research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 4| July 2015| Pages 389-401
ISSN: 2052-2525

Modularity and three-dimensional isostructurality of novel synthons in sulfonamide–lactam cocrystals

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Central University PO, Hyderabad, 500 046, India
*Correspondence e-mail: ashwini.nangia@gmail.com

Edited by X. Zhang, Tsinghua University, China (Received 16 December 2014; accepted 11 March 2015; online 1 May 2015)

The design of novel supramolecular synthons for functional groups relevant to drugs is an essential prerequisite for applying crystal engineering in the development of novel pharmaceutical cocrystals. It has been convincingly shown over the past decade that molecular level control and modulation can influence the physicochemical properties of drug cocrystals. Whereas considerable advances have been reported on the design of cocrystals for carboxylic acids and carboxamide functional groups, the sulfonamide group, which is a cornerstone of sulfa drugs, is relatively unexplored for reproducible heterosynthon-directed crystal engineering. The occurrence of synthons and isostructurality in sulfonamide–lactam cocrystals (SO2NH2⋯CONH hydrogen bonding) is analyzed to define a strategy for amide-type GRAS (generally recognized as safe) coformers with sulfonamides. Three types of supramolecular synthons are identified for the N—H donor of sulfonamide hydrogen bonding to the C=O acceptor of amide. Synthon 1: catemer synthon C21(4) chain motif, synthon 2: dimer–cyclic ring synthon R22(8)R42(8) motifs, and synthon 3: dimer–catemer synthon of R22(8)C11(4)D notation. These heterosynthons of the cocrystals observed in this study are compared with the N—H⋯O dimer R22(8) ring and C(4) chain motifs of the individual sulfonamide structures. The X-ray crystal structures of sulfonamide–lactam cocrystals exhibit interesting isostructurality trends with the same synthon being present. One-dimensional, two-dimensional and three-dimensional isostructurality in crystal structures is associated with isosynthons and due to their recurrence, novel heterosynthons for sulfonamide cocrystals are added to the crystal engineer's toolkit. With the predominance of sulfa drugs in medicine, these new synthons provide rational strategies for the design of binary and potentially ternary cocrystals of sulfonamides.

1. Introduction

The concept of supramolecular synthons introduced by Desiraju in 1995 (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Thalladi et al., 1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]; Reddy et al., 1996[Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090-4093.]; Dunitz & Gavezzotti, 2012[Dunitz, J. D. & Gavezzotti, A. (2012). Cryst. Growth Des. 12, 5873-5877.]; Nangia & Desiraju, 1998[Nangia, A. & Desiraju, G. R. (1998). Top. Curr. Chem. 198, 57-95.]) led to the identification of known and new hydrogen bond patterns in crystal engineering. Zaworotko and coworkers (Walsh et al., 2003[Walsh, R. D. B., Bradner, M. W., Fleishman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.]) sub-classified synthons as homosynthons (those between like functional groups) and heterosynthons (hydrogen bonds between unlike groups). The past decade has witnessed immense interest in utilizing various supramolecular synthons to direct structural organization in the crystal structure. For example, acid–acid and amide–amide homosynthons are well known, while acid–pyridine and acid–amide are popular heterosynthons. The latter form of association between unlike functional groups has immediate potential in the engineering of multi-component systems, notably cocrystals (Vishweshwar et al., 2003a[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003a). CrystEngComm, 5, 164-168.],b[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003b). Cryst. Growth Des. 3, 783-790.]; Biradha & Zaworotko, 1998[Biradha, K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 6431-6432.]; Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]; Bis et al., 2006[Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.]; Vangala et al., 2005[Vangala, V. R., Mondal, R., Broder, C. K., Howard, J. A. K. & Desiraju, G. R. (2005). Cryst. Growth Des. 5, 99-104.]; Ermer & Eling, 1994[Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, p. 925.]; Reddy et al., 2006[Reddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. p. 1369.], 2007[Reddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505-513.]; Babu et al., 2007[Babu, N. J., Reddy, L. S. & Nangia, A. (2007). Mol. Pharm. 4, 417-434.]; Goud et al., 2011[Goud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930-1939.]; Kaur & Guru Row, 2012[Kaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744-2747.])

Selected homo- and heterosynthons extracted from the literature for single and multi-component systems of sulfonamides are listed in Fig. 1[link]. The directionality and strength of hydrogen bonding plays a major role in controlling the supramolecular assembly through complementary functional groups, which leads to the application of crystal engineering in material science and pharmaceutical solids (Childs et al., 2004[Childs, S. L., Chyall, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335-13342.]; Trask, Motherwell & Jones, 2004[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2004). Chem. Commun. p. 890.], 2005[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.], 2006[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114-123.]; Trask, Haynes et al., 2006[Trask, A. V., Haynes, D. A., Motherwell, W. D. S. & Jones, W. (2006). Chem. Commun. pp. 51-53.]). The pairing of best-donor to best-acceptor hydrogen bonding (Etter's rules) guides cocrystal design in a majority of cases (Etter, 1982[Etter, M. C. (1982). J. Am. Chem. Soc. 104, 1095-1096.], 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.], 1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]). However, as multiple functional groups come into interplay, the competition can be more complex and difficult to predict (Sarma et al., 2009[Sarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546-1557.]; Aakeröy et al., 2013[Aakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998-15003.]). For this reason, we examined heterosynthons of sulfonamides with the amide group in non-competing binary systems with the idea of developing a library of sulfonamide–carboxamide synthons. Whereas sulfonamide and carboxamide homosynthons have been studied, this is a report on their heterosynthons. Sulfon­amides preferably form dimer and catemer synthons, whereas carboxamides more often assemble via the dimer synthon (Sanphui et al., 2010[Sanphui, P., Sarma, B. & Nangia, A. (2010). Cryst. Growth Des. 10, 4550-4564.]). A robust heterosynthon for sulfonamide group cocrystals is that with pyridine N-oxides (Goud et al., 2011[Goud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930-1939.]), but since the latter coformers are not pharmaceutically acceptable, there is a need to develop a design strategy for sulfonamides with GRAS amides (US-FDA, 2014[US-FDA (2014). GRAS list, https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ , Accessed 04/12/2014.]). Selected data on sulfonamides were extracted from the Cambridge Structural Database (CSD, Version 5.36, November 2014 release). With this background, benzene sulfonamides were cocrystallized with cyclic carboxamides to analyze isostructural relationships and classify the observed synthons.

[Figure 1]
Figure 1
(a) Synthons present in primary sulfonamides (homosynthons). (b) Synthon motifs present in sulfonamide cocrystals (heterosynthons) from the literature study. (c) Synthon motifs present in sulfonamide cocrystals discussed in this report (heterosynthons).

Primary sulfonamides attached to a substituted phenyl ring were selected in this exploratory cocrystal study to identify the basic heterosynthons with amides in a non-competitive environment. We were successful in obtaining cocrystals of a few benzene sulfonamides with lactams (syn amides) listed in Fig. 2[link]. A reason to choose cyclic amides over primary amides was that the latter have syn and anti N—H donors, and together with primary sulfonamide, which also has syn and anti N—H donors, the diversity of hydrogen bond motifs may become too complex for systematic analysis. In a recent study of lactams with carboxylic acids, Moragues-Bartolome et al. (2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]) found that 2-pyrrolidone showed a heterotetramer (CONH⋯COOH), whereas δ-valerolactam has a homotetramer synthon (CONH⋯CONH), although there were some mixed results as well (Moragues-Bartolome et al., 2012[Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552-2559.]). We report in this paper isostructural pairs of cocrystals (sulfonamide–lactam) having isosynthons (similar supramolecular synthons). The lattice parameters and crystal packing of the X-ray crystal structures suggest that there are three sets of isostructural compounds and that each set has its own isosynthons. Primary sulfonamides consist of two acceptor O atoms and two donor H atoms (SO2NH2), and the complementary functional group lactam (HN—C=O) also has one donor and one acceptor.

[Figure 2]
Figure 2
Molecular structure of the primary sulfonamides and lactams used in this study to make binary cocrystals.

2. Experimental

2.1. Preparation of cocrystals

All the benzene sulfonamides and coformers (caprolactam, valerolactam etc.) used in this study (see Fig. 2[link]) were purchased from Sigma–Aldrich, Hyderabad, India, and used as such without further purification. Equivalent amounts of the sulfonamide and coformer were taken in a mortar and ground with a pestle for 20–30 min using solvent-assisted grinding by adding a few drops of EtOAc. After confirming that the ground mixture is a new solid phase by powder X-ray diffraction (PXRD), the mixture was dissolved in EtOAc or EtOAc–THF. The solution was then allowed to cocrystallize at room temperature by slow evaporation. Suitable crystals for single-crystal X-ray data were obtained after 5–6 d. A summary of the grinding experiments, characterizations of cocrystals by PXRD and IR, and confirmation by single-crystal X-ray diffraction (SC-XRD) are listed in Table 1[link].

Table 1
Summary of characterization for sulfonamide–lactam cocrystals

[\surd] = yes, × = no.

    VLM (six member lactam) CPR (seven member lactam)
S. No. Sulfonamides Changes in IR Changes in PXRD Single crystal data Changes in IR Changes in PXRD Single crystal data
1 BSA [\surd] [\surd] [\surd] [\surd] [\surd] [\surd]
2 OTSA [\surd] [\surd] [\surd] [\surd] [\surd] ×
3 PTSA [\surd] [\surd] [\surd] [\surd] [\surd] ×
4 SNA [\surd] [\surd] [\surd] [\surd] [\surd] [\surd]
5 2ABSA [\surd] [\surd] × [\surd] [\surd] [\surd]
6 2ClBSA [\surd] [\surd] [\surd] [\surd] [\surd] [\surd]
7 4ClBSA [\surd] [\surd] [\surd] [\surd] [\surd] [\surd]
8 4BrBSA [\surd] [\surd] [\surd] [\surd] [\surd] [\surd]

2.2. BSA–VLM cocrystal (1:1)

BSA (100 mg, 0.636 mmol) and VLM (63 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc (liquid-assisted grinding or LAG; Shan et al., 2002[Shan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372-2373.]; Trask & Jones, 2005[Trask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41-70.]; Friščić et al., 2006[Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546-7550.]). The ground material was kept for crystallization in 5 ml of an EtOAc–THF mixture as well as in individual solvents at room temperature. Good diffraction-quality crystals were harvested under ambient conditions after 3–4 d; m.p. 79–81°C.

2.3. BSA–CPR cocrystal (1:1)

BSA (100 mg, 0.636 mmol) and CPR (72 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF solvent mixture as well as in individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested under ambient conditions after 3–4 days; m.p. 80–83°C.

2.4. BSA–AZL (1-aza-2-cyclooctanone) cocrystal (1:1)

BSA (100 mg, 0.636 mmol) and AZL (80.87 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested under ambient conditions after 3–4 days; m.p. 76–81°C.

2.5. 2ClBSA–VLM, 4ClBSA–VLM cocrystal (1:1)

ClBSA isomer (100 mg, 0.521 mmol) and VLM (51.6 mg, 0.521 mmol) were ground well in a mortar and pestle for 20–30 min by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as individual solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 80–82°C; 90–91°C

2.6. 2ClBSA–CPR, 4ClBSA–CPR cocrystal (1:1)

ClBSA isomer (100 mg, 0.521 mmol) and CPR (59 mg, 0.521 mmol) were ground well in a mortar and pestle for 20–30 min by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture, as well as separate solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 80–82°C; 82–83°C.

2.7. 4BrBSA–VLM cocrystal (1:1)

4BrBSA (100 mg, 0.423 mmol) and VLM (51.6 mg, 0.423 mmol) were ground well in a mortar and pestle for 20–30 min with solvent assistance by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture, as well as individual solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 92–94°C.

2.8. 4BrBSA–CPR cocrystal (1:1)

4BrBSA (100 mg, 0.423 mmol) and CPR (58.95 mg, 0.423 mmol) were ground well in a mortar aand pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of EtOAc–THF mixture as well as separate solvents. Single crystals were harvested at ambient conditions after 3–4 days; m.p. 90–92°C.

2.9. OTSA–VLM, PTSA–VLM cocrystal (1:1)

OTSA/PTSA (100 mg, 0.584 mmol) and VLM (57.89 mg, 0.584 mmol) were ground well in a mortar and pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as separate solvents. Single crystals were harvested under ambient conditions after 3–4 days; m.p. 70–72°C; 74–75°C.

2.10. SNA–VLM, 2ABSA–VLM cocrystal (1:1)

SNA/2ABSA (100 mg, 0.580 mmol) and VLM (65.63 mg, 0.580 mmol) were ground well in a mortar and pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as separate solvents. Single crystals were harvested at ambient conditions after 3–4 d; m.p. 95–97°C, 87–91°C.

2.11. Single-crystal X-ray diffraction

A single crystal obtained from the crystallization experiment was mounted on the goniometer of an Oxford Diffraction Gemini X-ray diffractometer equipped with an Mo Kα radiation source (λ = 0.71073 Å). Data reduction was performed using CrysAlisPro 171.33.55 software. The crystal structure was solved and refined using Olex2-1.0 with anisotropic displacement parameters for non-H atoms. H atoms were experimentally located through the difference-Fourier electron density maps in all crystal structures. Data was reduced by SAINT-Plus (Bruker, 1998[Bruker AXS (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) and further continued with SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). A check of the final crystallographic information file (CIF) with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) did not show any missed symmetry. X-Seed was used to prepare the figures and packing diagrams. Crystallographic parameters of all the cocrystals are summarized in Table 2[link]. Hydrogen bond distances (see Table S1 of the supporting information ) are neutron-normalized (O—H 0.983, N—H 0.82, C—H 1.083 Å). CIF files are also deposited with the CCDC (Nos. 1039188–1039200).

Table 2
Crystallographic data summary and classification of sulfonamide–carboxamide cocrystals and isostructurality (see Table 3[link] for full crystallographic data)

S. No. Cocrystal Cell parameters (a, b, c, in Å) Crystal system Synthon observed
1 BSA–VLM a = 7 Orthorhombic, P212121  
2 BSA–CPR
3 4ClBSA–CPR b = 12–13 Synthon 1
4 4BrBSA–CPR c = 14–15 Catemer chain
5 SNA–CPR  
6 4ClBSA–VLM a = 25 Monoclinic, C2/c
7 4BrBSA–VLM b = 7
  c = 19
8 2ABSA–CPR a = 7 Monoclinic, P21/n Synthon 2
9 BSA–AZL b = 16–17 Dimer–Cyclic ring
c = 12–13
10 2ClBSA–VLM a = 9–10 Monoclinic, P21/c Synthon 3
11 2ClBSA–CPR b = 13–14 Dimer–Catemer
c = 10
12 PTSA–VLM a = 5 Monoclinic, P21/n
b = 16
c = 16
13 OTSA–VLM a = 5 Triclinic, [P\bar 1]
b = 8
c = 16

Some single-crystal diffraction data were collected at 298 K on a Bruker SMART APEX-1 CCD area-detector system equipped with a graphite monochromator, Mo Kα fine-focus sealed tube (λ = 0.71073 Å) operated at 1500 W power (40 kV, 30 mA). The frames were integrated with SAINT (Bruker, 1998[Bruker AXS (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) software using a narrow-frame integration algorithm. Data was corrected for absorption effects using the multi-scan method (SADABS; Bruker, 1998[Bruker AXS (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]). The structure was solved and refined using SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

2.12. X-ray powder diffraction

Bulk samples were analyzed by X-ray powder diffraction on a Bruker AXS D8 diffractometer (Bruker-AXS, Karlsruhe, Germany). Experimental conditions: Cu Kα radiation (λ = 1.54056 Å); 40 kV; 30 mA; scanning interval 5–50° 2θ at a scan rate of 1° min−1; time per step 0.5 s. The experimental PXRD patterns of the BSA, 4Cl BSA and 4Br BSA cocrystals were compared to confirm the isostructurality (Fig. S4 of the supporting information ).

2.13. Vibrational spectroscopy

A Thermo-Nicolet 6700 FT–IR spectrometer (Waltham, MA, USA) was used to record the IR spectra. IR spectra were recorded on samples dispersed in KBr pellets. For details of IR spectra see Fig. S8 and Table S4 .

3. Results and discussion

3.1. Crystal structure analysis and isostructurality

A few benzene sulfonamides (listed in Fig. 2[link]) were selected to make cocrystals with PYR, VLM, CPR and AZL cyclic amides in a 1:1 stoichiometric ratio, which were ground mechanochemically through solvent-assisted grinding to obtain cocrystals. The resulting binary systems were analyzed with greater emphasis on VLM and CPR cocrystals since they are pharmaceutically acceptable coformers. Three types of synthons were observed: synthon 1 or the catemer motif of graph-set C21(4) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), synthon 2 which is a dimer–cyclic synthon motif of R22(8)R42(8), and synthon 3 as a dimer–catemer motif R22(8)C11(4)D (Fig. 3[link]). The crystal structure of BSA with AZL contains synthon 2. The crystal structures of other primary sulfonamides with AZL, PYR etc. will be discussed separately. Cocrystals of celecoxib (SO2NH2 drug) with odd/even homolog cyclic amides (Bolla et al., 2014[Bolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24-27.]) indicated that the odd ring size coformer (PYR, CPR) follows the heterosynthon, whereas even ring lactams (VLM, AZL) result in dimer–dimer/dimer–catemer synthons. With the aim of establishing a trend for sulfonamides, this study however did not give the previously observed synthons but resulted in different motifs. A robust and predictable functional group for sulfonamide cocrystals is pyridine N-oxide coformers (as well as P- and As-oxide) (e.g. Goud et al., 2011[Goud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930-1939.]; Croker et al., 2012[Croker, D. M., Foreman, M. E., Hogan, B. N., Maguire, N. M., Elcoate, C. J., Hodnett, B. K., Maguire, A. R., Rasmuson, C. & Lawrence, S. E. (2012). Cryst. Growth Des. 12, 869-875.]; Ferguson et al., 1989[Ferguson, G., Lough, A. J. & Glidewell, C. (1989). J. Chem. Soc. Perkin Trans. 2, p. 2065.]; Denise et al., 2014[Denise, M., Croker, D. M. & Rasmuson, Å. C. (2014). Org. Process Res. Dev. 18, 941-946.]), but these are not of practical use as pharmaceuticals since they are not GRAS molecules (generally regarded as safe). The cocrystals obtained in this study and synthon classification are summarized in Fig. 3[link], along with crystallographic parameters in Table 2[link] (additional data in Table 3[link]).

