)
C2—C31.388 (2)C10—O51.212 (2)
C3—C41.375 (2)C10—N11.361 (2)
C4—C51.383 (2)C11—O41.206 (2)
C5—O31.365 (2)C11—N11.380 (2)
C5—C61.380 (2)
O1—C1—O2123.11 (16)C7—C6—C5119.46 (16)
O1—C1—C2118.97 (16)C6—C7—C2121.10 (15)
O2—C1—C2117.92 (15)C9—C8—C11108.35 (17)
C7—C2—C3118.67 (17)C8—C9—C10108.85 (16)
C7—C2—C1120.63 (15)O5—C10—N1124.99 (17)
C3—C2—C1120.70 (16)O5—C10—C9128.94 (17)
C4—C3—C2120.71 (16)N1—C10—C9106.07 (15)
C3—C4—C5119.66 (15)O4—C11—N1125.26 (17)
O3—C5—C6117.51 (15)O4—C11—C8128.97 (17)
O3—C5—C4122.10 (14)N1—C11—C8105.77 (14)
C6—C5—C4120.38 (16)C10—N1—C11110.96 (15)
O1—C1—C2—C76.2 (3)C3—C2—C7—C60.2 (3)
O2—C1—C2—C7173.77 (16)C1—C2—C7—C6179.75 (17)
O1—C1—C2—C3173.41 (16)C11—C8—C9—C100.3 (2)
O2—C1—C2—C36.7 (3)C8—C9—C10—O5179.1 (2)
C7—C2—C3—C40.8 (3)C8—C9—C10—N10.3 (2)
C1—C2—C3—C4178.73 (16)C9—C8—C11—O4179.7 (2)
C2—C3—C4—C50.6 (3)C9—C8—C11—N10.2 (2)
C3—C4—C5—O3179.59 (16)O5—C10—N1—C11179.30 (19)
C3—C4—C5—C60.6 (3)C9—C10—N1—C110.1 (2)
O3—C5—C6—C7179.37 (17)O4—C11—N1—C10179.87 (19)
C4—C5—C6—C71.6 (3)C8—C11—N1—C100.0 (2)
C5—C6—C7—C21.4 (3)
(MM-24DHBA) top
Crystal data top
C7H6O4·C4H3NO2F(000) = 1040
Mr = 251.19Dx = 1.540 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 9037 reflections
a = 12.5506 (4) Åθ = 3.1–27.5°
b = 6.6807 (2) ŵ = 0.13 mm1
c = 26.1586 (8) ÅT = 100 K
β = 98.815 (3)°Plate, colourless
V = 2167.40 (12) Å30.21 × 0.15 × 0.15 mm
Z = 8
Data collection top
Four-circle
diffractometer
2137 independent reflections
Radiation source: Mova (Mo) X-ray SourceRint = 0.041
Mirror monochromatorθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.847, Tmax = 1.000k = 88
21462 measured reflectionsl = 3232
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0654P)2 + 3.4709P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
2137 reflectionsΔρmax = 0.67 e Å3
179 parametersΔρmin = 0.25 e Å3
Crystal data top
C7H6O4·C4H3NO2V = 2167.40 (12) Å3
Mr = 251.19Z = 8
Monoclinic, I2/aMo Kα radiation
a = 12.5506 (4) ŵ = 0.13 mm1
b = 6.6807 (2) ÅT = 100 K
c = 26.1586 (8) Å0.21 × 0.15 × 0.15 mm
β = 98.815 (3)°
Data collection top
Four-circle
diffractometer
21462 measured reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2137 independent reflections
Tmin = 0.847, Tmax = 1.000Rint = 0.041
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.67 e Å3
2137 reflectionsΔρmin = 0.25 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95656 (13)0.2237 (2)0.18563 (6)0.0241 (4)
O20.89695 (11)0.3329 (2)0.03973 (5)0.0197 (3)
O30.78218 (11)0.4179 (2)0.20469 (5)0.0196 (3)
O40.78618 (11)0.0854 (2)0.19456 (6)0.0196 (3)
C50.82404 (15)0.2857 (3)0.11981 (7)0.0158 (4)
C60.83819 (15)0.1151 (3)0.08799 (8)0.0171 (4)
H60.83050.01410.10330.021*
O70.82433 (13)0.6486 (2)0.12427 (6)0.0246 (4)
O80.89140 (11)0.2721 (2)0.06564 (5)0.0207 (4)
C90.85977 (15)0.4939 (3)0.04298 (7)0.0175 (4)
H90.86700.62240.02720.021*
C100.86304 (15)0.1322 (3)0.03499 (8)0.0185 (4)
H100.87300.01610.01380.022*
C110.87332 (14)0.3233 (3)0.01296 (7)0.0166 (4)
C120.83552 (15)0.4762 (3)0.09639 (7)0.0163 (4)
N130.92014 (14)0.0121 (3)0.11522 (6)0.0184 (4)
C140.79570 (15)0.2679 (3)0.17607 (8)0.0154 (4)
C150.95313 (16)0.1412 (3)0.19493 (8)0.0215 (5)
H150.96920.16010.23130.026*
C160.94515 (15)0.0567 (3)0.16752 (7)0.0187 (4)
C170.93405 (16)0.2843 (3)0.16004 (8)0.0200 (4)
H170.93410.42380.16710.024*
C180.91247 (15)0.1912 (3)0.10766 (8)0.0178 (4)
H130.913 (2)0.106 (5)0.0907 (13)0.046 (8)*
H40.766 (3)0.080 (5)0.2251 (14)0.052 (9)*
H20.895 (3)0.463 (6)0.0495 (14)0.065 (11)*
H70.804 (3)0.604 (6)0.1591 (16)0.073 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (8)0.0224 (8)0.0176 (8)0.0000 (6)0.0004 (6)0.0042 (6)
O20.0265 (8)0.0197 (8)0.0118 (7)0.0006 (6)0.0003 (5)0.0003 (6)
O30.0266 (7)0.0169 (7)0.0142 (7)0.0012 (6)0.0003 (5)0.0001 (6)
O40.0268 (8)0.0173 (7)0.0135 (7)0.0006 (6)0.0008 (6)0.0028 (6)
C50.0153 (9)0.0200 (10)0.0117 (9)0.0000 (7)0.0008 (7)0.0015 (8)
C60.0162 (9)0.0171 (10)0.0177 (9)0.0008 (8)0.0017 (7)0.0019 (8)
O70.0395 (9)0.0160 (8)0.0174 (8)0.0005 (6)0.0019 (6)0.0006 (6)
O80.0241 (7)0.0230 (8)0.0141 (7)0.0014 (6)0.0005 (6)0.0037 (6)
C90.0194 (9)0.0163 (10)0.0167 (10)0.0015 (8)0.0025 (7)0.0057 (8)
C100.0186 (9)0.0187 (10)0.0180 (10)0.0002 (8)0.0024 (7)0.0040 (8)
C110.0133 (9)0.0217 (10)0.0145 (9)0.0006 (8)0.0014 (7)0.0004 (8)
C120.0155 (9)0.0178 (10)0.0156 (9)0.0006 (7)0.0020 (7)0.0006 (8)
N130.0241 (9)0.0177 (9)0.0125 (8)0.0010 (7)0.0003 (6)0.0013 (7)
C140.0133 (9)0.0182 (10)0.0145 (10)0.0008 (7)0.0019 (7)0.0020 (8)
C150.0238 (10)0.0250 (11)0.0150 (10)0.0025 (8)0.0011 (8)0.0044 (8)
C160.0178 (9)0.0228 (11)0.0150 (9)0.0013 (8)0.0014 (7)0.0005 (8)
C170.0202 (10)0.0203 (10)0.0189 (10)0.0004 (8)0.0014 (8)0.0026 (8)
C180.0153 (9)0.0216 (10)0.0167 (10)0.0000 (8)0.0027 (7)0.0013 (8)
Geometric parameters (Å, º) top
O1—C161.212 (3)O8—C181.217 (2)
O2—C111.366 (2)C9—C111.380 (3)
O3—C141.247 (2)C9—C121.389 (3)
O4—C141.311 (2)C10—C111.399 (3)
C5—C61.406 (3)N13—C181.374 (3)
C5—C121.411 (3)N13—C161.388 (3)
C5—C141.465 (3)C15—C171.318 (3)
C6—C101.378 (3)C15—C161.500 (3)
O7—C121.359 (2)C17—C181.491 (3)
C6—C5—C12118.61 (17)C18—N13—C16110.74 (17)
C6—C5—C14121.22 (18)O3—C14—O4122.00 (18)
C12—C5—C14120.15 (17)O3—C14—C5121.86 (17)
C10—C6—C5121.14 (18)O4—C14—C5116.13 (17)
C11—C9—C12119.42 (18)C17—C15—C16108.45 (18)
C6—C10—C11118.82 (18)O1—C16—N13125.31 (19)
O2—C11—C9121.62 (18)O1—C16—C15128.99 (18)
O2—C11—C10116.76 (17)N13—C16—C15105.70 (17)
C9—C11—C10121.61 (17)C15—C17—C18108.79 (19)
O7—C12—C9117.17 (17)O8—C18—N13124.74 (19)
O7—C12—C5122.45 (17)O8—C18—C17128.9 (2)
C9—C12—C5120.39 (18)N13—C18—C17106.32 (17)
C12—C5—C6—C100.2 (3)C6—C5—C14—O3179.49 (17)
C14—C5—C6—C10178.87 (17)C12—C5—C14—O30.8 (3)
C5—C6—C10—C110.5 (3)C6—C5—C14—O41.0 (3)
C12—C9—C11—O2179.82 (16)C12—C5—C14—O4179.69 (16)
C12—C9—C11—C100.1 (3)C18—N13—C16—O1179.73 (19)
C6—C10—C11—O2179.37 (16)C18—N13—C16—C150.3 (2)
C6—C10—C11—C90.3 (3)C17—C15—C16—O1179.6 (2)
C11—C9—C12—O7179.18 (16)C17—C15—C16—N130.1 (2)
C11—C9—C12—C50.5 (3)C16—C15—C17—C180.0 (2)
C6—C5—C12—O7179.30 (17)C16—N13—C18—O8179.97 (18)
C14—C5—C12—O72.0 (3)C16—N13—C18—C170.3 (2)
C6—C5—C12—C90.3 (3)C15—C17—C18—O8179.9 (2)
C14—C5—C12—C9178.41 (17)C15—C17—C18—N130.2 (2)
(MM-35DHBA) top
Crystal data top
