research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 5| September 2015| Pages 490-497
ISSN: 2052-2525

Crystal structures of eight mono-methyl alkanes (C26–C32) via single-crystal and powder diffraction and DFT-D optimization

aESRF, CS 40220, 38043 Grenoble CEDEX 9, France, bSchool of Physical and Geographical Sciences, Lennard–Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK, cILL, CS 20156, 38042 Grenoble CEDEX 9, France, dSNBL/ESRF, CS 40220, 38043 Grenoble CEDEX 9, France, and eCrystallography Competence Centre, EPFL, 1015 Lausanne, Switzerland
*Correspondence e-mail: fitch@esrf.fr

Edited by C. Lecomte, Université de Lorraine, France (Received 28 January 2015; accepted 28 May 2015; online 5 July 2015)

The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

1. Introduction

The outer cuticle of an insect is covered with a layer of waxy organic molecules with carbon chain lengths up to around 45 atoms which can include n-alkanes, mono-, di-, tri- and tetramethyl alkanes, alkenes, dienes, also oxygen-containing compounds such as alcohols, esters, fatty acids, ketones, aldehydes etc. For example, Bonavita-Cougourdan et al. (1996[Bonavita-Cougourdan, A., Rivière, G., Provost, E., Bagnères, A.-G., Roux, M., Dusticier, G. & Clément, J.-L. (1996). Comput. Biochem. Physiol. 113B, 313-329.]) identified cholesterol and well over 50 hydrocarbons on the cuticle of slave ants Formica cunicularia, while Bagnères & Morgan (1991[Bagnères, A.-G. & Morgan, E. D. (1991). Experientia, 47, 106-111.]) confirmed some 26 hydrocarbon compounds on the cuticle of the ants Manica rubida. This layer acts as a barrier to dehydration (Lockey, 1988[Lockey, K. H. (1988). Comput. Biochem. Physiol. B, 89, 595-645.]; Gibbs, 2002[Gibbs, A. G. (2002). J. Insect Physiol. 48, 391-400.]) but some of the molecules can also play a role as recognition pheromones, which allow social insects to distinguish their nest mates from insects of the same species from another nest, or from related species (e.g. Bagnères et al., 1996[Bagnères, A.-G., Lorenzi, M. C., Dusticier, G., Turillazzi, S. & Clément, J.-L. (1996). Science, 272, 889-892.]; Cuvillier-Hot et al., 2001[Cuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. (2001). J. Insect Physiol. 47, 485-493.]; Dani et al., 2001[Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. (2001). Anim. Behav. 62, 165-171.]; Dapporto et al., 2006[Dapporto, L., Fondelli, L. & Turillazzi, S. (2006). Biochem. Syst. Ecol. 34, 617-625.]; Lahav et al., 1999[Lahav, S., Soroker, V., Hefetz, A. & Vander Meer, R. K. (1999). Naturwissenschaften, 86, 246-249.]; Ruther et al., 2002[Ruther, J., Sieben, S. & Schricker, B. (2002). Naturwissenschaften, 89, 111-114.]; Singer, 1998[Singer, T. L. (1998). Am. Zool. 38, 394-405.]; Zanetti et al., 2001[Zanetti, P., Dani, F. R., Destri, S., Fanelli, D., Massolo, A., Moneti, G., Pieraccini, G. & Turillazzi, S. (2001). J. Insect Physiol. 47, 1013-1020.]). It is the overall mixture of active compounds – a chemical signature – that allows specific insects to be identified. In some insects the cuticular hydrocarbon molecules can also be used to distinguish sex, age and social status.

Dani et al. (2001[Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. (2001). Anim. Behav. 62, 165-171.]) noted that dousing paper wasps with n-alkanes had no apparent effect on kin recognition, whereas methyl-branched alkanes induced an aggressive response. Martin & Drijfhout (2009[Martin, S. & Drijfhout, F. (2009). J. Chem. Ecol. 35, 1151-1161.]) comment that the wide range and large quantities of mono-methyl alkanes present on insects would suggest that they act as general indicators and it is the smaller quantities of alkenes and dimethylalkanes that are used to communicate the more complex information of nest-mate recognition. The differences in chemical properties between n-alkanes and methyl-branched alkanes are small, implying that stereochemical factors play a role, e.g. chirality, position of the methyl group(s) on the carbon chain or favourable conformations of the molecule allowing interaction with the insect's receptors.

Energy-minimization calculations (Goodman, 1997[Goodman, J. M. (1997). J. Chem. Inf. Model. 37, 876-878.]) suggest that isolated n-alkane molecules adopt a folded conformation once the length of the chain is greater than 17 C atoms long because the stabilizing van der Waals interactions between the —CH2— groups in the folded chain outweigh the energy required to twist the chain from the preferred extended conformation. In crystalline n-alkanes, folding occurs with longer chains of the order of 150 C atoms and above with the tendency to fold into an integral number of pleats, thus excluding chain-end imperfections from the interior of the molecular packing (Ungar et al., 1985[Ungar, G., Stejny, J., Keller, A., Bidd, I. & Whiting, M. C. (1985). Science, 229, 386-389.]).

The crystal structures of methyl-branched alkanes have received less attention and knowledge of their crystal structures, molecular packing and preferred conformations is unclear. The symmetric molecules 20-methylnonatriacontane (C19H39)2CH(CH3) and 18-methylpentatriacontane (C17H35)2CH(CH3), which have the methyl group attached to the central C atom of the main chain, were described with an extended chain conformation (Yamamoto et al., 2004[Yamamoto, H., Nemoto, N. & Tashiro, K. (2004). J. Phys. Chem. B, 108, 5827-5835.]; Ikedou et al., 2005[Ikedou, K., Yamamoto, H., Nagashima, H., Nemoto, N. & Tashiro, K. (2005). J. Phys. Chem. B, 109, 10668-10675.]), whereas melt- or solution-crystallization of the much longer C96H193CH(CH3)C94H189 produced a once-folded conformation (Ungar & Zeng, 2001[Ungar, G. & Zeng, X. (2001). Chem. Rev. 101, 4157-4188.]). The influence of the side-chain position on the packing and crystal structures of methyl alkanes has not been extensively studied.

As part of a more general investigation into the compounds found in the cuticular layers of social insects and their action as recognition pheromones, we synthesized a series of enantiopure mono-methyl alkanes, main chain C25–C31 with the methyl group at a variety of positions. Here we report their crystal structures, determined via high-resolution powder diffraction using synchrotron radiation, with one example investigated by single-crystal diffraction of limited range, obtained fortuitously by the appearance of crystals in the powder specimen. Though solved from the diffraction data by standard direct methods (for the single crystal) and direct-space minimization techniques (for the powders), the structures have been optimized by dispersion-corrected DFT calculations, because of the difficulties of refining accurate structures from powder diffraction data of limited quality and d-spacing extent. Two distinct packing arrangements are seen depending on the position of the methyl group on the carbon chain.

2. Experimental

2.1. Samples

The S enantiomorphs of eight mono-methyl alkanes were synthesized using pseudoephedrine as chiral auxiliary (Myers et al., 1997[Myers, A. G., Yang, B. H., Chen, H., McKinstry, L., Kopecky, D. J. & Gleason, J. L. (1997). J. Am. Chem. Soc. 119, 6496-6511.]), i.e. (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. The samples were purified by column chromatography through silica using petroleum, hexane or petroleum ether as solvent, to yield soft, waxy, low-melting-point white solids.

2.2. Powder diffraction

High-resolution powder X-ray diffraction patterns were measured at wavelengths near 0.8 Å using beamline ID31 (Fitch, 2004[Fitch, A. (2004). J. Res. Natl Inst. Stand. Technol. 109, 133-142.], 2007[Fitch, A. (2007). Solid State Phenom. 130, 7-14.]) at the ESRF, Grenoble. Samples were introduced into 1 mm diameter thin-walled borosilicate-glass capillaries, cooled to 100 K (or 80 K in one instance) with a nitrogen-gas blower and spun axially to improve powder averaging. There was no apparent radiation damage during the measurements. The samples were not all measured during the same experimental session, and measurements were repeated following the experience gained using a 2 d X-ray detector (see below). Hence the data used for the final analyses were not all recorded under exactly the same conditions, resulting in a range in the statistical quality of the data (judged by the Rexp values). Generally powder diffraction patterns were obtained up to 40° 2θ, and were recorded over a period of up to 3 h.

Because of concerns about the possibility of granularity effects with the waxy samples which could not be easily ground before being loaded into the capillaries, measurements were also made at 120 K with a wavelength of 0.82 Å using the Swiss–Norwegian beamline BM01A, equipped with a two-dimensional MAR-345 image-plate detector system, to assess the spottiness (or otherwise) of the Debye–Scherrer rings. Granularity and texture effects can lead to inaccurate peak intensities with high-resolution powder data and impede structural analysis, e.g. as seen in the study of oxanorbornane (Palin et al., 2007[Palin, L., Brunelli, M., Pattison, P. & Fitch, A. N. (2007). Z. Kristallogr. 222, 487-491.]). In addition, the samples were melted and recrystallized by shock freezing in the cold nitrogen stream to investigate possible effects on crystal randomization or the formation of new structural phases. In general, the powder rings showed that it was possible to obtain diffraction patterns not unduly affected by powder-averaging problems, but that this was still a risk. In particular, 7-methylnonacosane (7-MeC29H59) showed individual diffraction spots from within the powder, indicating that there were larger crystals present possibly suitable for a single-crystal measurement.

The high-resolution powder diffraction patterns could be indexed from the positions of 20 to 30 low-angle peaks using the singular value decomposition approach (Coelho, 2003[Coelho, A. A. (2003). J. Appl. Cryst. 36, 86-95.]) implemented in the TOPAS analysis suite (Bruker, 2008[Bruker AXS (2008). TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany.]). All patterns were indexed with monoclinic cells, space group P21, Z = 2. It was clear that the samples exhibited two types of unit cell, distinguished by different b axis lengths of around 7.15 and 4.93 Å, respectively.

Structure solutions were attempted from the powder data by direct-space methods, using simulated annealing and the program DASH (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]). An extended molecule was introduced into the unit cell and its position (2 degrees of freedom), orientation (3 degrees of freedom) and carbon-chain torsion angles (limited to ±5° from the staggered 180° conformation) were allowed to vary. Solutions were found for the three compounds with unit-cell b axis lengths of ≃7.15 Å. Following the solution of the structure of 7-methylnonacosane from the single-crystal pattern (see below), which indicates greater deviations from a straight molecule than imposed in the initial analysis, molecules with b cell axis lengths of around 4.93 Å were allowed greater freedom in their torsion angles. In this way structures were obtained for the remaining compounds.

Although the basic structures could be solved from the powder data, Rietveld (1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) refinements were hard to stabilize. Without extensive restraints on bond distances, angles and torsions, the molecules distorted from what was chemically acceptable. This is not surprising given the many degrees of freedom and the true information content of a diffraction pattern from a powder of relatively modest crystallinity and effective d-spacing range.

2.3. Single-crystal diffraction

Two plate-shaped crystals of (S)-7-methylnonacosane, about 200 µm in diameter and 20 µm thick, were extracted from the specimen and mounted in oil using a standard 0.3 mm diameter cryoloop. Both were investigated using beamline BM01A, giving diffraction patterns of limited range. It was apparent that one of the crystals was twinned.

The single-crystal diffraction pattern was indexed in a monoclinic cell similar to that derived from the powder pattern (see Table 1[link]). The data were integrated and scaled with the CrysAlis package. Given the wavelength and the composition, differences between Friedel pairs were negligible. The structure solution and refinement were made via SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]) and CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), using only isotropic atomic displacement parameters for the C atoms because of the limited extent of the data. The molecule shows a distinct deviation from linear near the methyl side group.

Table 1
Experimental details for single-crystal measurement on (S)-7-methyl­nonacosane

Crystal data
Chemical formula C30H62
Mr 422.81
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 28.172 (5), 4.935 (1), 10.375 (2)
β (°) 90.30 (1)
V3) 1442.4 (5)
Z 2
Radiation type Synchrotron, λ = 0.82 Å
μ (mm−1) 0.05
Crystal size (mm) 0.2 × 0.2 × 0.02
 
Data collection
Diffractometer MAR 345 image plate BM01A (Swiss–Norwegian) beamline at ESRF
Absorption correction
No. of measured, independent and observed [I > 2.0σ(I)] reflections 7987, 1679, 1662
Rint 0.030
θmax (°) 24.3
(sin θ/λ)max−1) 0.502
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.080, 0.93
No. of reflections 1657
No. of parameters 121
No. of restraints 1
H-atom treatment Riding model
Δρmax, Δρmin (e Å−3) 0.26, −0.33
Computer programs: CrysAlis (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]).

3. DFT calculations

It is not unusual that a powder diffraction pattern does not allow an accurate refinement of the crystal and molecular structures, even though it may be good enough to solve the basic molecular packing scheme from a direct-space global-minimization approach exploiting the known molecular connectivity. In these circumstances verifying and completing the structural analysis by quantum-mechanical density functional theory calculations is an attractive option. The use of dispersion-corrected DFT has been described by van de Streek & Neumann (2010[Streek, J. van de & Neumann, M. A. (2010). Acta Cryst. B66, 544-558.], 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]), where it served as an effective check on the accuracy of structures derived from single-crystal and powder-diffraction studies, respectively.

The DFT program CASTEP (Clark et al., 2005[Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogra, 220, 567-570.]) was used, as integrated into the Accelrys Materials Studio 6.1 package, using the PBE functional (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]), plane-wave energy cut-off of 520 eV (as in van de Streek & Neumann, 2010[Streek, J. van de & Neumann, M. A. (2010). Acta Cryst. B66, 544-558.]), and including dispersion interactions via the TS scheme (Tkatchenko & Scheffler, 2009[Tkatchenko, A. & Scheffler, M. (2009). Phys. Rev. Lett. 102, 073005.]). The Materials Studio `ultrafine' geometry optimization convergence criteria were adopted, with a final Cartesian displacement of less than 5 × 10−4 Å, a maximum force of 0.01 eV Å−1 and maximum energy difference of 5 × 10−6 eV per atom. The unit-cell parameters were fixed at the experimental values. Optimizing the crystal structure of 7-MeC29H59 starting from the refined single-crystal model led to a DFT-minimized arrangement in which the molecules differed by a root-mean-square distance of 0.019 Å (with a maximum deviation of 0.042 Å) for the C atoms when overlaid using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The close agreement between the experimental and DFT-minimized structures suggests the experimental crystal structure is accurate despite the limitations of the data.

The structures obtained from powder data are less accurate, so as a test the calculation for 7-MeC29H59 was repeated after straightening the molecule so that all C—C—C—C main-chain torsion angles were 180°. Starting from this configuration and optimizing following the same procedure produced a structure with slightly poorer agreement with the single-crystal structure with a r.m.s. distance of 0.054 Å and a maximum distance of 0.132 Å. This level of agreement is still better than the average r.m.s. deviation of 0.084 Å reported by van de Streek & Neumann (2010[Streek, J. van de & Neumann, M. A. (2010). Acta Cryst. B66, 544-558.]) for the 241 ordered molecular crystal structures they tested. The two DFT-minimized structures differed by an r.m.s. distance of 0.044 Å and a maximum distance of 0.097 Å, indicating close agreement between DFT-minimized structures even when starting from modestly different conformations.

If the unit-cell dimensions were also allowed to vary there was an anisotropic contraction, with cell axes reducing by between 1% and 3.5%, accompanied by an increase in the monoclinic angle from 90.30 (1)° to 91.8°. DFT calculations are carried out on a structure at 0 K. It is not evident whether the extent of this unit cell contraction reflects what the lattice parameters actually are at 0 K (not having measured the diffraction pattern at very low temperature), or whether it reveals shortcomings in the DFT calculation. Whatever the balance between these, the effect on the conformation of the molecule is slight, but nevertheless results in a net improvement in the agreement between the single-crystal and DFT-minimized molecules to an r.m.s. distance of 0.026 Å (maximum 0.062 Å), Table S2. This represents the best agreement between the single-crystal and DFT-D-minimized molecules starting from the fully straightened conformation.

For the powder-derived structures therefore, the C—C—C—C torsion angles were reset to 180° and the same DFT-D calculations performed, including optimization of the unit-cell parameters. The DFT-optimized molecule was taken as a rigid body and a final fine tune of the structure performed via the Rietveld method with TOPAS by a rigid-body optimization (3 rotations and 2 translations), as returning the lattice parameters from the DFT-minimized values (at 0 K) to the powder-diffraction values (at 80 or 100 K) moves the symmetry-related molecules slightly in space with respect to each other. The rigid-body refinement allows compensation for this. The powder diffraction peaks were described with the Voigt function. Also included in the fit were the scale factor, three lattice parameters, 2θ zero point correction, background parameters, a full-axial model for peak asymmetry due to axial divergence, a Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]) microstrain model for anisotropic peak broadening for all patterns except 9Me-C29H59 (which exhibited significant isotropic microstrain broadening), an overall isotropic atomic displacement parameter (Biso), and a March–Dollase correction (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]) for preferred orientation along 100 or 001 for the type-2 structures (b ≃ 4.93 Å) except 9-MeC25H51 for which, like type-1 structures, no correction was needed.

4. Results

4.1. Single crystal

The crystal structure of (S)-7-methylnonacosane is shown in Fig. 1[link]. The molecule is close to straight, but has a distinct curve around the position of the methyl side chain resulting from changes in the carbon-chain torsion angles by up to 9.2 (3)° away from 180°, illustrated in Fig. 2[link]. Also shown are the torsion angles for the DFT-optimized molecule starting from the straightened configuration, showing the correspondence between the values. The DFT calculations appear to underestimate somewhat the deviations from 180° near the side group on the longer-chain side of the molecule. It is not clear what causes this, but nevertheless the overall agreement is acceptable, with an r.m.s. deviation between C atoms of 0.026 Å (as noted above). Note that this curving of the molecule, matching closely the crystallographic result, arises spontaneously in the DFT calculation. A full list of carbon–carbon bond distances, angles and torsions is given in supplementary Table S1.

[Figure 1]
Figure 1
View along [010] of the structure of (S)-7-methylnonacosane from the single-crystal diffraction study. The grey- and green-coloured molecules are related by a 21 screw axis.
[Figure 2]
Figure 2
(Points with error bars) C—C—C—C torsion angles along the carbon chain of 7-methylnonacosane from the single-crystal study (standard uncertainty: 0.3°); (line) the torsion angles from the DFT-D minimized structure, starting from a straightened molecule. The horizontal axis labels the two central C atoms of the torsion. C7, to which the methyl group is attached, is emphasized with *.

4.2. Powder refinements

The results of the Rietveld fits with the DFT-optimized molecules are summarized in Table 2[link]. The R-factors and plots of observed and calculated profiles indicate that the structures are consistent with the experimental powder diffraction patterns, shown for 7-MeC29H59 as an example in Fig. 3[link]; the others are shown in the supporting information.

Table 2
Summary of the Rietveld fits of the DFT-optimized molecules to the powder diffraction patterns

Also reported are the structure type (1 or 2); the ratio of the lengths of the longer (Cl) and shorter (Cs) carbon chain either side of the chiral centre; and the average distances between hexagonally packed rod-like molecules (h0l = 201 for type 1 and 102 for type 2).