Table 3
Crystallographic parameters of the sulfonamide cocrystals with lactams of this study

  Catemer synthon
  BSA–VLM BSA–CPR 4ClBSA–CPR 4BrBSA–CPR SNA–CPR 4ClBSA–VLM 4BrBSA–VLM
Empirical formula C6H7NO2S·C5H9NO C6H7NO2S·C6H11NO C6H6ClNO2S·C6H11NO C6H6BrNO2S·C6H11NO C6H8N2O2S·C6H11NO C6H6ClNO2S·C5H9NO C6H6BrNO2S·C5H9NO
Formula weight 256.33 270.35 304.80 349.25 285.37 290.77 335.22
Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic Monoclinic Monoclinic
Space group P212121 P212121 P212121 P212121 P212121 C2/c C2/c
T (K) 298 (3) 298 (3) 298 (3) 298 (3) 298 (3) 298 (3) 298 (3)
a (Å) 7.1043 (5) 7.0700 (9) 7.1564 (13) 7.156 (3) 7.0957 (6) 25.701 (4) 25.914 (3)
b (Å) 12.7937 (10) 12.7624 (13) 13.369 (2) 13.538 (5) 13.1280 (13) 6.8096 (4) 6.8687 (9)
c (Å) 14.0302 (16) 14.977 (2) 15.276 (3) 15.406 (6) 15.3425 (18) 19.177 (3) 19.202 (2)
α (°) 90 90 90 90 90 90 90
β (°) 90 90 90 90 90 127.40 (2) 126.873 (2)
γ (°) 90 90 90 90 90 90 90
V3) 1275.2 (2) 1351.4 (3) 1461.5 (4) 1492.5 (10) 1429.2 (3) 2666.2 (9) 2734.2(6)
Dcalc (g cm−3) 1.335 1.329 1.385 1.554 1.326 1.449 1.629
μ (mm−1) 0.253 0.242 0.409 2.899 0.235 0.445 3.161
θ range 3.59–27.83 3.96–26.72 2.84–26.31 2.00–26.38 2.64–24.65 2.66–26.31 1.96–26.35
Z/Z1 4/1 4/1 4/1 4/1 4/1 8/1 8/1
h range −4 → +8 −8 → +7 −8 → +7 −8 → +8 −7 → +8 −32 → +30 −32 → +32
k range −15 → +15 −7 → +15 −12 → +16 −16 → +16 −8 → + 15 −8 → +8 −8 → +8
l range −17 → 12 −17 → +16 −12 → +19 −19 → +19 −18 → 15 −23 → +22 −23 → +23
Reflections collected 3791 3348 4403 15 786 3692 5127 14029
Total reflections 2493 2197 2851 3029 2354 2732 2790
Observed reflections 2175 1595 1152 2405 1318 1677 2216
R1 [I > 2σ(I)] 0.0466 0.0777 0.0896 0.0398 0.0529 0.0595 0.0348
wR2 (all) 0.1201 0.1806 0.1141 0.0931 0.0796 0.1344 0.0939
Goodness-of-fit 1.059 1.231 0.968 1.025 0.901 1.067 1.029
X-ray diffract­meter Oxford Gemini Oxford Gemini Oxford Gemini Bruker Smart Apex Oxford Gemini Oxford Gemini Bruker Smart Apex
  Dimer–cyclic synthon ring Dimer–catemer synthon
  2ABSA–CPR BSA–AZL 2ClBSA–VLM 2ClBSA–CPR OTSA–VLM PTSA–VLM
Empirical formula C6H8N2O2S·C6H11NO C6H7NO2S·C7H13NO C6H6ClNO2S·C5H9NO C6H6ClNO2S·C6H11NO C7H9NO2S·C5 H9NO C7H9NO2S·C5 H9NO
Formula weight 285.37 284.36 290.77 304.80 270.35 270.35
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Triclinic
Space group P21/n P21/n P21/c P21/c P21/n P-1
T (K) 29 (3) 298 (3) 298 (3) 298 (3) 298 (3) 298 (3)
a (Å) 7.2731 (4) 7.3020 (9) 10.521 (2) 9.8782 (6) 5.3367 (6) 5.210 (3)
b (Å) 15.9052 (10) 17.189 (2) 13.7661 (12) 14.1720 (6) 15.9206 (17) 8.449 (4)
c (Å) 12.7766 (6) 12.2835 (16) 10.3407 (16) 10.8753 (6) 16.070 (3) 16.104 (8)
α (°) 90 90 90 90 90 82.894 (8)
β (°) 99.291 (5) 106.760 (2) 116.31 (2) 112.850 (7) 98.308 (12) 82.798 (8)
γ (°) 90 90 90 90 90 81.772 (8)
V3) 1458.61 (14) 1476.3 (3) 1342.5 (4) 1403.00 (15) 1351.0 692.005
Dcalc (g cm−3) 1.299 1.280 1.439 1.443 1.329 1.298
μ (mm−1) 0.230 0.225 0.442 0.426 0.242 0.236
θ range 3.12–28.72 2.93–23.26 2.73–26.37 2.87–26.37 2.56–2.56 1.28–26.37
Z/Z1 4/1 4/1 4/1 4/1 4/1 2/1
h range −8 → +8 −8 → +8 −12 → +13 −12 → +11 −6 → +6 −6 → +6
k range −16 → +18 −20 → +20 −15 → +17 −17 → +16 −19 → +11 −10 → +10
l range −15 → +14 −14 → +14 −11 → +12 −13 → + 10 −14 → +20 −20 → +19
Reflections collected 5525 13 710 5058 5810 5072 7341
Total reflections 2488 2520 2731 2870 2759 2819
Observed reflections 1993 2154 2039 2483 1420 1969
R1 [I > 2σ(I)] 0.0383 0.0597 0.0435 0.0385 0.0645 0.0504
wR2 (all) 0.0995 0.1419 0.1144 0.1031 0.1183 0.1526
Goodness-of-fit 1.017 1.092 0.983 1.093 1.019 1.043
X-ray diffract­meter Oxford Gemini Bruker Smart Apex Oxford Gemini Oxford Gemini Oxford Gemini Bruker Smart Apex
[Figure 3]
Figure 3
Classification of three novel synthons in sulfonamide–lactam cocrystals. Names of the cocrystal structures are shown in the bottom row.

3.2. Synthon 1, catemer chain

Among the 13 cocrystal structures studied (Table 1[link]), seven structures contain the sulfonamide–syn-carboxamide catemer synthon of C21(4) notation. The catemer chains are assembled by sulfonamide N—H donors hydrogen bonding to the carboxamide acceptor. The structures are isostructural upon altering the auxiliary functional groups of benzene sulfonamide, such as Cl/Br/NH2/CH3. BSA–VLM and BSA–CPR have the same unit-cell parameters, whereas p-substituted BSA molecules (such as 4ClBSA, 4BrBSA and SNA) showed a 0.5 Å increase in the crystallographic b- and c-axis. BSA–VLM, BSA–CPR, SNA–CPR, 4ClBSA–CPR and 4BrBSA–CPR are three-dimensional isostructural. There are two more sets of isostructural cocrystals, 4ClBSA–VLM and 4BrBSA–VLM, with the same synthon.

3.2.1. BSA–VLM, BSA–CPR, SNA–CPR, 4 ClBSA–CPR and 4BrBSA–CPR (1:1)

The crystal structures of all these multi-component systems were refined in the orthorhombic space group P212121. The sulfonamide NH2 donates an N—H⋯O hydrogen bond to both sides of the carbonyl group of the lactam acceptor in the synthon 1 catemer (Fig. 4[link]a). The hydrogen-bonded C(4) chain runs along the a-axis and in a corrugated sheet-like structure parallel to the (011) plane (Fig. 4[link], Fig. S1 ) and exhibits three-dimensional isostructurality in crystal packing.

[Figure 4]
Figure 4
Crystal structures of sulfonamide–lactam cocrystals with catemer synthon 1. Two-dimensional packing diagrams are drawn with the asymmetric unit showing benzene sulfonamides (in green) and lactams (in blue) (VLM, CPR).
3.2.2. ClBSA–VLM, 4BrBSA–VLM (1:1)

These two cocrystals have the catemer synthon and furthermore there is diversity in the two-dimensional packing patterns compared with the above set of five cocrystals. Both these structures are of the synthon 1 category even though they have different two-dimensional packing. The initial growth unit is the catemer hydrogen bond chain in these crystal structures. Sulfonamides and carboxamides form catemer synthon chains parallel to the b-axis (space group C2/c), which results in successive chain motifs (Fig. S1 ). The two-dimensional sheet arrangements of these isostructural cases are displayed in Fig. 4[link].

3.3. Synthon 2, dimer–cyclic ring

3.3.1. BSA–AZL cocrystal (1:1)

The crystal structure was refined in the monoclinic space group P21/n. Glide-related sulfonamide molecules are flanked between dimers of lactam through N—H⋯O (N1—H1B⋯O3: 2.12 Å, ∠158°; N1—H1A⋯O3: 2.03 Å, ∠158°) hydrogen bonds (sulfonamide NH donors) to give R22(8)R42(8) ring motif synthon 2 (Figs. 5[link]a and b), similar to that in N-oxide cocrystals (Goud et al., 2011[Goud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930-1939.]). The structural units extend along the a-axis in a one-dimensional pattern. The meta H atoms of BSA form C—H⋯O interactions with S=O along the a-axis (Fig. 5[link]c) resulting in corrugated layers of sulfonamide chains separated by coformer molecules (Fig. S2 ).

[Figure 5]
Figure 5
Dimer–cyclic synthon 2 in cocrystals BSA–AZL, 2ABSA–CPR and two-dimensional layer packing. Two-dimensional packing diagrams are drawn with the asymmetric unit showing benzene sulfonamides (in green) and lactams (in blue) (VLM, CPR).
3.3.2. ABSA–CPR cocrystal (1:1)

This cocrystal is isostructural with BSA–AZL. The main synthon in 2ABSA–CPR is R22(8)R42(8) ring motifs along the a-axis (Fig. 5[link]d) together with corrugated wave-like layers (Figs. 5[link]d and e). The isostructurality is illustrated in Fig. S2 .

3.4. Synthon 3, dimer–catemer

3.4.1. ClBSA–VLM cocrystal (1:1)

Equimolar quantities of the components were ground and crystallized from EtOAc to give single crystals which were solved in the monoclinic space group P21/c. Catemer chains connect glide-related 2ClBSA molecules that assemble via homodimers of VLM through N—H⋯O (N1—H1A⋯O3 = 2.03 Å, ∠169°) hydrogen bonds in synthon 3, or dimer–catemer synthon R22(8)C11(4)D (Figs. 6[link]a and b). In this synthon the coformer dimers are sandwiched between sulfonamide catemer chains. Halogen bonding (Cl⋯O, Cl⋯N) provides auxiliary support to the structure (Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.], 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]; Saha & Nangia, 2007[Saha, B. K. & Nangia, A. (2007). Heteroat. Chem. 18, 185-194.]; Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Elsevier: Amsterdam.]; Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]). The catemer chains of 2ClBSA extend along the c-axis and homodimers of VLM connect adjacent chains of sulfonamides via C—H⋯O interactions to make two-dimensional stacks in the ab-plane (Fig. 6[link]c).

[Figure 6]
Figure 6
Dimer–catemer synthon 3 in cocrystals 2ClBSA–VLM, 2ClBSA–CPR, OTSA–VLM, PTSA–VLM and two-dimensional hydrogen bond motifs. Two-dimensional packing diagrams are drawn with the asymmetric unit showing benzene sulfonamides (in green) and lactams (in blue) (VLM, CPR).
3.4.2. ClBSA–CPR cocrystal (1:1)

Cocrystal 2ClBSA–CPR is isostructural with 2ClBSA–VLM. Sulfonamide catemer chains are interlinked via discrete synthons to homodimers of CPR through N1—H1A⋯O3 hydrogen bonds (1.97 Å, ∠176°) to give synthon 3, dimer–catemer (Figs. 6[link]a and d). The homodimers of CPR are sandwiched between chains of sulfonamide chains. These patterns grow via C—H⋯O interactions to make interestingly parachute-like cone rings (Fig. 6[link]e).

3.4.3. OTSA–VLM cocrystal (1:1)

The OTSA molecule formed a cocrystal (monoclinic crystal system, P21/c space group) with VLM homodimers (N2—H2A⋯O3 = 2.26 Å, ∠175°) via a discrete (D graph set) N—H⋯O (N1—H1B⋯O3 = 2.03 Å, ∠179°) synthon along the c-axis. Such dimers are sandwiched between screw-related sulfonamide chains, similar to two previous cocrystal structures (Fig. 6[link]f). Supportive C—H⋯O interactions make parallel stacks (Fig. 6[link]g and Fig. S3a ).

3.4.4. PTSA–VLM cocrystal (1:1)

The crystal structure was solved in a triclinic crystal system with space group [P\bar 1]. The basic supramolecular synthon of the catemer type is also present in this cocrystal (Fig. 6[link]h), but with different unit-cell parameters (Table 3[link]). Sulfonamide molecules form catemer chain motifs above and below the VLM homodimers (N2—H2A⋯O3; H⋯O 2.15 Å, ∠176°; Fig. 6[link]i). The sandwich-type structure is sustained by inversion-related sulfonamide chains in AABB-type stacking (Fig. S3b ).

3.5. Isostructural and isomorphous systems

Two crystals are said to be isostructural if they have the same structure, but not necessarily the same unit-cell dimensions nor the same chemical composition, with a comparable variability in the atomic coordinates to that of the cell dimensions and chemical composition (IUCr, 2014[IUCr (2014). https://reference.iucr.org/dictionary/Isostructural_crystals , Accessed 18/11/2014.]). Isostructurality depicts the arrangement of different molecules in a similar way in the crystal structure, but not necessarily their unit-cell parameters (Fábián, Argay & Kálmán, 1999[Fábián, L., Argay, G. & Kálmán, A. (1999). Acta Cryst. B55, 788-792.]; Fábián & Kálmán, 1999[Fábián, L. & Kálmán, A. (1999). Acta Cryst. B55, 1099-1108.], 2004[Fábián, L. & Kálmán, A. (2004). Acta Cryst. B60, 547-558.]; Kitaigorodsky, 1961[Kitaigorodsky, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.]). Certain substituents in the molecule can be replaced with others without altering the crystal packing as well as cell values and the space group (Brink & Kroese, 1952[Brink, C. & Kroese, H. A. S. (1952). Acta Cryst. 5, 433-436.]; Perutz, 1956[Perutz, M. F. (1956). Acta Cryst. 9, 867-873.]; Kroon et al., 1965[Kroon, J., Peerdeman, A. F. & Bijvoet, J. M. (1965). Acta Cryst. 19, 293-297.]; Sauer et al., 1997[Sauer, O., Schmidt, A. & Kratky, C. (1997). J. Appl. Cryst. 30, 476-486.]; Dikundwar et al., 2012[Dikundwar, A. G., Pete, U. D., Zade, C. M., Bendre, R. S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4530-4534.]). Such a functional group exchange leads to isostructural and isomorphous crystal structures (Berzelius, 1844[Berzelius, J. (1844). Jahresber., 23, 44.]; Melhado, 1980[Melhado, E. M. (1980). Historical Studies in the Physical Sciences, Mitscherlich's Discovery of Isomorphism, 11, 87-123.]; Mitscherlich, 1822[Mitscherlich, E. (1822). Abhl. Akad. Berl. p. 43.]; Morrow, 1969[Morrow, S. I. (1969). J. Chem. Educ. 46, 580-583.]). The recent literature on molecular cocrystals (Cinčić et al., 2008a[Cinčić, D., Friščić, T. & Jones, W. (2008a). Chem. Eur. J. 14, 747-753.],b[Cinčić, D., Friščić, T. & Jones, W. (2008b). New J. Chem. 32, 1776-1781.]; Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Chem. Commun. 50, 1181-1184.]) and pharmaceutical multi-component systems, e.g. lamotrigine and olanzapine cocrystals and salts, provide examples of isostructurality (Ebenezer et al., 2011[Ebenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579-3592.]; Galcera et al., 2012[Galcera, J., Friščić, T., Hejczyk, K. E., Fábián, L., Clarke, S. M., Day, G. M., Molins, E. & Jones, W. (2012). CrystEngComm, 14, 7898-7906.], 2013[Galcera, J., Friščić, T., Molins, E. & Jones, W. (2013). CrystEngComm, 15, 1332-1338.]; Galcera & Molins, 2009[Galcera, J. & Molins, E. (2009). Cryst. Growth Des. 9, 327-334.]; Clarke et al., 2012[Clarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, Ł., Almarsson, Ö. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194-4201.]; Thakuria & Nangia, 2013[Thakuria, R. & Nangia, A. (2013). Cryst. Growth Des. 13, 3672-3680.]; Chitra et al., 2012[Chitra, R., Choudhury, R. R., Thiruvenkatam, V., Hosur, M. V. & Guru Row, T. N. (2012). J. Mol. Struct. 1010, 46-51.]). The importance of isostructurality is that similar cocrystals can be designed depending on the geometry and shape and molecular composition of the starting materials. Isostructurality is also a useful guide in the crystal structure prediction of multi-component systems (Schmidt, 1971[Schmidt, G. M. (1971). J. Pure Appl. Chem. 27, p. 647.]; Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Elsevier: Amsterdam.]; Braga et al., 1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]; Desiraju et al., 2011[Desiraju, G. R., Vittal, J. & Ramanan, A. (2011). Crystal Engineering: A Textbook. Singapore: World Scientific.]). Different guest molecules may be incorporated into the host lattice without substantially changing the crystal structure, i.e. isostructurality. The formation of isostructural cocrystals with the same synthon (isosynthon) and this study of sulfonamides with VLM, CPR shows how synthon similarity can lead to isostructural cocrystals (Fig. 3[link]). There are four sets of isostructural cocrystals along with three types of synthons found in this set of cocrystals. Interestingly, a unique set of isostructural cocrystals shows isosynthons. Out of the 13 cocrystal structures in this study, four contain the dimer–catemer synthon, two result in the dimer–cyclic motif and seven gave the catemer synthon. Synthon 1 cocrystals exhibit two isostructural sets: set one of BSA–VLM, BSA–CPR, 4ClBSA–CPR, 4BrBSA–CPR, SNA–CPR and set two cocrystals 4ClBSA–CPR and 4BrBSA–CPR. These are three-dimensional isostructural systems and show isostructurality due to the Cl/Br/NH2 exchange (functional group) and VLM/CPR (homolog; Table 4[link]). Further, the same trend continues for synthons 2 and 3 cocrystal sets also, i.e. isostructurality for Cl/Br and VLM/CPR. Furthermore, despite changes in molecular structures, the PXRD line patterns of synthon 1 cocrystals match quite well (Fig. S4 ) confirming their isomorphous nature.

Table 4
Unit-cell similarity index ([\prod]) of cocrystals

Cocrystal Crystal system/space group Cell values Cell values summation [\prod = \left| {{a + b + c} \over {a' + b' + c'}} \right| - 1]
BSA–VLMa Orthorhombic, P212121 7.104, 12.793, 14.030 33.928 0.0253
BSA–CPRa 7.070, 12.762, 14.977 34.809
4ClBSA–CPRa 7.156, 13.369, 15.276 35.801 0.0082
4BrBSA–CPRa 7.156, 13.538, 15.406 36.100
SNA–CPRa 7.095, 13.128, 15.342 35.566 0.0147 (SNA–CPR, 4BrBSA–CPR)
4ClBSA–VLMb Monoclinic, C2/c 25.701, 6.809, 19.177 51.900 0.0016
4BrBSA–VLMb 25.914, 6.8687, 19.202 51.984
2ClBSA–VLMc Monoclinic, P21/c 10.521, 13.7661, 10.340 34.627 0.0085
2ClBSA–CPRc 9.878, 14.172, 10.875 34.925
2ABSA–CPRd 7.273, 15.905, 12.776 35.954 0.0223
BSA–AZLd 7.302, 17.189, 12.2835 36.774
a, b, c, d are the different isomorphous systems as detailed in Table 1[link].

Isostructurality was calculated on the basis of unit-cell parameters. Monoclinic and orthorhombic crystal structures show the unit-cell similarity index [\prod] goes to zero (isostructurality) (see Table 2[link])

[\prod = \left| {{{a + b + c} \over {a' + b' + c'}}} \right| - 1 \cong 0,]

where a, b, c and a′, b′, c′ are orthogonalized lattice parameters of the related structures.

3.6. Classification of sulfonamide synthons

A survey of the Cambridge Structural Database (CSD, Version 5.36, 1 November 2014[US-FDA (2014). GRAS list, https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ , Accessed 04/12/2014.] update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) furnished 220 hits of primary sulfonamides (after eliminating hydrates, solvates, salts and duplicates) and 2160 hits of secondary sulfonamides (Table 5[link]). These reported structures were analyzed to classify the known supramolecular synthons for sulfonamides and named as the anti catemer, syn catemer, finite catemer; continuous dimers, alternative dimers (Fig. 7[link]b), dimers making rings, finite dimers; tetramers, three point synthons, and finally a miscellaneous cluster of mixed motifs (Fig. 7[link], CSD refcodes are provided in Table S2 ). The presence of multiple donors/acceptors on the SO2NH2 group together with conformational flexibility (syn/anti) leads to many possible hydrogen bond synthons. In contrast, the syn amides are more predictable and show mainly dimer and to a lesser extent catemer synthons. The synthons in Fig. 7[link](c) suggest that the known heterosynthon between sulfonamide and N-oxide may be replaced by amide with the same graph set R42(8) to provide a crystal engineering strategy for sulfonamide–carboxamide cocrystals.

Table 5
CSD data on sulfonamides and their cocrystals

Hydrates, solvates, salts and duplicates were removed in counting statistics.

Sulfonamides CSD hits
No. of primary sulfonamides reported 220
No. of secondary sulfonamides reported 2160
No. of primary sulfonamides cocrystals reported 33
No. of secondary sulfonamides cocrystals reported 39
[Figure 7]
Figure 7
(a) Classification of primary sulfonamide synthons reported in CSD and (b) their hydrogen bonding and frequency. (c) Synthons in cocrystals of primary sulfonamides with N-oxides and amides. The latter analysis suggests that sulfonamide–N-oxide synthons may be replaced by syn-amides to give a new strategy for sulfonamide–carboxamide cocrystals.

A CSD search for the binary systems (cocrystals) furnished 33 hits for primary sulfonamides and 39 hits for secondary sulfonamides along with the starting materials of this study (Fig. S5 ). The almost equal numbers of primary and secondary sulfonamide cocrystals means that there are no steric issues with cocrystal assembly. Among the primary sulfonamide cocrystals, there are a few N—H⋯O hydrogen-bonded structures with amides, e.g. celecoxib-valerolactam trimorphs and nicotinamide cocrystals (see Fig. 7[link]). Among the primary sulfonamide drugs, celecoxib, furosemide, acetazolamide and hydrochlorothiazide are notable for making cocrystals with amide coformers (Bolla et al., 2014[Bolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24-27.]; Harriss et al., 2014[Harriss, B. I., Vella-Zarb, L., Wilson, C. & Evans, I. R. (2014). Cryst. Growth Des. 14, 783-791.]; Ueto et al., 2012[Ueto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485-494.]; Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.]; Sanphui & Rajput, 2014[Sanphui, P. & Rajput, L. (2014). Acta Cryst. B70, 81-90.]; Remenar et al., 2007[Remenar, J. F., Peterson, M. L., Stephens, P. W., Zhang, Z., Zimenkov, Y. & Hickey, M. B. (2007). Mol. Pharm. 4, 386-400.]), e.g. nicotinamide, isonicotinamide and picolinamide with different sulfonamide–amide syn­thons (see Fig. S9 ).