3(C7H6O4)·C4H3NO2·3(H2O)V = 1331.4 (3) Å3
Mr = 613.47Z = 2
Triclinic, P1F(000) = 628
a = 9.3796 (10) ÅDx = 1.515 Mg m3
b = 10.3981 (12) Å? radiation, λ = 0.71073 Å
c = 15.6415 (16) ŵ = 0.13 mm1
α = 80.620 (9)°T = 100 K
β = 72.913 (9)°Block, colorless
γ = 66.089 (10)°0.25 × 0.22 × 0.20 mm
Data collection top
Xcalibur, Eos, Nova
diffractometer
2571 reflections with I > 2σ(I)
Radiation source: Mova (Mo) X-ray SourceRint = 0.124
Mirror monochromatorθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1111
Tmin = 0.630, Tmax = 1.000k = 1112
16508 measured reflectionsl = 1818
4927 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.081P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4927 reflectionsΔρmax = 0.48 e Å3
388 parametersΔρmin = 0.31 e Å3
Crystal data top
3(C7H6O4)·C4H3NO2·3(H2O)γ = 66.089 (10)°
Mr = 613.47V = 1331.4 (3) Å3
Triclinic, P1Z = 2
a = 9.3796 (10) Å? radiation, λ = 0.71073 Å
b = 10.3981 (12) ŵ = 0.13 mm1
c = 15.6415 (16) ÅT = 100 K
α = 80.620 (9)°0.25 × 0.22 × 0.20 mm
β = 72.913 (9)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
4927 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2571 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 1.000Rint = 0.124
16508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 0.91Δρmax = 0.48 e Å3
4927 reflectionsΔρmin = 0.31 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1W0.9935 (5)1.1875 (4)0.13626 (18)0.0926 (14)
H1W11.02281.09880.13530.139*
H1W20.92991.18800.10700.139*0.5
H1W31.08961.17680.10780.139*0.5
O2W1.3293 (4)0.8100 (4)0.22523 (18)0.0843 (12)
H2W11.29110.82090.28120.127*
H2W21.42320.80600.19640.127*0.5
H2W31.25860.82780.19660.127*0.5
O3W0.6698 (3)0.4761 (3)0.18455 (15)0.0450 (7)
H3W10.64760.47440.24140.068*
H3W20.75960.48050.15460.068*0.5
H3W30.60110.49260.15480.068*0.5
C10.4126 (4)1.1640 (3)0.3284 (2)0.0254 (8)
C20.4601 (4)1.1640 (3)0.2288 (2)0.0248 (8)
C30.6044 (4)1.1766 (3)0.1828 (2)0.0252 (8)
H30.67321.18380.21430.030*
C40.6478 (4)1.1787 (3)0.0900 (2)0.0270 (8)
C50.5463 (4)1.1688 (4)0.0438 (2)0.0325 (9)
H50.57661.16920.01970.039*
C60.4010 (4)1.1585 (4)0.0913 (2)0.0309 (9)
C70.3569 (4)1.1539 (3)0.1847 (2)0.0270 (8)
H70.25871.14400.21720.032*
C80.7190 (4)0.8389 (3)0.4167 (2)0.0255 (8)
C90.7694 (4)0.8370 (3)0.3173 (2)0.0231 (8)
C100.9111 (4)0.8550 (3)0.2722 (2)0.0257 (8)
H100.97550.86890.30390.031*
C110.9575 (4)0.8524 (3)0.1792 (2)0.0222 (8)
C120.8633 (4)0.8346 (3)0.1326 (2)0.0249 (8)
H120.89570.83430.06900.030*
C130.7208 (4)0.8169 (3)0.1790 (2)0.0218 (7)
C140.6728 (4)0.8177 (3)0.2726 (2)0.0266 (8)
H140.57580.80530.30490.032*
C151.0657 (4)0.4973 (3)0.3729 (2)0.0242 (8)
C161.1172 (4)0.4994 (3)0.2728 (2)0.0229 (8)
C171.2626 (4)0.5117 (3)0.2276 (2)0.0227 (8)
H171.33170.51690.25960.027*
C181.3053 (4)0.5163 (3)0.1346 (2)0.0219 (7)
C191.2043 (4)0.5087 (3)0.0883 (2)0.0239 (8)
H191.23390.51270.02470.029*
C201.0603 (4)0.4955 (3)0.1345 (2)0.0229 (8)
C211.0154 (4)0.4904 (3)0.2279 (2)0.0235 (8)
H210.91670.48090.25990.028*
C220.6843 (4)1.3640 (4)0.4081 (2)0.0277 (8)
C230.8247 (4)1.2460 (4)0.3639 (2)0.0318 (9)
H230.86591.23770.30100.038*
C240.8853 (4)1.1524 (4)0.4255 (2)0.0313 (9)
H240.97641.06650.41470.038*
C250.7838 (4)1.2075 (4)0.5151 (2)0.0278 (8)
O10.5047 (3)1.1735 (2)0.36978 (15)0.0318 (6)
O20.2768 (3)1.1523 (2)0.36718 (15)0.0366 (6)
H2O0.26051.15240.42290.055*
O30.7915 (3)1.1878 (2)0.04298 (15)0.0391 (7)
H3A0.86231.19290.07390.059*0.5
H3B0.82071.18920.02060.059*0.5
O40.2998 (3)1.1511 (3)0.04617 (16)0.0475 (7)
H4A0.32941.15300.01740.071*0.5
H4B0.20001.14400.07840.071*0.5
O50.8095 (3)0.8498 (2)0.45832 (15)0.0343 (6)
O60.5829 (3)0.8282 (2)0.45564 (15)0.0351 (6)
H6O0.56550.83070.51130.053*
O71.0997 (3)0.8682 (2)0.13292 (15)0.0327 (6)
H7A1.13200.86670.06940.049*0.5
H7B1.16520.88060.16450.049*0.5
O80.6273 (3)0.7986 (2)0.13341 (15)0.0332 (6)
H8A0.65950.79790.06990.050*0.5
H8B0.52990.78650.16520.050*0.5
O91.1705 (3)0.5027 (2)0.41084 (14)0.0325 (6)
H9O1.13430.50060.46670.049*
O100.9341 (3)0.4922 (2)0.41518 (14)0.0301 (6)
O111.4474 (3)0.5297 (2)0.08855 (14)0.0303 (6)
H11A1.47650.53380.02490.045*0.5
H11B1.51720.53490.12020.045*0.5
O120.9588 (3)0.4906 (2)0.08873 (14)0.0307 (6)
H12A0.98720.49630.02510.046*0.5
H12B0.85980.48150.12060.046*0.5
O130.5955 (3)1.4703 (2)0.37494 (15)0.0338 (6)
O140.7984 (3)1.1530 (2)0.58906 (16)0.0369 (6)
N10.6660 (3)1.3355 (3)0.49952 (17)0.0285 (7)
H1N0.59091.39050.54130.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.158 (3)0.138 (3)0.0313 (18)0.132 (3)0.028 (2)0.0302 (19)
O2W0.134 (3)0.139 (3)0.0228 (16)0.112 (3)0.0100 (18)0.0148 (18)
O3W0.0689 (19)0.0647 (19)0.0166 (13)0.0448 (16)0.0094 (13)0.0070 (13)
C10.0258 (19)0.030 (2)0.0196 (19)0.0139 (16)0.0008 (16)0.0005 (15)
C20.031 (2)0.0224 (19)0.0153 (18)0.0095 (16)0.0001 (15)0.0007 (15)
C30.030 (2)0.028 (2)0.0177 (19)0.0100 (16)0.0060 (16)0.0016 (15)
C40.0233 (19)0.031 (2)0.022 (2)0.0112 (16)0.0016 (16)0.0002 (16)
C50.027 (2)0.049 (2)0.0123 (18)0.0089 (18)0.0000 (16)0.0013 (17)
C60.029 (2)0.044 (2)0.0169 (19)0.0122 (18)0.0052 (16)0.0008 (17)
C70.0233 (18)0.036 (2)0.020 (2)0.0103 (16)0.0033 (15)0.0016 (16)
C80.0236 (19)0.031 (2)0.0188 (18)0.0132 (16)0.0008 (15)0.0024 (15)
C90.0269 (19)0.0248 (19)0.0154 (18)0.0108 (16)0.0004 (15)0.0028 (15)
C100.030 (2)0.027 (2)0.0200 (19)0.0110 (16)0.0047 (16)0.0023 (15)
C110.0220 (18)0.0219 (19)0.0216 (19)0.0111 (15)0.0001 (15)0.0008 (15)
C120.0311 (19)0.0236 (19)0.0165 (18)0.0100 (16)0.0017 (15)0.0004 (15)
C130.0245 (18)0.0223 (19)0.0182 (18)0.0081 (15)0.0069 (15)0.0002 (15)
C140.0276 (19)0.031 (2)0.0188 (19)0.0151 (16)0.0024 (15)0.0008 (16)
C150.0279 (19)0.029 (2)0.0156 (18)0.0126 (16)0.0021 (16)0.0020 (15)
C160.0285 (19)0.0233 (19)0.0150 (18)0.0099 (16)0.0037 (16)0.0010 (15)
C170.0268 (19)0.0251 (19)0.0175 (19)0.0118 (16)0.0060 (15)0.0011 (15)
C180.0241 (18)0.0243 (19)0.0158 (18)0.0118 (15)0.0008 (15)0.0008 (15)
C190.031 (2)0.0253 (19)0.0146 (17)0.0119 (16)0.0013 (15)0.0024 (15)
C200.0239 (18)0.028 (2)0.0186 (19)0.0127 (15)0.0043 (15)0.0015 (15)
C210.0264 (18)0.0248 (19)0.0163 (18)0.0107 (15)0.0004 (15)0.0016 (15)
C220.0305 (19)0.032 (2)0.0203 (19)0.0147 (17)0.0035 (16)0.0002 (17)
C230.041 (2)0.035 (2)0.0171 (19)0.0162 (19)0.0022 (17)0.0011 (17)