  13-MeC29H59 11-MeC27H55 11-MeC29H59 9-MeC25H51 9-MeC27H55 9-MeC29H59 9-MeC31H63 7-MeC29H59
T (K) 100 100 100 80 100 100 100 100
λ (Å) 0.79975 0.79975 0.80025 0.80025 0.80105 0.80105 0.80105 0.80105
a (Å) 18.4338 (4) 16.0024 (3) 16.0129 (2) 21.4439 (8) 23.4884 (13) 25.6203 (2) 27.7815 (4) 28.0929 (4)
30.0142 (4)
b (Å) 7.17597 (9) 7.15431 (8) 7.14458 (7) 4.93741 (8) 4.9392 (1) 4.9364 (2) 4.93381 (4) 4.93250 (3)
c (Å) 11.0207 (3) 12.4017 (3) 14.0964 (3) 12.3456 (4) 12.3352 (6) 12.3267 (9) 12.3899 (2) 10.3689 (1)
β (Å) 101.974 (3) 109.825 (2) 118.060 (1) 105.625 (2) 109.295 (3) 112.448 (4) 115.680 (1) 90.406 (1)
110.616 (1)
V3) 1426.11 (5) 1335.67 (4) 1423.13 (4) 1258.81 (6) 1350.7 (1) 1440.8 (2) 1530.52 (4) 1436.77 (3)
ρ (g cm−3) 0.985 0.982 0.987 0.967 0.971 0.975 0.978 0.977
No. of peaks 1050 981 1043 978 1047 1115 1184 1102
Rwp 0.0517 0.0739 0.0528 0.0412 0.0567 0.0676 0.0628 0.0474
Rexp 0.0285 0.0147 0.0295 0.0282 0.0221 0.0309 0.0278 0.0334
Type 1 1 1 2 2 2 2 2
Cl/Cs 1.33 1.6 1.8 2 2.25 2.5 2.75 3.67
d102 or b 4.89 4.91 4.91 4.94 4.94 4.94 4.93 4.93
[{1\over 2}(d_{h0l}^{2}+{b}^{2})^{1/2}] 4.34 4.34 4.33 4.25 4.27 4.28 4.27 4.25
†Unit cell transformed so that [{\bf a}^{\prime} = {\bf a}- {\bf c}] (see below and Fig. S2).
[Figure 3]
Figure 3
Observed, calculated and difference profiles for 7-MeC29H59 fitted with the molecule obtained from the DFT-D optimization. Note the square-root counts scale.

5. Discussion

There are two distinct packing arrangements. In the first type, corresponding to the structures with b ≃ 7.15 Å, the molecules are quite straight. The maximum deviation of the C—C—C—C torsion angles near the methyl group from the fully extended staggered conformation is less than 3.2°, e.g. see Fig. 4[link] illustrating the structure of 11-MeC29H59. For the second type of packing, b ≃ 4.93 Å, the molecules are still very much extended; however, torsion angles near the methyl group deviate more, with a maximum twist of between 8.2 and 9.1° [9.2 (3)° by single-crystal] for the molecules studied, e.g. 9-MeC29H59, Fig. 5[link], or 7-MeC29H59, Fig. 1[link]. It appears that if the ratio of the number of C atoms in the longer and shorter sub-chains on either side of the chiral centre (Cl/Cs) is less than 2, packing of type 1 is observed, otherwise it is of type 2 (see Table 2[link]). Thus, for the molecules studied here, molecules with the methyl group attached to the main chain within three C atoms of its central carbon adopt packing type 1, while those with the methyl group attached beyond four C atoms from the centre adopt packing type 2, with four C atoms representing the transition between structure types, illustrated by considering 11-MeC29H59, type 1, and 9-MeC25H51, type 2.

[Figure 4]
Figure 4
View along [010] of the structures of (S)-11-methylnonacosane from the DFT-D optimization.
[Figure 5]
Figure 5
View along [010] of the structures of (S)-9-methylnonacosane from the DFT-D optimization.

In both structural types, the molecules pack hexagonally like rods to maximize the stabilization afforded by the van der Waals interactions, Fig. 6[link]. Side-chain and terminal methyl groups correlate to form distinct clusters integrated into the overall side-by-side packing. Average rod-like centre-to-centre distances of neighbouring molecules are given in Table 2[link]. For type 1, molecules are aligned parallel to [201], positioned close to midway between (204) lattice planes. A molecule has two neighbouring molecules on either side, at the same y value, at an average centre-to-centre distance of d102 (4.89 − 4.91 Å for the three compounds studied) and four 21-screw-related rods in layers above and below (y ± ½) at an average distance of ½(d2102 + b2)1/2 (4.33–4.34 Å). Thus the hexagonal packing of the rods is mildly elongated in one direction (parallel to the ac plane) with two longer and four shorter distances between centres. Similar considerations hold for the type-2 packing, in which the molecules align parallel to [102] (for the four 9-MeCnH2n + 1 structures), with molecules positioned close to midway between (402) planes. However, there are now two neighbouring molecules at ±b (4.93–4.94 Å) with the four others at an average distance of ½(d2201 + b2)1/2 (4.25–4.28 Å). Thus, with respect to the monoclinic b axis, the elongation of the hexagonal packing arrangement is rotated by 90° compared with type 1. When considering the hexagon of neighbouring molecules surrounding a central rod, in type 1 packing the methyl group is pointing towards the vertex of a hexagon and is parallel to the direction of elongation. In type 2 packing, the methyl group is pointing towards an edge and is perpendicular to the direction of elongation of the hexagon. In both packing types, the C–methyl bond lies close to parallel to the ac plane. Figs. 7[link] and 8[link] show space-filling views of the packing of the molecules for both structural types. For the single-crystal structure of 7-MeC29H59 the molecules in the chosen setting of the unit cell, with the least-obtuse β angle, are aligned parallel to [103] [so molecules are midway between (602) planes], but the unit cell can be transformed to be more easily comparable with the other type-2 structures via [{\bf a}^{\prime} = {\bf a}- {\bf c}] followed by a translation of the molecules by ½ [{\bf c}].

[Figure 6]
Figure 6
View parallel to (a) [102] of (S)-11-methylnonacosane (type 1), and (b) [201] of (S)-9-methylnonacosane (type 2), illustrating the hexagonal packing of rods. The main chain C atoms all lie close to a plane (as C—C—C—C torsion angles deviate from 180° by less than 10°) leading to distortion of the packing from perfect hexagonal, being elongated in (a) parallel to the ac plane, and in (b) perpendicular to the ac plane.
[Figure 7]
Figure 7
Space-filling view of the packing of 11-MeC29H59 molecules (type 1).
[Figure 8]
Figure 8
Space-filling view of the packing of 9-MeC29H59 molecules (type 2).

Each structure type has a distinct cluster of side and terminal methyl groups integrated into the overall side-by-side molecular packing scheme that is closely reproduced by the members of each series of molecules. Fig. 9[link] shows the superposition of the four 9-MeCnH2n + 1 type-2 structures. The length of the c axis increases by less than 0.4% between 9-MeC25H51 and 9-MeC31H63; the increasing length of the molecules is accommodated by increasing a and β. Fig. 10[link] shows the superposition of 9-MeC29H59 and 7-MeC29H59 which gives an idea about the effect of the methyl group position while maintaining the overall chain length. Fig. 11[link] shows the overlay of the type-1 structures. Again the close resemblance of the packing of the methyl groups for each substance can be seen.

[Figure 9]
Figure 9
Superposition of the four 9-MeCnH2n + 1 (n = 25, 27, 29, 31) type-2 structures showing the reproducibility of the packing of the side and terminal methyl groups and the evolution of the unit cell with increasing chain length.
[Figure 10]
Figure 10
Superposition of 9-MeC29H59 and 7-MeC29H59. For the latter, the cell derived from the single-crystal study has been transformed (via [{\bf a}^{\prime} = {\bf a}-{\bf c}], followed by a translation of the molecules by ½ [{\bf c}]) then rotated by about 4° to overlay the molecules.
[Figure 11]
Figure 11
Superposition of the three type-1 structures, 11-MeC27H55, 11-MeC29H59 and 13-MeC29H59.

6. Conclusion

Two molecular packing schemes are seen for the eight molecules studied here, depending on the position of the methyl side group on the main carbon chain. If the methyl group is towards the centre of the molecule, so that the ratio of the lengths of the two carbon chains on either side of the chiral centre is less than 2, type 1 packing is observed, otherwise type 2 packing is found. The molecules pack together hexagonally as extended rods with deviations of the carbon-chain torsion angles of less than 10° from the fully extended conformation. Type-2 structures show a definite curve of the chain near the position of the methyl side group. The side-branch and terminal methyl groups of adjacent molecules are arranged together to form distinct clusters that are accommodated within the overall packing of the molecules.

The use of DFT-D optimization of the structures, following the overall approach of van de Streek & Neumann (2010[Streek, J. van de & Neumann, M. A. (2010). Acta Cryst. B66, 544-558.], 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]), provides a consistent and well defined method to optimize the crystal structures, and avoids the large number of stereochemical restraints that would be necessary to obtain a chemically acceptable structure from the powder-diffraction data alone. Comparing the molecule obtained from the single-crystal study with that obtained from the DFT-D minimization shows good r.m.s. distance agreement between the two, and comparison with the powder diffraction pattern gives very similar fits. Fitting the DFT-D minimized molecule to the powder pattern yields an Rwp of 0.0474 (Table 2[link]), while taking the fixed single-crystal atomic coordinates and displacement parameters yields a similar fit, with an Rwp of 0.0502, which reduces to 0.0488 if an overall isotropic temperature factor is refined in place of fixed single-crystal values, as for the DFT-optimized model.

Although stereochemical restraints should be reliable for bond distances and angles in the powder diffraction refinements, there is no obvious information on what the carbon-chain torsion angles should be for these compounds, and indeed the single-crystal derived structure showed significant deviations from perfectly staggered conformations, Fig. 2[link]. Applying a generalized torsion restraint soft enough to allow the largest deviations from the perfectly staggered conformation is not rigid enough to hold in check the rest of the chain so that restraints would need to be specifically tailored along the chain, requiring essentially that the arrangement be known in advance. In contrast, the DFT-D approach reproduces the curved molecule for type-2 structures, and a straighter form for type-1 structures, in a chemically credible way, and yields calculated powder diffraction patterns that match those measured experimentally.

Supporting information


Computing details top

Data collection: USER DEFINED DATA COLLECTION for (I). Cell refinement: USER DEFINED CELL REFINEMENT for (I). Data reduction: CrysAlis, Oxford Diffraction for (I). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I). Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003) for (I). Software used to prepare material for publication: CRYSTALS for (I).

(I) (S)-7-methylnonacosane top
Crystal data top
C30H62Z = 2
Mr = 422.81F(000) = 484
Monoclinic, P21Dx = 0.974 Mg m3
a = 28.172 (5) ÅSynchrotron radiation, λ = 0.82 Å
b = 4.935 (1) ŵ = 0.05 mm1
c = 10.375 (2) ÅT = 120 K
β = 90.30 (1)°Plate, white
V = 1442.4 (5) Å30.2 × 0.2 × 0.02 mm
Data collection top
MAR 345 image plate
diffractometer
Rint = 0.030
Si 111 monochromatorθmax = 24.3°, θmin = 1.7°
7987 measured reflectionsh = 2828
1679 independent reflectionsk = 44
1662 reflections with I > 2.0σ(I)l = 1010
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: geometric
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.080 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 11.7 3.20 5.94 2.87 0.607
S = 0.93(Δ/σ)max = 0.001
1657 reflectionsΔρmax = 0.26 e Å3
121 parametersΔρmin = 0.33 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50237 (12)0.7770 (11)1.3228 (3)0.0400 (11)*
C20.53801 (11)0.6361 (10)1.2372 (3)0.0297 (9)*
C30.54332 (11)0.7632 (10)1.1057 (3)0.0273 (9)*
C40.58038 (11)0.6192 (10)1.0220 (3)0.0242 (9)*
C50.58852 (11)0.7446 (10)0.8900 (3)0.0250 (9)*
C60.62912 (11)0.6132 (9)0.8172 (3)0.0261 (9)*
C70.64357 (10)0.7412 (9)0.6898 (3)0.0220 (8)*
C80.68962 (11)0.6135 (9)0.6411 (3)0.0254 (9)*
C90.71005 (10)0.7400 (9)0.5191 (3)0.0219 (8)*
C100.75700 (10)0.6195 (9)0.4761 (3)0.0231 (9)*
C110.77487 (10)0.7364 (9)0.3499 (3)0.0196 (8)*
C120.82100 (10)0.6155 (9)0.3020 (3)0.0213 (9)*
C130.83717 (10)0.7338 (9)0.1735 (3)0.0195 (8)*
C140.88346 (10)0.6131 (9)0.1232 (3)0.0197 (9)*
C150.89960 (10)0.7342 (9)0.0045 (3)0.0193 (9)*
C160.94564 (10)0.6135 (9)0.0552 (3)0.0206 (9)*
C170.96189 (10)0.7334 (10)0.1824 (3)0.0201 (9)*
C181.00801 (10)0.6147 (9)0.2332 (3)0.0205 (9)*
C191.02439 (10)0.7351 (9)0.3601 (3)0.0206 (9)*
C201.07055 (10)0.6141 (9)0.4102 (3)0.0191 (9)*
C211.08701 (10)0.7342 (9)0.5374 (3)0.0209 (9)*
C221.13352 (10)0.6149 (9)0.5868 (3)0.0196 (8)*
C231.14995 (10)0.7361 (9)0.7137 (3)0.0214 (9)*
C241.19643 (10)0.6165 (9)0.7632 (3)0.0216 (9)*
C251.21298 (10)0.7372 (9)0.8903 (3)0.0217 (9)*
C261.25865 (10)0.6147 (9)0.9420 (3)0.0224 (9)*
C271.27459 (10)0.7342 (9)1.0699 (3)0.0208 (8)*
C281.31995 (10)0.6070 (9)1.1224 (3)0.0245 (9)*
C291.33519 (11)0.7240 (9)1.2508 (3)0.0285 (9)*
C300.60399 (12)0.7262 (11)0.5898 (3)0.0390 (10)*
H110.50130.68251.40480.0578*
H120.51220.96131.33550.0580*
H130.47200.77091.28010.0580*
H210.56860.63691.27960.0370*
H220.52780.44871.22510.0370*
H310.55250.95111.11710.0348*
H320.51320.75281.06130.0347*
H410.61050.62591.06880.0301*
H420.57080.43201.01190.0299*
H510.59550.93580.90230.0312*
H520.55940.72560.84000.0311*
H610.65680.61260.87340.0338*
H620.62010.42650.80000.0340*
H710.65020.93180.70470.0291*
H810.71350.62850.70910.0321*
H820.68320.42340.62400.0320*
H910.71500.93140.53750.0281*
H920.68720.72090.44900.0280*
H1010.78020.64730.54320.0287*
H1020.75240.42730.46380.0292*
H1110.77980.92840.36300.0241*
H1120.75070.70950.28410.0241*
H1210.84570.65010.36490.0262*
H1220.81640.42170.29200.0259*
H1310.84210.92840.18460.0251*
H1320.81250.70650.10920.0250*
H1410.90770.64470.18780.0229*
H1420.87930.41980.11250.0230*
H1510.90370.92820.00700.0241*
H1520.87540.70220.06940.0241*
H1610.97050.63990.00800.0250*
H1620.94100.41900.06800.0252*
H1710.96600.92870.17080.0262*
H1720.93700.70420.24710.0258*
H1811.03270.64570.16820.0235*
H1821.00330.42130.24540.0240*
H1911.02900.92920.34910.0252*
H1920.99980.70580.42510.0252*
H2011.09510.64330.34580.0250*
H2021.06600.42060.42040.0249*
H2111.09040.92980.52690.0260*
H2121.06260.69930.60180.0259*
H2211.15820.65280.52330.0241*
H2221.13030.42060.59590.0240*
H2311.15420.93110.70300.0270*
H2321.12550.70690.77700.0267*
H2411.22100.64860.69760.0280*
H2421.19180.42220.77420.0281*
H2511.21790.93040.87760.0246*
H2521.18810.70990.95450.0247*
H2611.28340.64060.87770.0290*
H2621.25360.42120.95340.0291*
H2711.27990.92661.05820.0241*
H2721.24960.70881.13280.0240*
H2811.34510.63951.06000.0301*
H2821.31500.41421.13240.0299*
H2911.36410.63741.27770.0399*
H2921.34030.91661.24160.0398*
H2931.31000.69061.31320.0401*
H3010.57450.79140.62550.0690*
H3020.61220.83500.51540.0690*
H3030.60010.54030.56230.0691*
Geometric parameters (Å, º) top
C1—C21.513 (5)C16—C171.519 (4)
C1—H110.971C16—H1610.966
C1—H120.960C16—H1620.978
C1—H130.962C17—C181.522 (4)
C2—C31.510 (5)C17—H1710.978
C2—H210.965C17—H1720.979
C2—H220.977C18—C191.518 (4)
C3—C41.536 (5)C18—H1810.979
C3—H310.970C18—H1820.972
C3—H320.965C19—C201.525 (4)
C4—C51.522 (5)C19—H1910.973
C4—H410.976C19—H1920.974
C4—H420.968C20—C211.522 (4)
C5—C61.519 (5)C20—H2010.971
C5—H510.973C20—H2020.969
C5—H520.973C21—C221.528 (4)
C6—C71.523 (5)C21—H2110.976
C6—H610.970C21—H2120.971
C6—H620.972C22—C231.520 (5)
C7—C81.531 (5)C22—H2210.974
C7—C301.521 (4)C22—H2220.967
C7—H710.971C23—C241.528 (5)
C8—C91.526 (5)C23—H2310.976
C8—H810.975C23—H2320.960
C8—H820.972C24—C251.522 (4)
C9—C101.520 (5)C24—H2410.982
C9—H910.973C24—H2420.974
C9—H920.973C25—C261.522 (5)
C10—C111.519 (4)C25—H2510.972
C10—H1010.962C25—H2520.975
C10—H1020.966C26—C271.522 (4)
C11—C121.516 (4)C26—H2610.971
C11—H1110.967C26—H2620.973
C11—H1120.971C27—C281.527 (5)
C12—C131.527 (4)C27—H2710.969
C12—H1210.966C27—H2720.967
C12—H1220.971C28—C291.516 (5)
C13—C141.528 (4)C28—H2810.970
C13—H1310.977C28—H2820.967
C13—H1320.972C29—H2910.962
C14—C151.525 (4)C29—H2920.966
C14—H1410.967C29—H2930.972
C14—H1420.968C30—H3010.967
C15—C161.524 (4)C30—H3020.969
C15—H1510.972C30—H3030.967
C15—H1520.969
C2—C1—H11108.5C15—C16—C17114.2 (3)
C2—C1—H12109.0C15—C16—H161109.2
H11—C1—H12110.2C17—C16—H161108.5
C2—C1—H13107.9C15—C16—H162108.5
H11—C1—H13110.9C17—C16—H162107.8
H12—C1—H13110.4H161—C16—H162108.6
C1—C2—C3114.1 (3)C16—C17—C18114.4 (3)
C1—C2—H21108.9C16—C17—H171108.2
C3—C2—H21108.5C18—C17—H171108.7
C1—C2—H22108.3C16—C17—H172108.7
C3—C2—H22107.9C18—C17—H172108.4
H21—C2—H22108.9H171—C17—H172108.3
C2—C3—C4112.9 (3)C17—C18—C19114.4 (3)
C2—C3—H31108.4C17—C18—H181107.8
C4—C3—H31109.2C19—C18—H181108.6
C2—C3—H32108.6C17—C18—H182107.9
C4—C3—H32107.7C19—C18—H182108.3
H31—C3—H32110.0H181—C18—H182109.8
C3—C4—C5115.3 (3)C18—C19—C20113.9 (3)
C3—C4—H41107.2C18—C19—H191108.9
C5—C4—H41107.4C20—C19—H191108.2
C3—C4—H42108.3C18—C19—H192108.9
C5—C4—H42109.5C20—C19—H192108.1
H41—C4—H42109.1H191—C19—H192108.8
C4—C5—C6113.0 (3)C19—C20—C21114.1 (3)
C4—C5—H51108.0C19—C20—H201108.3
C6—C5—H51109.1C21—C20—H201108.7
C4—C5—H52108.1C19—C20—H202108.1
C6—C5—H52109.2C21—C20—H202109.3
H51—C5—H52109.4H201—C20—H202108.3
C5—C6—C7117.4 (3)C20—C21—C22114.0 (3)
C5—C6—H61107.9C20—C21—H211108.6
C7—C6—H61107.8C22—C21—H211109.5
C5—C6—H62107.4C20—C21—H212108.1
C7—C6—H62107.7C22—C21—H212107.8
H61—C6—H62108.5H211—C21—H212108.7
C6—C7—C8110.3 (3)C21—C22—C23113.9 (3)
C6—C7—C30111.9 (3)C21—C22—H221108.0
C8—C7—C30112.0 (3)C23—C22—H221106.9
C6—C7—H71108.4C21—C22—H222109.6
C8—C7—H71106.8C23—C22—H222109.5
C30—C7—H71107.2H221—C22—H222108.8
C7—C8—C9115.4 (3)C22—C23—C24113.9 (3)
C7—C8—H81108.2C22—C23—H231109.1
C9—C8—H81107.9C24—C23—H231108.3
C7—C8—H82107.5C22—C23—H232108.2
C9—C8—H82108.3C24—C23—H232109.0
H81—C8—H82109.4H231—C23—H232108.3
C8—C9—C10114.6 (3)C23—C24—C25114.0 (3)
C8—C9—H91106.7C23—C24—H241107.9
C10—C9—H91108.3C25—C24—H241108.6
C8—C9—H92109.2C23—C24—H242107.8
C10—C9—H92108.4C25—C24—H242109.0
H91—C9—H92109.6H241—C24—H242109.4
C9—C10—C11113.4 (3)C24—C25—C26114.4 (3)
C9—C10—H101108.6C24—C25—H251108.1
C11—C10—H101110.1C26—C25—H251108.5
C9—C10—H102107.8C24—C25—H252108.4
C11—C10—H102107.7C26—C25—H252108.1
H101—C10—H102109.1H251—C25—H252109.2
C10—C11—C12114.9 (3)C25—C26—C27114.0 (3)
C10—C11—H111107.4C25—C26—H261108.0
C12—C11—H111108.0C27—C26—H261109.6
C10—C11—H112108.6C25—C26—H262108.0
C12—C11—H112108.4C27—C26—H262108.6
H111—C11—H112109.4H261—C26—H262108.5
C11—C12—C13113.3 (3)C26—C27—C28113.8 (3)
C11—C12—H121108.9C26—C27—H271108.4
C13—C12—H121107.8C28—C27—H271108.7
C11—C12—H122107.9C26—C27—H272108.7
C13—C12—H122108.9C28—C27—H272108.4
H121—C12—H122110.0H271—C27—H272108.8
C12—C13—C14114.1 (3)C27—C28—C29113.5 (3)
C12—C13—H131108.4C27—C28—H281107.7
C14—C13—H131107.6C29—C28—H281108.3
C12—C13—H132109.3C27—C28—H282108.8
C14—C13—H132108.7C29—C28—H282108.7
H131—C13—H132108.5H281—C28—H282109.8
C13—C14—C15113.8 (3)C28—C29—H291109.3
C13—C14—H141107.5C28—C29—H292109.3
C15—C14—H141109.1H291—C29—H292109.9
C13—C14—H142108.7C28—C29—H293108.1
C15—C14—H142108.9H291—C29—H293110.4
H141—C14—H142108.8H292—C29—H293109.9
C14—C15—C16113.9 (3)C7—C30—H301110.5
C14—C15—H151108.4C7—C30—H302109.9
C16—C15—H151109.1H301—C30—H302109.3
C14—C15—H152109.2C7—C30—H303109.2
C16—C15—H152107.1H301—C30—H303109.4
H151—C15—H152109.2H302—C30—H303108.6
(13MeC29H59) (S)-13-methylnonacosane top
Crystal data top
C30H62V = 1426.11 (5) Å3
Mr = 422.81Z = 2
Monoclinic, P21Dx = 0.985 Mg m3
a = 18.4338 (4) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80105 Å
b = 7.17598 (9) ÅT = 100 K
c = 11.0207 (3) ÅPowder, white
β = 101.974 (3)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 5.171 r_exp 2.847 gof 1.816 iters 100000000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C29Me13_from_rr.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.79975 l h 0.1 start_X 2 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00484`_0.00013)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 11.8474967`_0.0567650908, 50, 50)