There are 2046 sulfonamides in the CSD but only 72 binary systems (cocrystals) in the CSD. The fewer number of sulfonamide cocrystals compared to say those for carboxylic acids and amides could be due to the enthalpy penalty for disrupting the strong sulfonamide homosynthon in the parent crystal structures with an even stronger hydrogen bond in the cocrystal. The activated oxygen acceptor of N-oxides, and to a lesser extent carboxamide functional groups, has been successfully used for sulfonamide cocrystals. The present study presents a crystal engineering approach to sulfonamide–carboxamide cocrystals analogous to the sulfonamide–pyridine-N-oxide heterosynthon.

3.7. Hirshfeld surface analysis

The Hirshfeld surface (using Crystal Explorer, Version 3.1, Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Hirshfeld & Mirsky, 1979[Hirshfeld, F. L. & Mirsky, K. (1979). Acta Cryst. A35, 366-370.]; Kitaigorodsky, 1973[Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]; Vainshtein et al., 1982[Vainshtein, B. K., Fridkin, V. M. & Indenbom, V. L. (1982). Modern Crystallography, Vol. II. Berlin: Springer-Verlag.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.], McKinnon et al., 1998[McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136-2141.]) translates the electron density into molecular fragments and also volume around a molecule in a manner similar to the van der Waals surface, or an outer surface of the electron density in a crystal structure. The Hirshfeld surface is related to the molecule and the proximity of its nearest neighbors and this allows easy identification of characteristic strong and weak interactions throughout the structure. It explains the nature of intermolecular interactions within a crystal structure using a two-dimensional fingerprint plot consisting of spikes and wings. The 4BrBSA–VLM cocrystal two-dimensional finger plots with all types of interactions are shown in Fig. 8[link] as a representative of this class. The other binary systems are shown in Fig. S6 . The strong spikes at 1.0–1.2 Å correspond to H⋯O interactions and the weak spikes between 1.2 and 1.4 Å for H⋯N hydrogen bonds. The other H⋯X, H⋯H, H⋯C interactions occur between 1.5 and 2.4 Å in the wings region. The strong H⋯O interaction is the major contributor in cocrystal structures (Fig. S7 and Table S3 ).

[Figure 8]
Figure 8
(a) Hirshfeld surfaces of the three types of the synthons present in sulfonamide–lactam cocrystals. (b) Two-dimensional fingerprint plots of the intermolecular contacts in the 4BrBSA–CPR cocrystal.

4. Conclusions

A crystal engineering strategy is described for cocrystals of an otherwise less studied but pharmaceutically very important class of sulfonamide functional group. The binary systems of benzene sulfonamide–lactam exhibit three types of heterosynthons. The N—H donor of the sulfonamide forms a hydrogen bond with the C=O acceptor in different arrangements to result in synthon 1 of the catemer chain, synthon 2 as a dimer–cyclic motif and synthon 3 as a dimer–catemer. The classification of cocrystal structures in these synthon categories now offers a design element for sulfa drug cocrystals with GRAS coformers. Interestingly, isostructural pairs of cocrystals with isosynthons are observed in this study, which not only facilitates classification but also correlates with known cocrystal structures in the CSD, e.g. the novel sulfonamide–amide synthon analogous to the reported sulfonamide–N-oxide. The cocrystals of primary sulfonamides with GRAS coformers will provide an entry to the modification of sulfa drugs via pharmaceutical cocrystals.