C240.033 (2)0.031 (2)0.028 (2)0.0110 (17)0.0041 (17)0.0044 (17)
C250.032 (2)0.032 (2)0.020 (2)0.0158 (17)0.0038 (16)0.0005 (17)
O10.0366 (14)0.0451 (16)0.0203 (13)0.0220 (12)0.0074 (11)0.0012 (11)
O20.0409 (15)0.0553 (17)0.0155 (13)0.0240 (13)0.0039 (12)0.0026 (12)
O30.0330 (15)0.0584 (17)0.0183 (13)0.0204 (13)0.0054 (11)0.0044 (12)
O40.0367 (15)0.083 (2)0.0230 (14)0.0169 (15)0.0097 (12)0.0150 (14)
O50.0381 (15)0.0568 (17)0.0188 (13)0.0292 (13)0.0072 (12)0.0007 (12)
O60.0372 (15)0.0561 (17)0.0144 (13)0.0244 (13)0.0002 (11)0.0022 (12)
O70.0319 (14)0.0446 (16)0.0225 (13)0.0233 (12)0.0058 (11)0.0040 (12)
O80.0342 (14)0.0521 (16)0.0195 (13)0.0199 (12)0.0100 (11)0.0036 (12)
O90.0344 (14)0.0550 (17)0.0118 (12)0.0228 (12)0.0027 (11)0.0025 (11)
O100.0335 (14)0.0445 (16)0.0155 (13)0.0217 (12)0.0009 (11)0.0010 (11)
O110.0287 (13)0.0500 (16)0.0163 (12)0.0231 (12)0.0008 (11)0.0001 (11)
O120.0323 (13)0.0506 (16)0.0137 (12)0.0214 (12)0.0051 (10)0.0002 (11)
O130.0386 (15)0.0349 (15)0.0211 (13)0.0097 (12)0.0053 (12)0.0018 (12)
O140.0417 (15)0.0416 (16)0.0212 (14)0.0117 (12)0.0067 (11)0.0023 (12)
N10.0309 (16)0.0316 (18)0.0146 (16)0.0078 (14)0.0007 (13)0.0015 (13)
Geometric parameters (Å, º) top
O1W—H1W10.8499C15—O91.312 (4)
O1W—H1W20.8499C15—C161.495 (4)
O1W—H1W30.8499C16—C211.379 (4)
O2W—H2W10.8500C16—C171.386 (4)
O2W—H2W20.8501C17—C181.389 (4)
O2W—H2W30.8501C17—H170.9500
O3W—H3W10.8499C18—O111.367 (4)
O3W—H3W20.8500C18—C191.382 (4)
O3W—H3W30.8501C19—C201.382 (4)
C1—O11.262 (4)C19—H190.9500
C1—O21.286 (4)C20—O121.369 (3)
C1—C21.489 (5)C20—C211.395 (4)
C2—C31.382 (4)C21—H210.9500
C2—C71.387 (4)C22—O131.227 (4)
C3—C41.387 (5)C22—N11.386 (4)
C3—H30.9500C22—C231.466 (5)
C4—O31.367 (4)C23—C241.330 (4)
C4—C51.394 (4)C23—H230.9500
C5—C61.385 (5)C24—C251.494 (5)
C5—H50.9500C24—H240.9500
C6—O41.370 (4)C25—O141.223 (4)
C6—C71.394 (5)C25—N11.383 (4)
C7—H70.9500O2—H2O0.8400
C8—O51.258 (4)O3—H3A0.9500
C8—O61.285 (4)O3—H3B0.9500
C8—C91.488 (4)O4—H4A0.9500
C9—C101.381 (4)O4—H4B0.9500
C9—C141.383 (4)O6—H6O0.8400
C10—C111.391 (5)O7—H7A0.9500
C10—H100.9500O7—H7B0.9500
C11—O71.379 (4)O8—H8A0.9500
C11—C121.380 (4)O8—H8B0.9500
C12—C131.390 (4)O9—H9O0.8400
C12—H120.9500O11—H11A0.9500
C13—O81.365 (3)O11—H11B0.9500
C13—C141.401 (4)O12—H12A0.9500
C14—H140.9500O12—H12B0.9500
C15—O101.235 (4)N1—H1N0.8800
H1W1—O1W—H1W282.4C21—C16—C17121.7 (3)
H1W1—O1W—H1W387.2C21—C16—C15118.0 (3)
H1W2—O1W—H1W3118.1C17—C16—C15120.2 (3)
H2W1—O2W—H2W2124.4C16—C17—C18118.8 (3)
H2W1—O2W—H2W3114.2C16—C17—H17120.6
H2W2—O2W—H2W3119.1C18—C17—H17120.6
H3W1—O3W—H3W2118.6O11—C18—C19119.7 (3)
H3W1—O3W—H3W3124.2O11—C18—C17119.8 (3)
H3W2—O3W—H3W3115.7C19—C18—C17120.4 (3)
O1—C1—O2123.8 (3)C20—C19—C18120.0 (3)
O1—C1—C2120.1 (3)C20—C19—H19120.0
O2—C1—C2116.1 (3)C18—C19—H19120.0
C3—C2—C7121.8 (3)O12—C20—C19120.1 (3)
C3—C2—C1119.1 (3)O12—C20—C21119.4 (3)
C7—C2—C1119.1 (3)C19—C20—C21120.5 (3)
C2—C3—C4119.2 (3)C16—C21—C20118.6 (3)
C2—C3—H3120.4C16—C21—H21120.7
C4—C3—H3120.4C20—C21—H21120.7
O3—C4—C3120.3 (3)O13—C22—N1123.7 (3)
O3—C4—C5119.4 (3)O13—C22—C23129.4 (3)
C3—C4—C5120.3 (3)N1—C22—C23106.9 (3)
C6—C5—C4119.5 (3)C24—C23—C22109.4 (3)
C6—C5—H5120.2C24—C23—H23125.3
C4—C5—H5120.2C22—C23—H23125.3
O4—C6—C5119.7 (3)C23—C24—C25107.3 (3)
O4—C6—C7119.4 (3)C23—C24—H24126.3
C5—C6—C7120.9 (3)C25—C24—H24126.3
C2—C7—C6118.3 (3)O14—C25—N1125.0 (3)
C2—C7—H7120.8O14—C25—C24128.1 (3)
C6—C7—H7120.8N1—C25—C24106.8 (3)
O5—C8—O6123.4 (3)C1—O2—H2O109.5
O5—C8—C9119.7 (3)C4—O3—H3A120.0
O6—C8—C9116.9 (3)C4—O3—H3B120.0
C10—C9—C14121.9 (3)H3A—O3—H3B120.0
C10—C9—C8119.0 (3)C6—O4—H4A120.0
C14—C9—C8119.1 (3)C6—O4—H4B120.0
C9—C10—C11118.5 (3)H4A—O4—H4B120.0
C9—C10—H10120.7C8—O6—H6O109.5
C11—C10—H10120.7C11—O7—H7A120.0
O7—C11—C12119.4 (3)C11—O7—H7B120.0
O7—C11—C10119.5 (3)H7A—O7—H7B120.0
C12—C11—C10121.1 (3)C13—O8—H8A120.0
C11—C12—C13119.7 (3)C13—O8—H8B120.0
C11—C12—H12120.2H8A—O8—H8B120.0
C13—C12—H12120.2C15—O9—H9O109.5
O8—C13—C12120.1 (3)C18—O11—H11A120.0
O8—C13—C14119.8 (3)C18—O11—H11B120.0
C12—C13—C14120.2 (3)H11A—O11—H11B120.0
C9—C14—C13118.6 (3)C20—O12—H12A120.0
C9—C14—H14120.7C20—O12—H12B120.0
C13—C14—H14120.7H12A—O12—H12B120.0
O10—C15—O9123.5 (3)C25—N1—C22109.6 (3)
O10—C15—C16122.0 (3)C25—N1—H1N125.2
O9—C15—C16114.5 (3)C22—N1—H1N125.2
O1—C1—C2—C30.9 (5)C8—C9—C14—C13179.6 (3)
O2—C1—C2—C3179.8 (3)O8—C13—C14—C9179.8 (3)
O1—C1—C2—C7179.8 (3)C12—C13—C14—C90.3 (5)
O2—C1—C2—C71.0 (5)O10—C15—C16—C212.3 (5)
C7—C2—C3—C40.3 (5)O9—C15—C16—C21178.4 (3)
C1—C2—C3—C4179.1 (3)O10—C15—C16—C17177.0 (3)
C2—C3—C4—O3178.5 (3)O9—C15—C16—C172.3 (4)
C2—C3—C4—C50.3 (5)C21—C16—C17—C180.6 (5)
O3—C4—C5—C6179.6 (3)C15—C16—C17—C18178.7 (3)
C3—C4—C5—C60.7 (5)C16—C17—C18—O11179.4 (3)
C4—C5—C6—O4179.0 (3)C16—C17—C18—C190.0 (5)
C4—C5—C6—C71.8 (5)O11—C18—C19—C20179.8 (3)
C3—C2—C7—C60.8 (5)C17—C18—C19—C200.5 (5)
C1—C2—C7—C6178.0 (3)C18—C19—C20—O12178.8 (3)
O4—C6—C7—C2178.9 (3)C18—C19—C20—C210.3 (5)
C5—C6—C7—C21.9 (5)C17—C16—C21—C200.7 (5)
O5—C8—C9—C103.5 (5)C15—C16—C21—C20178.6 (3)
O6—C8—C9—C10176.9 (3)O12—C20—C21—C16178.2 (3)
O5—C8—C9—C14176.7 (3)C19—C20—C21—C160.3 (5)
O6—C8—C9—C142.8 (5)O13—C22—C23—C24179.8 (3)
C14—C9—C10—C110.5 (5)N1—C22—C23—C240.5 (4)
C8—C9—C10—C11179.7 (3)C22—C23—C24—C250.0 (4)
C9—C10—C11—O7179.1 (3)C23—C24—C25—O14179.6 (3)
C9—C10—C11—C121.0 (5)C23—C24—C25—N10.4 (4)
O7—C11—C12—C13179.2 (3)O14—C25—N1—C22179.3 (3)
C10—C11—C12—C130.9 (5)C24—C25—N1—C220.7 (3)
C11—C12—C13—O8179.7 (3)O13—C22—N1—C25179.5 (3)
C11—C12—C13—C140.2 (5)C23—C22—N1—C250.7 (3)
C10—C9—C14—C130.1 (5)
(GM-4HBA) top
Crystal data top
2(C7H6O3)·C5H7NO2F(000) = 1632
Mr = 389.35Dx = 1.425 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4448 reflections
a = 40.692 (3) Åθ = 3.2–27.3°
b = 5.4524 (3) ŵ = 0.11 mm1
c = 16.3546 (9) ÅT = 100 K
V = 3628.6 (4) Å3Block, colourless
Z = 80.25 × 0.20 × 0.18 mm
Data collection top
Four-circle
diffractometer
4868 reflections with I > 2σ(I)
Radiation source: Mova (Mo) X-ray SourceRint = 0.059
Mirror monochromatorθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 4050
Tmin = 0.664, Tmax = 1.000k = 66
15134 measured reflectionsl = 1520
5638 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
5638 reflectionsΔρmin = 0.22 e Å3
594 parametersAbsolute structure: Refined as an inversion twin.