bkg @ 567.637424`_9.60715773 - 182.561354`_10.4244722 116.774694`_4.39787835 - 53.8024484`_11.4579473 42.3927011`_7.5087079 - 47.9921213`_1.73292809 47.3208884`_6.58820959 - 39.5928693`_5.22167139 6.32912693`_1.10346888 12.3567756`_3.05072714 - 7.031632`_2.78165229 - 4.55870324`_1.00085421 9.81608748`_1.78910262 - 0.551995389`_1.7955108 - 6.50304106`_1.07901282 PV (@, @, @, @, 2106.29415`_482.07695, 10.59475`_0.01875, 2.92094`_0.19375, 0.25510`_0.15544)

str local !phase_number 1

a @ 18.43381`_0.00043 b @ 7.17597`_0.00009 c @ 11.02071`_0.00026 al 90.0000 be @ 101.97426`_0.00276 ga 90.0000

MVW (845.648, 1426.10546`_0.0528221034, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm gg = 1.8/3.1415927 pp (1-eta) Tan(Th); prm ll = 1.8/3.1415927 pp eta Tan(Th);

prm s400 24.68807`_0.50904 prm s040 1539.22349`_6.36459 prm s004 329.00695`_7.01305 prm s220 725.57026`_16.35486 prm s202 217.93651`_12.08714 prm s022 516.72287`_26.54186 prm s301 132.32628`_3.32336 prm s121 - 471.62976`_42.07423 prm s103 127.92803`_8.24792 prm eta 0.22263`_0.00230 min 0 max 1

Stephens_monoclinic(s400, s040, s004, s220, s202, s022, s301, s121, s103, eta)

scale @ 0.000302901781`_4.52 e-007 r_bragg 2.31851471 space_group "P21"

site C1 x 1.34289 y 0.77604 z 0.42699 occ C 1 beq bov 1.0442`_0.0187 site C2 x 1.29450 y 0.85912 z 0.50972 occ C 1 beq = bov; site C3 x 1.21681 y 0.77535 z 0.48886 occ C 1 beq = bov; site C4 x 1.16886 y 0.85720 z 0.57291 occ C 1 beq = bov; site C5 x 1.09074 y 0.77662 z 0.55128 occ C 1 beq = bov; site C6 x 1.04326 y 0.85876 z 0.63607 occ C 1 beq = bov; site C7 x 0.96522 y 0.77790 z 0.61463 occ C 1 beq = bov; site C8 x 0.91744 y 0.85906 z 0.69924 occ C 1 beq = bov; site C9 x 0.83970 y 0.77638 z 0.67661 occ C 1 beq = bov; site C10 x 0.79040 y 0.85513 z 0.75937 occ C 1 beq = bov; site C11 x 0.71299 y 0.77001 z 0.73195 occ C 1 beq = bov; site C12 x 0.66071 y 0.84865 z 0.80950 occ C 1 beq = bov; site C13 x 0.58290 y 0.76175 z 0.78404 occ C 1 beq = bov; site C14 x 0.53772 y 0.84550 z 0.87308 occ C 1 beq = bov; site C15 x 0.46023 y 0.76440 z 0.86231 occ C 1 beq = bov; site C16 x 0.41609 y 0.84858 z 0.95136 occ C 1 beq = bov; site C17 x 0.33783 y 0.76986 z 0.93251 occ C 1 beq = bov; site C18 x 0.29063 y 0.85353 z 1.01700 occ C 1 beq = bov; site C19 x 0.21247 y 0.77335 z 0.99417 occ C 1 beq = bov; site C20 x 0.16376 y 0.85642 z 1.07644 occ C 1 beq = bov; site C21 x 0.08570 y 0.77539 z 1.05260 occ C 1 beq = bov; site C22 x 0.03706 y 0.85679 z 1.13553 occ C 1 beq = bov; site C23 x - 0.04092 y 0.77522 z 1.11234 occ C 1 beq = bov; site C24 x - 0.08914 y 0.85566 z 1.19639 occ C 1 beq = bov; site C25 x - 0.16711 y 0.77382 z 1.17413 occ C 1 beq = bov; site C26 x - 0.21466 y 0.85416 z 1.25930 occ C 1 beq = bov; site C27 x - 0.29273 y 0.77304 z 1.23888 occ C 1 beq = bov; site C28 x - 0.33974 y 0.85658 z 1.32403 occ C 1 beq = bov; site C29 x - 0.41751 y 0.77466 z 1.30520 occ C 1 beq = bov; site C30 x 0.54351 y 0.78190 z 0.64799 occ C 1 beq = bov; site H11 x 1.39681 y 0.84651 z 0.43922 occ H 1 beq = bov; site H12 x 1.31603 y 0.78810 z 0.32842 occ H 1 beq = bov; site H13 x 1.35353 y 0.62718 z 0.44665 occ H 1 beq = bov; site H21 x 1.32202 y 0.84093 z 0.60787 occ H 1 beq = bov; site H22 x 1.28978 y 1.01076 z 0.49497 occ H 1 beq = bov; site H31 x 1.18895 y 0.79633 z 0.39106 occ H 1 beq = bov; site H32 x 1.22085 y 0.62312 z 0.50204 occ H 1 beq = bov; site H41 x 1.16551 y 1.00958 z 0.56048 occ H 1 beq = bov; site H42 x 1.19655 y 0.83468 z 0.67063 occ H 1 beq = bov; site H51 x 1.09384 y 0.62423 z 0.56343 occ H 1 beq = bov; site H52 x 1.06285 y 0.79983 z 0.45374 occ H 1 beq = bov; site H61 x 1.03992 y 1.01114 z 0.62373 occ H 1 beq = bov; site H62 x 1.07120 y 0.83596 z 0.73361 occ H 1 beq = bov; site H71 x 0.96852 y 0.62551 z 0.62660 occ H 1 beq = bov; site H72 x 0.93728 y 0.80098 z 0.51709 occ H 1 beq = bov; site H81 x 0.91368 y 1.01131 z 0.68699 occ H 1 beq = bov; site H82 x 0.94518 y 0.83613 z 0.79687 occ H 1 beq = bov; site H91 x 0.84369 y 0.62400 z 0.68849 occ H 1 beq = bov; site H92 x 0.81246 y 0.79904 z 0.57861 occ H 1 beq = bov; site H101 x 0.78616 y 1.00752 z 0.74768 occ H 1 beq = bov; site H102 x 0.81679 y 0.83163 z 0.85756 occ H 1 beq = bov; site H111 x 0.71744 y 0.61793 z 0.74540 occ H 1 beq = bov; site H112 x 0.68896 y 0.79058 z 0.63268 occ H 1 beq = bov; site H121 x 0.65526 y 1.00057 z 0.79494 occ H 1 beq = bov; site H122 x 0.68588 y 0.83018 z 0.90876 occ H 1 beq = bov; site H131 x 0.58926 y 0.61104 z 0.80425 occ H 1 beq = bov; site H141 x 0.53365 y 0.99757 z 0.85834 occ H 1 beq = bov; site H142 x 0.56925 y 0.82662 z 0.96894 occ H 1 beq = bov; site H151 x 0.46424 y 0.61247 z 0.87650 occ H 1 beq = bov; site H152 x 0.42813 y 0.78441 z 0.76710 occ H 1 beq = bov; site H161 x 0.41345 y 1.00112 z 0.93940 occ H 1 beq = bov; site H162 x 0.44534 y 0.82426 z 1.04808 occ H 1 beq = bov; site H171 x 0.34070 y 0.61762 z 0.94549 occ H 1 beq = bov; site H172 x 0.30945 y 0.79182 z 0.83497 occ H 1 beq = bov; site H181 x 0.28774 y 1.00591 z 1.00439 occ H 1 beq = bov; site H182 x 0.31826 y 0.83059 z 1.11463 occ H 1 beq = bov; site H191 x 0.21562 y 0.62111 z 1.00716 occ H 1 beq = bov; site H192 x 0.18549 y 0.79517 z 0.89600 occ H 1 beq = bov; site H201 x 0.16060 y 1.00865 z 1.06337 occ H 1 beq = bov; site H202 x 0.19047 y 0.83460 z 1.17462 occ H 1 beq = bov; site H211 x 0.08901 y 0.62300 z 1.06475 occ H 1 beq = bov; site H212 x 0.05883 y 0.79832 z 0.95451 occ H 1 beq = bov; site H221 x 0.03360 y 1.00917 z 1.12310 occ H 1 beq = bov; site H222 x 0.06419 y 0.83441 z 1.23352 occ H 1 beq = bov; site H231 x - 0.03743 y 0.62268 z 1.12412 occ H 1 beq = bov; site H232 x - 0.06828 y 0.79857 z 1.01461 occ H 1 beq = bov; site H241 x - 0.09276 y 1.00805 z 1.18442 occ H 1 beq = bov; site H242 x - 0.06156 y 0.83259 z 1.29411 occ H 1 beq = bov; site H251 x - 0.16356 y 0.62129 z 1.18554 occ H 1 beq = bov; site H252 x - 0.19499 y 0.79774 z 1.07668 occ H 1 beq = bov; site H261 x - 0.21822 y 1.00655 z 1.24733 occ H 1 beq = bov; site H262 x - 0.18641 y 0.83122 z 1.35665 occ H 1 beq = bov; site H271 x - 0.28941 y 0.62066 z 1.25150 occ H 1 beq = bov; site H272 x - 0.32104 y 0.79528 z 1.14144 occ H 1 beq = bov; site H281 x - 0.34329 y 1.00838 z 1.30957 occ H 1 beq = bov; site H282 x - 0.31092 y 0.83686 z 1.42127 occ H 1 beq = bov; site H291 x - 0.44741 y 0.78992 z 1.20845 occ H 1 beq = bov; site H292 x - 0.45095 y 0.84355 z 1.36372 occ H 1 beq = bov; site H293 x - 0.41592 y 0.62519 z 1.32715 occ H 1 beq = bov; site H301 x 0.53599 y 0.92957 z 0.62102 occ H 1 beq = bov; site H302 x 0.48857 y 0.71636 z 0.63016 occ H 1 beq = bov; site H303 x 0.57487 y 0.71530 z 0.58537 occ H 1 beq = bov;

rigid point_for_site C1 ux 23.423 uy 3.144 uz 4.586 point_for_site C2 ux 22.346 uy 3.734 uz 5.487 point_for_site C3 ux 20.959 uy 3.140 uz 5.259 point_for_site C4 ux 19.887 uy 3.721 uz 6.174 point_for_site C5 ux 18.494 uy 3.150 uz 5.938 point_for_site C6 ux 17.429 uy 3.733 uz 6.861 point_for_site C7 ux 16.037 uy 3.160 uz 6.627 point_for_site C8 ux 14.967 uy 3.736 uz 7.548 point_for_site C9 ux 13.583 uy 3.150 uz 7.301 point_for_site C10 ux 12.489 uy 3.709 uz 8.202 point_for_site C11 ux 11.122 uy 3.106 uz 7.903 point_for_site C12 ux 9.985 uy 3.665 uz 8.748 point_for_site C13 ux 8.606 uy 3.049 uz 8.470 point_for_site C14 ux 7.574 uy 3.643 uz 9.439 point_for_site C15 ux 6.168 uy 3.067 uz 9.320 point_for_site C16 ux 5.155 uy 3.664 uz 10.289 point_for_site C17 ux 3.753 uy 3.106 uz 10.083 point_for_site C18 ux 2.694 uy 3.700 uz 11.003 point_for_site C19 ux 1.303 uy 3.132 uz 10.754 point_for_site C20 ux 0.221 uy 3.722 uz 11.650 point_for_site C21 ux -1.166 uy 3.148 uz 11.390 point_for_site C22 ux -2.248 uy 3.726 uz 12.293 point_for_site C23 ux -3.635 uy 3.148 uz 12.040 point_for_site C24 ux -4.712 uy 3.719 uz 12.955 point_for_site C25 ux -6.101 uy 3.139 uz 12.712 point_for_site C26 ux -7.168 uy 3.709 uz 13.639 point_for_site C27 ux -8.563 uy 3.134 uz 13.416 point_for_site C28 ux -9.620 uy 3.727 uz 14.343 point_for_site C29 ux -11.013 uy 3.146 uz 14.137 point_for_site C30 ux 8.188 uy 3.211 uz 7.006 point_for_site H11 ux 24.391 uy 3.645 uz 4.721 point_for_site H12 ux 23.151 uy 3.243 uz 3.525 point_for_site H13 ux 23.571 uy 2.073 uz 4.786 point_for_site H21 ux 22.631 uy 3.591 uz 6.543 point_for_site H22 ux 22.296 uy 4.824 uz 5.340 point_for_site H31 ux 20.667 uy 3.303 uz 4.207 point_for_site H32 ux 21.000 uy 2.046 uz 5.389 point_for_site H41 ux 19.857 uy 4.816 uz 6.052 point_for_site H42 ux 20.176 uy 3.547 uz 7.225 point_for_site H51 ux 18.520 uy 2.055 uz 6.057 point_for_site H52 ux 18.201 uy 3.329 uz 4.889 point_for_site H61 ux 17.399 uy 4.828 uz 6.740 point_for_site H62 ux 17.723 uy 3.557 uz 7.910 point_for_site H71 ux 16.067 uy 2.065 uz 6.744 point_for_site H72 ux 15.743 uy 3.338 uz 5.578 point_for_site H81 ux 14.929 uy 4.830 uz 7.428 point_for_site H82 ux 15.257 uy 3.559 uz 8.598 point_for_site H91 ux 13.626 uy 2.055 uz 7.417 point_for_site H92 ux 13.303 uy 3.325 uz 6.247 point_for_site H101 ux 12.441 uy 4.804 uz 8.088 point_for_site H102 ux 12.753 uy 3.528 uz 9.258 point_for_site H111 ux 11.170 uy 2.013 uz 8.036 point_for_site H112 ux 10.904 uy 3.266 uz 6.835 point_for_site H121 ux 9.921 uy 4.757 uz 8.603 point_for_site H122 ux 10.224 uy 3.520 uz 9.816 point_for_site H131 ux 8.674 uy 1.965 uz 8.676 point_for_site H141 ux 7.536 uy 4.736 uz 9.292 point_for_site H142 ux 7.938 uy 3.495 uz 10.470 point_for_site H151 ux 6.206 uy 1.975 uz 9.461 point_for_site H152 ux 5.792 uy 3.223 uz 8.296 point_for_site H161 ux 5.137 uy 4.760 uz 10.172 point_for_site H162 ux 5.475 uy 3.477 uz 11.329 point_for_site H171 ux 3.773 uy 2.012 uz 10.211 point_for_site H172 ux 3.451 uy 3.276 uz 9.034 point_for_site H181 ux 2.673 uy 4.795 uz 10.879 point_for_site H182 ux 2.982 uy 3.523 uz 12.053 point_for_site H191 ux 1.328 uy 2.038 uz 10.882 point_for_site H192 ux 1.028 uy 3.301 uz 9.698 point_for_site H201 ux 0.196 uy 4.816 uz 11.521 point_for_site H202 ux 0.491 uy 3.553 uz 12.706 point_for_site H211 ux -1.136 uy 2.053 uz 11.509 point_for_site H212 ux -1.439 uy 3.325 uz 10.335 point_for_site H221 ux -2.280 uy 4.821 uz 12.171 point_for_site H222 ux -1.970 uy 3.553 uz 13.347 point_for_site H231 ux -3.601 uy 2.052 uz 12.155 point_for_site H232 ux -3.918 uy 3.328 uz 10.989 point_for_site H241 ux -4.748 uy 4.814 uz 12.838 point_for_site H242 ux -4.425 uy 3.541 uz 14.006 point_for_site H251 ux -6.065 uy 2.043 uz 12.823 point_for_site H252 ux -6.394 uy 3.323 uz 11.664 point_for_site H261 ux -7.203 uy 4.804 uz 13.522 point_for_site H262 ux -6.868 uy 3.532 uz 14.686 point_for_site H271 ux -8.534 uy 2.039 uz 13.540 point_for_site H272 ux -8.864 uy 3.306 uz 12.368 point_for_site H281 ux -9.649 uy 4.818 uz 14.199 point_for_site H282 ux -9.309 uy 3.573 uz 15.389 point_for_site H291 ux -11.345 uy 3.268 uz 13.096 point_for_site H292 ux -11.760 uy 3.636 uz 14.775 point_for_site H293 ux -11.037 uy 2.071 uz 14.362 point_for_site H301 ux 8.114 uy 4.274 uz 6.727 point_for_site H302 ux 7.214 uy 2.746 uz 6.811 point_for_site H303 ux 8.906 uy 2.738 uz 6.324