Supporting information


Computing details top

For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(2ABSACPR) top
Crystal data top
C6H8N2O2S·C6H11NODx = 1.299 Mg m3
Mr = 285.36Melting point: 341 K
Monoclinic, P121/n1Mo Kα radiation, λ = 0.71073 Å
a = 7.2731 (4) ÅCell parameters from 2272 reflections
b = 15.9052 (10) Åθ = 3.1–28.7°
c = 12.7766 (6) ŵ = 0.23 mm1
β = 99.291 (5)°T = 298 K
V = 1458.60 (15) Å3PLATE, colorles
Z = 40.22 × 0.21 × 0.20 mm
F(000) = 608
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2488 independent reflections
Radiation source: fine-focus sealed tube1993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 24.7°, θmin = 3.0°
Absorption correction: multi-scan
SADABS
h = 88
Tmin = 0.874, Tmax = 1.000k = 1618
5525 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2431P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H8N2O2S·C6H11NOV = 1458.60 (15) Å3
Mr = 285.36Z = 4
Monoclinic, P121/n1Mo Kα radiation
a = 7.2731 (4) ŵ = 0.23 mm1
b = 15.9052 (10) ÅT = 298 K
c = 12.7766 (6) Å0.22 × 0.21 × 0.20 mm
β = 99.291 (5)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2488 independent reflections
Absorption correction: multi-scan
SADABS
1993 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.020
5525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
2488 reflectionsΔρmin = 0.32 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03105 (7)0.83445 (3)0.15700 (4)0.04286 (18)
O30.19797 (19)0.47718 (9)0.56486 (11)0.0533 (4)
O20.1587 (2)0.84605 (10)0.25335 (11)0.0589 (4)
N30.0943 (2)0.43705 (11)0.62356 (13)0.0507 (4)
H3A0.12220.45250.56360.061*
O10.1464 (2)0.79747 (10)0.16181 (12)0.0603 (4)
C60.0484 (3)0.74236 (12)0.02378 (16)0.0451 (5)
N10.0085 (3)0.92530 (12)0.10533 (15)0.0484 (5)
H1A0.094 (3)0.9264 (14)0.0607 (19)0.058*
H1B0.094 (3)0.9551 (14)0.0993 (17)0.058*
C10.1442 (3)0.77321 (12)0.07254 (15)0.0397 (5)
C70.0815 (3)0.44355 (12)0.63577 (16)0.0444 (5)
N20.1366 (3)0.75970 (12)0.05867 (15)0.0623 (5)
H2A0.18430.72060.10150.075*
H2B0.19480.76150.00500.075*
C40.3371 (4)0.68114 (16)0.0565 (2)0.0709 (7)
H40.40200.65020.10040.085*
C20.3335 (3)0.75770 (14)0.10226 (18)0.0548 (6)
H20.39580.77910.16600.066*
C120.2458 (3)0.40596 (15)0.70280 (18)0.0571 (6)
H12A0.35890.40360.67170.069*
H12B0.21680.34920.72260.069*
C50.1519 (4)0.69616 (14)0.08703 (19)0.0616 (6)
H50.09270.67510.15170.074*
C80.1377 (3)0.41193 (16)0.73576 (17)0.0586 (6)
H8A0.09660.35410.74680.070*
H8B0.27260.41240.72800.070*
C110.2803 (3)0.45962 (16)0.80099 (19)0.0643 (6)
H11A0.27420.51830.78000.077*
H11B0.40530.44880.83790.077*
C90.0588 (3)0.46304 (17)0.83262 (19)0.0688 (7)
H9A0.13320.45250.88780.083*
H9B0.07080.52220.81450.083*
C100.1438 (3)0.44484 (17)0.87691 (18)0.0690 (7)
H10A0.18020.47970.93910.083*
H10B0.15390.38660.89980.083*
C30.4291 (3)0.71126 (16)0.0386 (2)0.0696 (7)
H30.55520.70020.05950.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0492 (3)0.0467 (3)0.0322 (3)0.0020 (2)0.0050 (2)0.0030 (2)
O30.0480 (8)0.0652 (9)0.0446 (8)0.0006 (7)0.0011 (7)0.0064 (7)
O20.0724 (10)0.0662 (10)0.0335 (8)0.0041 (8)0.0049 (7)0.0019 (7)
N30.0524 (10)0.0610 (11)0.0399 (10)0.0056 (9)0.0112 (8)0.0068 (8)
O10.0579 (9)0.0670 (10)0.0602 (10)0.0130 (8)0.0223 (7)0.0016 (8)
C60.0564 (12)0.0396 (10)0.0376 (11)0.0034 (9)0.0029 (9)0.0039 (9)
N10.0477 (10)0.0479 (10)0.0468 (11)0.0001 (9)0.0005 (8)0.0035 (9)
C10.0449 (10)0.0387 (10)0.0351 (11)0.0035 (9)0.0050 (8)0.0057 (8)
C70.0483 (11)0.0428 (11)0.0419 (11)0.0044 (10)0.0061 (9)0.0004 (10)
N20.0644 (12)0.0665 (12)0.0494 (11)0.0059 (10)0.0104 (9)0.0080 (10)
C40.0858 (19)0.0631 (15)0.0726 (18)0.0115 (14)0.0393 (15)0.0013 (14)
C20.0480 (12)0.0614 (14)0.0538 (14)0.0017 (11)0.0048 (10)0.0040 (11)
C120.0512 (12)0.0625 (14)0.0590 (14)0.0117 (11)0.0131 (10)0.0121 (12)
C50.0923 (19)0.0513 (13)0.0419 (13)0.0024 (13)0.0130 (12)0.0046 (11)
C80.0512 (12)0.0729 (15)0.0530 (14)0.0060 (11)0.0124 (10)0.0141 (12)
C110.0612 (14)0.0700 (15)0.0572 (15)0.0081 (12)0.0037 (11)0.0110 (13)
C90.0814 (17)0.0810 (17)0.0478 (14)0.0121 (14)0.0221 (12)0.0040 (13)
C100.0879 (18)0.0730 (16)0.0430 (13)0.0026 (14)0.0013 (12)0.0024 (12)
C30.0549 (14)0.0759 (17)0.0813 (19)0.0084 (13)0.0213 (13)0.0082 (15)
Geometric parameters (Å, º) top
S1—O11.4283 (15)C4—H40.9300
S1—O21.4290 (14)C2—C31.369 (3)
S1—N11.5954 (18)C2—H20.9300
S1—C11.754 (2)C12—C111.505 (3)
O3—C71.256 (2)C12—H12A0.9700
N3—C71.317 (2)C12—H12B0.9700
N3—C121.457 (3)C5—H50.9300
N3—H3A0.8600C8—C91.514 (3)
C6—N21.375 (2)C8—H8A0.9700
C6—C51.399 (3)C8—H8B0.9700
C6—C11.401 (3)C11—C101.514 (3)
N1—H1A0.77 (2)C11—H11A0.9700
N1—H1B0.90 (2)C11—H11B0.9700
C1—C21.390 (3)C9—C101.519 (3)
C7—C81.490 (3)C9—H9A0.9700
N2—H2A0.8631C9—H9B0.9700
N2—H2B0.8626C10—H10A0.9700
C4—C51.361 (3)C10—H10B0.9700
C4—C31.375 (4)C3—H30.9300
O1—S1—O2118.80 (10)N3—C12—H12B109.0
O1—S1—N1106.67 (10)C11—C12—H12B109.0
O2—S1—N1106.76 (10)H12A—C12—H12B107.8
O1—S1—C1108.34 (9)C4—C5—C6121.8 (2)
O2—S1—C1107.32 (9)C4—C5—H5119.1
N1—S1—C1108.63 (9)C6—C5—H5119.1
C7—N3—C12125.74 (18)C7—C8—C9113.53 (19)
C7—N3—H3A117.1C7—C8—H8A108.9
C12—N3—H3A117.1C9—C8—H8A108.9
N2—C6—C5120.5 (2)C7—C8—H8B108.9
N2—C6—C1122.43 (19)C9—C8—H8B108.9
C5—C6—C1116.96 (19)H8A—C8—H8B107.7
S1—N1—H1A113.3 (17)C12—C11—C10114.09 (19)
S1—N1—H1B114.7 (14)C12—C11—H11A108.7
H1A—N1—H1B120 (2)C10—C11—H11A108.7
C2—C1—C6120.54 (19)C12—C11—H11B108.7
C2—C1—S1118.23 (15)C10—C11—H11B108.7
C6—C1—S1121.22 (15)H11A—C11—H11B107.6
O3—C7—N3120.19 (19)C8—C9—C10114.8 (2)
O3—C7—C8121.05 (18)C8—C9—H9A108.6
N3—C7—C8118.75 (18)C10—C9—H9A108.6
C6—N2—H2A109.4C8—C9—H9B108.6
C6—N2—H2B109.2C10—C9—H9B108.6
H2A—N2—H2B109.2H9A—C9—H9B107.5
C5—C4—C3120.7 (2)C11—C10—C9115.38 (19)
C5—C4—H4119.7C11—C10—H10A108.4
C3—C4—H4119.7C9—C10—H10A108.4
C3—C2—C1120.6 (2)C11—C10—H10B108.4
C3—C2—H2119.7C9—C10—H10B108.4
C1—C2—H2119.7H10A—C10—H10B107.5
N3—C12—C11113.09 (18)C2—C3—C4119.4 (2)
N3—C12—H12A109.0C2—C3—H3120.3
C11—C12—H12A109.0C4—C3—H3120.3
(BSAAZL) top
Crystal data top
C6H7NO2S·C7H13NOF(000) = 608
Mr = 284.37Dx = 1.279 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3020 (9) ÅCell parameters from 3397 reflections
b = 17.189 (2) Åθ = 2.9–23.3°
c = 12.2835 (16) ŵ = 0.23 mm1
β = 106.760 (2)°T = 298 K
V = 1476.2 (3) Å3PLATE, colorles
Z = 40.22 × 0.20 × 0.20 mm
Data collection top
CCD area detector
diffractometer
2154 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 24.7°, θmin = 2.1°
phi and ω scansh = 88
13710 measured reflectionsk = 2020
2520 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8349P]
where P = (Fo2 + 2Fc2)/3
2520 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H7NO2S·C7H13NOV = 1476.2 (3) Å3
Mr = 284.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3020 (9) ŵ = 0.23 mm1
b = 17.189 (2) ÅT = 298 K
c = 12.2835 (16) Å0.22 × 0.20 × 0.20 mm
β = 106.760 (2)°
Data collection top
CCD area detector
diffractometer
2154 reflections with I > 2σ(I)
13710 measured reflectionsRint = 0.037
2520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
2520 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38938 (11)0.14789 (5)0.32694 (6)0.0614 (3)
O30.6840 (3)0.53498 (12)0.94445 (16)0.0631 (5)
N20.3761 (3)0.56077 (15)0.8646 (2)0.0566 (6)
C70.5577 (4)0.57061 (15)0.8708 (2)0.0519 (7)
N10.4595 (4)0.06644 (16)0.3858 (2)0.0624 (7)
C10.2838 (4)0.20092 (15)0.4165 (2)0.0509 (7)
C60.3969 (5)0.24554 (18)0.5024 (2)0.0649 (8)
H60.52850.24730.51400.078*
O10.5566 (4)0.18886 (15)0.3219 (2)0.0918 (8)
C20.0897 (4)0.19751 (18)0.4000 (3)0.0649 (8)
H20.01310.16690.34220.078*
O20.2438 (4)0.13196 (16)0.22504 (17)0.0936 (8)
C130.2123 (4)0.5940 (2)0.7798 (3)0.0677 (8)
H13A0.24830.64420.75620.081*
H13B0.10990.60260.81420.081*
C120.1394 (4)0.5429 (2)0.6764 (3)0.0764 (10)
H12A0.04160.57120.62000.092*
H12B0.07910.49740.69790.092*
C80.6142 (4)0.62429 (18)0.7904 (3)0.0678 (8)
H8A0.74230.64340.82650.081*
H8B0.52860.66870.77600.081*
C100.4123 (5)0.5781 (2)0.5924 (3)0.0832 (10)
H10A0.34480.62730.58670.100*
H10B0.42800.56680.51820.100*
C90.6104 (5)0.5875 (2)0.6774 (3)0.0773 (10)
H9A0.66960.53660.69220.093*
H9B0.68810.61900.64240.093*
C110.2909 (6)0.5156 (2)0.6214 (3)0.0867 (11)
H11A0.37450.47910.67260.104*
H11B0.22720.48760.55230.104*
C30.0098 (5)0.2398 (2)0.4696 (3)0.0812 (10)
H30.12150.23800.45890.097*
C40.1229 (7)0.2846 (2)0.5545 (3)0.0874 (11)
H40.06840.31330.60130.105*
C50.3157 (7)0.2872 (2)0.5707 (3)0.0856 (11)
H50.39210.31770.62880.103*
H1A0.556 (4)0.0704 (17)0.437 (3)0.055 (9)*
H1B0.367 (4)0.0358 (18)0.394 (2)0.063 (9)*
H2A0.350 (4)0.5300 (17)0.910 (3)0.056 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0675 (5)0.0681 (5)0.0491 (4)0.0087 (4)0.0176 (3)0.0095 (3)
O30.0502 (11)0.0787 (14)0.0541 (11)0.0043 (10)0.0050 (9)0.0086 (10)
N20.0512 (14)0.0715 (16)0.0477 (13)0.0044 (12)0.0155 (11)0.0093 (12)
C70.0542 (16)0.0519 (15)0.0465 (15)0.0030 (13)0.0093 (13)0.0062 (12)
N10.0509 (15)0.0663 (17)0.0639 (17)0.0013 (13)0.0072 (14)0.0031 (13)
C10.0572 (16)0.0496 (15)0.0417 (14)0.0015 (12)0.0077 (12)0.0096 (12)
C60.0689 (19)0.0658 (19)0.0542 (17)0.0071 (15)0.0086 (15)0.0034 (15)
O10.0985 (18)0.0885 (17)0.1086 (19)0.0026 (14)0.0617 (15)0.0215 (14)
C20.0614 (19)0.071 (2)0.0570 (17)0.0012 (15)0.0087 (14)0.0009 (15)
O20.1033 (18)0.118 (2)0.0458 (12)0.0350 (15)0.0006 (12)0.0055 (12)
C130.0514 (17)0.086 (2)0.0670 (19)0.0184 (15)0.0195 (14)0.0105 (17)
C120.0546 (18)0.103 (3)0.0623 (19)0.0069 (17)0.0027 (15)0.0138 (18)
C80.0568 (18)0.0632 (19)0.080 (2)0.0092 (14)0.0139 (16)0.0119 (16)
C100.102 (3)0.093 (3)0.0595 (19)0.012 (2)0.0313 (19)0.0084 (18)
C90.070 (2)0.095 (2)0.076 (2)0.0144 (18)0.0355 (18)0.0293 (19)
C110.103 (3)0.089 (3)0.062 (2)0.014 (2)0.014 (2)0.0165 (18)
C30.074 (2)0.091 (3)0.087 (3)0.0150 (19)0.037 (2)0.014 (2)
C40.134 (4)0.073 (2)0.069 (2)0.017 (2)0.051 (2)0.0041 (19)
C50.122 (3)0.074 (2)0.0550 (19)0.013 (2)0.015 (2)0.0068 (17)
Geometric parameters (Å, º) top
S1—O21.416 (2)C12—C111.526 (5)
S1—O11.426 (2)C12—H12A0.9700
S1—N11.591 (3)C12—H12B0.9700
S1—C11.768 (3)C8—C91.517 (5)
O3—C71.250 (3)C8—H8A0.9700
N2—C71.317 (3)C8—H8B0.9700
N2—C131.457 (3)C10—C111.500 (5)
N2—H2A0.83 (3)C10—C91.529 (5)
C7—C81.495 (4)C10—H10A0.9700
N1—H1A0.80 (3)C10—H10B0.9700
N1—H1B0.88 (3)C9—H9A0.9700
C1—C61.372 (4)C9—H9B0.9700
C1—C21.374 (4)C11—H11A0.9700
C6—C51.363 (5)C11—H11B0.9700
C6—H60.9300C3—C41.365 (5)
C2—C31.375 (4)C3—H30.9300
C2—H20.9300C4—C51.364 (5)
C13—C121.511 (5)C4—H40.9300
C13—H13A0.9700C5—H50.9300
C13—H13B0.9700
O2—S1—O1119.42 (17)H12A—C12—H12B107.5
O2—S1—N1107.04 (17)C7—C8—C9114.3 (3)
O1—S1—N1106.66 (16)C7—C8—H8A108.7
O2—S1—C1107.39 (14)C9—C8—H8A108.7
O1—S1—C1107.74 (14)C7—C8—H8B108.7
N1—S1—C1108.17 (13)C9—C8—H8B108.7
C7—N2—C13126.6 (3)H8A—C8—H8B107.6
C7—N2—H2A118 (2)C11—C10—C9114.9 (3)
C13—N2—H2A116 (2)C11—C10—H10A108.5
O3—C7—N2120.0 (3)C9—C10—H10A108.5
O3—C7—C8119.6 (2)C11—C10—H10B108.5
N2—C7—C8120.4 (3)C9—C10—H10B108.5
S1—N1—H1A112 (2)H10A—C10—H10B107.5
S1—N1—H1B114.8 (19)C8—C9—C10115.6 (3)
H1A—N1—H1B119 (3)C8—C9—H9A108.4
C6—C1—C2120.3 (3)C10—C9—H9A108.4
C6—C1—S1119.5 (2)C8—C9—H9B108.4
C2—C1—S1120.2 (2)C10—C9—H9B108.4
C5—C6—C1119.7 (3)H9A—C9—H9B107.4
C5—C6—H6120.2C10—C11—C12116.0 (3)
C1—C6—H6120.2C10—C11—H11A108.3
C1—C2—C3119.3 (3)C12—C11—H11A108.3
C1—C2—H2120.3C10—C11—H11B108.3
C3—C2—H2120.3C12—C11—H11B108.3
N2—C13—C12113.0 (3)H11A—C11—H11B107.4
N2—C13—H13A109.0C4—C3—C2120.1 (3)
C12—C13—H13A109.0C4—C3—H3119.9
N2—C13—H13B109.0C2—C3—H3119.9
C12—C13—H13B109.0C5—C4—C3120.1 (3)
H13A—C13—H13B107.8C5—C4—H4119.9
C13—C12—C11115.2 (3)C3—C4—H4119.9
C13—C12—H12A108.5C6—C5—C4120.4 (3)
C11—C12—H12A108.5C6—C5—H5119.8
C13—C12—H12B108.5C4—C5—H5119.8
C11—C12—H12B108.5
(4ClBSACPR) top
Crystal data top
C6H6ClNO2S·C6H11NODx = 1.385 Mg m3
Mr = 304.79Melting point: 355 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.1564 (13) ÅCell parameters from 543 reflections
b = 13.369 (2) Åθ = 2.8–26.3°
c = 15.276 (3) ŵ = 0.41 mm1
V = 1461.5 (5) Å3T = 297 K
Z = 4PLATE, colorles
F(000) = 6400.23 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2851 independent reflections
Radiation source: fine-focus sealed tube1152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
SADABS
h = 87
Tmin = 0.333, Tmax = 1.000k = 1216
4403 measured reflectionsl = 1219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0114P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2851 reflectionsΔρmax = 0.25 e Å3
178 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (15)
Crystal data top
C6H6ClNO2S·C6H11NOV = 1461.5 (5) Å3
Mr = 304.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1564 (13) ŵ = 0.41 mm1
b = 13.369 (2) ÅT = 297 K
c = 15.276 (3) Å0.23 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2851 independent reflections
Absorption correction: multi-scan
SADABS
1152 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 1.000Rint = 0.082
4403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.25 e Å3
S = 0.97Δρmin = 0.25 e Å3
2851 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
178 parametersAbsolute structure parameter: 0.11 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.0196 (3)0.35614 (15)0.88356 (14)0.0535 (6)
Cl10.5566 (3)0.07660 (16)0.67777 (13)0.0877 (8)
O20.0844 (6)0.4564 (3)0.8748 (3)0.0713 (16)
O30.0805 (7)1.1190 (3)0.9736 (3)0.0632 (17)
C70.0056 (12)1.0508 (6)0.9436 (5)0.054 (2)
C60.0971 (10)0.1977 (5)0.7767 (4)0.0458 (19)
H60.03040.18440.77800.055*
C30.4741 (11)0.2386 (5)0.7731 (5)0.055 (2)
H30.60140.25230.77140.066*
C40.4035 (11)0.1560 (5)0.7312 (4)0.048 (2)
O10.1687 (6)0.3320 (4)0.8608 (3)0.0827 (19)
C20.3530 (10)0.3013 (5)0.8181 (4)0.052 (2)
H20.39830.35790.84640.063*
C50.2143 (11)0.1350 (5)0.7310 (4)0.055 (2)
H50.16750.08010.70090.066*
C10.1653 (9)0.2791 (5)0.8203 (4)0.0382 (18)
N10.0459 (9)0.3254 (4)0.9837 (4)0.0539 (19)
H1A0.005 (11)0.273 (4)1.002 (5)0.065*
H1B0.167 (8)0.349 (5)1.003 (4)0.065*
N20.1869 (9)1.0380 (4)0.9556 (4)0.065 (2)
H2A0.23851.08120.98960.078*
C80.0874 (10)0.9702 (6)0.8853 (5)0.072 (2)
H8A0.21740.98830.87680.086*
H8B0.02750.97110.82840.086*
C100.1078 (11)0.8120 (6)0.9053 (6)0.078 (3)
H10A0.09810.74420.92750.093*
H10B0.12910.80760.84270.093*
C120.3120 (11)0.9637 (7)0.9210 (6)0.092 (3)
H12A0.43810.98090.93870.110*
H12B0.30750.96720.85760.110*
C90.0795 (11)0.8652 (6)0.9207 (5)0.083 (3)
H9A0.17810.82620.89360.099*
H9B0.10390.86720.98310.099*
C110.2757 (12)0.8613 (7)0.9469 (6)0.094 (3)
H11A0.25950.85981.01000.112*
H11B0.38540.82160.93330.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0373 (13)0.0552 (14)0.0680 (14)0.0072 (12)0.0053 (11)0.0000 (13)
Cl10.095 (2)0.0763 (14)0.0922 (16)0.0242 (15)0.0284 (15)0.0156 (15)
O20.067 (4)0.044 (3)0.103 (4)0.018 (3)0.016 (3)0.021 (3)
O30.060 (4)0.050 (4)0.080 (4)0.002 (3)0.014 (3)0.019 (3)
C70.036 (6)0.056 (6)0.071 (6)0.028 (5)0.006 (5)0.007 (5)
C60.035 (5)0.053 (5)0.050 (5)0.013 (4)0.001 (4)0.009 (4)
C30.040 (5)0.059 (5)0.066 (5)0.006 (5)0.006 (5)0.012 (5)
C40.056 (6)0.043 (5)0.045 (5)0.014 (5)0.007 (4)0.005 (4)
O10.026 (3)0.108 (5)0.114 (5)0.014 (3)0.007 (3)0.023 (4)
C20.050 (6)0.057 (5)0.049 (5)0.001 (5)0.001 (4)0.014 (5)
C50.068 (6)0.042 (5)0.054 (5)0.010 (5)0.005 (5)0.016 (5)
C10.032 (5)0.038 (5)0.044 (4)0.005 (4)0.000 (4)0.004 (4)
N10.049 (5)0.045 (4)0.068 (5)0.011 (4)0.018 (4)0.007 (4)
N20.055 (5)0.039 (4)0.100 (5)0.009 (4)0.019 (4)0.024 (4)
C80.046 (5)0.072 (6)0.097 (7)0.011 (5)0.002 (5)0.002 (6)
C100.079 (7)0.050 (5)0.104 (7)0.003 (6)0.007 (6)0.004 (5)
C120.044 (6)0.079 (7)0.152 (10)0.003 (6)0.015 (6)0.012 (8)
C90.065 (7)0.072 (7)0.112 (8)0.027 (6)0.007 (5)0.011 (6)
C110.075 (8)0.068 (7)0.138 (8)0.018 (7)0.037 (6)0.003 (7)
Geometric parameters (Å, º) top
S3—O21.424 (5)N1—H1A0.82 (6)
S3—O11.429 (5)N1—H1B0.97 (6)
S3—N11.595 (6)N2—C121.438 (8)
S3—C11.756 (7)N2—H2A0.8600
Cl1—C41.730 (7)C8—C91.505 (8)
O3—C71.192 (8)C8—H8A0.9700
C7—N21.321 (8)C8—H8B0.9700
C7—C81.549 (9)C10—C111.512 (10)
C6—C11.366 (8)C10—C91.535 (9)
C6—C51.375 (8)C10—H10A0.9700
C6—H60.9300C10—H10B0.9700
C3—C41.373 (8)C12—C111.449 (9)
C3—C21.388 (8)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.383 (9)C9—H9A0.9700
C2—C11.376 (8)C9—H9B0.9700
C2—H20.9300C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
O2—S3—O1119.8 (3)C12—N2—H2A114.7
O2—S3—N1107.1 (3)C9—C8—C7115.2 (7)
O1—S3—N1106.6 (3)C9—C8—H8A108.5
O2—S3—C1107.9 (3)C7—C8—H8A108.5
O1—S3—C1107.1 (3)C9—C8—H8B108.5
N1—S3—C1107.8 (3)C7—C8—H8B108.5
O3—C7—N2123.6 (8)H8A—C8—H8B107.5
O3—C7—C8122.1 (7)C11—C10—C9115.3 (6)
N2—C7—C8114.3 (8)C11—C10—H10A108.4
C1—C6—C5121.0 (7)C9—C10—H10A108.4
C1—C6—H6119.5C11—C10—H10B108.4
C5—C6—H6119.5C9—C10—H10B108.4
C4—C3—C2119.2 (7)H10A—C10—H10B107.5
C4—C3—H3120.4N2—C12—C11116.1 (8)
C2—C3—H3120.4N2—C12—H12A108.2
C3—C4—C5121.6 (7)C11—C12—H12A108.2
C3—C4—Cl1118.7 (7)N2—C12—H12B108.2
C5—C4—Cl1119.7 (7)C11—C12—H12B108.2
C1—C2—C3119.4 (7)H12A—C12—H12B107.4
C1—C2—H2120.3C8—C9—C10114.2 (7)
C3—C2—H2120.3C8—C9—H9A108.7
C6—C5—C4118.2 (7)C10—C9—H9A108.7
C6—C5—H5120.9C8—C9—H9B108.7
C4—C5—H5120.9C10—C9—H9B108.7
C6—C1—C2120.6 (7)H9A—C9—H9B107.6
C6—C1—S3121.6 (6)C12—C11—C10116.1 (8)
C2—C1—S3117.8 (6)C12—C11—H11A108.3
S3—N1—H1A121 (5)C10—C11—H11A108.3
S3—N1—H1B108 (4)C12—C11—H11B108.3
H1A—N1—H1B120 (7)C10—C11—H11B108.3
C7—N2—C12130.5 (7)H11A—C11—H11B107.4
C7—N2—H2A114.7
(SNACPR) top
Crystal data top
C6H8N2O2S·C6H11NODx = 1.326 Mg m3
Mr = 285.36Melting point: 368 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.0957 (6) ÅCell parameters from 831 reflections