1 restraint
Crystal data top
2(C7H6O3)·C5H7NO2V = 3628.6 (4) Å3
Mr = 389.35Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 40.692 (3) ŵ = 0.11 mm1
b = 5.4524 (3) ÅT = 100 K
c = 16.3546 (9) Å0.25 × 0.20 × 0.18 mm
Data collection top
Four-circle
diffractometer
5638 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
4868 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 1.000Rint = 0.059
15134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
5638 reflectionsΔρmin = 0.22 e Å3
594 parametersAbsolute structure: Refined as an inversion twin.
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06639 (10)0.7908 (7)0.3476 (2)0.0187 (9)
C20.03065 (9)0.7757 (6)0.3617 (2)0.0179 (8)
C30.01174 (10)0.5871 (7)0.3279 (3)0.0212 (9)
H30.02190.46520.29500.025*
C40.02167 (9)0.5777 (6)0.3421 (3)0.0209 (9)
H40.03450.44920.31920.025*
C50.03650 (9)0.7565 (7)0.3899 (2)0.0205 (9)
C60.01791 (10)0.9458 (7)0.4232 (3)0.0247 (10)
H60.02821.06850.45560.030*
C70.01549 (10)0.9552 (7)0.4092 (3)0.0231 (9)
H70.02821.08440.43210.028*
C80.16007 (10)0.7687 (7)0.3398 (3)0.0193 (9)
C90.19567 (9)0.7337 (6)0.3510 (2)0.0173 (8)
C100.21504 (10)0.9019 (7)0.3930 (3)0.0210 (9)
H100.20521.04210.41720.025*
C110.24872 (10)0.8666 (7)0.3998 (3)0.0237 (9)
H110.26180.98150.42890.028*
C120.26313 (9)0.6624 (7)0.3640 (3)0.0200 (9)
C130.24394 (9)0.4900 (7)0.3239 (3)0.0208 (9)
H130.25390.34850.30070.025*
C140.21040 (9)0.5242 (7)0.3176 (2)0.0190 (9)
H140.19730.40520.29060.023*
C150.18360 (9)0.2525 (7)0.1437 (2)0.0185 (9)
C160.21888 (9)0.2170 (6)0.1269 (2)0.0161 (8)
C170.23615 (10)0.3835 (7)0.0782 (3)0.0208 (9)
H170.22520.52150.05560.025*
C180.26908 (9)0.3478 (7)0.0629 (3)0.0207 (9)
H180.28070.45950.02890.025*
C190.28553 (10)0.1471 (7)0.0973 (3)0.0205 (9)
C200.26838 (9)0.0176 (7)0.1471 (3)0.0202 (9)
H200.27940.15280.17140.024*
C210.23526 (9)0.0185 (7)0.1606 (3)0.0193 (9)
H210.22350.09480.19360.023*
C220.08960 (9)0.2800 (7)0.1468 (3)0.0202 (9)
C230.05331 (9)0.2721 (6)0.1396 (3)0.0180 (8)
C240.03504 (9)0.0837 (7)0.1729 (3)0.0194 (9)
H240.04610.05040.19780.023*
C250.00123 (9)0.0852 (7)0.1709 (3)0.0204 (9)
H250.01090.04500.19480.025*
C260.01499 (9)0.2800 (7)0.1333 (3)0.0196 (9)
C270.00314 (10)0.4691 (7)0.0973 (3)0.0224 (9)
H270.00790.59950.07030.027*
C280.03680 (10)0.4672 (7)0.1009 (3)0.0213 (9)
H280.04900.59780.07730.026*
C290.12022 (9)0.7557 (7)0.8663 (3)0.0192 (9)
C300.11696 (10)0.7990 (7)0.9555 (3)0.0209 (9)
C310.14802 (11)0.9108 (8)0.9909 (3)0.0231 (9)
C320.15734 (11)1.1383 (8)0.9436 (3)0.0246 (9)
C330.15864 (10)1.1010 (7)0.8534 (3)0.0222 (9)
C340.09532 (9)0.2359 (7)0.6377 (3)0.0215 (9)
C350.09385 (12)0.1929 (8)0.5473 (3)0.0270 (10)
C360.10020 (12)0.4264 (8)0.4982 (3)0.0271 (10)
C370.13211 (11)0.5451 (7)0.5265 (3)0.0239 (9)
C380.13258 (9)0.5826 (7)0.6174 (3)0.0205 (9)
N10.11469 (8)0.4256 (6)0.6648 (2)0.0199 (8)
N20.13975 (8)0.9111 (6)0.8214 (2)0.0195 (8)
O10.08361 (7)0.9522 (5)0.37922 (18)0.0231 (6)
O20.07864 (7)0.6182 (5)0.29949 (18)0.0214 (6)
O30.06926 (7)0.7533 (5)0.4067 (2)0.0292 (7)
O40.14300 (7)0.6199 (5)0.3019 (2)0.0259 (7)
O50.14794 (7)0.9695 (5)0.37326 (19)0.0220 (6)
O60.29638 (7)0.6388 (5)0.3708 (2)0.0285 (7)
O70.10601 (7)0.4455 (5)0.1152 (2)0.0262 (7)
O80.10256 (7)0.0995 (5)0.1883 (2)0.0263 (7)
O90.04817 (7)0.2972 (5)0.1300 (2)0.0281 (7)
O100.16759 (6)0.1059 (5)0.18552 (18)0.0223 (6)
O110.17053 (7)0.4496 (5)0.11090 (19)0.0240 (7)
O120.31774 (7)0.1210 (5)0.0800 (2)0.0266 (7)
O130.14840 (7)0.7485 (5)0.65090 (19)0.0264 (7)
O140.08108 (7)0.1076 (5)0.68791 (18)0.0257 (7)
O150.10583 (7)0.5882 (5)0.82977 (18)0.0271 (7)
O160.17485 (7)1.2258 (5)0.80592 (19)0.0286 (7)
H1N0.1135 (10)0.456 (7)0.717 (3)0.023 (12)*
H2N0.1428 (13)0.884 (10)0.765 (4)0.059 (17)*
H2O0.1035 (14)0.639 (9)0.301 (4)0.061 (17)*
H3O0.0810 (13)0.635 (9)0.376 (4)0.053 (16)*
H5O0.1256 (12)0.966 (7)0.375 (3)0.034 (13)*
H6O0.3030 (11)0.493 (8)0.345 (3)0.031 (13)*
H8O0.1235 (13)0.109 (8)0.186 (4)0.050 (16)*
H9O0.0564 (12)0.179 (9)0.156 (3)0.041 (15)*
H11O0.1471 (15)0.460 (10)0.117 (4)0.070 (19)*
H12O0.3243 (13)0.008 (10)0.105 (4)0.051 (18)*
H30A0.0967 (11)0.922 (7)0.964 (3)0.033 (12)*
H30B0.1107 (11)0.652 (8)0.982 (3)0.038 (13)*
H31A0.1458 (9)0.949 (6)1.049 (3)0.011 (9)*
H31B0.1676 (12)0.785 (8)0.986 (3)0.044 (14)*
H32A0.1417 (12)1.261 (8)0.954 (3)0.042 (14)*
H32B0.1780 (11)1.218 (7)0.960 (3)0.030 (12)*
H35A0.1115 (12)0.074 (8)0.534 (3)0.044 (14)*
H35B0.0698 (15)0.117 (9)0.533 (4)0.067 (18)*
H36A0.1018 (10)0.393 (7)0.437 (3)0.020 (11)*
H36B0.0800 (11)0.539 (7)0.508 (3)0.029 (12)*
H37A0.1514 (13)0.426 (8)0.511 (3)0.049 (15)*
H37B0.1358 (12)0.714 (9)0.498 (3)0.047 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (2)0.021 (2)0.017 (2)0.0007 (15)0.0001 (17)0.0007 (17)
C20.016 (2)0.020 (2)0.018 (2)0.0011 (14)0.0018 (17)0.0022 (17)
C30.024 (2)0.018 (2)0.022 (2)0.0007 (15)0.0011 (19)0.0044 (17)
C40.023 (2)0.017 (2)0.023 (2)0.0031 (14)0.0036 (18)0.0021 (17)
C50.018 (2)0.026 (2)0.018 (2)0.0018 (15)0.0011 (18)0.0031 (17)
C60.024 (2)0.024 (2)0.026 (2)0.0014 (16)0.0001 (19)0.0094 (18)
C70.025 (2)0.020 (2)0.024 (2)0.0013 (15)0.0023 (19)0.0034 (18)
C80.020 (2)0.021 (2)0.016 (2)0.0013 (15)0.0011 (18)0.0026 (17)
C90.019 (2)0.017 (2)0.015 (2)0.0002 (14)0.0014 (16)0.0053 (16)
C100.024 (2)0.016 (2)0.023 (2)0.0014 (14)0.0007 (19)0.0029 (17)
C110.022 (2)0.021 (2)0.028 (2)0.0060 (16)0.0040 (19)0.0016 (19)