Rotate_about_axies(@ -0.58328`_0.04852, @ -0.13720`_0.00351, @ 0.19705`_0.02019) Translate(@ 0.02041`_0.00022, 0.32, @ -0.00039`_0.00033)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C11.3428910.7760440.4269851.044 (19)
C21.2945020.8591190.5097191.044 (19)
C31.2168120.7753510.4888641.044 (19)
C41.1688570.8571960.5729061.044 (19)
C51.0907420.7766180.5512841.044 (19)
C61.0432580.8587570.6360681.044 (19)
C70.9652210.7779050.6146341.044 (19)
C80.9174440.8590620.6992381.044 (19)
C90.8396980.7763820.6766131.044 (19)
C100.7903970.8551300.7593741.044 (19)
C110.7129870.7700100.7319471.044 (19)
C120.6607140.8486520.8095041.044 (19)
C130.5828960.7617470.7840361.044 (19)
C140.5377220.8455040.8730821.044 (19)
C150.4602340.7644010.8623151.044 (19)
C160.4160910.8485850.9513621.044 (19)
C170.3378250.7698600.9325081.044 (19)
C180.2906290.8535301.0170031.044 (19)
C190.2124740.7733520.9941741.044 (19)
C200.1637580.8564171.0764421.044 (19)
C210.0856970.7753881.0525991.044 (19)
C220.0370640.8567921.1355291.044 (19)
C230.0409160.7752161.1123391.044 (19)
C240.0891400.8556651.196391.044 (19)
C250.1671140.7738251.1741291.044 (19)
C260.2146570.8541571.2592961.044 (19)
C270.2927310.7730411.2388841.044 (19)
C280.3397390.8565831.324031.044 (19)
C290.4175090.7746581.3052011.044 (19)
C300.5435100.7819040.6479931.044 (19)
H111.3968110.8465140.4392161.044 (19)
H121.3160310.7881020.3284171.044 (19)
H131.3535260.6271780.4466511.044 (19)
H211.3220240.8409280.6078711.044 (19)
H221.2897831.0107580.4949721.044 (19)
H311.1889490.7963320.3910601.044 (19)
H321.2208510.6231240.5020361.044 (19)
H411.1655051.0095790.5604771.044 (19)
H421.1965480.8346800.6706271.044 (19)
H511.0938430.6242290.5634341.044 (19)
H521.0628550.7998330.4537431.044 (19)
H611.0399181.0111420.6237321.044 (19)
H621.0711990.8359620.7336061.044 (19)
H710.9685160.6255140.6265991.044 (19)
H720.9372800.8009790.5170931.044 (19)
H810.9136821.0113060.6869941.044 (19)
H820.9451800.8361270.7968691.044 (19)
H910.8436870.6239960.6884881.044 (19)
H920.8124600.7990380.5786151.044 (19)
H1010.7861591.0075170.7476831.044 (19)
H1020.8167900.8316340.8575601.044 (19)
H1110.7174390.6179300.7453981.044 (19)
H1120.6889590.7905830.6326791.044 (19)
H1210.6552571.0005670.7949381.044 (19)
H1220.6858770.8301800.9087621.044 (19)
H1310.5892620.6110420.8042531.044 (19)
H1410.5336530.9975670.8583351.044 (19)
H1420.5692490.8266160.9689391.044 (19)
H1510.4642350.6124690.8765041.044 (19)
H1520.4281330.7844100.7670971.044 (19)
H1610.4134471.0011210.9393991.044 (19)
H1620.4453440.8242551.0480831.044 (19)
H1710.3407020.6176210.945491.044 (19)
H1720.3094520.7918160.8349741.044 (19)
H1810.2877431.0059151.0043911.044 (19)
H1820.3182560.8305941.1146351.044 (19)
H1910.2156220.6211151.0071571.044 (19)
H1920.1854870.7951710.8959971.044 (19)
H2010.1605981.0086531.0633661.044 (19)
H2020.1904730.8345961.1746171.044 (19)
H2110.0890140.6230001.0647491.044 (19)
H2120.0588270.7983240.9545071.044 (19)
H2210.0336041.0091741.1230991.044 (19)
H2220.0641920.8344141.2335241.044 (19)
H2310.0374270.6226851.124121.044 (19)
H2320.0682840.7985711.0146131.044 (19)
H2410.0927601.0080531.1844231.044 (19)
H2420.0615550.8325901.2941141.044 (19)
H2510.1635620.6212881.185541.044 (19)
H2520.1949910.7977371.0766751.044 (19)
H2610.2182231.0065461.247331.044 (19)
H2620.1864130.8312221.3566511.044 (19)
H2710.2894110.6206601.2514981.044 (19)
H2720.3210400.7952771.141441.044 (19)
H2810.3432851.0083761.3095651.044 (19)
H2820.3109170.8368561.4212721.044 (19)
H2910.4474050.7899231.2084511.044 (19)
H2920.4509470.8435541.3637151.044 (19)
H2930.4159240.6251921.3271511.044 (19)
H3010.5359940.929570.6210251.044 (19)
H3020.4885700.7163560.6301601.044 (19)
H3030.5748680.7152970.5853741.044 (19)
Bond lengths (Å) top
C1—C21.524C16—C171.524
C1—H111.098C16—H1611.102
C1—H121.099C16—H1621.104
C1—H131.099C17—C181.523
C2—C31.526C17—H1711.102
C2—H211.103C17—H1721.104
C2—H221.101C18—C191.524
C3—C41.525C18—H1811.102
C3—H311.104C18—H1821.103
C3—H321.102C19—C201.523
C4—C51.524C19—H1911.102
C4—H411.102C19—H1921.104
C4—H421.104C20—C211.524
C5—C61.525C20—H2011.102
C5—H511.102C20—H2021.103
C5—H521.104C21—C221.524
C6—C71.524C21—H2111.102
C6—H611.102C21—H2121.104
C6—H621.104C22—C231.524
C7—C81.524C22—H2211.102
C7—H711.102C22—H2221.104
C7—H721.104C23—C241.524
C8—C91.523C23—H2311.102
C8—H811.102C23—H2321.104
C8—H821.103C24—C251.525
C9—C101.525C24—H2411.102
C9—H911.102C24—H2421.104
C9—H921.104C25—C261.525
C10—C111.523C25—H2511.102
C10—H1011.102C25—H2521.104
C10—H1021.103C26—C271.525
C11—C121.524C26—H2611.102
C11—H1111.102C26—H2621.104
C11—H1121.101C27—C281.526
C12—C131.535C27—H2711.102
C12—H1211.104C27—H2721.104
C12—H1221.103C28—C291.523
C13—C141.536C28—H2811.101
C13—C301.531C28—H2821.103
C13—H1311.106C29—H2911.099
C14—C151.523C29—H2921.099
C14—H1411.104C29—H2931.098
C14—H1421.104C30—H3011.102
C15—C161.523C30—H3021.097
C15—H1511.102C30—H3031.097
C15—H1521.102
(11MeC27H55) (S)-11-methylheptacosane top
Crystal data top
C28H58V = 1335.67 (4) Å3
Mr = 394.76Z = 2
Monoclinic, P21Dx = 0.982 Mg m3
a = 16.0024 (3) ÅSynchrotron ID31 at ESRF radiation, λ = 0.79975 Å
b = 7.15431 (8) ÅT = 100 K
c = 12.4017 (3) ÅPowder, white
β = 109.8248 (15)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 7.386 r_exp 1.468 gof 5.031 iters 100000000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C27Me11.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.79975 l h 0.1 start_X 2.5 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00327`_0.00014)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 10.8951017`_0.0946721238, 50, 50)

bkg @ 1898.28978`_29.90602 - 458.212683`_33.5693005 262.513586`_13.7307971 - 37.1206623`_37.5728526 39.9009588`_26.9173262 - 130.411109`_5.79449571 171.924609`_22.4944575 - 166.28894`_20.2170355 32.1731564`_6.26155111 41.8729015`_10.9262314 - 35.7772648`_12.03706 - 17.9710956`_5.9220228 56.9232485`_6.56109601 - 32.50108`_7.44869923 6.17354049`_5.32196698 PV (@, @, @, @, 4049.19655`_1457.55232, 10.72990`_0.02979, 2.84565`_0.21832, 0.72408`_0.40342_LIMIT_MAX_1)

str local !phase_number 1

a @ 16.00237`_0.00029 b @ 7.15431`_0.00008 c @ 12.40169`_0.00026 al 90.0000 be @ 109.82476`_0.00147 ga 90.0000

MVW (789.540, 1335.67303`_0.0418933189, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm s400 23.08975`_0.55101 prm s040 494.23172`_3.40350 prm s004 88.71744`_2.22717 prm s220 273.67365`_9.80098 prm s202 127.30890`_5.43559 prm s022 101.84944`_10.43683 prm s301 94.18733`_3.04352 prm s121 - 186.55293`_15.66876 prm s103 68.87866`_2.69977 prm eta 0.32188`_0.00275 min 0 max 1

Stephens_monoclinic(s400, s040, s004, s220, s202, s022, s301, s121, s103, eta)

scale @ 0.00119644655`_2.38 e-006 r_bragg 3.30642632 space_group "P21"

site C1 x 1.31191 y 0.78178 z 0.44239 occ C 1 beq bov 1.2637`_0.0216 site C2 x 1.26799 y 0.86476 z 0.52289 occ C 1 beq = bov; site C3 x 1.17741 y 0.77995 z 0.50877 occ C 1 beq = bov; site C4 x 1.13408 y 0.86171 z 0.59049 occ C 1 beq = bov; site C5 x 1.04303 y 0.77996 z 0.57607 occ C 1 beq = bov; site C6 x 1.00033 y 0.86204 z 0.65829 occ C 1 beq = bov; site C7 x 0.90945 y 0.77916 z 0.64355 occ C 1 beq = bov; site C8 x 0.86488 y 0.85905 z 0.72435 occ C 1 beq = bov; site C9 x 0.77377 y 0.77334 z 0.70476 occ C 1 beq = bov; site C10 x 0.72417 y 0.85348 z 0.77959 occ C 1 beq = bov; site C11 x 0.63262 y 0.76639 z 0.76088 occ C 1 beq = bov; site C12 x 0.59204 y 0.85278 z 0.84525 occ C 1 beq = bov; site C13 x 0.50279 y 0.77125 z 0.83992 occ C 1 beq = bov; site C14 x 0.46372 y 0.85630 z 0.92499 occ C 1 beq = bov; site C15 x 0.37321 y 0.77467 z 0.91374 occ C 1 beq = bov; site C16 x 0.33042 y 0.85798 z 0.99543 occ C 1 beq = bov; site C17 x 0.23925 y 0.77578 z 0.98008 occ C 1 beq = bov; site C18 x 0.19546 y 0.85765 z 1.06102 occ C 1 beq = bov; site C19 x 0.10421 y 0.77527 z 1.04490 occ C 1 beq = bov; site C20 x 0.05964 y 0.85821 z 1.12480 occ C 1 beq = bov; site C21 x - 0.03179 y 0.77666 z 1.10849 occ C 1 beq = bov; site C22 x - 0.07531 y 0.85869 z 1.18977 occ C 1 beq = bov; site C23 x - 0.16658 y 0.77733 z 1.17475 occ C 1 beq = bov; site C24 x - 0.20906 y 0.85900 z 1.25732 occ C 1 beq = bov; site C25 x - 0.30010 y 0.77784 z 1.24367 occ C 1 beq = bov; site C26 x - 0.34293 y 0.86254 z 1.32516 occ C 1 beq = bov; site C27 x - 0.43370 y 0.78013 z 1.31178 occ C 1 beq = bov; site C28 x 0.57069 y 0.78362 z 0.63642 occ C 1 beq = bov; site H11 x 1.37444 y 0.85283 z 0.44981 occ H 1 beq = bov; site H12 x 1.26839 y 0.79363 z 0.35242 occ H 1 beq = bov; site H13 x 1.32674 y 0.63266 z 0.45990 occ H 1 beq = bov; site H21 x 1.26038 y 1.01681 z 0.50931 occ H 1 beq = bov; site H22 x 1.31211 y 0.84662 z 0.61244 occ H 1 beq = bov; site H31 x 1.18393 y 0.62740 z 0.52082 occ H 1 beq = bov; site H32 x 1.13283 y 0.80089 z 0.41961 occ H 1 beq = bov; site H41 x 1.12815 y 1.01443 z 0.57878 occ H 1 beq = bov; site H42 x 1.17848 y 0.83993 z 0.67967 occ H 1 beq = bov; site H51 x 1.04862 y 0.62709 z 0.58744 occ H 1 beq = bov; site H52 x 0.99844 y 0.80259 z 0.48714 occ H 1 beq = bov; site H61 x 0.99428 y 1.01461 z 0.64658 occ H 1 beq = bov; site H62 x 1.04494 y 0.83997 z 0.74730 occ H 1 beq = bov; site H71 x 0.91557 y 0.62644 z 0.65483 occ H 1 beq = bov; site H72 x 0.86527 y 0.80122 z 0.55428 occ H 1 beq = bov; site H81 x 0.85826 y 1.01177 z 0.71308 occ H 1 beq = bov; site H82 x 0.90797 y 0.83656 z 0.81398 occ H 1 beq = bov; site H91 x 0.78090 y 0.62098 z 0.71792 occ H 1 beq = bov; site H92 x 0.73357 y 0.79233 z 0.61370 occ H 1 beq = bov; site H101 x 0.71616 y 1.00579 z 0.76567 occ H 1 beq = bov; site H102 x 0.76530 y 0.83604 z 0.87062 occ H 1 beq = bov; site H111 x 0.64264 y 0.61558 z 0.78069 occ H 1 beq = bov; site H121 x 0.58535 y 1.00493 z 0.83020 occ H 1 beq = bov; site H122 x 0.63984 y 0.83589 z 0.93295 occ H 1 beq = bov; site H131 x 0.50953 y 0.61904 z 0.85351 occ H 1 beq = bov; site H132 x 0.45428 y 0.78983 z 0.75306 occ H 1 beq = bov; site H141 x 0.45790 y 1.00884 z 0.91250 occ H 1 beq = bov; site H142 x 0.50992 y 0.83493 z 1.01320 occ H 1 beq = bov; site H151 x 0.37928 y 0.62214 z 0.92648 occ H 1 beq = bov; site H152 x 0.32799 y 0.79477 z 0.82477 occ H 1 beq = bov; site H161 x 0.32466 y 1.01055 z 0.98338 occ H 1 beq = bov; site H162 x 0.37441 y 0.83606 z 1.08470 occ H 1 beq = bov; site H171 x 0.24522 y 0.62307 z 0.99196 occ H 1 beq = bov; site H172 x 0.19530 y 0.79742 z 0.89073 occ H 1 beq = bov; site H181 x 0.18977 y 1.01037 z 1.04948 occ H 1 beq = bov; site H182 x 0.23935 y 0.83530 z 1.15038 occ H 1 beq = bov; site H191 x 0.11017 y 0.62272 z 1.05721 occ H 1 beq = bov; site H192 x 0.06074 y 0.79635 z 0.95521 occ H 1 beq = bov; site H201 x 0.05412 y 1.01077 z 1.11274 occ H 1 beq = bov; site H202 x 0.10303 y 0.83656 z 1.21441 occ H 1 beq = bov; site H211 x - 0.02636 y 0.62378 z 1.11978 occ H 1 beq = bov; site H212 x - 0.07556 y 0.79956 z 1.01912 occ H 1 beq = bov; site H221 x - 0.08085 y 1.01155 z 1.17831 occ H 1 beq = bov; site H222 x - 0.03121 y 0.83634 z 1.27896 occ H 1 beq = bov; site H231 x - 0.16119 y 0.62444 z 1.18561 occ H 1 beq = bov; site H232 x - 0.21105 y 0.80080 z 1.08580 occ H 1 beq = bov; site H241 x - 0.21456 y 1.01188 z 1.24603 occ H 1 beq = bov; site H242 x - 0.16418 y 0.83638 z 1.34616 occ H 1 beq = bov; site H251 x - 0.29466 y 0.62514 z 1.25590 occ H 1 beq = bov; site H252 x - 0.34472 y 0.79906 z 1.15458 occ H 1 beq = bov; site H261 x - 0.34880 y 1.01463 z 1.31157 occ H 1 beq = bov; site H262 x - 0.29799 y 0.84329 z 1.41429 occ H 1 beq = bov; site H271 x - 0.42891 y 0.63116 z 1.33453 occ H 1 beq = bov; site H272 x - 0.47902 y 0.79184 z 1.22277 occ H 1 beq = bov; site H273 x - 0.46546 y 0.85202 z 1.36607 occ H 1 beq = bov; site H281 x 0.59925 y 0.71819 z 0.57682 occ H 1 beq = bov; site H282 x 0.55706 y 0.93107 z 0.61102 occ H 1 beq = bov; site H283 x 0.50666 y 0.71470 z 0.62297 occ H 1 beq = bov;

rigid point_for_site C1 ux 19.025 uy 3.239 uz 5.023 point_for_site C2 ux 17.983 uy 3.817 uz 5.971 point_for_site C3 ux 16.589 uy 3.226 uz 5.783 point_for_site C4 ux 15.551 uy 3.795 uz 6.745 point_for_site C5 ux 14.151 uy 3.226 uz 6.554 point_for_site C6 ux 13.121 uy 3.797 uz 7.522 point_for_site C7 ux 11.725 uy 3.220 uz 7.327 point_for_site C8 ux 10.671 uy 3.776 uz 8.278 point_for_site C9 ux 9.292 uy 3.180 uz 8.026 point_for_site C10 ux 8.183 uy 3.740 uz 8.907 point_for_site C11 ux 6.793 uy 3.134 uz 8.665 point_for_site C12 ux 5.788 uy 3.735 uz 9.659 point_for_site C13 ux 4.378 uy 3.165 uz 9.574 point_for_site C14 ux 3.394 uy 3.756 uz 10.576 point_for_site C15 ux 1.989 uy 3.187 uz 10.422 point_for_site C16 ux 0.960 uy 3.767 uz 11.384 point_for_site C17 ux -0.438 uy 3.195 uz 11.182 point_for_site C18 ux -1.480 uy 3.765 uz 12.135 point_for_site C19 ux -2.876 uy 3.192 uz 11.924 point_for_site C20 ux -3.926 uy 3.770 uz 12.865 point_for_site C21 ux -5.324 uy 3.203 uz 12.652 point_for_site C22 ux -6.363 uy 3.774 uz 13.609 point_for_site C23 ux -7.764 uy 3.208 uz 13.411 point_for_site C24 ux -8.792 uy 3.776 uz 14.383 point_for_site C25 ux -10.195 uy 3.211 uz 14.201 point_for_site C26 ux -11.224 uy 3.801 uz 15.161 point_for_site C27 ux -12.624 uy 3.227 uz 14.982 point_for_site C28 ux 6.335 uy 3.298 uz 7.214 point_for_site H11 ux 19.998 uy 3.737 uz 5.128 point_for_site H12 ux 18.714 uy 3.353 uz 3.974 point_for_site H13 ux 19.179 uy 2.166 uz 5.201 point_for_site H21 ux 17.928 uy 4.909 uz 5.840 point_for_site H22 ux 18.305 uy 3.658 uz 7.014 point_for_site H31 ux 16.633 uy 2.131 uz 5.896 point_for_site H32 ux 16.258 uy 3.405 uz 4.745 point_for_site H41 ux 15.515 uy 4.891 uz 6.636 point_for_site H42 ux 15.879 uy 3.610 uz 7.783 point_for_site H51 ux 14.183 uy 2.129 uz 6.659 point_for_site H52 ux 13.819 uy 3.417 uz 5.519 point_for_site H61 ux 13.083 uy 4.892 uz 7.413 point_for_site H62 ux 13.453 uy 3.610 uz 8.558 point_for_site H71 ux 11.766 uy 2.124 uz 7.431 point_for_site H72 ux 11.401 uy 3.407 uz 6.288 point_for_site H81 ux 10.622 uy 4.872 uz 8.174 point_for_site H82 ux 10.976 uy 3.586 uz 9.321 point_for_site H91 ux 9.341 uy 2.086 uz 8.152 point_for_site H92 ux 9.039 uy 3.345 uz 6.966 point_for_site H101 ux 8.123 uy 4.834 uz 8.772 point_for_site H102 ux 8.451 uy 3.586 uz 9.967 point_for_site H111 ux 6.860 uy 2.049 uz 8.869 point_for_site H121 ux 5.754 uy 4.828 uz 9.511 point_for_site H122 ux 6.177 uy 3.585 uz 10.681 point_for_site H131 ux 4.419 uy 2.072 uz 9.705 point_for_site H132 ux 3.974 uy 3.327 uz 8.562 point_for_site H141 ux 3.363 uy 4.851 uz 10.458 point_for_site H142 ux 3.755 uy 3.574 uz 11.603 point_for_site H151 ux 2.023 uy 2.092 uz 10.543 point_for_site H152 ux 1.647 uy 3.360 uz 9.386 point_for_site H161 ux 0.928 uy 4.862 uz 11.271 point_for_site H162 ux 1.281 uy 3.581 uz 12.423 point_for_site H171 ux -0.402 uy 2.099 uz 11.293 point_for_site H172 ux -0.758 uy 3.379 uz 10.142 point_for_site H181 ux -1.513 uy 4.861 uz 12.028 point_for_site H182 ux -1.161 uy 3.576 uz 13.175 point_for_site H191 ux -2.842 uy 2.097 uz 12.040 point_for_site H192 ux -3.187 uy 3.372 uz 10.880 point_for_site H201 ux -3.954 uy 4.865 uz 12.752 point_for_site H202 ux -3.616 uy 3.586 uz 13.908 point_for_site H211 ux -5.294 uy 2.106 uz 12.756 point_for_site H212 ux -5.641 uy 3.396 uz 11.612 point_for_site H221 ux -6.394 uy 4.871 uz 13.503 point_for_site H222 ux -6.040 uy 3.585 uz 14.647 point_for_site H231 ux -7.733 uy 2.111 uz 13.510 point_for_site H232 ux -8.094 uy 3.405 uz 12.376 point_for_site H241 ux -8.823 uy 4.873 uz 14.279 point_for_site H242 ux -8.455 uy 3.585 uz 15.417 point_for_site H251 ux -10.169 uy 2.115 uz 14.316 point_for_site H252 ux -10.527 uy 3.392 uz 13.164 point_for_site H261 ux -11.251 uy 4.893 uz 15.030 point_for_site H262 ux -10.887 uy 3.634 uz 16.199 point_for_site H271 ux -12.653 uy 2.155 uz 15.220 point_for_site H272 ux -12.968 uy 3.340 uz 13.944 point_for_site H273 ux -13.360 uy 3.731 uz 15.624 point_for_site H281 ux 7.043 uy 2.842 uz 6.511 point_for_site H282 ux 6.234 uy 4.361 uz 6.944 point_for_site H283 ux 5.364 uy 2.817 uz 7.039