b = 13.1280 (13) Åθ = 2.7–24.7°
c = 15.3425 (18) ŵ = 0.24 mm1
V = 1429.2 (2) Å3T = 298 K
Z = 4PLATE, colorles
F(000) = 6080.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2354 independent reflections
Radiation source: fine-focus sealed tube1318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 24.7°, θmin = 2.7°
Absorption correction: multi-scan
SADABS
h = 78
Tmin = 0.667, Tmax = 1.000k = 815
3692 measured reflectionsl = 1815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0117P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
2354 reflectionsΔρmax = 0.18 e Å3
179 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (14)
Crystal data top
C6H8N2O2S·C6H11NOV = 1429.2 (2) Å3
Mr = 285.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0957 (6) ŵ = 0.24 mm1
b = 13.1280 (13) ÅT = 298 K
c = 15.3425 (18) Å0.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2354 independent reflections
Absorption correction: multi-scan
SADABS
1318 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 1.000Rint = 0.042
3692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.18 e Å3
S = 0.90Δρmin = 0.21 e Å3
2354 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
179 parametersAbsolute structure parameter: 0.03 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1350 (6)0.8611 (4)0.0600 (3)0.0805 (15)
H11A0.13920.86450.00310.097*
H11B0.02750.81950.07610.097*
S10.90765 (16)0.13847 (9)0.87588 (9)0.0599 (3)
O11.1072 (3)0.1426 (2)0.8626 (2)0.0811 (10)
O30.4913 (4)1.1203 (2)0.0183 (2)0.0694 (9)
N30.2251 (5)1.0426 (3)0.0533 (2)0.0660 (11)
H3A0.16661.08880.02420.079*
O20.8131 (4)0.0430 (2)0.8621 (2)0.0735 (9)
C40.6531 (7)0.3859 (3)0.7083 (3)0.0562 (13)
C30.8468 (6)0.3754 (4)0.7166 (3)0.0591 (13)
H30.92660.42010.68750.071*
C50.5389 (6)0.3167 (3)0.7511 (3)0.0640 (14)
H50.40880.32240.74590.077*
C60.6134 (6)0.2399 (3)0.8012 (3)0.0583 (13)
H60.53420.19440.82970.070*
N10.8708 (5)0.1686 (3)0.9750 (3)0.0589 (12)
H1A0.899 (6)0.224 (3)0.997 (3)0.071*
H1B0.759 (5)0.148 (3)0.999 (2)0.071*
N20.5796 (6)0.4620 (3)0.6575 (2)0.0828 (13)
H2A0.65040.51610.65920.099*
H2B0.46930.47810.67800.099*
C10.8058 (6)0.2308 (3)0.8090 (3)0.0462 (11)
C70.4103 (7)1.0499 (4)0.0552 (3)0.0565 (12)
C20.9211 (6)0.3000 (3)0.7672 (3)0.0542 (12)
H21.05110.29510.77360.065*
C90.4958 (7)0.8638 (4)0.0672 (3)0.0813 (15)
H9A0.60110.82240.08650.098*
H9B0.50210.86790.00410.098*
C80.5188 (6)0.9689 (4)0.1037 (3)0.0744 (15)
H8A0.65160.98660.10290.089*
H8B0.47800.96860.16410.089*
C120.1071 (6)0.9650 (3)0.0948 (3)0.0763 (15)
H12A0.02420.98370.08750.092*
H12B0.13360.96440.15680.092*
C100.3129 (7)0.8098 (3)0.0924 (3)0.0804 (15)
H10A0.31660.74090.06960.096*
H10B0.30700.80510.15540.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.081 (3)0.064 (3)0.096 (4)0.013 (3)0.008 (3)0.006 (4)
S10.0530 (6)0.0473 (6)0.0794 (9)0.0085 (7)0.0003 (7)0.0010 (9)
O10.0404 (15)0.084 (2)0.119 (3)0.0153 (18)0.0020 (17)0.014 (3)
O30.0709 (19)0.0444 (18)0.093 (2)0.0027 (18)0.0158 (18)0.007 (2)
N30.058 (2)0.046 (2)0.094 (3)0.006 (2)0.011 (2)0.016 (3)
O20.079 (2)0.0400 (16)0.102 (2)0.0026 (17)0.006 (2)0.005 (2)
C40.069 (3)0.051 (3)0.048 (3)0.001 (3)0.011 (2)0.006 (3)
C30.056 (3)0.063 (3)0.058 (3)0.007 (3)0.008 (2)0.003 (3)
C50.046 (3)0.062 (3)0.085 (4)0.003 (3)0.016 (3)0.003 (3)
C60.043 (3)0.052 (3)0.080 (4)0.008 (2)0.007 (2)0.005 (3)
N10.065 (2)0.047 (2)0.064 (3)0.001 (2)0.001 (2)0.004 (2)
N20.093 (3)0.069 (3)0.086 (3)0.011 (3)0.006 (3)0.007 (3)
C10.047 (2)0.045 (3)0.046 (3)0.006 (2)0.004 (2)0.002 (3)
C70.052 (3)0.051 (3)0.067 (3)0.012 (3)0.005 (3)0.002 (3)
C20.044 (2)0.060 (3)0.059 (3)0.008 (3)0.001 (2)0.000 (3)
C90.086 (3)0.061 (3)0.097 (4)0.032 (4)0.003 (3)0.002 (4)
C80.049 (3)0.075 (3)0.100 (4)0.011 (3)0.003 (3)0.007 (4)
C120.057 (3)0.064 (3)0.107 (4)0.003 (3)0.006 (3)0.002 (4)
C100.101 (4)0.046 (3)0.094 (4)0.004 (3)0.007 (4)0.005 (3)
Geometric parameters (Å, º) top
C11—C121.478 (6)C6—C11.376 (5)
C11—C101.514 (5)C6—H60.9300
C11—H11A0.9700N1—H1A0.83 (4)
C11—H11B0.9700N1—H1B0.91 (3)
S1—O11.431 (2)N2—H2A0.8706
S1—O21.437 (3)N2—H2B0.8693
S1—N11.593 (4)C1—C21.380 (5)
S1—C11.745 (4)C7—C81.510 (5)
O3—C71.227 (5)C2—H20.9300
N3—C71.318 (5)C9—C81.499 (6)
N3—C121.465 (5)C9—C101.528 (5)
N3—H3A0.8600C9—H9A0.9700
C4—N21.370 (5)C9—H9B0.9700
C4—C51.383 (5)C8—H8A0.9700
C4—C31.387 (5)C8—H8B0.9700
C3—C21.364 (5)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C5—C61.373 (5)C10—H10A0.9700
C5—H50.9300C10—H10B0.9700
C12—C11—C10113.8 (4)C6—C1—C2119.4 (4)
C12—C11—H11A108.8C6—C1—S1121.5 (3)
C10—C11—H11A108.8C2—C1—S1119.0 (3)
C12—C11—H11B108.8O3—C7—N3120.8 (4)
C10—C11—H11B108.8O3—C7—C8121.3 (4)
H11A—C11—H11B107.7N3—C7—C8117.9 (4)
O1—S1—O2118.3 (2)C3—C2—C1120.8 (4)
O1—S1—N1106.8 (2)C3—C2—H2119.6
O2—S1—N1106.3 (2)C1—C2—H2119.6
O1—S1—C1107.5 (2)C8—C9—C10115.1 (4)
O2—S1—C1109.03 (19)C8—C9—H9A108.5
N1—S1—C1108.7 (2)C10—C9—H9A108.5
C7—N3—C12127.7 (4)C8—C9—H9B108.5
C7—N3—H3A116.2C10—C9—H9B108.5
C12—N3—H3A116.2H9A—C9—H9B107.5
N2—C4—C5121.7 (4)C9—C8—C7114.1 (4)
N2—C4—C3120.1 (5)C9—C8—H8A108.7
C5—C4—C3118.1 (4)C7—C8—H8A108.7
C2—C3—C4120.5 (4)C9—C8—H8B108.7
C2—C3—H3119.8C7—C8—H8B108.7
C4—C3—H3119.8H8A—C8—H8B107.6
C6—C5—C4121.5 (4)N3—C12—C11114.1 (4)
C6—C5—H5119.2N3—C12—H12A108.7
C4—C5—H5119.2C11—C12—H12A108.7
C5—C6—C1119.6 (4)N3—C12—H12B108.7
C5—C6—H6120.2C11—C12—H12B108.7
C1—C6—H6120.2H12A—C12—H12B107.6
S1—N1—H1A124 (4)C11—C10—C9114.8 (4)
S1—N1—H1B117 (2)C11—C10—H10A108.6
H1A—N1—H1B108 (4)C9—C10—H10A108.6
C4—N2—H2A111.0C11—C10—H10B108.6
C4—N2—H2B108.3C9—C10—H10B108.6
H2A—N2—H2B108.0H10A—C10—H10B107.6
(4BrBSACPR) top
Crystal data top
C6H6BrNO2S·C6H11NODx = 1.554 Mg m3
Mr = 349.25Melting point: 363 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.156 (3) ÅCell parameters from 3565 reflections
b = 13.538 (5) Åθ = 2.6–20.1°
c = 15.406 (6) ŵ = 2.90 mm1
V = 1492.3 (9) Å3T = 298 K
Z = 4PLATE, colorles
F(000) = 7120.22 × 0.20 × 0.20 mm
Data collection top
CCD area detector
diffractometer
2405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
phi and ω scansh = 88
15786 measured reflectionsk = 1616
3029 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1698P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3029 reflectionsΔρmax = 0.46 e Å3
184 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (11)
Crystal data top
C6H6BrNO2S·C6H11NOV = 1492.3 (9) Å3
Mr = 349.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.156 (3) ŵ = 2.90 mm1
b = 13.538 (5) ÅT = 298 K
c = 15.406 (6) Å0.22 × 0.20 × 0.20 mm
Data collection top
CCD area detector
diffractometer
2405 reflections with I > 2σ(I)
15786 measured reflectionsRint = 0.057
3029 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.46 e Å3
S = 1.02Δρmin = 0.23 e Å3
3029 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
184 parametersAbsolute structure parameter: 0.018 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.06812 (7)0.57142 (4)0.17536 (3)0.0783 (2)
S10.51258 (13)0.85223 (8)0.38623 (7)0.0535 (3)
O20.3242 (4)0.8284 (3)0.3656 (2)0.0826 (11)
C20.5904 (5)0.6967 (3)0.2777 (2)0.0499 (9)
H20.46280.68380.27820.060*
O10.5740 (4)0.9520 (2)0.3772 (2)0.0722 (8)
O31.0804 (4)0.3851 (2)0.97299 (19)0.0658 (8)
C70.9938 (6)0.4547 (3)0.9408 (3)0.0538 (10)
C40.8969 (5)0.6561 (3)0.2329 (2)0.0494 (9)
C60.8509 (5)0.7955 (3)0.3230 (3)0.0534 (9)
H60.89870.84880.35400.064*
N10.5439 (6)0.8229 (3)0.4860 (2)0.0564 (9)
C120.6865 (7)0.5376 (4)0.9179 (4)0.0802 (15)
H12A0.55910.52130.93400.096*
H12B0.69440.53500.85510.096*
C100.8940 (8)0.6866 (3)0.9025 (4)0.0803 (15)
H10A0.86980.68950.84060.096*
H10B0.90620.75400.92310.096*
C10.6596 (5)0.7767 (3)0.3234 (3)0.0456 (8)
C50.9678 (6)0.7358 (3)0.2773 (3)0.0566 (10)
H51.09530.74880.27600.068*
C30.7081 (6)0.6364 (3)0.2317 (2)0.0536 (10)
H30.66130.58310.20030.064*
C81.0852 (6)0.5294 (3)0.8836 (3)0.0651 (11)
H8A1.02590.52710.82700.078*
H8B1.21510.51090.87590.078*
C91.0780 (8)0.6342 (3)0.9166 (3)0.0745 (13)
H9A1.17580.67180.88820.089*
H9B1.10500.63380.97830.089*
N20.8108 (5)0.4630 (3)0.9539 (3)0.0706 (12)
C110.7264 (8)0.6401 (4)0.9465 (4)0.0852 (16)
H11A0.74720.64001.00870.102*
H11B0.61730.68060.93510.102*
H1B0.525 (6)0.773 (3)0.495 (3)0.045 (14)*
H1A0.662 (6)0.841 (3)0.507 (3)0.060 (13)*
H2A0.764 (6)0.413 (3)0.979 (3)0.064 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0896 (4)0.0694 (3)0.0759 (3)0.0173 (3)0.0210 (3)0.0139 (3)
S10.0395 (5)0.0528 (5)0.0681 (6)0.0072 (4)0.0024 (5)0.0021 (5)
O20.0397 (16)0.100 (3)0.108 (3)0.0112 (16)0.0044 (16)0.021 (2)
C20.042 (2)0.056 (2)0.052 (2)0.0043 (19)0.0039 (18)0.0051 (17)
O10.0761 (19)0.0488 (17)0.092 (2)0.0170 (15)0.0176 (17)0.0098 (14)
O30.0651 (17)0.0500 (16)0.082 (2)0.0012 (15)0.0087 (17)0.0108 (14)
C70.055 (2)0.044 (2)0.063 (2)0.0067 (18)0.000 (2)0.0002 (18)
C40.054 (3)0.048 (2)0.046 (2)0.0043 (19)0.0045 (18)0.0008 (16)
C60.049 (2)0.052 (2)0.059 (2)0.0033 (17)0.003 (2)0.013 (2)
N10.056 (3)0.046 (2)0.067 (2)0.0012 (19)0.0105 (19)0.0053 (18)
C120.051 (3)0.070 (3)0.119 (4)0.004 (2)0.005 (3)0.014 (3)
C100.098 (4)0.050 (2)0.094 (4)0.005 (3)0.010 (3)0.013 (2)
C10.0398 (19)0.049 (2)0.048 (2)0.0001 (15)0.0010 (18)0.0058 (19)
C50.040 (2)0.069 (3)0.062 (2)0.0010 (19)0.0007 (18)0.009 (2)
C30.067 (3)0.047 (2)0.047 (2)0.012 (2)0.0047 (19)0.0039 (18)
C80.052 (2)0.074 (3)0.069 (3)0.005 (2)0.006 (2)0.004 (2)
C90.079 (3)0.065 (3)0.080 (3)0.023 (3)0.007 (3)0.012 (2)
N20.056 (2)0.056 (2)0.099 (3)0.0046 (19)0.014 (2)0.022 (2)
C110.088 (4)0.071 (3)0.097 (4)0.026 (3)0.017 (3)0.002 (3)
Geometric parameters (Å, º) top
Br—C41.898 (4)C4—C51.374 (5)
S1—O21.422 (3)C4—C31.377 (6)
S1—O11.427 (3)C6—C51.360 (5)
S1—N11.602 (4)C6—C11.392 (5)
S1—C11.757 (4)C12—N21.456 (6)
C2—C31.371 (6)C12—C111.483 (7)
C2—C11.383 (5)C10—C91.511 (7)
O3—C71.232 (5)C10—C111.515 (7)
C7—N21.329 (6)C8—C91.508 (6)
C7—C81.492 (6)
O2—S1—O1119.0 (2)C5—C6—C1119.9 (4)
O2—S1—N1106.9 (2)N2—C12—C11114.7 (5)
O1—S1—N1106.5 (2)C9—C10—C11115.5 (4)
O2—S1—C1108.2 (2)C2—C1—C6119.5 (4)
O1—S1—C1108.21 (18)C2—C1—S1121.4 (3)
N1—S1—C1107.49 (19)C6—C1—S1119.0 (3)
C3—C2—C1120.7 (4)C6—C5—C4119.8 (4)
O3—C7—N2120.0 (4)C2—C3—C4118.7 (4)
O3—C7—C8122.3 (4)C7—C8—C9115.0 (4)
N2—C7—C8117.7 (4)C8—C9—C10115.0 (4)
C5—C4—C3121.4 (4)C7—N2—C12127.1 (4)
C5—C4—Br117.9 (3)C12—C11—C10114.1 (5)
C3—C4—Br120.7 (3)
(OTSAVLM) top
Crystal data top
C7H9NO2S·C5H9NODx = 1.329 Mg m3
Mr = 270.34Melting point: 343 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3367 (6) ÅCell parameters from 735 reflections
b = 15.9206 (17) Åθ = 2.6–26.3°
c = 16.070 (3) ŵ = 0.24 mm1
β = 98.308 (12)°T = 298 K
V = 1351.0 (3) Å3PLATE, colorles
Z = 40.22 × 0.20 × 0.20 mm
F(000) = 576
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2759 independent reflections
Radiation source: fine-focus sealed tube1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
SADABS
h = 66
Tmin = 0.755, Tmax = 1.000k = 1911
5072 measured reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0264P)2]
where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H9NO2S·C5H9NOV = 1351.0 (3) Å3
Mr = 270.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.3367 (6) ŵ = 0.24 mm1
b = 15.9206 (17) ÅT = 298 K
c = 16.070 (3) Å0.22 × 0.20 × 0.20 mm
β = 98.308 (12)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2759 independent reflections
Absorption correction: multi-scan
SADABS
1420 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 1.000Rint = 0.067
5072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
2759 reflectionsΔρmin = 0.24 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21166 (16)0.62191 (5)0.22403 (6)0.0519 (3)
O10.4643 (4)0.63090 (14)0.26693 (16)0.0674 (7)
N10.0300 (5)0.63558 (19)0.29386 (19)0.0519 (8)
H1B0.142 (6)0.6375 (19)0.270 (2)0.062*
H1A0.071 (6)0.608 (2)0.340 (2)0.062*
O20.1267 (5)0.67551 (15)0.15492 (16)0.0756 (8)
C60.3592 (7)0.4596 (2)0.2264 (2)0.0591 (10)
H60.49350.47900.26500.071*
C10.1792 (6)0.5159 (2)0.1901 (2)0.0450 (8)
C20.0255 (6)0.4890 (2)0.1329 (2)0.0561 (9)
C50.3448 (8)0.3759 (3)0.2070 (3)0.0780 (12)
H50.46910.33890.23110.094*
C40.1447 (10)0.3478 (3)0.1515 (3)0.0837 (13)
H40.13010.29100.13840.100*
C30.0337 (8)0.4028 (3)0.1153 (3)0.0807 (13)
H30.16700.38220.07700.097*
C70.2302 (7)0.5456 (3)0.0899 (2)0.0835 (13)
H7A0.28410.58340.13040.125*
H7B0.37140.51220.06520.125*
H7C0.16570.57720.04680.125*
O30.2324 (4)0.52137 (14)0.42358 (14)0.0557 (7)
N20.3028 (5)0.39875 (16)0.49027 (17)0.0488 (7)
H2A0.43600.42090.51830.059*
C80.1675 (6)0.4473 (2)0.4342 (2)0.0432 (8)
C90.0668 (6)0.4125 (2)0.3845 (2)0.0495 (9)
H9A0.06850.42750.32590.059*
H9B0.21220.43890.40340.059*
C110.0199 (6)0.2893 (2)0.4793 (2)0.0649 (11)
H11A0.04130.22900.48250.078*
H11B0.12870.31560.51510.078*
C120.2510 (6)0.3118 (2)0.5098 (2)0.0582 (10)
H12A0.28620.30330.57020.070*
H12B0.36170.27510.48360.070*
C100.0955 (7)0.3178 (2)0.3903 (2)0.0667 (11)
H10A0.27010.30220.37140.080*
H10B0.01010.29040.35410.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0399 (5)0.0461 (5)0.0694 (7)0.0035 (4)0.0071 (5)0.0066 (5)
O10.0331 (13)0.0648 (16)0.103 (2)0.0082 (12)0.0054 (13)0.0125 (15)
N10.0356 (16)0.059 (2)0.060 (2)0.0025 (15)0.0014 (16)0.0034 (15)
O20.0841 (19)0.0597 (16)0.083 (2)0.0004 (14)0.0125 (15)0.0323 (15)
C60.055 (2)0.051 (2)0.067 (3)0.0044 (19)0.002 (2)0.005 (2)
C10.042 (2)0.049 (2)0.044 (2)0.0017 (17)0.0068 (17)0.0022 (17)
C20.056 (2)0.067 (3)0.045 (2)0.001 (2)0.0045 (19)0.006 (2)
C50.089 (3)0.059 (3)0.084 (3)0.020 (2)0.007 (3)0.008 (2)
C40.103 (4)0.064 (3)0.084 (4)0.001 (3)0.015 (3)0.018 (3)
C30.082 (3)0.085 (3)0.070 (3)0.013 (3)0.006 (2)0.026 (3)
C70.064 (3)0.115 (4)0.062 (3)0.011 (3)0.024 (2)0.003 (3)
O30.0553 (15)0.0478 (15)0.0601 (17)0.0090 (12)0.0047 (12)0.0014 (12)
N20.0392 (16)0.0479 (18)0.055 (2)0.0017 (14)0.0066 (14)0.0025 (15)
C80.0371 (19)0.051 (2)0.041 (2)0.0009 (18)0.0046 (17)0.0084 (19)
C90.043 (2)0.059 (2)0.044 (2)0.0045 (17)0.0035 (17)0.0055 (18)
C110.062 (3)0.050 (2)0.080 (3)0.0144 (19)0.003 (2)0.002 (2)
C120.063 (3)0.049 (2)0.061 (3)0.0006 (19)0.0023 (19)0.0023 (19)
C100.056 (2)0.068 (3)0.071 (3)0.011 (2)0.006 (2)0.009 (2)
Geometric parameters (Å, º) top
S1—O21.422 (2)C7—H7B0.9600
S1—O11.430 (2)C7—H7C0.9600
S1—N11.600 (3)O3—C81.248 (4)
S1—C11.775 (3)N2—C81.320 (4)
N1—H1B0.95 (3)N2—C121.456 (4)
N1—H1A0.86 (3)N2—H2A0.8600
C6—C51.368 (5)C8—C91.489 (4)
C6—C11.380 (4)C9—C101.519 (5)
C6—H60.9300C9—H9A0.9700
C1—C21.389 (4)C9—H9B0.9700
C2—C31.401 (5)C11—C101.498 (5)
C2—C71.504 (5)C11—C121.501 (4)
C5—C41.364 (5)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C4—C31.361 (5)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C3—H30.9300C10—H10A0.9700
C7—H7A0.9600C10—H10B0.9700
O2—S1—O1119.24 (15)H7B—C7—H7C109.5
O2—S1—N1108.01 (16)C8—N2—C12127.0 (3)
O1—S1—N1105.83 (16)C8—N2—H2A116.5
O2—S1—C1108.95 (16)C12—N2—H2A116.5
O1—S1—C1106.66 (15)O3—C8—N2120.7 (3)
N1—S1—C1107.62 (15)O3—C8—C9120.4 (3)
S1—N1—H1B111.7 (19)N2—C8—C9118.9 (3)
S1—N1—H1A115 (2)C8—C9—C10114.8 (3)
H1B—N1—H1A118 (3)C8—C9—H9A108.6
C5—C6—C1121.5 (4)C10—C9—H9A108.6
C5—C6—H6119.2C8—C9—H9B108.6
C1—C6—H6119.2C10—C9—H9B108.6
C6—C1—C2120.9 (3)H9A—C9—H9B107.5
C6—C1—S1117.1 (3)C10—C11—C12110.7 (3)
C2—C1—S1121.9 (3)C10—C11—H11A109.5
C1—C2—C3115.7 (3)C12—C11—H11A109.5
C1—C2—C7124.7 (3)C10—C11—H11B109.5
C3—C2—C7119.6 (4)C12—C11—H11B109.5
C4—C5—C6118.8 (4)H11A—C11—H11B108.1
C4—C5—H5120.6N2—C12—C11111.1 (3)
C6—C5—H5120.6N2—C12—H12A109.4
C3—C4—C5120.1 (4)C11—C12—H12A109.4
C3—C4—H4119.9N2—C12—H12B109.4
C5—C4—H4119.9C11—C12—H12B109.4
C4—C3—C2123.0 (4)H12A—C12—H12B108.0
C4—C3—H3118.5C11—C10—C9110.1 (3)
C2—C3—H3118.5C11—C10—H10A109.6
C2—C7—H7A109.5C9—C10—H10A109.6
C2—C7—H7B109.5C11—C10—H10B109.6
H7A—C7—H7B109.5C9—C10—H10B109.6
C2—C7—H7C109.5H10A—C10—H10B108.2
H7A—C7—H7C109.5
(2ClBSACPR) top
Crystal data top
C6H6ClNO2S·C6H11NODx = 1.443 Mg m3
Mr = 304.79Melting point: 355 K
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
a = 9.8782 (6) ÅCell parameters from 2558 reflections
b = 14.1720 (6) Åθ = 3.7–28.9°
c = 10.8753 (6) ŵ = 0.43 mm1
β = 112.850 (7)°T = 298 K
V = 1402.98 (12) Å3BLOCK, colorles
Z = 40.22 × 0.22 × 0.20 mm
F(000) = 640
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2870 independent reflections
Radiation source: fine-focus sealed tube2483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
SADABS
h = 1211
Tmin = 0.876, Tmax = 1.000k = 1716
5810 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
2870 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C6H6ClNO2S·C6H11NOV = 1402.98 (12) Å3
Mr = 304.79Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 9.8782 (6) ŵ = 0.43 mm1
b = 14.1720 (6) ÅT = 298 K
c = 10.8753 (6) Å0.22 × 0.22 × 0.20 mm
β = 112.850 (7)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2870 independent reflections
Absorption correction: multi-scan
SADABS
2483 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.021
5810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.25 e Å3
2870 reflectionsΔρmin = 0.48 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88136 (5)0.24056 (3)0.00962 (4)0.03143 (14)
Cl11.11885 (6)0.31602 (4)0.10232 (6)0.05419 (18)
O30.53802 (18)0.37511 (10)0.98172 (13)0.0492 (4)
O20.80116 (16)0.25905 (10)0.12931 (13)0.0427 (3)
N10.7628 (2)0.23340 (13)0.07521 (18)0.0398 (4)
H1A0.689 (3)0.2760 (17)0.045 (2)0.048*
H1B0.797 (3)0.2214 (17)0.155 (2)0.048*
N20.39497 (19)0.47318 (11)0.82491 (15)0.0422 (4)
H2A0.42020.51700.88430.051*
C10.99475 (18)0.34009 (12)0.08009 (16)0.0301 (4)