C120.019 (2)0.019 (2)0.022 (2)0.0008 (14)0.0020 (19)0.0006 (17)
C130.023 (2)0.0149 (19)0.025 (2)0.0019 (14)0.0009 (19)0.0011 (17)
C140.022 (2)0.021 (2)0.014 (2)0.0038 (15)0.0006 (17)0.0048 (16)
C150.021 (2)0.022 (2)0.012 (2)0.0009 (15)0.0025 (18)0.0025 (16)
C160.018 (2)0.0161 (19)0.0141 (19)0.0025 (14)0.0036 (16)0.0018 (16)
C170.026 (2)0.016 (2)0.020 (2)0.0020 (14)0.0023 (18)0.0017 (17)
C180.020 (2)0.017 (2)0.025 (2)0.0017 (14)0.0011 (18)0.0024 (17)
C190.021 (2)0.021 (2)0.019 (2)0.0004 (15)0.0006 (18)0.0018 (17)
C200.023 (2)0.017 (2)0.021 (2)0.0025 (15)0.0018 (18)0.0036 (17)
C210.020 (2)0.022 (2)0.016 (2)0.0027 (15)0.0024 (17)0.0004 (17)
C220.022 (2)0.023 (2)0.016 (2)0.0024 (15)0.0027 (18)0.0001 (17)
C230.020 (2)0.019 (2)0.014 (2)0.0028 (14)0.0002 (17)0.0030 (16)
C240.022 (2)0.018 (2)0.019 (2)0.0028 (14)0.0027 (18)0.0010 (17)
C250.021 (2)0.021 (2)0.019 (2)0.0028 (15)0.0003 (18)0.0003 (17)
C260.016 (2)0.025 (2)0.019 (2)0.0021 (14)0.0005 (18)0.0037 (17)
C270.025 (2)0.017 (2)0.025 (2)0.0041 (15)0.0030 (19)0.0035 (18)
C280.024 (2)0.019 (2)0.021 (2)0.0027 (15)0.0008 (19)0.0037 (17)
C290.0136 (19)0.024 (2)0.020 (2)0.0009 (14)0.0009 (17)0.0042 (18)
C300.022 (2)0.020 (2)0.021 (2)0.0000 (15)0.0045 (18)0.0039 (18)
C310.027 (2)0.027 (2)0.015 (2)0.0025 (16)0.0023 (19)0.0047 (18)
C320.025 (2)0.023 (2)0.025 (2)0.0031 (17)0.000 (2)0.0043 (19)
C330.017 (2)0.017 (2)0.033 (2)0.0011 (15)0.0014 (19)0.0011 (18)
C340.019 (2)0.020 (2)0.026 (2)0.0039 (15)0.0025 (19)0.0011 (18)
C350.037 (3)0.022 (2)0.022 (2)0.0000 (19)0.003 (2)0.0013 (19)
C360.038 (3)0.026 (2)0.017 (2)0.0016 (18)0.004 (2)0.0027 (18)
C370.034 (3)0.021 (2)0.017 (2)0.0050 (17)0.0030 (19)0.0020 (18)
C380.016 (2)0.022 (2)0.024 (2)0.0037 (15)0.0009 (18)0.0033 (18)
N10.0195 (19)0.0241 (19)0.0160 (19)0.0053 (12)0.0005 (15)0.0004 (15)
N20.0192 (19)0.0248 (19)0.0144 (19)0.0043 (13)0.0014 (15)0.0014 (15)
O10.0218 (16)0.0263 (15)0.0211 (16)0.0032 (11)0.0004 (13)0.0037 (13)
O20.0195 (16)0.0232 (15)0.0214 (16)0.0007 (10)0.0008 (13)0.0064 (12)
O30.0183 (15)0.0314 (16)0.0381 (19)0.0031 (12)0.0025 (14)0.0147 (14)
O40.0181 (15)0.0297 (16)0.0298 (17)0.0009 (11)0.0025 (13)0.0058 (14)
O50.0190 (16)0.0251 (15)0.0218 (16)0.0034 (11)0.0016 (13)0.0015 (13)
O60.0187 (16)0.0240 (16)0.043 (2)0.0023 (11)0.0038 (15)0.0062 (15)
O70.0209 (16)0.0273 (16)0.0305 (18)0.0027 (11)0.0011 (14)0.0087 (14)
O80.0175 (16)0.0304 (17)0.0311 (18)0.0037 (12)0.0031 (14)0.0082 (14)
O90.0169 (15)0.0271 (16)0.040 (2)0.0027 (11)0.0040 (14)0.0055 (15)
O100.0187 (15)0.0272 (16)0.0210 (16)0.0005 (11)0.0005 (13)0.0028 (13)
O110.0201 (17)0.0255 (16)0.0265 (17)0.0054 (11)0.0003 (14)0.0055 (13)
O120.0163 (16)0.0283 (17)0.0351 (19)0.0028 (11)0.0023 (14)0.0100 (15)
O130.0264 (16)0.0280 (16)0.0248 (17)0.0090 (12)0.0006 (14)0.0013 (13)
O140.0269 (16)0.0261 (16)0.0242 (17)0.0087 (11)0.0001 (14)0.0024 (13)
O150.0269 (16)0.0299 (17)0.0246 (17)0.0110 (12)0.0015 (14)0.0015 (13)
O160.0289 (17)0.0290 (16)0.0279 (17)0.0105 (12)0.0024 (14)0.0015 (13)
Geometric parameters (Å, º) top
C1—O11.238 (5)C24—C251.376 (5)
C1—O21.325 (4)C24—H240.9500
C1—C21.474 (5)C25—C261.394 (5)
C2—C71.394 (6)C25—H250.9500
C2—C31.398 (5)C26—O91.354 (4)
C3—C41.380 (5)C26—C271.398 (5)
C3—H30.9500C27—C281.371 (6)
C4—C51.388 (5)C27—H270.9500
C4—H40.9500C28—H280.9500
C5—O31.361 (5)C29—O151.239 (4)
C5—C61.391 (5)C29—N21.375 (5)
C6—C71.379 (5)C29—C301.483 (6)
C6—H60.9500C30—C311.519 (6)
C7—H70.9500C30—H30A1.07 (4)
C8—O41.235 (5)C30—H30B0.94 (5)
C8—O51.320 (5)C31—C321.510 (6)
C8—C91.473 (5)C31—H31A0.98 (4)
C9—C101.391 (5)C31—H31B1.05 (5)
C9—C141.401 (5)C32—C331.490 (6)
C10—C111.389 (6)C32—H32A0.94 (5)
C10—H100.9500C32—H32B0.98 (4)
C11—C121.388 (5)C33—O161.225 (5)
C11—H110.9500C33—N21.392 (5)
C12—O61.364 (5)C34—O141.224 (5)
C12—C131.387 (5)C34—N11.374 (5)
C13—C141.382 (5)C34—C351.498 (6)
C13—H130.9500C35—C361.528 (6)
C14—H140.9500C35—H35A1.00 (5)
C15—O101.237 (5)C35—H35B1.09 (6)
C15—O111.314 (5)C36—C371.523 (6)
C15—C161.475 (5)C36—H36A1.02 (5)
C16—C211.385 (5)C36—H36B1.04 (4)
C16—C171.398 (6)C37—C381.500 (6)
C17—C181.377 (5)C37—H37A1.05 (5)
C17—H170.9500C37—H37B1.04 (5)
C18—C191.401 (5)C38—O131.238 (5)
C18—H180.9500C38—N11.365 (5)
C19—O121.348 (5)N1—H1N0.87 (5)
C19—C201.400 (5)N2—H2N0.94 (6)
C20—C211.380 (5)O2—H2O1.02 (6)
C20—H200.9500O3—H3O0.94 (5)
C21—H210.9500O5—H5O0.91 (5)
C22—O71.236 (5)O6—H6O0.94 (4)
C22—O81.306 (5)O8—H8O0.86 (5)
C22—C231.482 (5)O9—H9O0.84 (5)
C23—C241.380 (5)O11—H11O0.96 (6)
C23—C281.408 (5)O12—H12O0.78 (5)
O1—C1—O2122.7 (4)C24—C25—H25120.4
O1—C1—C2122.2 (3)C26—C25—H25120.4
O2—C1—C2115.1 (3)O9—C26—C25122.8 (3)
C7—C2—C3119.6 (4)O9—C26—C27117.3 (3)
C7—C2—C1119.0 (3)C25—C26—C27119.9 (3)
C3—C2—C1121.5 (3)C28—C27—C26120.2 (3)
C4—C3—C2120.2 (4)C28—C27—H27119.9
C4—C3—H3119.9C26—C27—H27119.9
C2—C3—H3119.9C27—C28—C23120.1 (3)
C3—C4—C5119.8 (3)C27—C28—H28119.9
C3—C4—H4120.1C23—C28—H28119.9
C5—C4—H4120.1O15—C29—N2118.0 (4)
O3—C5—C4122.0 (3)O15—C29—C30123.3 (4)
O3—C5—C6117.6 (3)N2—C29—C30118.7 (4)
C4—C5—C6120.4 (4)C29—C30—C31111.4 (4)
C7—C6—C5119.9 (4)C29—C30—H30A107 (3)
C7—C6—H6120.0C31—C30—H30A110 (2)
C5—C6—H6120.0C29—C30—H30B110 (3)
C6—C7—C2120.2 (3)C31—C30—H30B113 (3)
C6—C7—H7119.9H30A—C30—H30B105 (4)
C2—C7—H7119.9C32—C31—C30110.1 (4)
O4—C8—O5122.9 (4)C32—C31—H31A110 (2)
O4—C8—C9122.0 (4)C30—C31—H31A112 (2)
O5—C8—C9115.1 (3)C32—C31—H31B108 (3)