Rotate_about_axies(@ -1.29212`_0.06015, @ 0.33790`_0.00497, @ 0.48921`_0.02724) Translate(@ 0.01421`_0.00034, 0.29, @ 0.02870`_0.00042)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C11.3119060.7817830.4423911.26 (2)
C21.2679940.8647550.5228871.26 (2)
C31.1774110.7799460.5087731.26 (2)
C41.1340790.8617150.5904871.26 (2)
C51.0430290.7799620.5760711.26 (2)
C61.0003310.8620400.6582901.26 (2)
C70.9094480.7791600.6435471.26 (2)
C80.8648800.8590550.7243551.26 (2)
C90.7737740.7733350.7047611.26 (2)
C100.7241710.8534790.7795891.26 (2)
C110.6326180.7663850.7608791.26 (2)
C120.5920410.8527760.8452481.26 (2)
C130.5027940.771250.8399221.26 (2)
C140.463720.8562960.9249881.26 (2)
C150.3732050.7746690.9137451.26 (2)
C160.3304220.8579850.995431.26 (2)
C170.2392490.7757760.9800771.26 (2)
C180.1954600.8576481.0610191.26 (2)
C190.1042070.7752691.0448971.26 (2)
C200.0596360.8582071.1247971.26 (2)
C210.0317950.7766581.1084911.26 (2)
C220.0753060.8586871.1897721.26 (2)
C230.1665810.7773271.1747511.26 (2)
C240.2090600.8590031.2573181.26 (2)
C250.3000950.7778381.2436671.26 (2)
C260.3429350.8625441.3251581.26 (2)
C270.4337050.7801351.3117821.26 (2)
C280.5706880.7836170.6364251.26 (2)
H111.374440.8528310.4498091.26 (2)
H121.2683920.7936260.3524161.26 (2)
H131.3267430.6326640.4599051.26 (2)
H211.2603851.0168080.5093091.26 (2)
H221.3121060.8466160.6124401.26 (2)
H311.1839260.6273980.5208221.26 (2)
H321.1328320.8008870.4196101.26 (2)
H411.1281531.0144250.5787751.26 (2)
H421.1784780.8399310.6796651.26 (2)
H511.0486150.6270920.5874441.26 (2)
H520.9984430.8025890.4871391.26 (2)
H610.9942821.0146090.6465821.26 (2)
H621.0449360.8399750.7473001.26 (2)
H710.9155710.6264360.6548281.26 (2)
H720.8652730.8012230.5542771.26 (2)
H810.8582581.0117690.7130781.26 (2)
H820.9079650.8365650.8139841.26 (2)
H910.7808970.6209790.7179181.26 (2)
H920.7335700.7923300.6137031.26 (2)
H1010.7161561.005790.7656661.26 (2)
H1020.7652990.8360380.8706151.26 (2)
H1110.6426390.6155850.7806911.26 (2)
H1210.5853511.0049310.8302001.26 (2)
H1220.639840.8358950.9329481.26 (2)
H1310.5095320.6190420.8535101.26 (2)
H1320.4542760.7898270.7530611.26 (2)
H1410.4579011.0088410.9125051.26 (2)
H1420.5099220.8349291.01321.26 (2)
H1510.3792800.6221380.9264841.26 (2)
H1520.3279920.7947670.8247711.26 (2)
H1610.3246551.0105460.9833761.26 (2)
H1620.3744090.8360581.08471.26 (2)
H1710.2452200.6230720.9919601.26 (2)
H1720.1953040.7974210.8907261.26 (2)
H1810.1897671.0103691.0494781.26 (2)
H1820.2393480.8353031.1503821.26 (2)
H1910.1101670.6227211.0572071.26 (2)
H1920.0607360.7963520.9552071.26 (2)
H2010.0541191.0107731.1127411.26 (2)
H2020.1030260.8365611.2144111.26 (2)
H2110.0263560.6237821.119781.26 (2)
H2120.0755620.7995641.0191191.26 (2)
H2210.0808521.0115541.1783131.26 (2)
H2220.0312140.8363391.2789621.26 (2)
H2310.1611950.6244351.185611.26 (2)
H2320.2110500.8007961.0858051.26 (2)
H2410.2145611.0118771.246031.26 (2)
H2420.1641850.8363771.3461621.26 (2)
H2510.2946560.6251371.2558981.26 (2)
H2520.3447170.7990611.1545851.26 (2)
H2610.3487981.0146271.3115661.26 (2)
H2620.2979940.8432851.4142931.26 (2)
H2710.4289070.6311641.3345271.26 (2)
H2720.4790230.7918401.2227691.26 (2)
H2730.4654560.8520201.3660651.26 (2)
H2810.5992460.7181900.5768241.26 (2)
H2820.5570610.9310710.6110231.26 (2)
H2830.5066590.7146980.6229711.26 (2)
Bond lengths (Å) top
C1—C21.523C15—C161.523
C1—H111.098C15—H1511.102
C1—H121.100C15—H1521.104
C1—H131.099C16—C171.524
C2—C31.526C16—H1611.102
C2—H211.101C16—H1621.104
C2—H221.103C17—C181.523
C3—C41.524C17—H1711.102
C3—H311.102C17—H1721.104
C3—H321.104C18—C191.524
C4—C51.524C18—H1811.102
C4—H411.102C18—H1821.104
C4—H421.104C19—C201.523
C5—C61.524C19—H1911.102
C5—H511.102C19—H1921.104
C5—H521.104C20—C211.524
C6—C71.523C20—H2011.102
C6—H611.102C20—H2021.104
C6—H621.104C21—C221.524
C7—C81.524C21—H2111.102
C7—H711.102C21—H2121.104
C7—H721.104C22—C231.524
C8—C91.523C22—H2211.102
C8—H811.102C22—H2221.104
C8—H821.104C23—C241.524
C9—C101.523C23—H2311.102
C9—H911.102C23—H2321.104
C9—H921.102C24—C251.524
C10—C111.536C24—H2411.102
C10—H1011.103C24—H2421.104
C10—H1021.104C25—C261.526
C11—C121.535C25—H2511.102
C11—C281.531C25—H2521.104
C11—H1111.106C26—C271.524
C12—C131.524C26—H2611.101
C12—H1211.104C26—H2621.103
C12—H1221.104C27—H2711.099
C13—C141.524C27—H2721.100
C13—H1311.101C27—H2731.098
C13—H1321.102C28—H2811.097
C14—C151.524C28—H2821.102
C14—H1411.102C28—H2831.097
C14—H1421.104
(11MeC29H59) (S)-11-methylnonacosane top
Crystal data top
C30H62V = 1423.14 (4) Å3
Mr = 422.81Z = 2
Monoclinic, P21Dx = 0.987 Mg m3
a = 16.0129 (2) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80025 Å
b = 7.14458 (7) ÅT = 100 K
c = 14.0964 (3) ÅPowder, white
β = 118.0599 (10)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 5.276 r_exp 2.950 gof 1.789 iters 700000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C29Me11_100K.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80025 l h 0.1 start_X 2.5 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00282`_0.00012)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 10.6271648`_0.0889223603, 50, 50)

bkg @ 726.905104`_7.84615689 - 176.449046`_8.59798637 91.2956472`_3.80956612 - 12.4886753`_9.62082908 - 5.52238381`_6.29251184 - 5.34031219`_1.81031628 33.1070621`_5.88187368 - 11.1367635`_4.64183525 - 6.01793469`_1.26493373 9.11800743`_2.87278521 - 4.90417806`_2.58295548 - 4.85940973`_1.12158682 8.22655137`_1.90056191 - 1.86629488`_1.83401425 - 0.781581595`_1.14117341 PV (@, @, @, @, 730.27704`_388.07132, 11.00478`_0.03843, 2.84663`_0.41029, 0.35033`_0.39926_LIMIT_MIN_0)

str local !phase_number 1

a @ 16.01290`_0.00024 b @ 7.14458`_0.00007 c @ 14.09635`_0.00026 al 90.0000 be @ 118.05989`_0.00096 ga 90.0000

MVW (845.648, 1423.13654`_0.0388108281, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta Sin(Th)) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th) Sin(Th);}

prm s400 20.68192`_0.57030 prm s040 387.19680`_2.20722 prm s004 37.29310`_0.95889 prm s220 170.48354`_7.49225 prm s202 87.97803`_2.66383 prm s022 90.11375`_6.13725 prm s301 71.44713`_2.15704 prm s121 - 74.75867`_9.06780 prm s103 58.35203`_1.45841 prm eta 1.00000`_0.02526_LIMIT_MAX_1 min 0 max 1

Stephens_monoclinic(s400, s040, s004, s220, s202, s022, s301, s121, s103, eta)

scale @ 0.000158587221`_3.38 e-007 r_bragg 2.76504133 space_group "P21"

site C1 x 1.30398 y 0.76846 z 0.44387 occ C 1 beq bov 1.0671`_0.0271 site C2 x 1.27052 y 0.85108 z 0.51982 occ C 1 beq = bov; site C3 x 1.17820 y 0.76647 z 0.50658 occ C 1 beq = bov; site C4 x 1.14541 y 0.84787 z 0.58351 occ C 1 beq = bov; site C5 x 1.05272 y 0.76535 z 0.57017 occ C 1 beq = bov; site C6 x 1.02041 y 0.84677 z 0.64750 occ C 1 beq = bov; site C7 x 0.92791 y 0.76326 z 0.63385 occ C 1 beq = bov; site C8 x 0.89364 y 0.84334 z 0.70975 occ C 1 beq = bov; site C9 x 0.80021 y 0.75773 z 0.69194 occ C 1 beq = bov; site C10 x 0.76011 y 0.83906 z 0.76199 occ C 1 beq = bov; site C11 x 0.66620 y 0.75233 z 0.74452 occ C 1 beq = bov; site C12 x 0.63611 y 0.83902 z 0.82345 occ C 1 beq = bov; site C13 x 0.54597 y 0.75749 z 0.81782 occ C 1 beq = bov; site C14 x 0.51713 y 0.84183 z 0.89734 occ C 1 beq = bov; site C15 x 0.42443 y 0.76117 z 0.88503 occ C 1 beq = bov; site C16 x 0.39201 y 0.84327 z 0.96194 occ C 1 beq = bov; site C17 x 0.29931 y 0.76018 z 0.94813 occ C 1 beq = bov; site C18 x 0.26594 y 0.84127 z 1.02442 occ C 1 beq = bov; site C19 x 0.17293 y 0.75827 z 1.00955 occ C 1 beq = bov; site C20 x 0.13950 y 0.83922 z 1.08584 occ C 1 beq = bov; site C21 x 0.04620 y 0.75734 z 1.07089 occ C 1 beq = bov; site C22 x 0.01276 y 0.83940 z 1.14700 occ C 1 beq = bov; site C23 x - 0.08084 y 0.75906 z 1.13211 occ C 1 beq = bov; site C24 x - 0.11351 y 0.84129 z 1.20886 occ C 1 beq = bov; site C25 x - 0.20676 y 0.76056 z 1.19494 occ C 1 beq = bov; site C26 x - 0.23890 y 0.84310 z 1.27225 occ C 1 beq = bov; site C27 x - 0.33184 y 0.76227 z 1.25921 occ C 1 beq = bov; site C28 x - 0.36430 y 0.84730 z 1.33561 occ C 1 beq = bov; site C29 x - 0.45681 y 0.76537 z 1.32315 occ C 1 beq = bov; site C30 x 0.58870 y 0.76928 z 0.62770 occ C 1 beq = bov; site H11 x 1.36841 y 0.83760 z 0.45229 occ H 1 beq = bov; site H12 x 1.24972 y 0.78418 z 0.35956 occ H 1 beq = bov; site H13 x 1.31927 y 0.61841 z 0.45875 occ H 1 beq = bov; site H21 x 1.26162 y 1.00343 z 0.50769 occ H 1 beq = bov; site H22 x 1.32598 y 0.83173 z 0.60368 occ H 1 beq = bov; site H31 x 1.18605 y 0.61351 z 0.51752 occ H 1 beq = bov; site H32 x 1.12236 y 0.78806 z 0.42302 occ H 1 beq = bov; site H41 x 1.13787 y 1.00084 z 0.57257 occ H 1 beq = bov; site H42 x 1.20116 y 0.82599 z 0.66700 occ H 1 beq = bov; site H51 x 1.05993 y 0.61236 z 0.58063 occ H 1 beq = bov; site H52 x 0.99691 y 0.78821 z 0.48683 occ H 1 beq = bov; site H61 x 1.01273 y 0.99959 z 0.63664 occ H 1 beq = bov; site H62 x 1.07632 y 0.82461 z 0.73091 occ H 1 beq = bov; site H71 x 0.93566 y 0.61029 z 0.64454 occ H 1 beq = bov; site H72 x 0.87247 y 0.78500 z 0.55019 occ H 1 beq = bov; site H81 x 0.88568 y 0.99631 z 0.69914 occ H 1 beq = bov; site H82 x 0.94820 y 0.82090 z 0.79383 occ H 1 beq = bov; site H91 x 0.80902 y 0.60540 z 0.70488 occ H 1 beq = bov; site H92 x 0.74848 y 0.77597 z 0.60652 occ H 1 beq = bov; site H101 x 0.75044 y 0.99150 z 0.74865 occ H 1 beq = bov; site H102 x 0.81261 y 0.82195 z 0.84746 occ H 1 beq = bov; site H111 x 0.67864 y 0.60137 z 0.76330 occ H 1 beq = bov; site H121 x 0.62764 y 0.99146 z 0.80954 occ H 1 beq = bov; site H122 x 0.69474 y 0.82177 z 0.90581 occ H 1 beq = bov; site H131 x 0.55426 y 0.60500 z 0.83029 occ H 1 beq = bov; site H132 x 0.48685 y 0.77671 z 0.73625 occ H 1 beq = bov; site H141 x 0.51047 y 0.99482 z 0.88655 occ H 1 beq = bov; site H142 x 0.57365 y 0.81869 z 0.98028 occ H 1 beq = bov; site H151 x 0.43127 y 0.60818 z 0.89565 occ H 1 beq = bov; site H152 x 0.36859 y 0.78375 z 0.80161 occ H 1 beq = bov; site H161 x 0.38453 y 0.99610 z 0.95100 occ H 1 beq = bov; site H162 x 0.44766 y 0.82125 z 1.04552 occ H 1 beq = bov; site H171 x 0.30690 y 0.60721 z 0.95891 occ H 1 beq = bov; site H172 x 0.24390 y 0.78220 z 0.86439 occ H 1 beq = bov; site H181 x 0.25877 y 0.99426 z 1.01403 occ H 1 beq = bov; site H182 x 0.32099 y 0.81840 z 1.10817 occ H 1 beq = bov; site H191 x 0.18043 y 0.60530 z 1.02025 occ H 1 beq = bov; site H192 x 0.11783 y 0.78072 z 0.92580 occ H 1 beq = bov; site H201 x 0.13258 y 0.99236 z 1.07562 occ H 1 beq = bov; site H202 x 0.19467 y 0.81593 z 1.16944 occ H 1 beq = bov; site H211 x 0.05326 y 0.60435 z 1.08159 occ H 1 beq = bov; site H212 x - 0.00884 y 0.77992 z 0.98714 occ H 1 beq = bov; site H221 x 0.00626 y 0.99254 z 1.13661 occ H 1 beq = bov; site H222 x 0.06762 y 0.81611 z 1.23076 occ H 1 beq = bov; site H231 x - 0.07458 y 0.60590 z 1.14210 occ H 1 beq = bov; site H232 x - 0.13595 y 0.78304 z 1.04851 occ H 1 beq = bov; site H241 x - 0.12007 y 0.99429 z 1.19848 occ H 1 beq = bov; site H242 x - 0.05810 y 0.81801 z 1.29246 occ H 1 beq = bov; site H251 x - 0.20034 y 0.60755 z 1.20517 occ H 1 beq = bov; site H252 x - 0.26221 y 0.78427 z 1.11158 occ H 1 beq = bov; site H261 x - 0.24571 y 0.99609 z 1.26154 occ H 1 beq = bov; site H262 x - 0.18309 y 0.82038 z 1.35559 occ H 1 beq = bov; site H271 x - 0.32500 y 0.60930 z 1.27057 occ H 1 beq = bov; site H272 x - 0.38749 y 0.78387 z 1.17564 occ H 1 beq = bov; site H281 x - 0.37173 y 0.99966 z 1.32298 occ H 1 beq = bov; site H282 x - 0.30829 y 0.82766 z 1.41915 occ H 1 beq = bov; site H291 x - 0.51375 y 0.78038 z 1.24016 occ H 1 beq = bov; site H292 x - 0.48061 y 0.83550 z 1.37553 occ H 1 beq = bov; site H293 x - 0.44974 y 0.61547 z 1.34269 occ H 1 beq = bov; site H301 x 0.57228 y 0.91706 z 0.60359 occ H 1 beq = bov; site H302 x 0.52294 y 0.70111 z 0.61525 occ H 1 beq = bov; site H303 x 0.60979 y 0.70264 z 0.57215 occ H 1 beq = bov;