C70.4489 (2)0.38834 (13)0.86453 (18)0.0370 (4)
O10.97322 (16)0.15904 (9)0.04756 (16)0.0488 (4)
C60.9817 (2)0.38791 (13)0.18640 (17)0.0388 (4)
H60.91270.36830.21970.047*
C21.0992 (2)0.37035 (13)0.03259 (18)0.0361 (4)
C120.2965 (2)0.50019 (16)0.6900 (2)0.0490 (5)
H12A0.26860.56570.69070.059*
H12B0.20790.46240.66370.059*
C51.0706 (3)0.46446 (15)0.2428 (2)0.0507 (5)
H51.06120.49640.31380.061*
C90.4531 (2)0.31855 (15)0.6516 (2)0.0447 (5)
H9A0.55450.33960.68750.054*
H9B0.45040.25690.61190.054*
C100.3633 (3)0.38646 (16)0.5430 (2)0.0531 (6)
H10A0.26260.36430.50540.064*
H10B0.40050.38520.47260.064*
C80.4020 (2)0.30847 (14)0.76585 (19)0.0441 (5)
H8A0.29560.30440.72930.053*
H8B0.44030.24990.81250.053*
C31.1882 (2)0.44687 (15)0.0899 (2)0.0498 (5)
H31.25820.46680.05800.060*
C110.3639 (3)0.48789 (16)0.5881 (2)0.0521 (5)
H11A0.46440.51050.62580.063*
H11B0.31030.52660.51090.063*
C41.1723 (3)0.49336 (15)0.1947 (2)0.0542 (6)
H41.23160.54510.23310.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0345 (2)0.0300 (2)0.0307 (2)0.00041 (17)0.01362 (18)0.00086 (16)
Cl10.0570 (3)0.0622 (4)0.0593 (3)0.0006 (3)0.0400 (3)0.0022 (3)
O30.0688 (10)0.0419 (8)0.0327 (7)0.0099 (7)0.0151 (7)0.0008 (6)
O20.0435 (7)0.0539 (8)0.0287 (7)0.0061 (6)0.0117 (6)0.0045 (6)
N10.0392 (9)0.0446 (9)0.0378 (9)0.0019 (7)0.0175 (7)0.0043 (7)
N20.0559 (10)0.0352 (8)0.0331 (8)0.0062 (7)0.0143 (7)0.0044 (7)
C10.0310 (8)0.0289 (8)0.0281 (8)0.0030 (7)0.0088 (7)0.0039 (7)
C70.0460 (10)0.0360 (10)0.0344 (9)0.0002 (8)0.0215 (8)0.0013 (8)
O10.0524 (8)0.0315 (7)0.0640 (9)0.0074 (6)0.0242 (7)0.0019 (6)
C60.0451 (10)0.0395 (10)0.0304 (9)0.0010 (8)0.0129 (8)0.0006 (8)
C20.0335 (9)0.0368 (9)0.0375 (9)0.0034 (7)0.0133 (8)0.0051 (8)
C120.0503 (12)0.0453 (12)0.0444 (11)0.0120 (9)0.0107 (9)0.0003 (9)
C50.0599 (13)0.0414 (11)0.0405 (11)0.0000 (10)0.0083 (10)0.0094 (9)
C90.0466 (11)0.0471 (11)0.0435 (11)0.0016 (9)0.0208 (9)0.0121 (9)
C100.0668 (14)0.0595 (14)0.0351 (10)0.0040 (11)0.0219 (10)0.0057 (10)
C80.0582 (12)0.0341 (10)0.0415 (11)0.0034 (9)0.0211 (9)0.0052 (8)
C30.0379 (11)0.0472 (12)0.0591 (13)0.0066 (9)0.0132 (10)0.0095 (10)
C110.0651 (14)0.0502 (12)0.0368 (11)0.0015 (11)0.0151 (10)0.0048 (9)
C40.0515 (13)0.0397 (11)0.0553 (13)0.0097 (10)0.0031 (10)0.0033 (10)
Geometric parameters (Å, º) top
S1—O11.4274 (14)C12—H12A0.9700
S1—O21.4315 (14)C12—H12B0.9700
S1—N11.5934 (17)C5—C41.363 (3)
S1—C11.7791 (18)C5—H50.9300
Cl1—C21.7334 (19)C9—C101.514 (3)
O3—C71.250 (2)C9—C81.519 (3)
N1—H1A0.91 (2)C9—H9A0.9700
N1—H1B0.81 (2)C9—H9B0.9700
N2—C71.318 (2)C10—C111.518 (3)
N2—C121.462 (2)C10—H10A0.9700
N2—H2A0.8600C10—H10B0.9700
C1—C21.389 (2)C8—H8A0.9700
C1—C61.389 (2)C8—H8B0.9700
C7—C81.504 (3)C3—C41.376 (3)
C6—C51.381 (3)C3—H30.9300
C6—H60.9300C11—H11A0.9700
C2—C31.383 (3)C11—H11B0.9700
C12—C111.508 (3)C4—H40.9300
O1—S1—O2118.84 (9)C6—C5—H5119.9
O1—S1—N1108.32 (9)C10—C9—C8114.67 (18)
O2—S1—N1106.41 (9)C10—C9—H9A108.6
O1—S1—C1107.09 (8)C8—C9—H9A108.6
O2—S1—C1107.90 (8)C10—C9—H9B108.6
N1—S1—C1107.86 (9)C8—C9—H9B108.6
S1—N1—H1A114.9 (15)H9A—C9—H9B107.6
S1—N1—H1B114.5 (17)C9—C10—C11114.99 (17)
H1A—N1—H1B118 (2)C9—C10—H10A108.5
C7—N2—C12126.44 (16)C11—C10—H10A108.5
C7—N2—H2A116.8C9—C10—H10B108.5
C12—N2—H2A116.8C11—C10—H10B108.5
C2—C1—C6118.80 (17)H10A—C10—H10B107.5
C2—C1—S1121.26 (14)C7—C8—C9113.88 (17)
C6—C1—S1119.93 (14)C7—C8—H8A108.8
O3—C7—N2120.35 (17)C9—C8—H8A108.8
O3—C7—C8120.97 (17)C7—C8—H8B108.8
N2—C7—C8118.68 (17)C9—C8—H8B108.8
C5—C6—C1120.27 (19)H8A—C8—H8B107.7
C5—C6—H6119.9C4—C3—C2119.5 (2)
C1—C6—H6119.9C4—C3—H3120.3
C3—C2—C1120.54 (18)C2—C3—H3120.3
C3—C2—Cl1118.01 (15)C12—C11—C10113.55 (19)
C1—C2—Cl1121.42 (14)C12—C11—H11A108.9
N2—C12—C11113.33 (18)C10—C11—H11A108.9
N2—C12—H12A108.9C12—C11—H11B108.9
C11—C12—H12A108.9C10—C11—H11B108.9
N2—C12—H12B108.9H11A—C11—H11B107.7
C11—C12—H12B108.9C5—C4—C3120.8 (2)
H12A—C12—H12B107.7C5—C4—H4119.6
C4—C5—C6120.1 (2)C3—C4—H4119.6
C4—C5—H5119.9
(BSACPR) top
Crystal data top
C6H7NO2S·C6H11NODx = 1.329 Mg m3
Mr = 270.34Melting point: 353 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.0700 (9) ÅCell parameters from 1165 reflections
b = 12.7624 (13) Åθ = 4.0–26.7°
c = 14.977 (2) ŵ = 0.24 mm1
V = 1351.4 (3) Å3T = 298 K
Z = 4PLATE, colorles
F(000) = 5760.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2197 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
SADABS
h = 87
Tmin = 0.788, Tmax = 1.000k = 715
3348 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.5208P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
2197 reflectionsΔρmax = 0.37 e Å3
169 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C6H7NO2S·C6H11NOV = 1351.4 (3) Å3
Mr = 270.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0700 (9) ŵ = 0.24 mm1
b = 12.7624 (13) ÅT = 298 K
c = 14.977 (2) Å0.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2197 independent reflections
Absorption correction: multi-scan
SADABS
1595 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.000Rint = 0.039
3348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.181Δρmax = 0.37 e Å3
S = 1.23Δρmin = 0.24 e Å3
2197 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
169 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.9052 (3)0.65992 (13)0.85943 (13)0.0524 (5)
O30.0036 (7)0.3842 (3)0.5082 (4)0.0641 (15)
O11.0954 (7)0.6811 (4)0.8374 (4)0.0775 (17)
N10.8857 (10)0.6723 (4)0.9646 (5)0.0551 (16)
N20.2566 (10)0.4789 (5)0.5098 (5)0.078 (2)
H2A0.32030.42150.50940.094*
O20.8294 (8)0.5611 (3)0.8371 (4)0.0693 (16)
C10.7647 (10)0.7583 (5)0.8109 (4)0.0435 (17)
C60.8499 (10)0.8423 (6)0.7703 (4)0.0527 (17)
H60.98100.84730.76750.063*
C50.7369 (13)0.9193 (6)0.7339 (5)0.066 (2)
H50.79210.97690.70620.079*
C40.5473 (12)0.9116 (7)0.7381 (6)0.071 (3)
H40.47240.96390.71320.085*
C70.0729 (12)0.4691 (5)0.5108 (6)0.064 (2)
C30.4644 (11)0.8276 (7)0.7785 (5)0.068 (2)
H30.33330.82330.78190.082*
C20.5738 (11)0.7495 (6)0.8142 (5)0.060 (2)
H20.51770.69120.84040.072*
C110.3443 (14)0.6399 (7)0.5866 (7)0.094 (3)
H11A0.44670.69050.58690.113*
H11B0.35990.59610.63900.113*
C120.3665 (13)0.5750 (7)0.5093 (9)0.109 (4)
H12A0.49920.55690.50350.131*
H12B0.33150.61540.45700.131*
C100.1627 (13)0.6987 (6)0.5965 (6)0.076 (3)
H10A0.15440.74980.54870.092*
H10B0.16610.73690.65240.092*
C80.0411 (12)0.5691 (6)0.5152 (8)0.090 (3)
H8A0.01030.61140.46340.108*
H8B0.17420.55110.51120.108*
C90.0129 (13)0.6327 (7)0.5950 (7)0.085 (3)
H9A0.01030.58640.64630.102*
H9B0.12140.67860.60180.102*
H1A0.785 (13)0.646 (7)0.988 (7)0.102*
H1B0.906 (14)0.730 (7)0.975 (7)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0468 (10)0.0466 (8)0.0640 (12)0.0048 (9)0.0053 (10)0.0008 (10)
O30.064 (3)0.044 (3)0.085 (4)0.001 (3)0.014 (3)0.006 (3)
O10.046 (3)0.082 (4)0.105 (5)0.010 (3)0.016 (3)0.013 (3)
N10.058 (4)0.038 (3)0.070 (4)0.000 (3)0.011 (3)0.005 (3)
N20.055 (4)0.044 (4)0.135 (7)0.004 (3)0.008 (5)0.016 (4)
O20.084 (4)0.046 (3)0.078 (4)0.003 (3)0.008 (3)0.014 (3)
C10.043 (5)0.056 (4)0.032 (4)0.001 (3)0.008 (3)0.002 (3)
C60.045 (4)0.066 (4)0.046 (4)0.004 (4)0.007 (3)0.007 (4)
C50.076 (6)0.066 (5)0.055 (6)0.008 (5)0.002 (5)0.016 (4)
C40.071 (8)0.072 (6)0.068 (6)0.008 (5)0.031 (5)0.012 (5)
C70.063 (6)0.044 (4)0.085 (6)0.006 (4)0.011 (5)0.018 (4)
C30.044 (5)0.091 (6)0.070 (6)0.001 (5)0.016 (4)0.005 (5)
C20.048 (5)0.063 (4)0.068 (5)0.009 (4)0.010 (4)0.011 (4)
C110.079 (6)0.068 (5)0.136 (9)0.019 (5)0.002 (6)0.010 (6)
C120.067 (7)0.069 (6)0.191 (12)0.010 (5)0.019 (8)0.036 (7)
C100.092 (7)0.061 (4)0.077 (6)0.004 (5)0.005 (6)0.023 (4)
C80.063 (6)0.065 (5)0.141 (10)0.015 (4)0.015 (6)0.025 (6)
C90.075 (6)0.075 (6)0.105 (8)0.009 (5)0.012 (5)0.037 (5)
Geometric parameters (Å, º) top
S1—O21.410 (5)C7—C81.511 (10)
S1—O11.410 (5)C3—C21.370 (10)
S1—N11.589 (7)C3—H30.9300
S1—C11.758 (7)C2—H20.9300
O3—C71.212 (8)C11—C121.433 (13)
N1—H1A0.86 (9)C11—C101.494 (12)
N1—H1B0.76 (8)C11—H11A0.9700
N2—C71.305 (9)C11—H11B0.9700
N2—C121.451 (10)C12—H12A0.9700
N2—H2A0.8600C12—H12B0.9700
C1—C21.356 (10)C10—C91.500 (11)
C1—C61.372 (9)C10—H10A0.9700
C6—C51.379 (10)C10—H10B0.9700
C6—H60.9300C8—C91.458 (12)
C5—C41.345 (11)C8—H8A0.9700
C5—H50.9300C8—H8B0.9700
C4—C31.364 (11)C9—H9A0.9700
C4—H40.9300C9—H9B0.9700
O2—S1—O1118.6 (3)C3—C2—H2120.4
O2—S1—N1106.9 (3)C12—C11—C10117.6 (9)
O1—S1—N1107.2 (4)C12—C11—H11A107.9
O2—S1—C1109.0 (3)C10—C11—H11A107.9
O1—S1—C1107.7 (3)C12—C11—H11B107.9
N1—S1—C1106.9 (3)C10—C11—H11B107.9
S1—N1—H1A116 (7)H11A—C11—H11B107.2
S1—N1—H1B106 (8)C11—C12—N2115.2 (9)
H1A—N1—H1B116 (10)C11—C12—H12A108.5
C7—N2—C12127.9 (7)N2—C12—H12A108.5
C7—N2—H2A116.0C11—C12—H12B108.5
C12—N2—H2A116.0N2—C12—H12B108.5
C2—C1—C6121.2 (7)H12A—C12—H12B107.5
C2—C1—S1119.2 (6)C11—C10—C9115.4 (6)
C6—C1—S1119.6 (6)C11—C10—H10A108.4
C1—C6—C5118.5 (7)C9—C10—H10A108.4
C1—C6—H6120.7C11—C10—H10B108.4
C5—C6—H6120.7C9—C10—H10B108.4
C4—C5—C6120.5 (8)H10A—C10—H10B107.5
C4—C5—H5119.8C9—C8—C7115.7 (8)
C6—C5—H5119.8C9—C8—H8A108.4
C5—C4—C3120.4 (8)C7—C8—H8A108.4
C5—C4—H4119.8C9—C8—H8B108.4
C3—C4—H4119.8C7—C8—H8B108.4
O3—C7—N2122.0 (7)H8A—C8—H8B107.4
O3—C7—C8121.2 (8)C8—C9—C10116.0 (8)
N2—C7—C8116.7 (7)C8—C9—H9A108.3
C4—C3—C2120.2 (7)C10—C9—H9A108.3
C4—C3—H3119.9C8—C9—H9B108.3
C2—C3—H3119.9C10—C9—H9B108.3
C1—C2—C3119.2 (7)H9A—C9—H9B107.4
C1—C2—H2120.4
(4ClBSAVLM) top
Crystal data top
C6H6ClNO2S·C5H9NODx = 1.449 Mg m3
Mr = 290.76Melting point: 363 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.701 (4) ÅCell parameters from 1025 reflections
b = 6.8096 (4) Åθ = 2.7–26.3°
c = 19.177 (3) ŵ = 0.45 mm1
β = 127.40 (2)°T = 297 K
V = 2666.3 (6) Å3PLATE
Z = 80.22 × 0.20 × 0.20 mm
F(000) = 1216
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed tube1677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
SADABS
h = 3230
Tmin = 0.844, Tmax = 1.000k = 88
5127 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
2732 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C6H6ClNO2S·C5H9NOV = 2666.3 (6) Å3
Mr = 290.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.701 (4) ŵ = 0.45 mm1
b = 6.8096 (4) ÅT = 297 K
c = 19.177 (3) Å0.22 × 0.20 × 0.20 mm
β = 127.40 (2)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2732 independent reflections
Absorption correction: multi-scan
SADABS
1677 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 1.000Rint = 0.043
5127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2732 reflectionsΔρmin = 0.38 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16418 (4)0.16415 (12)0.08089 (6)0.0460 (3)
Cl10.00099 (5)0.68185 (17)0.14868 (7)0.0780 (4)
O30.20659 (12)0.9636 (3)0.79188 (15)0.0587 (7)
O10.13721 (13)0.0290 (3)0.06081 (17)0.0665 (7)
N20.19285 (13)0.6912 (4)0.84382 (18)0.0490 (7)
H2A0.21740.63080.83430.059*
C10.11457 (15)0.3131 (4)0.09443 (19)0.0388 (7)
N10.23469 (14)0.1540 (4)0.17504 (19)0.0473 (8)
H1A0.2575 (17)0.251 (5)0.186 (2)0.057*
H1B0.2308 (16)0.120 (5)0.213 (2)0.057*
C70.18276 (15)0.8793 (5)0.8239 (2)0.0414 (8)
C20.12843 (16)0.5096 (4)0.1121 (2)0.0454 (8)
H20.16150.56580.11240.054*
C50.02822 (17)0.3436 (5)0.1073 (2)0.0558 (9)
H50.00610.28930.10460.067*
C40.04376 (16)0.5395 (5)0.1269 (2)0.0481 (8)
O20.17318 (12)0.2594 (3)0.02267 (15)0.0593 (7)
C60.06435 (16)0.2295 (5)0.0916 (2)0.0508 (9)
H60.05500.09660.07910.061*
C80.14281 (18)0.9907 (5)0.8431 (2)0.0559 (9)
H8A0.11341.07740.79400.067*
H8B0.17191.07220.89440.067*
C30.09319 (16)0.6229 (5)0.1294 (2)0.0497 (8)
H30.10300.75540.14280.060*
C100.14434 (18)0.7008 (5)0.9207 (2)0.0555 (9)
H10A0.11920.62290.93310.067*
H10B0.18190.75470.97560.067*
C110.16699 (18)0.5738 (5)0.8803 (2)0.0578 (10)
H11A0.20080.48520.92440.069*
H11B0.13060.49500.83410.069*
C90.10283 (18)0.8639 (5)0.8592 (2)0.0596 (10)
H9A0.08650.94290.88430.071*
H9B0.06560.80990.80410.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0600 (6)0.0403 (5)0.0533 (5)0.0038 (4)0.0425 (5)0.0008 (4)
Cl10.0590 (6)0.1005 (8)0.0823 (7)0.0162 (6)0.0469 (6)0.0150 (6)
O30.0755 (17)0.0565 (14)0.0664 (16)0.0120 (13)0.0548 (15)0.0072 (12)
O10.0878 (19)0.0430 (14)0.0893 (19)0.0110 (13)0.0646 (17)0.0178 (13)
N20.0567 (18)0.0414 (16)0.0651 (19)0.0096 (13)0.0455 (17)0.0011 (13)
C10.0409 (19)0.0375 (18)0.0385 (18)0.0013 (14)0.0243 (16)0.0011 (13)
N10.055 (2)0.0468 (17)0.0545 (19)0.0087 (14)0.0408 (17)0.0086 (15)
C70.0422 (19)0.044 (2)0.0386 (18)0.0015 (15)0.0251 (16)0.0044 (15)
C20.047 (2)0.0433 (19)0.056 (2)0.0021 (16)0.0359 (18)0.0034 (16)
C50.043 (2)0.068 (2)0.065 (2)0.0016 (19)0.0373 (19)0.0023 (19)
C40.042 (2)0.059 (2)0.0411 (19)0.0105 (18)0.0246 (17)0.0003 (16)
O20.0809 (18)0.0635 (15)0.0573 (15)0.0092 (13)0.0543 (15)0.0087 (12)
C60.052 (2)0.0448 (19)0.059 (2)0.0034 (17)0.0359 (19)0.0002 (16)
C80.073 (2)0.046 (2)0.064 (2)0.0189 (18)0.050 (2)0.0114 (17)
C30.049 (2)0.0406 (18)0.060 (2)0.0012 (16)0.0335 (19)0.0016 (16)
C100.062 (2)0.061 (2)0.061 (2)0.0044 (19)0.046 (2)0.0058 (18)
C110.070 (3)0.045 (2)0.066 (2)0.0030 (18)0.045 (2)0.0063 (17)
C90.058 (2)0.072 (2)0.065 (2)0.010 (2)0.046 (2)0.001 (2)
Geometric parameters (Å, º) top
S1—O21.426 (2)C5—C41.378 (5)
S1—O11.427 (2)C5—H50.9300
S1—N11.604 (3)C4—C31.365 (4)
S1—C11.768 (3)C6—H60.9300
Cl1—C41.738 (3)C8—C91.511 (5)
O3—C71.241 (4)C8—H8A0.9700
N2—C71.316 (4)C8—H8B0.9700
N2—C111.461 (4)C3—H30.9300
N2—H2A0.8600C10—C91.495 (5)
C1—C21.373 (4)C10—C111.495 (5)
C1—C61.381 (4)C10—H10A0.9700
N1—H1A0.82 (3)C10—H10B0.9700
N1—H1B0.83 (3)C11—H11A0.9700
C7—C81.491 (4)C11—H11B0.9700
C2—C31.375 (4)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C5—C61.377 (5)
O2—S1—O1119.42 (15)C1—C6—H6120.1
O2—S1—N1106.94 (15)C7—C8—C9114.5 (3)
O1—S1—N1107.19 (16)C7—C8—H8A108.6
O2—S1—C1109.17 (14)C9—C8—H8A108.6
O1—S1—C1107.05 (15)C7—C8—H8B108.6
N1—S1—C1106.37 (14)C9—C8—H8B108.6
C7—N2—C11127.2 (3)H8A—C8—H8B107.6
C7—N2—H2A116.4C4—C3—C2119.5 (3)
C11—N2—H2A116.4C4—C3—H3120.2
C2—C1—C6120.5 (3)C2—C3—H3120.2
C2—C1—S1119.6 (2)C9—C10—C11109.7 (3)
C6—C1—S1119.9 (2)C9—C10—H10A109.7
S1—N1—H1A113 (2)C11—C10—H10A109.7
S1—N1—H1B110 (2)C9—C10—H10B109.7
H1A—N1—H1B117 (4)C11—C10—H10B109.7
O3—C7—N2121.6 (3)H10A—C10—H10B108.2
O3—C7—C8120.5 (3)N2—C11—C10111.4 (3)
N2—C7—C8117.9 (3)N2—C11—H11A109.3
C1—C2—C3119.8 (3)C10—C11—H11A109.3
C1—C2—H2120.1N2—C11—H11B109.3
C3—C2—H2120.1C10—C11—H11B109.3
C6—C5—C4118.9 (3)H11A—C11—H11B108.0
C6—C5—H5120.5C10—C9—C8109.8 (3)
C4—C5—H5120.5C10—C9—H9A109.7
C3—C4—C5121.4 (3)C8—C9—H9A109.7
C3—C4—Cl1119.8 (3)C10—C9—H9B109.7
C5—C4—Cl1118.8 (3)C8—C9—H9B109.7
C5—C6—C1119.8 (3)H9A—C9—H9B108.2
C5—C6—H6120.1
(4BrBSAVLM) top
Crystal data top
C6H6BrNO2S·C5H9NODx = 1.629 Mg m3
Mr = 335.22Melting point: 367 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.914 (3) ÅCell parameters from 4015 reflections
b = 6.8687 (9) Åθ = 2.7–25.4°
c = 19.202 (2) ŵ = 3.16 mm1
β = 126.873 (2)°T = 298 K
V = 2734.1 (6) Å3PLATE, colorles
Z = 80.22 × 0.20 × 0.20 mm
F(000) = 1360
Data collection top
CCD area detector
diffractometer
2216 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
phi and ω scansh = 3232
14029 measured reflectionsk = 88
2790 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.8825P]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C6H6BrNO2S·C5H9NOV = 2734.1 (6) Å3
Mr = 335.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.914 (3) ŵ = 3.16 mm1
b = 6.8687 (9) ÅT = 298 K
c = 19.202 (2) Å0.22 × 0.20 × 0.20 mm
β = 126.873 (2)°
Data collection top
CCD area detector
diffractometer
2216 reflections with I > 2σ(I)
14029 measured reflectionsRint = 0.030
2790 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
2790 reflectionsΔρmin = 0.39 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.003156 (14)0.69679 (5)0.14703 (2)0.07718 (16)
S10.16814 (3)0.16446 (9)0.08449 (4)0.04800 (18)
O10.14262 (10)0.0289 (3)0.06658 (13)0.0690 (5)
N20.19222 (12)0.3131 (3)0.34335 (16)0.0533 (6)
O30.20743 (10)0.0431 (3)0.29329 (12)0.0617 (5)
C70.18364 (12)0.1262 (4)0.32543 (15)0.0440 (5)
N10.23788 (12)0.1604 (4)0.17853 (15)0.0510 (5)
C10.11787 (12)0.3130 (3)0.09613 (15)0.0431 (5)
C40.04600 (11)0.5392 (4)0.12539 (15)0.0492 (6)
O20.17723 (10)0.2564 (3)0.02588 (12)0.0622 (5)
C50.03196 (13)0.3442 (4)0.10870 (19)0.0588 (7)
H50.00170.29030.10690.071*
C60.06871 (13)0.2296 (4)0.09456 (19)0.0551 (6)
H60.06040.09700.08400.066*
C100.14516 (15)0.3028 (4)0.42200 (19)0.0596 (7)
H10A0.18250.25170.47660.072*
H10B0.12000.37930.43430.072*
C20.13035 (12)0.5088 (3)0.11092 (16)0.0491 (6)
H20.16290.56430.11050.059*
C30.09429 (13)0.6235 (4)0.12650 (17)0.0532 (6)
H30.10280.75590.13750.064*
C80.14546 (14)0.0129 (4)0.34662 (19)0.0586 (7)
H8A0.17490.06500.39810.070*
H8B0.11700.07560.29900.070*
C110.16695 (14)0.4302 (4)0.38022 (18)0.0607 (7)
H11A0.13090.50750.33460.073*
H11B0.20020.51860.42340.073*
C90.10520 (15)0.1386 (5)0.3626 (2)0.0667 (8)
H9A0.06820.18970.30770.080*
H9B0.08960.06050.38850.080*
H1A0.2336 (13)0.127 (4)0.2156 (18)0.059 (8)*
H1B0.2591 (15)0.271 (4)0.190 (2)0.066 (9)*
H2A0.2102 (13)0.365 (4)0.3314 (18)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0590 (2)0.1037 (3)0.0761 (2)0.01633 (16)0.04444 (19)0.01461 (16)
S10.0623 (4)0.0435 (3)0.0554 (4)0.0047 (3)0.0445 (3)0.0004 (3)
O10.0909 (14)0.0480 (10)0.0923 (14)0.0075 (10)0.0678 (13)0.0169 (10)
N20.0642 (14)0.0494 (14)0.0668 (15)0.0107 (10)0.0502 (13)0.0004 (10)
O30.0793 (13)0.0598 (11)0.0699 (12)0.0112 (9)0.0576 (11)0.0079 (9)
C70.0466 (13)0.0466 (14)0.0430 (12)0.0008 (11)0.0290 (11)0.0034 (10)
N10.0607 (14)0.0504 (13)0.0586 (14)0.0128 (11)0.0447 (12)0.0088 (10)