C10—C9—C14119.2 (4)C30—C31—H31B110 (3)
C10—C9—C8122.2 (3)H31A—C31—H31B106 (4)
C14—C9—C8118.6 (3)C33—C32—C31113.8 (4)
C11—C10—C9120.5 (3)C33—C32—H32A108 (3)
C11—C10—H10119.8C31—C32—H32A109 (3)
C9—C10—H10119.8C33—C32—H32B107 (3)
C12—C11—C10119.6 (3)C31—C32—H32B116 (3)
C12—C11—H11120.2H32A—C32—H32B102 (4)
C10—C11—H11120.2O16—C33—N2118.1 (4)
O6—C12—C13122.2 (3)O16—C33—C32124.8 (4)
O6—C12—C11117.4 (3)N2—C33—C32117.0 (4)
C13—C12—C11120.4 (4)O14—C34—N1119.1 (4)
C14—C13—C12120.0 (4)O14—C34—C35123.6 (4)
C14—C13—H13120.0N1—C34—C35117.3 (4)
C12—C13—H13120.0C34—C35—C36112.5 (4)
C13—C14—C9120.3 (3)C34—C35—H35A107 (3)
C13—C14—H14119.9C36—C35—H35A108 (3)
C9—C14—H14119.9C34—C35—H35B108 (3)
O10—C15—O11122.8 (4)C36—C35—H35B111 (3)
O10—C15—C16122.1 (3)H35A—C35—H35B111 (4)
O11—C15—C16115.2 (3)C37—C36—C35109.7 (4)
C21—C16—C17119.5 (4)C37—C36—H36A109 (2)
C21—C16—C15119.8 (3)C35—C36—H36A112 (2)
C17—C16—C15120.7 (3)C37—C36—H36B112 (2)
C18—C17—C16120.1 (4)C35—C36—H36B106 (2)
C18—C17—H17120.0H36A—C36—H36B108 (3)
C16—C17—H17120.0C38—C37—C36111.8 (4)
C17—C18—C19120.2 (4)C38—C37—H37A108 (3)
C17—C18—H18119.9C36—C37—H37A108 (3)
C19—C18—H18119.9C38—C37—H37B109 (3)
O12—C19—C20122.6 (3)C36—C37—H37B111 (3)
O12—C19—C18117.6 (3)H37A—C37—H37B109 (4)
C20—C19—C18119.8 (4)O13—C38—N1119.0 (4)
C21—C20—C19119.2 (4)O13—C38—C37123.0 (4)
C21—C20—H20120.4N1—C38—C37118.0 (4)
C19—C20—H20120.4C38—N1—C34126.6 (4)
C20—C21—C16121.2 (4)C38—N1—H1N118 (3)
C20—C21—H21119.4C34—N1—H1N115 (3)
C16—C21—H21119.4C29—N2—C33125.2 (4)
O7—C22—O8123.3 (4)C29—N2—H2N120 (3)
O7—C22—C23121.7 (3)C33—N2—H2N114 (3)
O8—C22—C23114.9 (3)C1—O2—H2O107 (3)
C24—C23—C28118.8 (3)C5—O3—H3O113 (3)
C24—C23—C22121.8 (3)C8—O5—H5O111 (3)
C28—C23—C22119.3 (3)C12—O6—H6O109 (3)
C25—C24—C23121.6 (4)C22—O8—H8O110 (3)
C25—C24—H24119.2C26—O9—H9O109 (3)
C23—C24—H24119.2C15—O11—H11O114 (3)
C24—C25—C26119.3 (3)C19—O12—H12O108 (4)
O1—C1—C2—C72.9 (6)C18—C19—C20—C211.0 (6)
O2—C1—C2—C7177.7 (4)C19—C20—C21—C161.2 (6)
O1—C1—C2—C3177.7 (4)C17—C16—C21—C200.2 (6)
O2—C1—C2—C31.7 (6)C15—C16—C21—C20179.0 (4)
C7—C2—C3—C40.6 (6)O7—C22—C23—C24178.1 (4)
C1—C2—C3—C4180.0 (4)O8—C22—C23—C241.6 (6)
C2—C3—C4—C50.2 (6)O7—C22—C23—C284.7 (6)
C3—C4—C5—O3179.0 (4)O8—C22—C23—C28175.7 (4)
C3—C4—C5—C60.4 (6)C28—C23—C24—C251.6 (6)
O3—C5—C6—C7178.9 (4)C22—C23—C24—C25175.6 (4)
C4—C5—C6—C70.5 (6)C23—C24—C25—C261.0 (6)
C5—C6—C7—C20.1 (6)C24—C25—C26—O9178.8 (4)
C3—C2—C7—C60.4 (6)C24—C25—C26—C270.8 (6)
C1—C2—C7—C6179.9 (4)O9—C26—C27—C28177.7 (4)
O4—C8—C9—C10179.4 (4)C25—C26—C27—C281.8 (6)
O5—C8—C9—C100.7 (6)C26—C27—C28—C231.2 (6)
O4—C8—C9—C140.2 (6)C24—C23—C28—C270.5 (6)
O5—C8—C9—C14179.7 (4)C22—C23—C28—C27176.8 (4)
C14—C9—C10—C111.8 (6)O15—C29—C30—C31150.0 (4)
C8—C9—C10—C11177.8 (4)N2—C29—C30—C3131.1 (5)
C9—C10—C11—C120.4 (6)C29—C30—C31—C3253.5 (5)
C10—C11—C12—O6178.5 (4)C30—C31—C32—C3350.9 (5)
C10—C11—C12—C132.1 (6)C31—C32—C33—O16155.8 (4)
O6—C12—C13—C14179.0 (4)C31—C32—C33—N224.7 (5)
C11—C12—C13—C141.6 (6)O14—C34—C35—C36155.0 (4)
C12—C13—C14—C90.6 (6)N1—C34—C35—C3627.2 (6)
C10—C9—C14—C132.3 (6)C34—C35—C36—C3752.5 (5)
C8—C9—C14—C13177.3 (4)C35—C36—C37—C3852.6 (5)
O10—C15—C16—C212.0 (6)C36—C37—C38—O13151.8 (4)
O11—C15—C16—C21178.1 (4)C36—C37—C38—N128.2 (5)
O10—C15—C16—C17178.8 (4)O13—C38—N1—C34178.6 (4)
O11—C15—C16—C171.0 (6)C37—C38—N1—C341.5 (6)
C21—C16—C17—C181.0 (6)O14—C34—N1—C38178.8 (4)
C15—C16—C17—C18179.8 (4)C35—C34—N1—C380.9 (6)
C16—C17—C18—C191.2 (6)O15—C29—N2—C33177.1 (4)
C17—C18—C19—O12179.9 (4)C30—C29—N2—C334.0 (6)
C17—C18—C19—C200.2 (6)O16—C33—N2—C29179.8 (4)
O12—C19—C20—C21178.7 (4)C32—C33—N2—C290.3 (6)
(GM-35DHBA) top
Crystal data top
C7H6O4·C5H7NO2Z = 2
Mr = 267.23F(000) = 280
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6761 (3) ÅCell parameters from 8252 reflections
b = 9.1128 (4) Åθ = 3.3–30.1°
c = 10.9447 (4) ŵ = 0.12 mm1
α = 93.397 (3)°T = 100 K
β = 107.694 (3)°Block, colourless
γ = 108.173 (4)°0.24 × 0.22 × 0.20 mm
V = 593.92 (5) Å3
Data collection top
Four-circle
diffractometer
2329 independent reflections
Radiation source: Mova (Mo) X-ray SourceRint = 0.031
Mirror monochromatorθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 88
Tmin = 0.841, Tmax = 1.000k = 1111
11839 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1835P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2329 reflectionsΔρmax = 0.26 e Å3
212 parametersΔρmin = 0.21 e Å3
Crystal data top
C7H6O4·C5H7NO2γ = 108.173 (4)°
Mr = 267.23V = 593.92 (5) Å3
Triclinic, P1Z = 2
a = 6.6761 (3) ÅMo Kα radiation
b = 9.1128 (4) ŵ = 0.12 mm1
c = 10.9447 (4) ÅT = 100 K
α = 93.397 (3)°0.24 × 0.22 × 0.20 mm
β = 107.694 (3)°
Data collection top
Four-circle
diffractometer
11839 measured reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2329 independent reflections
Tmin = 0.841, Tmax = 1.000Rint = 0.031
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
2329 reflectionsΔρmin = 0.21 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45954 (18)1.19843 (13)0.70572 (10)0.0142 (2)
C20.24590 (18)1.07724 (13)0.70006 (10)0.0135 (2)
C30.15543 (19)0.93734 (13)0.61184 (10)0.0138 (2)
H30.23130.91580.55610.017*
C40.04910 (18)0.82974 (13)0.60721 (10)0.0140 (2)
C50.15994 (18)0.86142 (13)0.68862 (11)0.0150 (2)
H50.30000.78770.68380.018*
C60.06628 (19)1.00086 (13)0.77722 (11)0.0144 (2)
C70.13857 (19)1.10988 (13)0.78395 (11)0.0145 (2)
H70.20401.20490.84470.017*