rigid point_for_site C1 ux 21.186 uy 3.204 uz -0.689 point_for_site C2 ux 20.145 uy 3.781 uz 0.262 point_for_site C3 ux 18.751 uy 3.191 uz 0.075 point_for_site C4 ux 17.714 uy 3.759 uz 1.038 point_for_site C5 ux 16.315 uy 3.184 uz 0.850 point_for_site C6 ux 15.283 uy 3.752 uz 1.818 point_for_site C7 ux 13.889 uy 3.170 uz 1.626 point_for_site C8 ux 12.835 uy 3.729 uz 2.576 point_for_site C9 ux 11.454 uy 3.133 uz 2.332 point_for_site C10 ux 10.346 uy 3.703 uz 3.209 point_for_site C11 ux 8.955 uy 3.099 uz 2.969 point_for_site C12 ux 7.948 uy 3.704 uz 3.958 point_for_site C13 ux 6.538 uy 3.134 uz 3.866 point_for_site C14 ux 5.547 uy 3.722 uz 4.862 point_for_site C15 ux 4.141 uy 3.160 uz 4.687 point_for_site C16 ux 3.110 uy 3.733 uz 5.650 point_for_site C17 ux 1.714 uy 3.154 uz 5.456 point_for_site C18 ux 0.672 uy 3.720 uz 6.411 point_for_site C19 ux -0.722 uy 3.142 uz 6.204 point_for_site C20 ux -1.765 uy 3.707 uz 7.159 point_for_site C21 ux -3.163 uy 3.137 uz 6.951 point_for_site C22 ux -4.205 uy 3.710 uz 7.904 point_for_site C23 ux -5.608 uy 3.151 uz 7.697 point_for_site C24 ux -6.642 uy 3.725 uz 8.658 point_for_site C25 ux -8.046 uy 3.163 uz 8.463 point_for_site C26 ux -9.075 uy 3.739 uz 9.431 point_for_site C27 ux -10.480 uy 3.176 uz 9.247 point_for_site C28 ux -11.508 uy 3.770 uz 10.204 point_for_site C29 ux -12.910 uy 3.199 uz 10.027 point_for_site C30 ux 8.499 uy 3.256 uz 1.516 point_for_site H11 ux 22.165 uy 3.688 uz -0.567 point_for_site H12 ux 20.884 uy 3.342 uz -1.737 point_for_site H13 ux 21.323 uy 2.127 uz -0.527 point_for_site H21 ux 20.092 uy 4.873 uz 0.135 point_for_site H22 ux 20.469 uy 3.617 uz 1.304 point_for_site H31 ux 18.795 uy 2.095 uz 0.187 point_for_site H32 ux 18.419 uy 3.371 uz -0.963 point_for_site H41 ux 17.675 uy 4.855 uz 0.926 point_for_site H42 ux 18.045 uy 3.577 uz 2.075 point_for_site H51 ux 16.352 uy 2.088 uz 0.956 point_for_site H52 ux 15.982 uy 3.373 uz -0.185 point_for_site H61 ux 15.241 uy 4.847 uz 1.707 point_for_site H62 ux 15.617 uy 3.568 uz 2.854 point_for_site H71 ux 13.933 uy 2.074 uz 1.735 point_for_site H72 ux 13.564 uy 3.351 uz 0.587 point_for_site H81 ux 12.787 uy 4.825 uz 2.468 point_for_site H82 ux 13.143 uy 3.543 uz 3.620 point_for_site H91 ux 11.500 uy 2.041 uz 2.469 point_for_site H92 ux 11.200 uy 3.289 uz 1.271 point_for_site H101 ux 10.289 uy 4.796 uz 3.067 point_for_site H102 ux 10.612 uy 3.555 uz 4.271 point_for_site H111 ux 9.020 uy 2.015 uz 3.179 point_for_site H121 ux 7.914 uy 4.797 uz 3.809 point_for_site H122 ux 8.333 uy 3.555 uz 4.982 point_for_site H131 ux 6.579 uy 2.041 uz 3.997 point_for_site H132 ux 6.140 uy 3.297 uz 2.852 point_for_site H141 ux 5.521 uy 4.818 uz 4.752 point_for_site H142 ux 5.894 uy 3.531 uz 5.892 point_for_site H151 ux 4.171 uy 2.064 uz 4.795 point_for_site H152 ux 3.808 uy 3.347 uz 3.651 point_for_site H161 ux 3.072 uy 4.828 uz 5.538 point_for_site H162 ux 3.439 uy 3.550 uz 6.688 point_for_site H171 ux 1.755 uy 2.058 uz 5.566 point_for_site H172 ux 1.390 uy 3.337 uz 4.416 point_for_site H181 ux 0.635 uy 4.816 uz 6.306 point_for_site H182 ux 0.990 uy 3.531 uz 7.451 point_for_site H191 ux -0.682 uy 2.046 uz 6.313 point_for_site H192 ux -1.041 uy 3.328 uz 5.164 point_for_site H201 ux -1.799 uy 4.804 uz 7.056 point_for_site H202 ux -1.444 uy 3.515 uz 8.197 point_for_site H211 ux -3.130 uy 2.041 uz 7.060 point_for_site H212 ux -3.481 uy 3.324 uz 5.911 point_for_site H221 ux -4.231 uy 4.807 uz 7.799 point_for_site H222 ux -3.890 uy 3.518 uz 8.944 point_for_site H231 ux -5.583 uy 2.054 uz 7.797 point_for_site H232 ux -5.928 uy 3.348 uz 6.659 point_for_site H241 ux -6.669 uy 4.821 uz 8.553 point_for_site H242 ux -6.317 uy 3.533 uz 9.696 point_for_site H251 ux -8.020 uy 2.067 uz 8.566 point_for_site H252 ux -8.373 uy 3.358 uz 7.428 point_for_site H261 ux -9.104 uy 4.835 uz 9.322 point_for_site H262 ux -8.742 uy 3.551 uz 10.466 point_for_site H271 ux -10.455 uy 2.080 uz 9.364 point_for_site H272 ux -10.809 uy 3.356 uz 8.209 point_for_site H281 ux -11.534 uy 4.862 uz 10.071 point_for_site H282 ux -11.173 uy 3.604 uz 11.242 point_for_site H291 ux -13.264 uy 3.332 uz 8.995 point_for_site H292 ux -13.639 uy 3.691 uz 10.685 point_for_site H293 ux -12.936 uy 2.123 uz 10.246 point_for_site H301 ux 8.406 uy 4.319 uz 1.239 point_for_site H302 ux 7.526 uy 2.780 uz 1.344 point_for_site H303 ux 9.206 uy 2.790 uz 0.819

Rotate_about_axies(@ -1.04576`_0.06143, @ 0.37628`_0.00504, @ 0.48975`_0.03370) Translate(@ 0.01274`_0.00037, 0.3, @ 0.51619`_0.00040)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C11.3039750.7684630.4438721.07 (3)
C21.2705230.8510770.5198191.07 (3)
C31.1781990.7664690.5065851.07 (3)
C41.1454110.8478660.5835111.07 (3)
C51.0527240.7653480.5701711.07 (3)
C61.0204150.8467650.6474971.07 (3)
C70.9279130.7632610.6338461.07 (3)
C80.893640.8433400.7097521.07 (3)
C90.8002130.7577280.691941.07 (3)
C100.7601070.8390610.7619891.07 (3)
C110.6662030.7523310.7445181.07 (3)
C120.6361110.8390180.8234511.07 (3)
C130.5459670.7574880.8178241.07 (3)
C140.5171280.8418350.8973421.07 (3)
C150.4244280.7611690.8850281.07 (3)
C160.3920070.8432720.9619421.07 (3)
C170.2993100.7601790.9481261.07 (3)
C180.2659430.8412651.0244151.07 (3)
C190.1729310.7582741.0095521.07 (3)
C200.1395040.8392191.0858431.07 (3)
C210.0462000.7573401.0708871.07 (3)
C220.0127570.8393991.1470031.07 (3)
C230.0808380.7590571.132111.07 (3)
C240.1135150.8412901.2088631.07 (3)
C250.2067640.7605641.1949411.07 (3)
C260.2388960.8431041.272251.07 (3)
C270.3318360.7622721.2592141.07 (3)
C280.3642980.8472971.3356071.07 (3)
C290.4568060.7653711.3231461.07 (3)
C300.5886980.7692810.6277031.07 (3)
H111.3684140.8375990.4522921.07 (3)
H121.2497170.7841820.3595591.07 (3)
H131.319270.6184120.4587471.07 (3)
H211.2616151.0034260.5076861.07 (3)
H221.3259790.8317250.6036851.07 (3)
H311.1860460.6135050.5175251.07 (3)
H321.122360.7880640.4230161.07 (3)
H411.1378751.0008350.5725681.07 (3)
H421.2011560.8259870.6670031.07 (3)
H511.0599330.6123580.5806331.07 (3)
H520.9969120.7882110.4868281.07 (3)
H611.0127270.9995950.6366381.07 (3)
H621.0763160.8246070.7309111.07 (3)
H710.9356590.6102880.6445451.07 (3)
H720.8724750.7850000.5501911.07 (3)
H810.8856790.9963120.6991361.07 (3)
H820.9481950.8208990.7938261.07 (3)
H910.8090220.6054040.7048811.07 (3)
H920.7484820.7759750.6065251.07 (3)
H1010.7504450.9914980.7486501.07 (3)
H1020.8126090.8219490.8474641.07 (3)
H1110.6786420.6013740.7633011.07 (3)
H1210.6276440.9914570.8095381.07 (3)
H1220.6947390.8217730.9058111.07 (3)
H1310.5542640.6050000.8302871.07 (3)
H1320.4868500.7767100.7362501.07 (3)
H1410.5104690.9948240.8865531.07 (3)
H1420.5736450.8186910.9802801.07 (3)
H1510.4312690.6081780.8956541.07 (3)
H1520.3685860.7837490.8016081.07 (3)
H1610.3845340.9961020.9510011.07 (3)
H1620.4476630.8212541.0455171.07 (3)
H1710.3069030.6072050.9589071.07 (3)
H1720.2438970.7821960.8643871.07 (3)
H1810.2587670.9942591.0140341.07 (3)
H1820.3209900.8184021.1081681.07 (3)
H1910.1804290.6052961.0202531.07 (3)
H1920.1178260.7807160.9258051.07 (3)
H2010.1325810.9923621.075621.07 (3)
H2020.1946730.8159331.1694391.07 (3)
H2110.0532610.6043551.0815921.07 (3)
H2120.0088450.7799230.9871381.07 (3)
H2210.0062650.9925441.1366141.07 (3)
H2220.0676200.8161141.2307631.07 (3)
H2310.0745760.6058961.1420981.07 (3)
H2320.1359510.7830441.0485051.07 (3)
H2410.1200680.9942941.1984771.07 (3)
H2420.0580960.8180091.2924571.07 (3)
H2510.2003400.6075531.2051671.07 (3)
H2520.2622090.7842731.1115841.07 (3)
H2610.2457090.9960941.2615431.07 (3)
H2620.1830860.8203821.3555911.07 (3)
H2710.3250030.6093031.2705661.07 (3)
H2720.3874890.7838701.1756441.07 (3)
H2810.3717280.9996551.3229761.07 (3)
H2820.3082890.8276641.4191481.07 (3)
H2910.5137550.7803851.2401551.07 (3)
H2920.4806080.8355041.3755331.07 (3)
H2930.4497350.6154661.3426861.07 (3)
H3010.5722840.9170610.6035871.07 (3)
H3020.5229380.7011150.6152471.07 (3)
H3030.6097860.7026410.5721471.07 (3)
Bond lengths (Å) top
C1—C21.523C16—C171.524
C1—H111.099C16—H1611.102
C1—H121.100C16—H1621.104
C1—H131.099C17—C181.523
C2—C31.526C17—H1711.102
C2—H211.101C17—H1721.104
C2—H221.103C18—C191.523
C3—C41.524C18—H1811.102
C3—H311.102C18—H1821.104
C3—H321.104C19—C201.523
C4—C51.524C19—H1911.102
C4—H411.102C19—H1921.104
C4—H421.104C20—C211.524
C5—C61.525C20—H2011.102
C5—H511.102C20—H2021.104
C5—H521.104C21—C221.524
C6—C71.523C21—H2111.102
C6—H611.102C21—H2121.104
C6—H621.104C22—C231.524
C7—C81.525C22—H2211.102
C7—H711.102C22—H2221.104
C7—H721.104C23—C241.524
C8—C91.524C23—H2311.102
C8—H811.102C23—H2321.104
C8—H821.104C24—C251.524
C9—C101.524C24—H2411.102
C9—H911.102C24—H2421.104
C9—H921.102C25—C261.525
C10—C111.536C25—H2511.102
C10—H1011.103C25—H2521.104
C10—H1021.104C26—C271.525
C11—C121.536C26—H2611.102
C11—C301.531C26—H2621.104
C11—H1111.105C27—C281.526
C12—C131.524C27—H2711.102
C12—H1211.104C27—H2721.104
C12—H1221.104C28—C291.523
C13—C141.523C28—H2811.101
C13—H1311.101C28—H2821.103
C13—H1321.102C29—H2911.099
C14—C151.524C29—H2921.098
C14—H1411.102C29—H2931.099
C14—H1421.103C30—H3011.102
C15—C161.522C30—H3021.097
C15—H1511.102C30—H3031.097
C15—H1521.104
(9MeC25H51) (S)-9-methylpentacosane top
Crystal data top
C26H54V = 1258.82 (6) Å3
Mr = 366.71Z = 2
Monoclinic, P21Dx = 0.967 Mg m3
a = 21.4439 (8) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80025 Å
b = 4.93741 (8) ÅT = 80 K
c = 12.3456 (4) ÅPowder, white
β = 105.6247 (15)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 4.119 r_exp 2.818 gof 1.461 iters 100000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C25Me9_80K.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80025 l h 0.1 start_X 1.5 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00361`_0.00017)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 11.0894011`_0.0818004193, 50, 50)

bkg @ 805.094829`_52.6093199 - 205.186817`_51.05891 130.651795`_24.3521106 - 46.7155259`_48.2411581 4.66624181`_21.9064247 - 4.67750611`_11.0087857 14.4446921`_19.2790215 4.17472532`_7.67764805 - 17.4486908`_4.80159244 8.03346042`_6.37564798 - 3.30223636`_2.19038306 - 10.4959242`_2.20149072 5.61039218`_2.19069823 7.26056046`_1.48614199 - 7.59759672`_1.04963598

PV (@, @, @, @, 2853.46511`_2871.00260, 10.99684`_0.04139, 4.83437`_1.62587, 0.07577`_0.42048_LIMIT_MIN_0)

str local !phase_number 1

a @ 21.44393`_0.00075 b @ 4.93741`_0.00008 c @ 12.34557`_0.00040 al 90.0000 be @ 105.62467`_0.00146 ga 90.0000

MVW (733.432, 1258.81477`_0.0639391964, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {

prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm s400 27.99809`_0.58583 prm s040 3997.82395`_53.55569 prm s004 256.35558`_5.64356 prm s220 79.94282`_17.50493 prm s202 - 42.02622`_3.18376 prm s022 689.49703`_57.91472 prm s301 24.47221`_1.58248 prm s121 - 432.22132`_21.93022 prm s103 115.62194`_5.42506 prm eta 0.32161`_0.00319 min 0 max 1

Stephens_monoclinic(s400, s040, s004, s220, s202, s022, s301, s121, s103, eta)

scale @ 0.000199921436`_4.4 e-007 r_bragg 2.44619282 space_group "P21"

site C1 x 0.48793 y 0.76005 z 1.35414 occ C 1 beq bov 0.9506`_0.0406 site C2 x 0.53351 y 0.62178 z 1.29610 occ C 1 beq = bov; site C3 x 0.53493 y 0.75781 z 1.18582 occ C 1 beq = bov; site C4 x 0.58233 y 0.62579 z 1.12968 occ C 1 beq = bov; site C5 x 0.58513 y 0.75309 z 1.01877 occ C 1 beq = bov; site C6 x 0.63775 y 0.62805 z 0.97273 occ C 1 beq = bov; site C7 x 0.64399 y 0.75264 z 0.86319 occ C 1 beq = bov; site C8 x 0.69867 y 0.62575 z 0.82267 occ C 1 beq = bov; site C9 x 0.71055 y 0.74942 z 0.71595 occ C 1 beq = bov; site C10 x 0.77272 y 0.63149 z 0.69545 occ C 1 beq = bov; site C11 x 0.79229 y 0.75764 z 0.59683 occ C 1 beq = bov; site C12 x 0.85228 y 0.63368 z 0.57266 occ C 1 beq = bov; site C13 x 0.86621 y 0.75326 z 0.46775 occ C 1 beq = bov; site C14 x 0.92422 y 0.62994 z 0.43679 occ C 1 beq = bov; site C15 x 0.93641 y 0.75219 z 0.33090 occ C 1 beq = bov; site C16 x 0.99430 y 0.62908 z 0.29952 occ C 1 beq = bov; site C17 x 1.00785 y 0.75332 z 0.19513 occ C 1 beq = bov; site C18 x 1.06634 y 0.62939 z 0.16567 occ C 1 beq = bov; site C19 x 1.08095 y 0.75422 z 0.06235 occ C 1 beq = bov; site C20 x 1.13893 y 0.62747 z 0.03215 occ C 1 beq = bov; site C21 x 1.15240 y 0.75090 z - 0.07250 occ C 1 beq = bov; site C22 x 1.20903 y 0.62113 z - 0.10588 occ C 1 beq = bov; site C23 x 1.22089 y 0.74136 z - 0.21235 occ C 1 beq = bov; site C24 x 1.27714 y 0.61038 z - 0.24657 occ C 1 beq = bov; site C25 x 1.28917 y 0.72838 z - 0.35312 occ C 1 beq = bov; site C26 x 0.65250 y 0.71267 z 0.61315 occ C 1 beq = bov; site H11 x 0.48755 y 0.65923 z 1.43319 occ H 1 beq = bov; site H12 x 0.43793 y 0.76164 z 1.30022 occ H 1 beq = bov; site H13 x 0.50220 y 0.97203 z 1.37436 occ H 1 beq = bov; site H21 x 0.51936 y 0.40778 z 1.27951 occ H 1 beq = bov; site H22 x 0.58288 y 0.61717 z 1.35308 occ H 1 beq = bov; site H31 x 0.54786 y 0.97326 z 1.20201 occ H 1 beq = bov; site H32 x 0.48581 y 0.75615 z 1.12807 occ H 1 beq = bov; site H41 x 0.57047 y 0.40891 z 1.11607 occ H 1 beq = bov; site H42 x 0.63106 y 0.63212 z 1.18845 occ H 1 beq = bov; site H51 x 0.59390 y 0.97287 z 1.03059 occ H 1 beq = bov; site H52 x 0.53777 y 0.73356 z 0.95651 occ H 1 beq = bov; site H61 x 0.62848 y 0.40868 z 0.96008 occ H 1 beq = bov; site H62 x 0.68460 y 0.64435 z 1.03704 occ H 1 beq = bov; site H71 x 0.65269 y 0.97243 z 0.87517 occ H 1 beq = bov; site H72 x 0.59744 y 0.73249 z 0.79871 occ H 1 beq = bov; site H81 x 0.68937 y 0.40658 z 0.80901 occ H 1 beq = bov; site H82 x 0.74385 y 0.64107 z 0.89106 occ H 1 beq = bov; site H91 x 0.71830 y 0.96942 z 0.73100 occ H 1 beq = bov; site H101 x 0.76600 y 0.41106 z 0.68131 occ H 1 beq = bov; site H102 x 0.81261 y 0.65441 z 0.77265 occ H 1 beq = bov; site H111 x 0.80021 y 0.97683 z 0.61204 occ H 1 beq = bov; site H112 x 0.75201 y 0.74100 z 0.52006 occ H 1 beq = bov; site H121 x 0.84547 y 0.41285 z 0.56173 occ H 1 beq = bov; site H122 x 0.89458 y 0.66061 z 0.64568 occ H 1 beq = bov; site H131 x 0.87362 y 0.97388 z 0.47918 occ H 1 beq = bov; site H132 x 0.82290 y 0.72960 z 0.39619 occ H 1 beq = bov; site H141 x 0.91681 y 0.40953 z 0.42502 occ H 1 beq = bov; site H142 x 0.96788 y 0.65360 z 0.50758 occ H 1 beq = bov; site H151 x 0.94379 y 0.97261 z 0.34275 occ H 1 beq = bov; site H152 x 0.89267 y 0.72874 z 0.26020 occ H 1 beq = bov; site H161 x 0.98648 y 0.40928 z 0.28633 occ H 1 beq = bov; site H162 x 1.03771 y 0.64950 z 0.37107 occ H 1 beq = bov; site H171 x 1.01549 y 0.97333 z 0.20798 occ H 1 beq = bov; site H172 x 0.96474 y 0.73168 z 0.12306 occ H 1 beq = bov; site H181 x 1.05843 y 0.40979 z 0.15198 occ H 1 beq = bov; site H182 x 1.10925 y 0.64881 z 0.23825 occ H 1 beq = bov; site H191 x 1.08947 y 0.97361 z 0.07637 occ H 1 beq = bov; site H192 x 1.03787 y 0.73683 z - 0.01005 occ H 1 beq = bov; site H201 x 1.13046 y 0.40808 z 0.01872 occ H 1 beq = bov; site H202 x 1.18233 y 0.64607 z 0.10395 occ H 1 beq = bov; site H211 x 1.16171 y 0.96987 z - 0.05875 occ H 1 beq = bov; site H212 x 1.10847 y 0.73535 z - 0.14328 occ H 1 beq = bov; site H221 x 1.20005 y 0.40156 z - 0.11811 occ H 1 beq = bov; site H222 x 1.25331 y 0.63951 z - 0.03578 occ H 1 beq = bov; site H231 x 1.23016 y 0.96073 z - 0.20004 occ H 1 beq = bov; site H232 x 1.17640 y 0.72400 z - 0.28194 occ H 1 beq = bov; site H241 x 1.26798 y 0.39101 z - 0.25795 occ H 1 beq = bov; site H242 x 1.32128 y 0.62917 z - 0.17655 occ H 1 beq = bov; site H251 x 1.24721 y 0.70003 z - 0.42607 occ H 1 beq = bov; site H252 x 1.33122 y 0.63375 z - 0.37284 occ H 1 beq = bov; site H253 x 1.29883 y 0.94713 z - 0.34479 occ H 1 beq = bov; site H261 x 0.64607 y 0.49790 z 0.58862 occ H 1 beq = bov; site H262 x 0.65845 y 0.82675 z 0.54023 occ H 1 beq = bov; site H263 x 0.60731 y 0.78286 z 0.62912 occ H 1 beq = bov;