C10.0467 (13)0.0456 (14)0.0446 (12)0.0062 (10)0.0315 (11)0.0044 (10)
C40.0433 (13)0.0624 (16)0.0445 (13)0.0126 (11)0.0277 (11)0.0028 (11)
O20.0821 (13)0.0688 (11)0.0610 (11)0.0116 (10)0.0565 (11)0.0079 (9)
C50.0530 (15)0.0697 (18)0.0695 (18)0.0036 (13)0.0452 (15)0.0058 (14)
C60.0597 (16)0.0467 (13)0.0700 (17)0.0023 (12)0.0449 (15)0.0006 (12)
C100.0682 (18)0.0629 (17)0.0658 (17)0.0011 (13)0.0498 (16)0.0024 (13)
C20.0520 (14)0.0454 (13)0.0612 (15)0.0007 (11)0.0400 (13)0.0010 (11)
C30.0564 (15)0.0450 (13)0.0634 (16)0.0061 (11)0.0387 (14)0.0016 (12)
C80.0753 (18)0.0506 (15)0.0666 (16)0.0187 (13)0.0515 (15)0.0091 (12)
C110.0800 (19)0.0451 (15)0.0711 (18)0.0009 (13)0.0528 (17)0.0027 (12)
C90.0657 (18)0.0780 (19)0.0761 (19)0.0168 (15)0.0530 (16)0.0058 (15)
Geometric parameters (Å, º) top
Br1—C41.898 (2)C1—C21.373 (3)
S1—O21.4280 (18)C1—C61.380 (3)
S1—O11.431 (2)C4—C31.367 (4)
S1—N11.616 (2)C4—C51.374 (4)
S1—C11.771 (2)C5—C61.382 (4)
N2—C71.313 (3)C10—C91.493 (4)
N2—C111.461 (3)C10—C111.507 (4)
O3—C71.242 (3)C2—C31.385 (3)
C7—C81.494 (3)C8—C91.520 (4)
O2—S1—O1119.48 (12)C6—C1—S1119.82 (18)
O2—S1—N1106.60 (13)C3—C4—C5121.9 (2)
O1—S1—N1107.35 (13)C3—C4—Br1118.89 (19)
O2—S1—C1109.04 (11)C5—C4—Br1119.23 (19)
O1—S1—C1107.23 (11)C4—C5—C6118.9 (2)
N1—S1—C1106.45 (11)C1—C6—C5119.7 (2)
C7—N2—C11127.6 (2)C9—C10—C11110.0 (2)
O3—C7—N2121.5 (2)C1—C2—C3119.8 (2)
O3—C7—C8120.2 (2)C4—C3—C2119.0 (2)
N2—C7—C8118.3 (2)C7—C8—C9113.9 (2)
C2—C1—C6120.7 (2)N2—C11—C10111.0 (2)
C2—C1—S1119.39 (18)C10—C9—C8109.8 (2)
(PTSAVLM) top
Crystal data top
C7H9NO2S·C5H9NOF(000) = 288
Mr = 270.34Dx = 1.298 Mg m3
Triclinic, P1Melting point: 347 K
a = 5.210 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.449 (4) ÅCell parameters from 1964 reflections
c = 16.104 (8) Åθ = 2.5–23.8°
α = 82.894 (8)°µ = 0.24 mm1
β = 82.798 (8)°T = 298 K
γ = 81.772 (8)°PLATE, colorles
V = 692.0 (6) Å30.22 × 0.20 × 0.20 mm
Z = 2
Data collection top
CCD area detector
diffractometer
1969 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.4°, θmin = 1.3°
phi and ω scansh = 66
7341 measured reflectionsk = 1010
2819 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0881P)2 + 0.0472P]
where P = (Fo2 + 2Fc2)/3
2819 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C7H9NO2S·C5H9NOγ = 81.772 (8)°
Mr = 270.34V = 692.0 (6) Å3
Triclinic, P1Z = 2
a = 5.210 (3) ÅMo Kα radiation
b = 8.449 (4) ŵ = 0.24 mm1
c = 16.104 (8) ÅT = 298 K
α = 82.894 (8)°0.22 × 0.20 × 0.20 mm
β = 82.798 (8)°
Data collection top
CCD area detector
diffractometer
1969 reflections with I > 2σ(I)
7341 measured reflectionsRint = 0.023
2819 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2819 reflectionsΔρmin = 0.15 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.10112 (11)0.19293 (7)0.72741 (4)0.0619 (3)
O30.8702 (3)0.41356 (19)0.91796 (10)0.0688 (5)
N20.7568 (4)0.6588 (2)0.95856 (14)0.0597 (5)
C80.7356 (4)0.5482 (3)0.91038 (14)0.0537 (5)
N10.8887 (4)0.1678 (3)0.80706 (15)0.0599 (5)
C11.0056 (4)0.3814 (3)0.67244 (14)0.0535 (5)
O21.0896 (4)0.0718 (2)0.67443 (13)0.0934 (7)
O11.3393 (3)0.2030 (2)0.76034 (15)0.0947 (7)
C120.6188 (5)0.8210 (3)0.95606 (18)0.0737 (7)
H12A0.73820.89640.93110.088*
H12B0.56010.84561.01320.088*
C40.8259 (5)0.6833 (3)0.59678 (16)0.0682 (7)
C110.3906 (6)0.8430 (4)0.9073 (2)0.0909 (9)
H11A0.24500.80120.94250.109*
H11B0.34050.95710.89240.109*
C61.1026 (5)0.5156 (3)0.68710 (19)0.0790 (8)
H61.23250.50640.72270.095*
C20.8195 (6)0.3973 (3)0.61818 (17)0.0821 (8)
H20.75260.30730.60620.099*
C100.4426 (7)0.7627 (4)0.8306 (2)0.1003 (11)
H10A0.57190.81440.79220.120*
H10B0.28370.77510.80360.120*
C90.5402 (5)0.5845 (3)0.84744 (16)0.0707 (7)
H9A0.39240.52700.86770.085*
H9B0.61900.54500.79490.085*
C51.0095 (6)0.6651 (3)0.64949 (19)0.0792 (8)
H51.07620.75540.66110.095*
C70.7207 (7)0.8483 (4)0.5574 (2)0.1055 (11)
H7A0.84600.92130.55730.158*
H7B0.56060.88660.58930.158*
H7C0.68890.84150.50060.158*
C30.7320 (7)0.5486 (4)0.5813 (2)0.0975 (10)
H30.60470.55890.54470.117*
H1A0.756 (5)0.158 (3)0.7922 (15)0.054 (7)*
H1B0.885 (5)0.240 (3)0.8399 (16)0.071 (9)*
H2A0.850 (5)0.637 (3)0.9921 (16)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0507 (4)0.0481 (4)0.0836 (5)0.0045 (2)0.0138 (3)0.0001 (3)
O30.0761 (11)0.0595 (10)0.0727 (11)0.0114 (8)0.0338 (9)0.0121 (8)
N20.0561 (12)0.0552 (12)0.0694 (13)0.0057 (9)0.0288 (11)0.0061 (10)
C80.0486 (12)0.0555 (13)0.0563 (13)0.0016 (10)0.0154 (10)0.0003 (11)
N10.0556 (13)0.0507 (12)0.0747 (15)0.0055 (9)0.0215 (11)0.0014 (10)
C10.0452 (11)0.0502 (12)0.0630 (14)0.0000 (9)0.0085 (10)0.0021 (10)
O20.1218 (17)0.0521 (10)0.1003 (14)0.0137 (10)0.0043 (12)0.0214 (10)
O10.0483 (10)0.0814 (13)0.1487 (18)0.0023 (8)0.0358 (11)0.0282 (12)
C120.0704 (16)0.0559 (14)0.0935 (19)0.0117 (12)0.0284 (14)0.0057 (13)
C40.0780 (17)0.0606 (15)0.0592 (14)0.0017 (12)0.0071 (13)0.0070 (11)
C110.087 (2)0.0695 (18)0.114 (2)0.0168 (14)0.0433 (18)0.0013 (17)
C60.0770 (18)0.0620 (16)0.105 (2)0.0155 (13)0.0459 (16)0.0058 (14)
C20.111 (2)0.0632 (17)0.0815 (18)0.0175 (15)0.0445 (17)0.0033 (14)
C100.116 (3)0.093 (2)0.089 (2)0.0324 (18)0.0550 (19)0.0051 (17)
C90.0697 (16)0.0709 (16)0.0732 (16)0.0026 (12)0.0332 (13)0.0021 (13)
C50.091 (2)0.0518 (15)0.098 (2)0.0144 (13)0.0275 (17)0.0037 (14)
C70.127 (3)0.077 (2)0.100 (2)0.0079 (18)0.025 (2)0.0254 (17)
C30.123 (3)0.082 (2)0.094 (2)0.0061 (18)0.067 (2)0.0120 (17)
Geometric parameters (Å, º) top
S1—O21.423 (2)C4—C71.516 (3)
S1—O11.426 (2)C11—C101.459 (4)
S1—N11.600 (2)C11—H11A0.9700
S1—C11.762 (2)C11—H11B0.9700
O3—C81.249 (3)C6—C51.381 (4)
N2—C81.311 (3)C6—H60.9300
N2—C121.452 (3)C2—C31.381 (4)
N2—H2A0.76 (3)C2—H20.9300
C8—C91.500 (3)C10—C91.521 (4)
N1—H1A0.78 (3)C10—H10A0.9700
N1—H1B0.85 (3)C10—H10B0.9700
C1—C61.362 (3)C9—H9A0.9700
C1—C21.366 (3)C9—H9B0.9700
C12—C111.483 (4)C5—H50.9300
C12—H12A0.9700C7—H7A0.9600
C12—H12B0.9700C7—H7B0.9600
C4—C51.337 (4)C7—H7C0.9600
C4—C31.362 (4)C3—H30.9300
O2—S1—O1119.81 (13)H11A—C11—H11B107.8
O2—S1—N1107.32 (14)C1—C6—C5120.5 (2)
O1—S1—N1106.20 (14)C1—C6—H6119.7
O2—S1—C1108.18 (12)C5—C6—H6119.7
O1—S1—C1107.38 (11)C1—C2—C3119.2 (3)
N1—S1—C1107.36 (10)C1—C2—H2120.4
C8—N2—C12127.3 (2)C3—C2—H2120.4
C8—N2—H2A117.7 (19)C11—C10—C9112.7 (2)
C12—N2—H2A115.0 (19)C11—C10—H10A109.1
O3—C8—N2120.9 (2)C9—C10—H10A109.1
O3—C8—C9120.4 (2)C11—C10—H10B109.1
N2—C8—C9118.7 (2)C9—C10—H10B109.1
S1—N1—H1A110.0 (17)H10A—C10—H10B107.8
S1—N1—H1B110.7 (17)C8—C9—C10113.6 (2)
H1A—N1—H1B116 (3)C8—C9—H9A108.8
C6—C1—C2118.7 (2)C10—C9—H9A108.8
C6—C1—S1120.85 (19)C8—C9—H9B108.8
C2—C1—S1120.30 (19)C10—C9—H9B108.8
N2—C12—C11112.7 (2)H9A—C9—H9B107.7
N2—C12—H12A109.1C4—C5—C6121.6 (3)
C11—C12—H12A109.1C4—C5—H5119.2
N2—C12—H12B109.1C6—C5—H5119.2
C11—C12—H12B109.1C4—C7—H7A109.5
H12A—C12—H12B107.8C4—C7—H7B109.5
C5—C4—C3117.7 (2)H7A—C7—H7B109.5
C5—C4—C7121.2 (3)C4—C7—H7C109.5
C3—C4—C7121.1 (3)H7A—C7—H7C109.5
C10—C11—C12112.8 (3)H7B—C7—H7C109.5
C10—C11—H11A109.0C4—C3—C2122.3 (3)
C12—C11—H11A109.0C4—C3—H3118.9
C10—C11—H11B109.0C2—C3—H3118.9
C12—C11—H11B109.0
(2ClBSAVLM) top
Crystal data top
C6H6ClNO2S·C5H9NODx = 1.439 Mg m3
Mr = 290.76Melting point: 353 K
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
a = 10.521 (2) ÅCell parameters from 1920 reflections
b = 13.7661 (12) Åθ = 3.7–28.8°
c = 10.3407 (16) ŵ = 0.44 mm1
β = 116.31 (2)°T = 298 K
V = 1342.5 (3) Å3BLOCK, colorles
Z = 40.22 × 0.22 × 0.20 mm
F(000) = 608
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2731 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
SADABS
h = 1213
Tmin = 0.707, Tmax = 1.000k = 1517
5058 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H6ClNO2S·C5H9NOV = 1342.5 (3) Å3
Mr = 290.76Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 10.521 (2) ŵ = 0.44 mm1
b = 13.7661 (12) ÅT = 298 K
c = 10.3407 (16) Å0.22 × 0.22 × 0.20 mm
β = 116.31 (2)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2731 independent reflections
Absorption correction: multi-scan
SADABS
2039 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 1.000Rint = 0.038
5058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.38 e Å3
2731 reflectionsΔρmin = 0.36 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19111 (6)0.19966 (4)0.48704 (5)0.03615 (18)
Cl10.05379 (7)0.11264 (4)0.16036 (6)0.0540 (2)
O10.26755 (18)0.20526 (11)0.64070 (15)0.0487 (4)
O20.05885 (17)0.24899 (11)0.41564 (16)0.0495 (4)
C10.1601 (2)0.07383 (14)0.4485 (2)0.0328 (5)
N10.2947 (2)0.24040 (14)0.4250 (2)0.0437 (5)
H1B0.257 (3)0.2485 (18)0.335 (3)0.052*
H1A0.372 (3)0.2141 (19)0.462 (3)0.052*
O30.54379 (19)0.12661 (13)0.55417 (18)0.0610 (5)
C20.1944 (2)0.01049 (17)0.5627 (2)0.0437 (6)
H20.23660.03370.65690.052*
N20.5607 (2)0.00213 (15)0.6987 (2)0.0525 (5)
H2A0.53250.03490.62420.063*
C50.0690 (3)0.06037 (17)0.2835 (3)0.0506 (6)
H50.02690.08420.18960.061*
C60.0966 (2)0.03718 (16)0.3083 (2)0.0387 (5)
C30.1659 (3)0.08749 (19)0.5367 (3)0.0584 (7)
H30.18880.13000.61370.070*
C40.1040 (3)0.12237 (18)0.3982 (3)0.0590 (7)
H40.08570.18850.38190.071*
C80.5756 (3)0.09436 (19)0.6778 (3)0.0504 (6)
C100.6294 (4)0.1197 (2)0.9393 (3)0.0769 (9)
H10A0.68890.15811.02310.092*
H10B0.53290.12260.92820.092*
C120.5869 (3)0.0445 (2)0.8350 (3)0.0620 (7)
H12A0.63210.10690.84120.074*
H12B0.49720.05610.83770.074*
C110.6794 (3)0.0165 (3)0.9618 (3)0.0742 (9)
H11A0.77650.01370.97470.089*
H11B0.67740.00891.04840.089*
C90.6348 (3)0.1615 (2)0.8064 (3)0.0674 (8)
H9A0.58180.22190.78100.081*
H9B0.73250.17650.82910.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0502 (4)0.0291 (3)0.0311 (3)0.0002 (3)0.0198 (3)0.0019 (2)
Cl10.0700 (5)0.0501 (4)0.0350 (3)0.0103 (3)0.0170 (3)0.0051 (2)
O10.0696 (12)0.0471 (9)0.0308 (8)0.0030 (9)0.0235 (8)0.0062 (7)
O20.0581 (11)0.0373 (9)0.0523 (10)0.0128 (8)0.0236 (9)0.0027 (7)
C10.0346 (11)0.0276 (10)0.0395 (11)0.0007 (9)0.0194 (9)0.0012 (9)
N10.0544 (13)0.0405 (11)0.0349 (10)0.0103 (10)0.0185 (10)0.0001 (8)
O30.0692 (13)0.0589 (11)0.0577 (11)0.0052 (10)0.0307 (9)0.0064 (9)
C20.0449 (13)0.0395 (12)0.0484 (13)0.0034 (11)0.0223 (11)0.0068 (10)
N20.0594 (14)0.0497 (12)0.0456 (11)0.0039 (11)0.0207 (10)0.0017 (9)
C50.0541 (16)0.0360 (12)0.0662 (15)0.0100 (12)0.0308 (13)0.0136 (12)
C60.0379 (12)0.0357 (11)0.0459 (13)0.0037 (10)0.0216 (10)0.0026 (9)
C30.0583 (17)0.0398 (13)0.0824 (19)0.0068 (13)0.0360 (14)0.0222 (13)
C40.0581 (17)0.0299 (12)0.093 (2)0.0039 (12)0.0375 (15)0.0035 (13)
C80.0419 (14)0.0527 (15)0.0562 (16)0.0052 (12)0.0214 (12)0.0011 (12)
C100.087 (2)0.082 (2)0.0587 (18)0.002 (2)0.0297 (16)0.0146 (16)
C120.0659 (18)0.0641 (17)0.0532 (15)0.0105 (15)0.0239 (14)0.0097 (13)
C110.073 (2)0.090 (2)0.0475 (15)0.0098 (18)0.0159 (14)0.0012 (15)
C90.0657 (19)0.0590 (17)0.075 (2)0.0006 (16)0.0296 (16)0.0106 (15)
Geometric parameters (Å, º) top
S1—O21.4254 (16)C5—H50.9300
S1—O11.4299 (16)C3—C41.370 (4)
S1—N11.592 (2)C3—H30.9300
S1—C11.775 (2)C4—H40.9300
Cl1—C61.735 (2)C8—C91.508 (3)
C1—C21.380 (3)C10—C111.497 (4)
C1—C61.395 (3)C10—C91.514 (4)
N1—H1B0.84 (3)C10—H10A0.9700
N1—H1A0.81 (3)C10—H10B0.9700
O3—C81.251 (3)C12—C111.497 (4)
C2—C31.382 (3)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
N2—C81.309 (3)C11—H11A0.9700
N2—C121.460 (3)C11—H11B0.9700
N2—H2A0.8600C9—H9A0.9700
C5—C41.373 (4)C9—H9B0.9700
C5—C61.374 (3)
O2—S1—O1119.27 (10)C5—C4—H4119.8
O2—S1—N1108.00 (11)O3—C8—N2121.0 (2)
O1—S1—N1106.29 (11)O3—C8—C9120.2 (2)
O2—S1—C1107.98 (10)N2—C8—C9118.8 (2)
O1—S1—C1105.00 (10)C11—C10—C9110.5 (3)
N1—S1—C1110.12 (10)C11—C10—H10A109.6
C2—C1—C6118.9 (2)C9—C10—H10A109.6
C2—C1—S1118.18 (16)C11—C10—H10B109.6
C6—C1—S1122.81 (15)C9—C10—H10B109.6
S1—N1—H1B115.1 (17)H10A—C10—H10B108.1
S1—N1—H1A112.1 (19)N2—C12—C11111.7 (2)
H1B—N1—H1A117 (3)N2—C12—H12A109.3
C1—C2—C3119.9 (2)C11—C12—H12A109.3
C1—C2—H2120.1N2—C12—H12B109.3
C3—C2—H2120.1C11—C12—H12B109.3
C8—N2—C12126.9 (2)H12A—C12—H12B107.9
C8—N2—H2A116.5C12—C11—C10110.4 (2)
C12—N2—H2A116.5C12—C11—H11A109.6
C4—C5—C6119.5 (2)C10—C11—H11A109.6
C4—C5—H5120.2C12—C11—H11B109.6
C6—C5—H5120.2C10—C11—H11B109.6
C5—C6—C1120.8 (2)H11A—C11—H11B108.1
C5—C6—Cl1118.02 (18)C8—C9—C10113.6 (2)
C1—C6—Cl1121.17 (17)C8—C9—H9A108.8
C4—C3—C2120.4 (2)C10—C9—H9A108.8
C4—C3—H3119.8C8—C9—H9B108.8
C2—C3—H3119.8C10—C9—H9B108.8
C3—C4—C5120.4 (2)H9A—C9—H9B107.7
C3—C4—H4119.8
(BSAVLM) top
Crystal data top
C6H7NO2S·C5H9NODx = 1.335 Mg m3
Mr = 256.32Melting point: 352 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.1043 (5) ÅCell parameters from 1374 reflections
b = 12.7937 (10) Åθ = 3.6–27.8°
c = 14.0302 (16) ŵ = 0.25 mm1
V = 1275.2 (2) Å3T = 298 K
Z = 4PLATE, colorles
F(000) = 5440.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2493 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
SADABS
h = 48
Tmin = 0.679, Tmax = 1.000k = 1515
3791 measured reflectionsl = 1712
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2685P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2493 reflectionsΔρmax = 0.25 e Å3
160 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (12)
Crystal data top
C6H7NO2S·C5H9NOV = 1275.2 (2) Å3
Mr = 256.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1043 (5) ŵ = 0.25 mm1
b = 12.7937 (10) ÅT = 298 K
c = 14.0302 (16) Å0.22 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2493 independent reflections
Absorption correction: multi-scan
SADABS
2175 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.025
3791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.24 e Å3
2493 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
160 parametersAbsolute structure parameter: 0.01 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09979 (9)0.66876 (5)0.35518 (6)0.0479 (2)
O20.0932 (3)0.69509 (18)0.34129 (19)0.0701 (7)
C10.2366 (4)0.7664 (2)0.29907 (19)0.0400 (6)
N10.1392 (4)0.6744 (2)0.4676 (2)0.0536 (6)
H1A0.243 (5)0.647 (3)0.484 (3)0.064*
H1B0.114 (5)0.732 (3)0.489 (3)0.064*
O10.1650 (4)0.56864 (17)0.32366 (19)0.0672 (7)
C60.4304 (4)0.7576 (2)0.3012 (2)0.0493 (7)
H60.48770.69970.32870.059*
C40.4533 (5)0.9224 (3)0.2214 (2)0.0611 (9)
H40.52730.97530.19570.073*
C20.1514 (4)0.8530 (2)0.2593 (2)0.0488 (7)
H20.02090.85910.25960.059*
C30.2607 (5)0.9305 (3)0.2191 (2)0.0571 (8)
H30.20400.98800.19050.069*
C50.5370 (4)0.8361 (3)0.2618 (3)0.0648 (9)
H50.66750.83080.26250.078*
O30.0223 (3)0.11055 (17)0.49917 (18)0.0627 (6)
N20.2865 (4)0.0211 (2)0.4788 (2)0.0569 (7)
H2A0.34630.07690.49470.068*
C70.1024 (5)0.0281 (2)0.47661 (19)0.0468 (6)
C80.0072 (6)0.0650 (3)0.4470 (3)0.0718 (10)
H8A0.09900.08050.49620.086*
H8B0.07590.04800.38930.086*
C110.4012 (6)0.0702 (3)0.4577 (3)0.0807 (11)
H11A0.47430.08890.51350.097*
H11B0.48830.05360.40660.097*
C100.2857 (13)0.1574 (5)0.4298 (8)0.220 (6)
H10A0.32550.21530.46970.264*
H10B0.32460.17490.36550.264*
C90.1069 (11)0.1609 (4)0.4291 (6)0.152 (3)
H9A0.06940.18790.36730.182*
H9B0.06920.21240.47610.182*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0358 (3)0.0397 (3)0.0682 (5)0.0044 (3)0.0010 (3)0.0019 (3)
O20.0330 (10)0.0707 (14)0.1068 (19)0.0073 (10)0.0080 (12)0.0053 (13)
C10.0353 (13)0.0443 (15)0.0403 (14)0.0009 (12)0.0009 (11)0.0022 (12)
N10.0528 (15)0.0441 (13)0.0639 (16)0.0006 (13)0.0097 (13)0.0057 (13)
O10.0668 (14)0.0453 (11)0.0894 (17)0.0056 (11)0.0060 (13)0.0154 (11)
C60.0383 (15)0.0501 (15)0.0595 (18)0.0040 (13)0.0017 (13)0.0067 (14)
C40.064 (2)0.062 (2)0.057 (2)0.0070 (17)0.0116 (16)0.0095 (16)
C20.0399 (15)0.0538 (17)0.0526 (16)0.0088 (12)0.0051 (13)0.0031 (14)
C30.069 (2)0.0525 (18)0.0498 (18)0.0071 (17)0.0030 (17)0.0114 (15)
C50.0399 (16)0.079 (2)0.075 (2)0.0058 (17)0.0091 (15)0.011 (2)
O30.0593 (14)0.0482 (12)0.0807 (16)0.0039 (11)0.0135 (12)0.0037 (11)
N20.0517 (16)0.0493 (15)0.0697 (18)0.0006 (12)0.0102 (13)0.0039 (13)
C70.0556 (17)0.0424 (14)0.0424 (14)0.0061 (15)0.0016 (14)0.0017 (12)
C80.075 (2)0.060 (2)0.081 (3)0.0233 (19)0.006 (2)0.0070 (18)
C110.078 (3)0.077 (2)0.087 (3)0.031 (2)0.004 (2)0.004 (2)
C100.148 (7)0.095 (4)0.417 (15)0.060 (5)0.117 (9)0.137 (7)
C90.154 (6)0.056 (3)0.245 (8)0.035 (4)0.057 (6)0.060 (4)
Geometric parameters (Å, º) top
S1—O21.425 (2)O3—C71.239 (3)
S1—O11.432 (2)N2—C71.312 (4)
S1—N11.604 (3)N2—C111.454 (4)
S1—C11.768 (3)N2—H2A0.8600
C1—C21.380 (4)C7—C81.483 (4)
C1—C61.382 (4)C8—C91.492 (7)
N1—H1A0.85 (4)C8—H8A0.9700
N1—H1B0.82 (4)C8—H8B0.9700
C6—C51.373 (5)C11—C101.439 (8)
C6—H60.9300C11—H11A0.9700
C4—C31.373 (5)C11—H11B0.9700
C4—C51.376 (5)C10—C91.271 (9)
C4—H40.9300C10—H10A0.9700
C2—C31.380 (5)C10—H10B0.9700
C2—H20.9300C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C5—H50.9300
O2—S1—O1118.70 (15)C11—N2—H2A116.2
O2—S1—N1106.96 (16)O3—C7—N2120.7 (3)
O1—S1—N1106.72 (16)O3—C7—C8120.9 (3)
O2—S1—C1107.52 (14)N2—C7—C8118.4 (3)
O1—S1—C1108.47 (14)C7—C8—C9115.0 (4)
N1—S1—C1108.07 (13)C7—C8—H8A108.5
C2—C1—C6120.7 (3)C9—C8—H8A108.5
C2—C1—S1120.4 (2)C7—C8—H8B108.5
C6—C1—S1118.7 (2)C9—C8—H8B108.5
S1—N1—H1A113 (3)H8A—C8—H8B107.5
S1—N1—H1B111 (3)C10—C11—N2111.0 (4)
H1A—N1—H1B118 (4)C10—C11—H11A109.4
C5—C6—C1118.8 (3)N2—C11—H11A109.4
C5—C6—H6120.6C10—C11—H11B109.4
C1—C6—H6120.6N2—C11—H11B109.4
C3—C4—C5120.1 (3)H11A—C11—H11B108.0
C3—C4—H4120.0C9—C10—C11126.8 (5)
C5—C4—H4120.0C9—C10—H10A105.6
C3—C2—C1119.6 (3)C11—C10—H10A105.6
C3—C2—H2120.2C9—C10—H10B105.6
C1—C2—H2120.2C11—C10—H10B105.6
C4—C3—C2119.8 (3)H10A—C10—H10B106.1
C4—C3—H3120.1C10—C9—C8120.9 (5)
C2—C3—H3120.1C10—C9—H9A107.1
C6—C5—C4120.9 (3)C8—C9—H9A107.1
C6—C5—H5119.5C10—C9—H9B107.1
C4—C5—H5119.5C8—C9—H9B107.1
C7—N2—C11127.5 (3)H9A—C9—H9B106.8
C7—N2—H2A116.2