C80.05943 (19)0.50595 (13)0.27529 (11)0.0143 (2)
C90.29426 (19)0.40960 (14)0.26388 (12)0.0162 (3)
C100.43280 (19)0.32214 (14)0.12572 (11)0.0170 (3)
C110.30912 (19)0.22792 (13)0.07950 (11)0.0153 (2)
C120.07691 (18)0.32979 (13)0.09069 (11)0.0139 (2)
N10.02769 (16)0.46033 (11)0.18822 (9)0.0148 (2)
O10.54761 (13)1.32048 (9)0.78454 (8)0.0175 (2)
O20.54367 (14)1.16248 (10)0.61820 (8)0.0182 (2)
O30.15073 (14)0.69014 (9)0.52418 (8)0.0179 (2)
O40.18242 (14)1.02460 (10)0.85444 (8)0.0194 (2)
O50.05505 (13)0.62391 (9)0.35880 (8)0.0175 (2)
O60.02443 (14)0.30476 (10)0.02066 (8)0.0184 (2)
H1N0.170 (3)0.5229 (19)0.1952 (15)0.028 (4)*
H2O0.670 (3)1.235 (2)0.6290 (16)0.030 (4)*
H3O0.078 (3)0.6801 (19)0.4761 (17)0.033 (4)*
H4O0.113 (3)1.114 (2)0.9064 (17)0.036 (4)*
H9A0.281 (2)0.3348 (16)0.3251 (13)0.017 (3)*
H9B0.357 (2)0.4804 (18)0.2971 (14)0.026 (4)*
H10A0.578 (2)0.2551 (17)0.1233 (13)0.020 (3)*
H10B0.453 (2)0.3969 (18)0.0689 (14)0.024 (4)*
H11A0.292 (2)0.1484 (16)0.1349 (13)0.017 (3)*
H11B0.388 (2)0.1740 (16)0.0110 (14)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0153 (6)0.0152 (6)0.0127 (5)0.0068 (4)0.0040 (4)0.0030 (4)
C20.0143 (5)0.0138 (6)0.0125 (5)0.0060 (4)0.0032 (4)0.0037 (4)
C30.0154 (5)0.0157 (6)0.0118 (5)0.0070 (4)0.0052 (4)0.0026 (4)
C40.0158 (5)0.0127 (5)0.0120 (5)0.0049 (4)0.0027 (4)0.0010 (4)
C50.0130 (5)0.0149 (6)0.0151 (5)0.0026 (4)0.0045 (4)0.0020 (4)
C60.0155 (5)0.0169 (6)0.0125 (5)0.0074 (5)0.0054 (4)0.0030 (4)
C70.0159 (5)0.0124 (5)0.0130 (5)0.0042 (4)0.0027 (4)0.0000 (4)
C80.0174 (6)0.0124 (5)0.0148 (5)0.0067 (4)0.0060 (4)0.0035 (4)
C90.0152 (6)0.0153 (6)0.0197 (6)0.0053 (5)0.0087 (5)0.0012 (5)
C100.0135 (5)0.0184 (6)0.0186 (6)0.0049 (5)0.0055 (5)0.0028 (5)
C110.0149 (5)0.0147 (6)0.0132 (5)0.0028 (4)0.0033 (4)0.0003 (4)
C120.0156 (6)0.0138 (5)0.0127 (5)0.0066 (4)0.0038 (4)0.0025 (4)
N10.0132 (5)0.0132 (5)0.0169 (5)0.0021 (4)0.0064 (4)0.0000 (4)
O10.0169 (4)0.0150 (4)0.0178 (4)0.0016 (3)0.0069 (3)0.0015 (3)
O20.0162 (4)0.0172 (4)0.0195 (4)0.0012 (4)0.0095 (3)0.0016 (3)
O30.0188 (4)0.0145 (4)0.0180 (4)0.0011 (3)0.0092 (3)0.0042 (3)
O40.0176 (4)0.0188 (4)0.0201 (4)0.0017 (3)0.0104 (4)0.0047 (3)
O50.0183 (4)0.0140 (4)0.0190 (4)0.0026 (3)0.0087 (3)0.0024 (3)
O60.0181 (4)0.0192 (4)0.0175 (4)0.0054 (3)0.0078 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—O11.2235 (13)C6—C71.3947 (16)
C1—O21.3210 (13)C8—O51.2335 (14)
C1—C21.4877 (15)C8—N11.3638 (15)
C2—C31.3934 (16)C8—C91.5013 (15)
C2—C71.3948 (16)C9—C101.5246 (16)
C3—C41.3948 (16)C10—C111.5230 (16)
C4—O31.3618 (13)C11—C121.5012 (15)
C4—C51.3886 (16)C12—O61.2198 (14)
C5—C61.3913 (16)C12—N11.3858 (14)
C6—O41.3578 (14)
O1—C1—O2123.47 (10)C5—C6—C7120.11 (10)
O1—C1—C2122.48 (10)C6—C7—C2118.98 (10)
O2—C1—C2114.05 (9)O5—C8—N1119.41 (10)
C3—C2—C7121.56 (10)O5—C8—C9122.74 (10)
C3—C2—C1120.63 (10)N1—C8—C9117.85 (10)
C7—C2—C1117.80 (10)C8—C9—C10111.95 (9)
C2—C3—C4118.46 (10)C11—C10—C9109.62 (10)
O3—C4—C5116.55 (10)C12—C11—C10111.52 (9)
O3—C4—C3122.71 (10)O6—C12—N1118.51 (10)
C5—C4—C3120.73 (10)O6—C12—C11124.51 (10)
C4—C5—C6120.14 (10)N1—C12—C11116.98 (9)
O4—C6—C5117.31 (10)C8—N1—C12126.49 (10)
O4—C6—C7122.58 (10)
O1—C1—C2—C3177.67 (11)C5—C6—C7—C20.53 (17)
O2—C1—C2—C32.59 (15)C3—C2—C7—C61.27 (17)
O1—C1—C2—C73.47 (17)C1—C2—C7—C6177.58 (10)
O2—C1—C2—C7176.27 (10)O5—C8—C9—C10153.92 (11)
C7—C2—C3—C40.99 (17)N1—C8—C9—C1025.49 (15)
C1—C2—C3—C4177.83 (10)C8—C9—C10—C1153.06 (13)
C2—C3—C4—O3179.90 (10)C9—C10—C11—C1254.94 (13)
C2—C3—C4—C50.03 (17)C10—C11—C12—O6151.08 (11)
O3—C4—C5—C6179.38 (10)C10—C11—C12—N129.28 (14)
C3—C4—C5—C60.75 (18)O5—C8—N1—C12178.68 (10)
C4—C5—C6—O4179.73 (10)C9—C8—N1—C121.89 (17)
C4—C5—C6—C70.46 (17)O6—C12—N1—C8179.77 (10)
O4—C6—C7—C2179.27 (10)C11—C12—N1—C80.11 (17)

Experimental details

(SM-4HBA)(SM-24DHBA)(SM-34DHBA)(SM-345THBAI)
Crystal data
Chemical formulaC7H6O3·C4H5NO2C7H6O4·C4H5NO22(C7H6O4)·C4H5NO2C7H6O5·2(C4H5NO2)
Mr237.21253.21407.33368.30
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/cOrthorhombic, P212121
Temperature (K)100100100130
a, b, c (Å)6.5133 (3), 8.1853 (5), 11.4965 (6)6.7358 (8), 6.9119 (8), 12.3937 (9)6.7323 (2), 12.1142 (5), 21.2077 (8)7.0213 (3), 8.8214 (4), 25.1416 (12)
α, β, γ (°)103.458 (5), 93.925 (4), 113.018 (5)74.468 (9), 85.298 (8), 73.28 (1)90, 97.146 (3), 9090, 90, 90
V3)539.85 (6)532.43 (10)1716.19 (11)1557.21 (12)
Z2244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.130.130.13
Crystal size (mm)0.43 × 0.24 × 0.230.35 × 0.29 × 0.100.33 × 0.15 × 0.110.24 × 0.22 × 0.22
Data collection
DiffractometerXcalibur, Eos, Nova
diffractometer
Xcalibur, Eos, Nova
diffractometer
Xcalibur, Eos, Nova
diffractometer
Oxford Xcalibur,Eos(Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis RED (Oxford Diffraction,2009)
Tmin, Tmax0.843, 1.0000.755, 1.0000.880, 1.0000.969, 0.974
No. of measured, independent and
observed reflections
13046, 1903, 1793 (?)4016, 1861, 1690 [I > 2σ(I)]10777, 3365, 2818 [I > 2σ(I)]8817, 2707, 2504 [I > 2σ(I)]
Rint0.0350.0260.0400.049
(sin θ/λ)max1)0.7070.5950.6170.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.06 0.054, 0.147, 1.26 0.044, 0.096, 1.08 0.039, 0.096, 1.04
No. of reflections1903186133652996
No. of parameters166179290259
No. of restraints0000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.260.55, 0.370.27, 0.220.15, 0.18
Absolute structure????