rigid point_for_site C1 ux 3.666 uy 2.561 uz 21.702 point_for_site C2 ux 4.848 uy 1.883 uz 21.027 point_for_site C3 ux 5.258 uy 2.555 uz 19.720 point_for_site C4 ux 6.472 uy 1.908 uz 19.068 point_for_site C5 ux 6.914 uy 2.537 uz 17.754 point_for_site C6 ux 8.205 uy 1.925 uz 17.223 point_for_site C7 ux 8.716 uy 2.541 uz 15.926 point_for_site C8 ux 10.032 uy 1.920 uz 15.461 point_for_site C9 ux 10.654 uy 2.532 uz 14.199 point_for_site C10 ux 12.061 uy 1.956 uz 13.973 point_for_site C11 ux 12.820 uy 2.581 uz 12.809 point_for_site C12 ux 14.193 uy 1.975 uz 12.539 point_for_site C13 ux 14.853 uy 2.567 uz 11.299 point_for_site C14 ux 16.207 uy 1.964 uz 10.948 point_for_site C15 ux 16.833 uy 2.569 uz 9.696 point_for_site C16 ux 18.186 uy 1.967 uz 9.340 point_for_site C17 ux 18.836 uy 2.582 uz 8.106 point_for_site C18 ux 20.195 uy 1.976 uz 7.773 point_for_site C19 ux 20.864 uy 2.594 uz 6.552 point_for_site C20 ux 22.215 uy 1.974 uz 6.210 point_for_site C21 ux 22.864 uy 2.585 uz 4.973 point_for_site C22 ux 24.197 uy 1.950 uz 4.593 point_for_site C23 ux 24.818 uy 2.545 uz 3.334 point_for_site C24 ux 26.146 uy 1.904 uz 2.944 point_for_site C25 ux 26.771 uy 2.488 uz 1.684 point_for_site C26 ux 9.767 uy 2.345 uz 12.966 point_for_site H11 ux 3.386 uy 2.063 uz 22.639 point_for_site H12 ux 2.781 uy 2.564 uz 21.050 point_for_site H13 ux 3.897 uy 3.609 uz 21.944 point_for_site H21 ux 4.607 uy 0.825 uz 20.828 point_for_site H22 ux 5.709 uy 1.865 uz 21.715 point_for_site H31 ux 5.474 uy 3.620 uz 19.914 point_for_site H32 ux 4.405 uy 2.542 uz 19.023 point_for_site H41 ux 6.270 uy 0.836 uz 18.905 point_for_site H42 ux 7.313 uy 1.944 uz 19.777 point_for_site H51 ux 7.056 uy 3.623 uz 17.895 point_for_site H52 ux 6.115 uy 2.436 uz 17.004 point_for_site H61 ux 8.055 uy 0.841 uz 17.072 point_for_site H62 ux 8.986 uy 2.010 uz 17.997 point_for_site H71 ux 8.856 uy 3.627 uz 16.069 point_for_site H72 ux 7.942 uy 2.437 uz 15.150 point_for_site H81 ux 9.885 uy 0.837 uz 15.298 point_for_site H82 ux 10.763 uy 2.000 uz 16.283 point_for_site H91 ux 10.763 uy 3.619 uz 14.378 point_for_site H101 ux 11.971 uy 0.867 uz 13.805 point_for_site H102 ux 12.648 uy 2.073 uz 14.898 point_for_site H111 ux 12.932 uy 3.664 uz 12.990 point_for_site H112 ux 12.223 uy 2.495 uz 11.889 point_for_site H121 ux 14.090 uy 0.884 uz 12.409 point_for_site H122 ux 14.846 uy 2.112 uz 13.415 point_for_site H131 ux 14.967 uy 3.657 uz 11.435 point_for_site H132 ux 14.173 uy 2.446 uz 10.440 point_for_site H141 ux 16.094 uy 0.875 uz 10.808 point_for_site H142 ux 16.897 uy 2.085 uz 11.798 point_for_site H151 ux 16.945 uy 3.658 uz 9.837 point_for_site H152 ux 16.141 uy 2.449 uz 8.847 point_for_site H161 ux 18.069 uy 0.881 uz 9.183 point_for_site H162 ux 18.868 uy 2.072 uz 10.199 point_for_site H171 ux 18.950 uy 3.669 uz 8.259 point_for_site H172 ux 18.162 uy 2.471 uz 7.241 point_for_site H181 ux 20.078 uy 0.891 uz 7.610 point_for_site H182 ux 20.863 uy 2.076 uz 8.644 point_for_site H191 ux 20.993 uy 3.678 uz 6.719 point_for_site H192 ux 20.192 uy 2.504 uz 5.683 point_for_site H201 ux 22.085 uy 0.890 uz 6.050 point_for_site H202 ux 22.896 uy 2.070 uz 7.072 point_for_site H211 ux 23.011 uy 3.667 uz 5.137 point_for_site H212 ux 22.168 uy 2.504 uz 4.123 point_for_site H221 ux 24.052 uy 0.865 uz 4.447 point_for_site H222 ux 24.903 uy 2.045 uz 5.435 point_for_site H231 ux 24.969 uy 3.629 uz 3.481 point_for_site H232 ux 24.106 uy 2.455 uz 2.498 point_for_site H241 ux 25.994 uy 0.820 uz 2.808 point_for_site H242 ux 26.849 uy 2.001 uz 3.785 point_for_site H251 ux 26.125 uy 2.344 uz 0.809 point_for_site H252 ux 27.743 uy 2.025 uz 1.462 point_for_site H253 ux 26.944 uy 3.569 uz 1.784 point_for_site H261 ux 9.719 uy 1.284 uz 12.675 point_for_site H262 ux 10.145 uy 2.909 uz 12.103 point_for_site H263 ux 8.741 uy 2.687 uz 13.143

Rotate_about_axies(@ -0.00997`_0.05925, @ 0.69855`_0.00591, @ -0.27660`_0.06479) Translate(@ 0.02163`_0.00017, 1/4, @ -0.46753`_0.00032)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4879290.7600481.3541440.95 (4)
C20.5335130.6217831.2960980.95 (4)
C30.5349340.7578141.1858190.95 (4)
C40.5823260.6257921.1296780.95 (4)
C50.5851290.7530861.0187730.95 (4)
C60.6377540.6280510.9727330.95 (4)
C70.6439910.7526430.8631860.95 (4)
C80.6986740.6257460.8226700.95 (4)
C90.7105450.7494150.7159530.95 (4)
C100.7727200.631490.6954480.95 (4)
C110.7922940.7576400.5968330.95 (4)
C120.8522830.6336810.5726600.95 (4)
C130.8662150.7532590.4677520.95 (4)
C140.9242190.6299450.4367860.95 (4)
C150.9364100.7521900.3309050.95 (4)
C160.9943010.6290800.2995200.95 (4)
C171.0078550.7533240.1951290.95 (4)
C181.0663350.6293930.1656710.95 (4)
C191.080950.7542240.0623550.95 (4)
C201.1389330.6274670.0321470.95 (4)
C211.1523990.7509030.0724950.95 (4)
C221.2090260.6211340.1058820.95 (4)
C231.2208870.7413600.2123470.95 (4)
C241.2771440.6103840.2465700.95 (4)
C251.2891750.7283790.3531250.95 (4)
C260.6525020.7126690.6131460.95 (4)
H110.4875540.6592251.4331880.95 (4)
H120.4379300.7616431.3002170.95 (4)
H130.5021990.9720281.3743590.95 (4)
H210.5193610.4077771.2795080.95 (4)
H220.5828830.6171651.3530760.95 (4)
H310.5478580.9732631.2020140.95 (4)
H320.4858060.7561491.1280730.95 (4)
H410.5704730.4089051.1160750.95 (4)
H420.6310650.6321241.1884470.95 (4)
H510.5938980.9728701.0305890.95 (4)
H520.5377690.7335590.9565070.95 (4)
H610.6284770.4086820.9600850.95 (4)
H620.6846000.6443481.0370350.95 (4)
H710.6526940.9724280.8751720.95 (4)
H720.5974380.7324920.7987070.95 (4)
H810.6893740.4065800.8090090.95 (4)
H820.7438490.6410660.8910600.95 (4)
H910.7182980.9694240.7309980.95 (4)
H1010.7659990.4110560.6813080.95 (4)
H1020.8126130.6544140.7726520.95 (4)
H1110.8002130.9768350.6120430.95 (4)
H1120.7520110.7410030.5200630.95 (4)
H1210.8454750.4128450.5617290.95 (4)
H1220.8945810.6606060.6456770.95 (4)
H1310.8736150.9738800.4791760.95 (4)
H1320.8228970.7295960.3961940.95 (4)
H1410.9168110.4095260.4250240.95 (4)
H1420.9678790.65360.5075770.95 (4)
H1510.9437860.9726090.3427520.95 (4)
H1520.8926710.7287380.2602000.95 (4)
H1610.9864760.4092770.2863330.95 (4)
H1621.0377080.6495010.3710740.95 (4)
H1711.0154860.9733340.2079830.95 (4)
H1720.9647360.7316830.1230610.95 (4)
H1811.0584290.4097940.1519800.95 (4)
H1821.1092540.6488110.2382490.95 (4)
H1911.0894680.9736090.0763700.95 (4)
H1921.0378750.7368350.0100500.95 (4)
H2011.1304640.4080820.0187210.95 (4)
H2021.1823330.6460650.1039540.95 (4)
H2111.1617130.9698660.0587510.95 (4)
H2121.1084690.7353540.1432760.95 (4)
H2211.2000490.4015570.1181150.95 (4)
H2221.2533150.6395110.0357830.95 (4)
H2311.2301560.9607290.2000370.95 (4)
H2321.1764020.7240010.2819350.95 (4)
H2411.2679790.3910130.2579550.95 (4)
H2421.321280.6291680.1765520.95 (4)
H2511.2472140.7000300.4260660.95 (4)
H2521.3312160.6337470.3728370.95 (4)
H2531.2988250.9471310.3447900.95 (4)
H2610.6460660.4978960.5886210.95 (4)
H2620.6584540.826750.5402320.95 (4)
H2630.6073120.7828560.6291170.95 (4)
Bond lengths (Å) top
C1—C21.521C14—C151.525
C1—H111.097C14—H1411.104
C1—H121.099C14—H1421.101
C1—H131.100C15—C161.523
C2—C31.526C15—H1511.104
C2—H211.103C15—H1521.102
C2—H221.101C16—C171.524
C3—C41.522C16—H1611.104
C3—H311.104C16—H1621.102
C3—H321.102C17—C181.525
C4—C51.523C17—H1711.104
C4—H411.104C17—H1721.102
C4—H421.100C18—C191.523
C5—C61.524C18—H1811.104
C5—H511.104C18—H1821.102
C5—H521.101C19—C201.525
C6—C71.524C19—H1911.104
C6—H611.104C19—H1921.102
C6—H621.102C20—C211.524
C7—C81.527C20—H2011.104
C7—H711.104C20—H2021.103
C7—H721.101C21—C221.524
C8—C91.534C21—H2111.104
C8—H811.105C21—H2121.102
C8—H821.103C22—C231.526
C9—C101.536C22—H2211.104
C9—C261.531C22—H2221.103
C9—H911.107C23—C241.525
C10—C111.524C23—H2311.104
C10—H1011.105C23—H2321.102
C10—H1021.102C24—C251.523
C11—C121.524C24—H2411.103
C11—H1111.104C24—H2421.100
C11—H1121.100C25—H2511.097
C12—C131.525C25—H2521.099
C12—H1211.104C25—H2531.099
C12—H1221.101C26—H2611.102
C13—C141.522C26—H2621.098
C13—H1311.104C26—H2631.096
C13—H1321.102
(9MeC27H55) (S)-9-methylheptacosane top
Crystal data top
C28H58V = 1350.68 (10) Å3
Mr = 394.76Z = 2
Monoclinic, P21Dx = 0.971 Mg m3
a = 23.4884 (13) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80105 Å
b = 4.93921 (10) ÅT = 100 K
c = 12.3352 (6) ÅPowder, white
β = 109.295 (2)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 5.674 r_exp 2.212 gof 2.566 iters 100000000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C27Me9_100Kfast.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80105 l h 0.1 start_X 1.5 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.01002`_0.00024)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 11.0545453`_0.101579327, 50, 50)

bkg @ 981.024244`_205214204 - 392.697959`_240348111 243.34737`_95998654.4 - 91.412427`_40590819.7 67.4165865`_10528723.5 - 122.872256`_3186591.19 121.488157`_1535250.28 - 69.3907569`_411006.88 - 22.3849912`_158039.749 56.8818432`_70026.9176 - 24.5154901`_3657.8529 - 19.8267219`_7526.03606 37.6244893`_1281.25934 - 10.0001099`_335.882532 - 3.5149606`_147.405092 PV (@, @, @, @, 2472.08386`_4002070613.07658, 9.01606`_22624364.19052, 39.75219`_144927488.40664, 0.57330`_18254189.33009_LIMIT_MIN_0)

str local !phase_number 1

a @ 23.48840`_0.00129 b @ 4.93921`_0.00010 c @ 12.33521`_0.00059 al 90.0000 be @ 109.29463`_0.00240 ga 90.0000

MVW (789.540, 1350.67879`_0.104200541, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm s400 41.32668`_0.93716 prm s040 6571.16759`_88.23679 prm s004 530.11865`_11.69732 prm s220 485.54529`_28.97440 prm s202 49.41909`_5.66009 prm s022 1663.44208`_114.91453 prm s301 45.79543`_3.38366 prm s121 - 282.88115`_44.21629 prm s103 397.29043`_12.55955 prm eta 0.24731`_0.00374 min 0 max 1

Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta)

PO(march1, 1.08815`_0.00203, march2, 0 0 1)

scale @ 0.000528229685`_1.28 e-006 r_bragg 3.17407433 space_group "P21"

site C1 x 0.48342 y 0.77009 z 1.34713 occ C 1 beq bov 1.1277`_0.0426 site C2 x 0.52726 y 0.63195 z 1.29763 occ C 1 beq = bov; site C3 x 0.52930 y 0.76502 z 1.18730 occ C 1 beq = bov; site C4 x 0.57433 y 0.63320 z 1.13878 occ C 1 beq = bov; site C5 x 0.57773 y 0.75944 z 1.02845 occ C 1 beq = bov; site C6 x 0.62739 y 0.63461 z 0.99017 occ C 1 beq = bov; site C7 x 0.63391 y 0.75895 z 0.88177 occ C 1 beq = bov; site C8 x 0.68484 y 0.63020 z 0.84821 occ C 1 beq = bov; site C9 x 0.69654 y 0.75375 z 0.74334 occ C 1 beq = bov; site C10 x 0.75432 y 0.63364 z 0.73065 occ C 1 beq = bov; site C11 x 0.77291 y 0.75878 z 0.63452 occ C 1 beq = bov; site C12 x 0.82902 y 0.63572 z 0.61843 occ C 1 beq = bov; site C13 x 0.84215 y 0.75550 z 0.51526 occ C 1 beq = bov; site C14 x 0.89642 y 0.63349 z 0.49171 occ C 1 beq = bov; site C15 x 0.90744 y 0.75479 z 0.38677 occ C 1 beq = bov; site C16 x 0.96132 y 0.63274 z 0.36175 occ C 1 beq = bov; site C17 x 0.97294 y 0.75489 z 0.25757 occ C 1 beq = bov; site C18 x 1.02754 y 0.63330 z 0.23487 occ C 1 beq = bov; site C19 x 1.04058 y 0.75572 z 0.13221 occ C 1 beq = bov; site C20 x 1.09595 y 0.63561 z 0.11173 occ C 1 beq = bov; site C21 x 1.10942 y 0.75948 z 0.00984 occ C 1 beq = bov; site C22 x 1.16418 y 0.63749 z - 0.01244 occ C 1 beq = bov; site C23 x 1.17619 y 0.76068 z - 0.11611 occ C 1 beq = bov; site C24 x 1.22970 y 0.63617 z - 0.14206 occ C 1 beq = bov; site C25 x 1.24028 y 0.75644 z - 0.24776 occ C 1 beq = bov; site C26 x 1.29373 y 0.63152 z - 0.27380 occ C 1 beq = bov; site C27 x 1.30492 y 0.74979 z - 0.37898 occ C 1 beq = bov; site C28 x 0.64272 y 0.72092 z 0.63286 occ C 1 beq = bov; site H11 x 0.48239 y 0.67243 z 1.42637 occ H 1 beq = bov; site H12 x 0.43723 y 0.76720 z 1.28570 occ H 1 beq = bov; site H13 x 0.49576 y 0.98342 z 1.36755 occ H 1 beq = bov; site H21 x 0.51480 y 0.41705 z 1.28040 occ H 1 beq = bov; site H22 x 0.57289 y 0.63142 z 1.36185 occ H 1 beq = bov; site H31 x 0.54072 y 0.98129 z 1.20402 occ H 1 beq = bov; site H32 x 0.48381 y 0.76028 z 1.12267 occ H 1 beq = bov; site H41 x 0.56363 y 0.41597 z 1.12403 occ H 1 beq = bov; site H42 x 0.61942 y 0.64098 z 1.20436 occ H 1 beq = bov; site H51 x 0.58565 y 0.97917 z 1.04100 occ H 1 beq = bov; site H52 x 0.53391 y 0.73870 z 0.95963 occ H 1 beq = bov; site H61 x 0.61893 y 0.41545 z 0.97650 occ H 1 beq = bov; site H62 x 0.67069 y 0.65192 z 1.06082 occ H 1 beq = bov; site H71 x 0.64240 y 0.97831 z 0.89491 occ H 1 beq = bov; site H72 x 0.59067 y 0.74024 z 0.81120 occ H 1 beq = bov; site H81 x 0.67581 y 0.41139 z 0.83301 occ H 1 beq = bov; site H82 x 0.72679 y 0.64366 z 0.92227 occ H 1 beq = bov; site H91 x 0.70426 y 0.97314 z 0.76003 occ H 1 beq = bov; site H101 x 0.74775 y 0.41351 z 0.71558 occ H 1 beq = bov; site H102 x 0.79140 y 0.65536 z 0.81278 occ H 1 beq = bov; site H111 x 0.77992 y 0.97833 z 0.65036 occ H 1 beq = bov; site H112 x 0.73556 y 0.74090 z 0.55281 occ H 1 beq = bov; site H121 x 0.82295 y 0.41484 z 0.60688 occ H 1 beq = bov; site H122 x 0.86826 y 0.66353 z 0.69670 occ H 1 beq = bov; site H131 x 0.84881 y 0.97600 z 0.52749 occ H 1 beq = bov; site H132 x 0.80194 y 0.73092 z 0.43846 occ H 1 beq = bov; site H141 x 0.88998 y 0.41280 z 0.47973 occ H 1 beq = bov; site H142 x 0.93707 y 0.65928 z 0.56763 occ H 1 beq = bov; site H151 x 0.91406 y 0.97529 z 0.39899 occ H 1 beq = bov; site H152 x 0.86659 y 0.73001 z 0.31118 occ H 1 beq = bov; site H161 x 0.95453 y 0.41243 z 0.34901 occ H 1 beq = bov; site H162 x 1.00197 y 0.65631 z 0.43786 occ H 1 beq = bov; site H171 x 0.97937 y 0.97538 z 0.26989 occ H 1 beq = bov; site H172 x 0.93254 y 0.72950 z 0.18112 occ H 1 beq = bov; site H181 x 1.02095 y 0.41300 z 0.22186 occ H 1 beq = bov; site H182 x 1.06755 y 0.65707 z 0.31219 occ H 1 beq = bov; site H191 x 1.04671 y 0.97641 z 0.14479 occ H 1 beq = bov; site H192 x 1.00088 y 0.73013 z 0.05445 occ H 1 beq = bov; site H201 x 1.08961 y 0.41511 z 0.09846 occ H 1 beq = bov; site H202 x 1.13549 y 0.65998 z 0.18975 occ H 1 beq = bov; site H211 x 1.11629 y 0.97960 z 0.02370 occ H 1 beq = bov; site H212 x 1.06955 y 0.73752 z - 0.06793 occ H 1 beq = bov; site H221 x 1.15749 y 0.41698 z - 0.02553 occ H 1 beq = bov; site H222 x 1.20442 y 0.66107 z 0.06454 occ H 1 beq = bov; site H231 x 1.18366 y 0.98041 z - 0.10243 occ H 1 beq = bov; site H232 x 1.13538 y 0.74014 z - 0.19215 occ H 1 beq = bov; site H241 x 1.22264 y 0.41586 z - 0.15411 occ H 1 beq = bov; site H242 x 1.27075 y 0.66015 z - 0.06673 occ H 1 beq = bov; site H251 x 1.24748 y 0.97675 z - 0.23563 occ H 1 beq = bov; site H252 x 1.19911 y 0.73286 z - 0.32274 occ H 1 beq = bov; site H261 x 1.28657 y 0.41122 z - 0.28524 occ H 1 beq = bov; site H262 x 1.33447 y 0.65570 z - 0.19812 occ H 1 beq = bov; site H271 x 1.34494 y 0.65984 z - 0.39223 occ H 1 beq = bov; site H272 x 1.31254 y 0.96946 z - 0.37048 occ H 1 beq = bov; site H273 x 1.26637 y 0.71573 z - 0.45734 occ H 1 beq = bov; site H281 x 0.63651 y 0.50711 z 0.60621 occ H 1 beq = bov; site H282 x 0.64881 y 0.83730 z 0.56164 occ H 1 beq = bov; site H283 x 0.60057 y 0.79132 z 0.64321 occ H 1 beq = bov;