Experimental details

(2ABSACPR)(BSAAZL)(4ClBSACPR)(SNACPR)
Crystal data
Chemical formulaC6H8N2O2S·C6H11NOC6H7NO2S·C7H13NOC6H6ClNO2S·C6H11NOC6H8N2O2S·C6H11NO
Mr285.36284.37304.79285.36
Crystal system, space groupMonoclinic, P121/n1Monoclinic, P21/nOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)298298297298
a, b, c (Å)7.2731 (4), 15.9052 (10), 12.7766 (6)7.3020 (9), 17.189 (2), 12.2835 (16)7.1564 (13), 13.369 (2), 15.276 (3)7.0957 (6), 13.1280 (13), 15.3425 (18)
α, β, γ (°)90, 99.291 (5), 9090, 106.760 (2), 9090, 90, 9090, 90, 90
V3)1458.60 (15)1476.2 (3)1461.5 (5)1429.2 (2)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.230.230.410.24
Crystal size (mm)0.22 × 0.21 × 0.200.22 × 0.20 × 0.200.23 × 0.20 × 0.200.22 × 0.20 × 0.20
Data collection
DiffractometerXcalibur, Eos, Gemini
diffractometer
CCD area detector
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Absorption correctionMulti-scan
SADABS
Multi-scan
SADABS
Multi-scan
SADABS
Tmin, Tmax0.874, 1.0000.333, 1.0000.667, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5525, 2488, 1993 13710, 2520, 2154 4403, 2851, 1152 3692, 2354, 1318
Rint0.0200.0370.0820.042
(sin θ/λ)max1)0.5880.5880.6250.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.02 0.060, 0.142, 1.09 0.090, 0.114, 0.97 0.053, 0.080, 0.90
No. of reflections2488252028512354
No. of parameters179184178179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.320.26, 0.270.25, 0.250.18, 0.21
Absolute structure??Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter??0.11 (15)0.03 (14)


(4BrBSACPR)(OTSAVLM)(2ClBSACPR)(BSACPR)
Crystal data
Chemical formulaC6H6BrNO2S·C6H11NOC7H9NO2S·C5H9NOC6H6ClNO2S·C6H11NOC6H7NO2S·C6H11NO
Mr349.25270.34304.79270.34
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/nMonoclinic, P121/c1Orthorhombic, P212121
Temperature (K)298298298298
a, b, c (Å)7.156 (3), 13.538 (5), 15.406 (6)5.3367 (6), 15.9206 (17), 16.070 (3)9.8782 (6), 14.1720 (6), 10.8753 (6)7.0700 (9), 12.7624 (13), 14.977 (2)
α, β, γ (°)90, 90, 9090, 98.308 (12), 9090, 112.850 (7), 9090, 90, 90
V3)1492.3 (9)1351.0 (3)1402.98 (12)1351.4 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.900.240.430.24
Crystal size (mm)0.22 × 0.20 × 0.200.22 × 0.20 × 0.200.22 × 0.22 × 0.200.22 × 0.20 × 0.20
Data collection
DiffractometerCCD area detector
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Absorption correctionMulti-scan
SADABS
Multi-scan
SADABS
Multi-scan
SADABS
Tmin, Tmax0.755, 1.0000.876, 1.0000.788, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15786, 3029, 2405 5072, 2759, 1420 5810, 2870, 2483 3348, 2197, 1595
Rint0.0570.0670.0210.039
(sin θ/λ)max1)0.6250.6250.6250.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.02 0.065, 0.118, 1.02 0.039, 0.103, 1.09 0.078, 0.181, 1.23
No. of reflections3029275928702197
No. of parameters184170178169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.230.21, 0.240.25, 0.480.37, 0.24
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881??Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.018 (11)??0.0 (2)


(4ClBSAVLM)(4BrBSAVLM)(PTSAVLM)(2ClBSAVLM)
Crystal data
Chemical formulaC6H6ClNO2S·C5H9NOC6H6BrNO2S·C5H9NOC7H9NO2S·C5H9NOC6H6ClNO2S·C5H9NO
Mr290.76335.22270.34290.76
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cTriclinic, P1Monoclinic, P121/c1
Temperature (K)297298298298
a, b, c (Å)25.701 (4), 6.8096 (4), 19.177 (3)25.914 (3), 6.8687 (9), 19.202 (2)5.210 (3), 8.449 (4), 16.104 (8)10.521 (2), 13.7661 (12), 10.3407 (16)
α, β, γ (°)90, 127.40 (2), 9090, 126.873 (2), 9082.894 (8), 82.798 (8), 81.772 (8)90, 116.31 (2), 90
V3)2666.3 (6)2734.1 (6)692.0 (6)1342.5 (3)
Z8824
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.453.160.240.44
Crystal size (mm)0.22 × 0.20 × 0.200.22 × 0.20 × 0.200.22 × 0.20 × 0.200.22 × 0.22 × 0.20
Data collection
DiffractometerXcalibur, Eos, Gemini
diffractometer
CCD area detector
diffractometer
CCD area detector
diffractometer
Xcalibur, Eos, Gemini
diffractometer
Absorption correctionMulti-scan
SADABS
Multi-scan
SADABS
Tmin, Tmax0.844, 1.0000.707, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5127, 2732, 1677 14029, 2790, 2216 7341, 2819, 1969 5058, 2731, 2039
Rint0.0430.0300.0230.038
(sin θ/λ)max1)0.6250.6250.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.134, 1.07 0.035, 0.094, 1.03 0.050, 0.153, 1.04 0.044, 0.114, 0.98
No. of reflections2732279028192731
No. of parameters169175176169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.380.56, 0.390.43, 0.150.38, 0.36
Absolute structure????
Absolute structure parameter????


(BSAVLM)
Crystal data
Chemical formulaC6H7NO2S·C5H9NO
Mr256.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.1043 (5), 12.7937 (10), 14.0302 (16)
α, β, γ (°)90, 90, 90
V3)1275.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerXcalibur, Eos, Gemini
diffractometer
Absorption correctionMulti-scan
SADABS
Tmin, Tmax0.679, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3791, 2493, 2175
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 1.06
No. of reflections2493
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.01 (12)

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Acknowledgements

GB and SM thank the UGC for a fellowship. We thank the DST-SERB scheme on APIs (SR/S1/OC 37/2011), JC Bose Fellowship (SR/S2/JCB-06/2009) and CSIR project on Pharmaceutical Cocrystals (01-2410/10/EMR-II) for funding. UGC and DST (UPE and PURSE funding) are thanked for providing instrumentation and infrastructure facilities.

References

First citationAakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998–15003.  Web of Science PubMed Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742.  Google Scholar
First citationBabu, N. J., Reddy, L. S. & Nangia, A. (2007). Mol. Pharm. 4, 417–434.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerzelius, J. (1844). Jahresber., 23, 44.  Google Scholar
First citationBiradha, K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 6431–6432.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrink, C. & Kroese, H. A. S. (1952). Acta Cryst. 5, 433–436.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker AXS (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChilds, S. L., Chyall, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335–13342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChitra, R., Choudhury, R. R., Thiruvenkatam, V., Hosur, M. V. & Guru Row, T. N. (2012). J. Mol. Struct. 1010, 46–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationCinčić, D., Friščić, T. & Jones, W. (2008a). Chem. Eur. J. 14, 747–753.  Web of Science PubMed Google Scholar
First citationCinčić, D., Friščić, T. & Jones, W. (2008b). New J. Chem. 32, 1776–1781.  Google Scholar
First citationClarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, Ł., Almarsson, Ö. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194–4201.  Web of Science CSD CrossRef CAS Google Scholar
First citationCroker, D. M., Foreman, M. E., Hogan, B. N., Maguire, N. M., Elcoate, C. J., Hodnett, B. K., Maguire, A. R., Rasmuson, C. & Lawrence, S. E. (2012). Cryst. Growth Des. 12, 869–875.  Web of Science CSD CrossRef CAS Google Scholar
First citationDenise, M., Croker, D. M. & Rasmuson, Å. C. (2014). Org. Process Res. Dev. 18, 941–946.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Elsevier: Amsterdam.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R., Vittal, J. & Ramanan, A. (2011). Crystal Engineering: A Textbook. Singapore: World Scientific.  Google Scholar
First citationDikundwar, A. G., Pete, U. D., Zade, C. M., Bendre, R. S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4530–4534.  Web of Science CSD CrossRef CAS Google Scholar
First citationDubey, R. & Desiraju, G. R. (2014). Chem. Commun. 50, 1181–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunitz, J. D. & Gavezzotti, A. (2012). Cryst. Growth Des. 12, 5873–5877.  Web of Science CrossRef CAS Google Scholar
First citationEbenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579–3592.  Web of Science CSD CrossRef CAS Google Scholar
First citationErmer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, p. 925.  CSD CrossRef Web of Science Google Scholar
First citationEtter, M. C. (1982). J. Am. Chem. Soc. 104, 1095–1096.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábián, L., Argay, G. & Kálmán, A. (1999). Acta Cryst. B55, 788–792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFábián, L. & Kálmán, A. (1999). Acta Cryst. B55, 1099–1108.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFábián, L. & Kálmán, A. (2004). Acta Cryst. B60, 547–558.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Lough, A. J. & Glidewell, C. (1989). J. Chem. Soc. Perkin Trans. 2, p. 2065.  CSD CrossRef Web of Science Google Scholar
First citationFriščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546–7550.  Google Scholar
First citationGalcera, J., Friščić, T., Hejczyk, K. E., Fábián, L., Clarke, S. M., Day, G. M., Molins, E. & Jones, W. (2012). CrystEngComm, 14, 7898–7906.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalcera, J., Friščić, T., Molins, E. & Jones, W. (2013). CrystEngComm, 15, 1332–1338.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalcera, J. & Molins, E. (2009). Cryst. Growth Des. 9, 327–334.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930–1939.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarriss, B. I., Vella-Zarb, L., Wilson, C. & Evans, I. R. (2014). Cryst. Growth Des. 14, 783–791.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHirshfeld, F. L. & Mirsky, K. (1979). Acta Cryst. A35, 366–370.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIUCr (2014). https://reference.iucr.org/dictionary/Isostructural_crystals , Accessed 18/11/2014.  Google Scholar
First citationKaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744–2747.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitaigorodsky, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationKitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationKroon, J., Peerdeman, A. F. & Bijvoet, J. M. (1965). Acta Cryst. 19, 293–297.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141.  CrossRef CAS Google Scholar
First citationMelhado, E. M. (1980). Historical Studies in the Physical Sciences, Mitscherlich's Discovery of Isomorphism, 11, 87–123.  Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitscherlich, E. (1822). Abhl. Akad. Berl. p. 43.  Google Scholar
First citationMoragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552–2559.  CAS Google Scholar
First citationMorrow, S. I. (1969). J. Chem. Educ. 46, 580–583.  CrossRef CAS Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNangia, A. & Desiraju, G. R. (1998). Top. Curr. Chem. 198, 57–95.  CrossRef CAS Google Scholar
First citationPerutz, M. F. (1956). Acta Cryst. 9, 867–873.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationReddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. p. 1369.  Web of Science CSD CrossRef Google Scholar
First citationReddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505–513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.  CSD CrossRef CAS Web of Science Google Scholar
First citationRemenar, J. F., Peterson, M. L., Stephens, P. W., Zhang, Z., Zimenkov, Y. & Hickey, M. B. (2007). Mol. Pharm. 4, 386–400.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaha, B. K. & Nangia, A. (2007). Heteroat. Chem. 18, 185–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanphui, P. & Rajput, L. (2014). Acta Cryst. B70, 81–90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSanphui, P., Sarma, B. & Nangia, A. (2010). Cryst. Growth Des. 10, 4550–4564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546–1557.  Web of Science CSD CrossRef CAS Google Scholar
First citationSauer, O., Schmidt, A. & Kratky, C. (1997). J. Appl. Cryst. 30, 476–486.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmidt, G. M. (1971). J. Pure Appl. Chem. 27, p. 647.  CrossRef Google Scholar
First citationShan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372–2373.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakuria, R. & Nangia, A. (2013). Cryst. Growth Des. 13, 3672–3680.  Web of Science CSD CrossRef CAS Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar
First citationTrask, A. V., Haynes, D. A., Motherwell, W. D. S. & Jones, W. (2006). Chem. Commun. pp. 51–53.  Web of Science CSD CrossRef Google Scholar
First citationTrask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41–70.  CAS Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2004). Chem. Commun. p. 890.  Web of Science CSD CrossRef Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114–123.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUeto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationUS-FDA (2014). GRAS list, https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ , Accessed 04/12/2014.  Google Scholar
First citationVainshtein, B. K., Fridkin, V. M. & Indenbom, V. L. (1982). Modern Crystallography, Vol. II. Berlin: Springer-Verlag.  Google Scholar
First citationVangala, V. R., Mondal, R., Broder, C. K., Howard, J. A. K. & Desiraju, G. R. (2005). Cryst. Growth Des. 5, 99–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003a). CrystEngComm, 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003b). Cryst. Growth Des. 3, 783–790.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalsh, R. D. B., Bradner, M. W., Fleishman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 2| Part 4| July 2015| Pages 389-401
ISSN: 2052-2525