(SM-345THBAII)(SM-35DHBA)(MM4HBA)(MM24DHBA)
Crystal data
Chemical formulaC7H6O5·2(C4H5NO2)3(C7H6O4)·C4H5NO2·3(H2O)C7H6O3·C4H3NO2C7H6O4·C4H3NO2
Mr368.30615.49235.19251.19
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/nMonoclinic, I2/a
Temperature (K)110100100100
a, b, c (Å)4.9225 (4), 11.7839 (10), 13.8540 (16)9.3161 (5), 11.2092 (3), 13.7362 (7)10.8426 (8), 6.5202 (4), 16.1326 (13)12.5506 (4), 6.6807 (2), 26.1586 (8)
α, β, γ (°)97.248 (8), 96.773 (8), 90.663 (6)102.926 (3), 104.398 (4), 96.571 (3)90, 106.391 (8), 9090, 98.815 (3), 90
V3)791.35 (13)1332.01 (11)1094.16 (14)2167.40 (12)
Z2248
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.130.130.120.13
Crystal size (mm)0.22 × 0.20 × 0.180.20 × 0.18 × 0.150.25 × 0.22 × 0.200.21 × 0.15 × 0.15
Data collection
DiffractometerXcalibur, Eos, Nova
diffractometer
Xcalibur, Eos, Nova
diffractometer
Four-circle
diffractometer
Four-circle
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.578, 1.0000.898, 1.0000.474, 1.0000.847, 1.000
No. of measured, independent and
observed reflections
11875, 2784, 2267 (?)9808, 5225, 4753 [I > 2σ(I)]5081, 2375, 1679 (?)21462, 2137, 2002 (?)
Rint0.0700.0300.0260.041
(sin θ/λ)max1)0.6170.6170.7060.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.100, 0.237, 1.10 0.074, 0.174, 1.21 0.048, 0.119, 1.03 0.053, 0.136, 1.16
No. of reflections3095522523752137
No. of parameters287388166179
No. of restraints0110
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.430.39, 0.450.15, 0.170.67, 0.25
Absolute structure????


(MM35DHBA)(GM-4HBA)(GM-35DHBA)
Crystal data
Chemical formula3(C7H6O4)·C4H3NO2·3(H2O)2(C7H6O3)·C5H7NO2C7H6O4·C5H7NO2
Mr613.47389.35267.23
Crystal system, space groupTriclinic, P1Orthorhombic, Pca21Triclinic, P1
Temperature (K)100100100
a, b, c (Å)9.3796 (10), 10.3981 (12), 15.6415 (16)40.692 (3), 5.4524 (3), 16.3546 (9)6.6761 (3), 9.1128 (4), 10.9447 (4)
α, β, γ (°)80.620 (9), 72.913 (9), 66.089 (10)90, 90, 9093.397 (3), 107.694 (3), 108.173 (4)
V3)1331.4 (3)3628.6 (4)593.92 (5)
Z282
Radiation type?, λ = 0.71073 ÅMo KαMo Kα
µ (mm1)0.130.110.12
Crystal size (mm)0.25 × 0.22 × 0.200.25 × 0.20 × 0.180.24 × 0.22 × 0.20
Data collection
DiffractometerXcalibur, Eos, Nova
diffractometer
Four-circle
diffractometer
Four-circle
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.630, 1.0000.664, 1.0000.841, 1.000
No. of measured, independent and
observed reflections
16508, 4927, 2571 [I > 2σ(I)]15134, 5638, 4868 [I > 2σ(I)]11839, 2329, 2156 (?)
Rint0.1240.0590.031
(sin θ/λ)max1)0.6060.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 0.91 0.048, 0.108, 1.03 0.031, 0.088, 1.06
No. of reflections492756382329
No. of parameters388594212
No. of restraints010
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.310.22, 0.220.26, 0.21
Absolute structure?Refined as an inversion twin.?

Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05), CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31), CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49), CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2013), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003), WinGX (Farrugia, 1999).

 

Acknowledgements

RPK and RG thank the Institute for a Senior Research Fellowship and a Promotional Fellowship, respectively. SC thanks the UGC for a Dr D. S. Kothari Postdoctoral Fellowship and TNG thanks the DST for a J. C. Bose Fellowship. We thank the Institute for providing infrastructure and instrumentation facilities.

References

First citationAakeröy, C. B., Desper, J., Fasulo, M. E., Hussain, I., Levin, B. & Schultheiss, N. (2008). CrystEngComm, 10, 1816–1821.  Google Scholar
First citationAakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870–5877.  Google Scholar
First citationAitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451–3465.  Web of Science CrossRef CAS Google Scholar
First citationAitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2014). Cryst. Growth Des. 14, 2542–2556.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlhalaweh, A., George, S., Basavoju, S., Childs, S. L., Rizvi, S. A. A. & Velaga, S. P. (2012). CrystEngComm, 14, 5078–5088.  Web of Science CSD CrossRef CAS Google Scholar
First citationArenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811–824.  Google Scholar
First citationBabu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662–2679.  Web of Science CrossRef CAS Google Scholar
First citationBabu, N. J., Sanphui, P. & Nangia, A. (2012). Chem. Asian J. 7, 2274–2285.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBallatore, C., Huryn, D. M. & Smith, A. B. III (2013). ChemMedChem, 8, 385–395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBlagden, N., de Matas, M., Gavan, P. T. & York, P. (2007). Adv. Drug Deliv. Rev. 59, 617–630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrittain, H. G. (2012). Cryst. Growth Des. 12, 5823–5832.  Web of Science CrossRef CAS Google Scholar
First citationBučar, D.-K., Day, G. M., Halasz, I., Zhang, G. G. Z., Sander, J. R. G., Reid, D. G., MacGillivray, L. R., Duer, M. J. & Jones, W. (2013). Chem. Sci. 4, 4417–4425.  Google Scholar
First citationBuist, A. R., Kennedy, A. R., Shankland, K., Shankland, N. & Spillman, M. J. (2013). Cryst. Growth Des. 13, 5121–5127.  Web of Science CSD CrossRef CAS Google Scholar
First citationCaira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N. & Aucamp, M. (2012). CrystEngComm, 14, 2541–2551.  Web of Science CSD CrossRef CAS Google Scholar
First citationCaira, M. R., Nassimbeni, L. R. & Wildervanck, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 2213–2216.  CrossRef Web of Science Google Scholar
First citationChadwick, K., Davey, R. & Cross, W. (2007). CrystEngComm, 9, 732–734.  Web of Science CrossRef CAS Google Scholar
First citationChen, J., Sarma, B., Evans, J. M. B. & Myerson, A. S. (2011). Cryst. Growth Des. 11, 887–895.  Web of Science CrossRef CAS Google Scholar
First citationCherukuvada, S., Babu, N. J. & Nangia, A. (2011). J. Pharm. Sci. 100, 3233–3244.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187–4198.  Web of Science CSD CrossRef CAS Google Scholar
First citationCherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579–2588.  Web of Science CSD CrossRef CAS Google Scholar
First citationCherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906–923.  Web of Science CrossRef CAS Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriščić, T. & Jones, W. (2009). Cryst. Growth Des. 9, 1621–1637.  Google Scholar
First citationFriščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546–7550.  Google Scholar
First citationGould, P. L. (1986). Int. J. Pharm. 33, 201–217.  CrossRef CAS Web of Science Google Scholar
First citationGriffini, G., Brambilla, L., Levi, M., Castiglioni, C., Del Zoppo, M. & Turri, S. (2014). RSC Adv. 4, 9893–9897.  Web of Science CrossRef CAS Google Scholar
First citationHuang, X., Qin, D., Zhang, X., Luo, Y., Huang, S., Li, D. & Meng, Q. (2013). RSC Adv. 3, 6922–6929.  Web of Science CrossRef CAS Google Scholar
First citationKaraipekli, A. & Sarı, A. (2010). J. Ind. Engineering Chem. 16, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationKarki, S., Friščić, T., Fábián, L. & Jones, W. (2010). CrystEngComm, 12, 4038–4041.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744–2747.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeiserowitz, L. & Nader, F. (1977). Acta Cryst. B33, 2719–2733.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLosev, E. A., Mikhailenko, M. A., Achkasov, A. F. & Boldyreva, E. V. (2013). New J. Chem. 13, 1973–1981.  Web of Science CrossRef Google Scholar
First citationLu, E., Rodríguez-Hornedo, N. & Suryanarayanan, R. (2008). CrystEngComm, 10, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationMcMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L. & Zaworotko, M. J. (2005). Z. Kristallogr. 220, 340–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoffat, A. C., Osselton, M. D. & Widdop, B. (2011). Editors. Clarke's Analysis of Drugs and Poisons, 4th ed. London: Pharmaceutical Press.  Google Scholar
First citationMohammad, M. A., Alhalaweh, A. & Velaga, S. P. (2011). Int. J. Pharm. 407, 63–71.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoore, M. D. & Wildfong, P. L. D. (2009). J. Pharm. Innov. 4, 36–49.  Web of Science CrossRef Google Scholar
First citationMoragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552–2559.  CAS Google Scholar
First citationMorimoto, M. & Irie, M. (2010). J. Am. Chem. Soc. 132, 14172–14178.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228–239.  CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNanubolu, J. B., Sridhar, B. & Ravikumar, K. (2012). CrystEngComm, 14, 2571–2578.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930–9938.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505–513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). J. Pharm. Sci. 100, 3160–3176.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRowe, R. C., Sheskey, P. J. & Owen, S. C. (2006). Editors. Handbook of Pharmaceutical Excipients, 5th ed. London: Pharmaceutical Press and Washington, DC: American Pharma­ceutical Association.  Google Scholar
First citationSanphui, P., Babu, N. J. & Nangia, A. (2013). Cryst. Growth Des. 13, 2208–2219.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeaton, C. C. (2011). CrystEngComm, 13, 6583–6592.  Web of Science CrossRef CAS Google Scholar
First citationSeaton, C. C. & Parkin, A. (2011). Cryst. Growth Des. 11, 1502–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationShan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372–2373.  Web of Science CrossRef Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThakuria, R., Cherukuvada, S. & Nangia, A. (2012). Cryst. Growth Des. 12, 3944–3953.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41–70.  CAS Google Scholar
First citationWood, P. A., Feeder, N., Furlow, M., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2014). CrystEngComm, 16, 5839–5848.  Web of Science CrossRef CAS Google Scholar
First citationYan, D., Delori, A., Lloyd, G. O., Friščić, T., Day, G. M., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2011). Angew. Chem. Int. Ed. 50, 12483–12486.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 2| Part 3| May 2015| Pages 341-351
ISSN: 2052-2525