rigid point_for_site C1 ux 3.263 uy 2.506 uz 21.164 point_for_site C2 ux 4.495 uy 1.820 uz 20.593 point_for_site C3 ux 5.009 uy 2.485 uz 19.319 point_for_site C4 ux 6.265 uy 1.830 uz 18.760 point_for_site C5 ux 6.811 uy 2.461 uz 17.486 point_for_site C6 ux 8.133 uy 1.839 uz 17.047 point_for_site C7 ux 8.744 uy 2.460 uz 15.796 point_for_site C8 ux 10.076 uy 1.818 uz 15.412 point_for_site C9 ux 10.794 uy 2.434 uz 14.203 point_for_site C10 ux 12.200 uy 1.832 uz 14.063 point_for_site C11 ux 13.043 uy 2.454 uz 12.957 point_for_site C12 ux 14.424 uy 1.838 uz 12.777 point_for_site C13 ux 15.168 uy 2.435 uz 11.588 point_for_site C14 ux 16.537 uy 1.825 uz 11.321 point_for_site C15 ux 17.239 uy 2.430 uz 10.111 point_for_site C16 ux 18.605 uy 1.820 uz 9.827 point_for_site C17 ux 19.318 uy 2.429 uz 8.626 point_for_site C18 ux 20.691 uy 1.821 uz 8.369 point_for_site C19 ux 21.431 uy 2.431 uz 7.186 point_for_site C20 ux 22.813 uy 1.830 uz 6.955 point_for_site C21 ux 23.560 uy 2.447 uz 5.781 point_for_site C22 ux 24.935 uy 1.837 uz 5.529 point_for_site C23 ux 25.655 uy 2.451 uz 4.334 point_for_site C24 ux 27.016 uy 1.829 uz 4.039 point_for_site C25 ux 27.711 uy 2.429 uz 2.820 point_for_site C26 ux 29.071 uy 1.805 uz 2.524 point_for_site C27 ux 29.778 uy 2.395 uz 1.311 point_for_site C28 ux 9.991 uy 2.289 uz 12.908 point_for_site H11 ux 2.904 uy 2.018 uz 22.079 point_for_site H12 ux 2.435 uy 2.504 uz 20.441 point_for_site H13 ux 3.475 uy 3.556 uz 21.413 point_for_site H21 ux 4.267 uy 0.762 uz 20.381 point_for_site H22 ux 5.298 uy 1.805 uz 21.348 point_for_site H31 ux 5.215 uy 3.550 uz 19.525 point_for_site H32 ux 4.211 uy 2.474 uz 18.559 point_for_site H41 ux 6.068 uy 0.760 uz 18.577 point_for_site H42 ux 7.050 uy 1.856 uz 19.531 point_for_site H51 ux 6.952 uy 3.544 uz 17.643 point_for_site H52 ux 6.069 uy 2.371 uz 16.677 point_for_site H61 ux 7.984 uy 0.759 uz 16.877 point_for_site H62 ux 8.855 uy 1.912 uz 17.877 point_for_site H71 ux 8.896 uy 3.541 uz 15.960 point_for_site H72 ux 8.023 uy 2.380 uz 14.967 point_for_site H81 ux 9.920 uy 0.740 uz 15.224 point_for_site H82 ux 10.752 uy 1.872 uz 16.281 point_for_site H91 ux 10.913 uy 3.515 uz 14.408 point_for_site H101 ux 12.101 uy 0.747 uz 13.877 point_for_site H102 ux 12.728 uy 1.927 uz 15.025 point_for_site H111 ux 13.149 uy 3.536 uz 13.152 point_for_site H112 ux 12.507 uy 2.378 uz 12.000 point_for_site H121 ux 14.322 uy 0.749 uz 12.632 point_for_site H122 ux 15.019 uy 1.963 uz 13.695 point_for_site H131 ux 15.281 uy 3.522 uz 11.741 point_for_site H132 ux 14.544 uy 2.326 uz 10.687 point_for_site H141 ux 16.428 uy 0.737 uz 11.171 point_for_site H142 ux 17.175 uy 1.940 uz 12.212 point_for_site H151 ux 17.351 uy 3.517 uz 10.264 point_for_site H152 ux 16.595 uy 2.320 uz 9.224 point_for_site H161 ux 18.491 uy 0.734 uz 9.668 point_for_site H162 ux 19.242 uy 1.924 uz 10.720 point_for_site H171 ux 19.425 uy 3.516 uz 8.780 point_for_site H172 ux 18.688 uy 2.316 uz 7.729 point_for_site H181 ux 20.583 uy 0.735 uz 8.207 point_for_site H182 ux 21.308 uy 1.926 uz 9.276 point_for_site H191 ux 21.530 uy 3.519 uz 7.343 point_for_site H192 ux 20.823 uy 2.317 uz 6.274 point_for_site H201 ux 22.712 uy 0.743 uz 6.790 point_for_site H202 ux 23.416 uy 1.938 uz 7.870 point_for_site H211 ux 23.671 uy 3.532 uz 5.953 point_for_site H212 ux 22.948 uy 2.351 uz 4.869 point_for_site H221 ux 24.825 uy 0.750 uz 5.366 point_for_site H222 ux 25.559 uy 1.941 uz 6.432 point_for_site H231 ux 25.781 uy 3.534 uz 4.504 point_for_site H232 ux 25.014 uy 2.362 uz 3.442 point_for_site H241 ux 26.893 uy 0.743 uz 3.888 point_for_site H242 ux 27.666 uy 1.935 uz 4.923 point_for_site H251 ux 27.837 uy 3.515 uz 2.972 point_for_site H252 ux 27.057 uy 2.325 uz 1.940 point_for_site H261 ux 28.943 uy 0.719 uz 2.380 point_for_site H262 ux 29.712 uy 1.912 uz 3.412 point_for_site H271 ux 30.770 uy 1.945 uz 1.162 point_for_site H272 ux 29.929 uy 3.478 uz 1.421 point_for_site H273 ux 29.199 uy 2.239 uz 0.392 point_for_site H281 ux 9.949 uy 1.236 uz 12.588 point_for_site H282 ux 10.436 uy 2.868 uz 12.088 point_for_site H283 ux 8.960 uy 2.643 uz 13.022

Rotate_about_axies(@ -0.36355`_0.04489, @ 0.53036`_0.00547, @ 0.43003`_0.04344) Translate(@ 0.02234`_0.00010, 0.22, @ -0.46607`_0.00029)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4834180.7700941.347131.13 (4)
C20.5272610.6319481.2976291.13 (4)
C30.5292950.7650181.1872971.13 (4)
C40.5743270.6332041.1387831.13 (4)
C50.5777340.7594361.0284521.13 (4)
C60.6273870.6346130.9901671.13 (4)
C70.6339090.7589550.8817661.13 (4)
C80.6848360.6301960.8482131.13 (4)
C90.6965430.7537540.7433381.13 (4)
C100.7543250.6336380.7306511.13 (4)
C110.7729080.7587750.6345191.13 (4)
C120.8290240.6357170.6184271.13 (4)
C130.8421480.7555020.5152641.13 (4)
C140.8964210.6334850.4917051.13 (4)
C150.9074380.7547920.3867661.13 (4)
C160.9613240.632740.3617491.13 (4)
C170.9729440.7548890.2575711.13 (4)
C181.0275380.63330.2348671.13 (4)
C191.0405790.7557220.1322121.13 (4)
C201.095950.6356100.1117281.13 (4)
C211.1094220.7594760.0098351.13 (4)
C221.1641790.6374940.0124401.13 (4)
C231.1761860.7606760.1161121.13 (4)
C241.2296960.6361670.1420601.13 (4)
C251.2402810.7564360.2477631.13 (4)
C261.2937340.6315190.2737951.13 (4)
C271.3049240.7497910.3789851.13 (4)
C280.6427250.7209200.6328641.13 (4)
H110.4823920.6724331.4263721.13 (4)
H120.4372250.7672051.2856951.13 (4)
H130.4957650.9834171.3675521.13 (4)
H210.5148040.4170501.2804041.13 (4)
H220.5728890.6314181.3618451.13 (4)
H310.5407240.9812911.2040181.13 (4)
H320.4838140.7602821.1226671.13 (4)
H410.5636340.4159731.1240341.13 (4)
H420.6194180.6409771.2043571.13 (4)
H510.5856470.9791721.0410031.13 (4)
H520.5339140.7386990.9596281.13 (4)
H610.6189350.4154490.9765041.13 (4)
H620.6706870.6519171.0608231.13 (4)
H710.6423960.9783140.8949111.13 (4)
H720.5906690.7402360.8112011.13 (4)
H810.6758110.4113950.8330071.13 (4)
H820.7267890.6436580.9222691.13 (4)
H910.7042570.973140.7600311.13 (4)
H1010.7477520.4135050.7155781.13 (4)
H1020.7914020.6553570.8127821.13 (4)
H1110.7799180.9783270.6503621.13 (4)
H1120.7355600.7409010.5528101.13 (4)
H1210.8229520.4148440.6068801.13 (4)
H1220.8682580.6635260.6967031.13 (4)
H1310.8488100.9760010.5274911.13 (4)
H1320.8019360.7309220.4384601.13 (4)
H1410.8899750.4127950.4797341.13 (4)
H1420.9370710.6592830.5676351.13 (4)
H1510.9140570.9752890.3989931.13 (4)
H1520.8665920.7300060.3111811.13 (4)
H1610.9545270.4124320.3490071.13 (4)
H1621.0019670.6563130.437861.13 (4)
H1710.9793660.9753800.2698881.13 (4)
H1720.9325400.7294970.1811181.13 (4)
H1811.0209510.4129950.2218621.13 (4)
H1821.0675470.6570720.3121951.13 (4)
H1911.0467070.9764100.1447931.13 (4)
H1921.000880.7301320.0544541.13 (4)
H2011.0896140.4151070.0984611.13 (4)
H2021.1354850.6599840.1897521.13 (4)
H2111.116290.9796010.0236971.13 (4)
H2121.0695450.7375240.0679331.13 (4)
H2211.1574920.4169820.0255281.13 (4)
H2221.2044240.6610660.0645401.13 (4)
H2311.1836610.9804140.1024331.13 (4)
H2321.1353810.7401360.1921451.13 (4)
H2411.222640.4158610.1541081.13 (4)
H2421.2707530.6601470.0667351.13 (4)
H2511.2474790.9767490.2356321.13 (4)
H2521.1991150.7328620.3227441.13 (4)
H2611.2865730.4112180.2852381.13 (4)
H2621.334470.6556960.1981191.13 (4)
H2711.3449350.6598390.3922301.13 (4)
H2721.3125420.9694570.3704781.13 (4)
H2731.2663670.7157270.4573351.13 (4)
H2810.6365070.5071060.6062121.13 (4)
H2820.6488130.8372980.5616451.13 (4)
H2830.6005650.7913180.6432081.13 (4)
Bond lengths (Å) top
C1—C21.522C15—C161.523
C1—H111.098C15—H1511.104
C1—H121.099C15—H1521.102
C1—H131.100C16—C171.524
C2—C31.526C16—H1611.104
C2—H211.103C16—H1621.102
C2—H221.102C17—C181.524
C3—C41.523C17—H1711.104
C3—H311.104C17—H1721.102
C3—H321.102C18—C191.523
C4—C51.524C18—H1811.104
C4—H411.103C18—H1821.102
C4—H421.100C19—C201.525
C5—C61.525C19—H1911.104
C5—H511.104C19—H1921.102
C5—H521.101C20—C211.523
C6—C71.525C20—H2011.104
C6—H611.104C20—H2021.102
C6—H621.102C21—C221.525
C7—C81.527C21—H2111.104
C7—H711.104C21—H2121.102
C7—H721.101C22—C231.525
C8—C91.535C22—H2211.104
C8—H811.105C22—H2221.103
C8—H821.103C23—C241.524
C9—C101.536C23—H2311.104
C9—C281.531C23—H2321.102
C9—H911.107C24—C251.526
C10—C111.523C24—H2411.104
C10—H1011.105C24—H2421.102
C10—H1021.102C25—C261.525
C11—C121.523C25—H2511.104
C11—H1111.104C25—H2521.102
C11—H1121.100C26—C271.523
C12—C131.524C26—H2611.103
C12—H1211.104C26—H2621.100
C12—H1221.101C27—H2711.099
C13—C141.522C27—H2721.099
C13—H1311.104C27—H2731.097
C13—H1321.102C28—H2811.102
C14—C151.524C28—H2821.098
C14—H1411.104C28—H2831.096
C14—H1421.101
(9MeC29H59) (S)-9-methylnonacosane top
Crystal data top
C30H62V = 1440.84 (16) Å3
Mr = 422.81Z = 2
Monoclinic, P21Dx = 0.975 Mg m3
a = 25.6203 (18) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80105 Å
b = 4.93638 (18) ÅT = 100 K
c = 12.3267 (9) ÅPowder, white
β = 112.448 (4)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimised by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10-4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10-6 eV per atom. The DFT-optimised molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment : CASTEP calculation from Materials Studio task : GeometryOptimization xc_functional : PBE sedc_apply : true sedc_scheme : TS spin_polarized : false opt_strategy : Default page_wvfns : 0 cut_off_energy : 520.000000000000000 grid_scale : 2.000000000000000 fine_grid_scale : 3.000000000000000 finite_basis_corr : 2 finite_basis_npoints : 3 elec_energy_tol : 5.000000000000000e-007 max_scf_cycles : 400 fix_occupancy : true metals_method : dm mixing_scheme : Pulay mix_charge_amp : 0.500000000000000 mix_charge_gmax : 1.500000000000000 mix_history_length : 20 nextra_bands : 0 geom_energy_tol : 5.000000000000000e-006 geom_force_tol : 0.010000000000000 geom_stress_tol : 0.020000000000000 geom_disp_tol : 5.000000000000000e-004 geom_max_iter : 400 geom_method : BFGS fixed_npw : false geom_modulus_est : 500.000000000000000 GPa calculate_ELF : false calculate_stress : true popn_calculate : false calculate_hirshfeld : false calculate_densdiff : false pdos_calculate_weights : false num_dump_cycles : 0

Topas Rietveld refinement instructions (*.inp file) r_wp 6.762 r_exp 3.088 gof 2.190 iters 700000 do_errors chi2_convergence_criteria 1e-4

xdd lee_C29Me9_100Kfast.xye xye_format x_calculation_step = Yobs_dx_at(Xo) ; convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80105 lh 0.1 start_X 1.2 finish_X 40 extra_X_right 0.05

Zero_Error(@ , 0.01019`_0.00042)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2 , @ 11.0469965`_0.189549522 , 50 , 50 )

bkg @ 539.667235`_1.19212755 -203.17795`_1.98264153 90.9615111`_1.62518065 -19.3746996`_1.5310209 25.1153585`_1.4155502 -63.2203582`_1.38355238 57.8430749`_1.39933988 -26.0893818`_1.31830444 -31.9373267`_1.27438367 43.2385139`_1.20395488 -16.3621188`_1.18124509 -22.0137811`_1.15643895 25.5851307`_1.1326877 -3.3505327`_0.897409977 -11.008996`_0.765568657 PV( @, @ ,@ , @, 609.32073`_22.83145, 11.41984`_0.00056 , 0.07157`_0.00126, 1.00000`_0.08393_LIMIT_MAX_1)

str local !phase_number 1

a @ 25.62031`_0.00179 b @ 4.93638`_0.00018 c @ 12.32668`_0.00091 al 90.0000 be @ 112.44822`_0.00402 ga 90.0000

MVW( 845.648, 1440.84326`_0.161483458, 100.000`_0.000)

prm p1 0.17997`_0.01504 min 0 prm p2 0.02430`_0.00113 min 0 prm p3 1.16619`_0.01846 min 0 prm p4 0.00000`_0.00175_LIMIT_MIN_0 min 0

lor_fwhm = p1 Tan(Th) + p2 / Cos(Th) ; gauss_fwhm = p3 Tan(Th) + p4 / Cos(Th) ;

PO(march1 , 0.92468`_0.00204 , march2 , 1 0 0)

scale @ 0.000187172909`_9.52e-007 r_bragg 2.81199887 space_group "P21"

site C1 x 0.48735 y 0.78612 z 1.35169 occ C 1 beq bov 0.5675`_0.0550 site C2 x 0.52776 y 0.64848 z 1.30525 occ C 1 beq = bov; site C3 x 0.52928 y 0.78378 z 1.19520 occ C 1 beq = bov; site C4 x 0.57101 y 0.65238 z 1.15060 occ C 1 beq = bov; site C5 x 0.57403 y 0.78098 z 1.04085 occ C 1 beq = bov; site C6 x 0.62014 y 0.65630 z 1.00699 occ C 1 beq = bov; site C7 x 0.62602 y 0.78242 z 0.89936 occ C 1 beq = bov; site C8 x 0.67342 y 0.65383 z 0.87067 occ C 1 beq = bov; site C9 x 0.68475 y 0.78065 z 0.76810 occ C 1 beq = bov; site C10 x 0.73854 y 0.65863 z 0.76104 occ C 1 beq = bov; site C11 x 0.75628 y 0.78570 z 0.66783 occ C 1 beq = bov; site C12 x 0.80861 y 0.66088 z 0.65762 occ C 1 beq = bov; site C13 x 0.82145 y 0.78282 z 0.55686 occ C 1 beq = bov; site C14 x 0.87205 y 0.65933 z 0.53911 occ C 1 beq = bov; site C15 x 0.88286 y 0.78353 z 0.43629 occ C 1 beq = bov; site C16 x 0.93295 y 0.66007 z 0.41644 occ C 1 beq = bov; site C17 x 0.94390 y 0.78487 z 0.31397 occ C 1 beq = bov; site C18 x 0.99433 y 0.66099 z 0.29535 occ C 1 beq = bov; site C19 x 1.00613 y 0.78537 z 0.19382 occ C 1 beq = bov; site C20 x 1.05730 y 0.66307 z 0.17766 occ C 1 beq = bov; site C21 x 1.07001 y 0.78743 z 0.07725 occ C 1 beq = bov; site C22 x 1.12160 y 0.66572 z 0.06249 occ C 1 beq = bov; site C23 x 1.13442 y 0.79149 z -0.03757 occ C 1 beq = bov; site C24 x 1.18522 y 0.66759 z -0.05487 occ C 1 beq = bov; site C25 x 1.19654 y 0.79259 z -0.15683 occ C 1 beq = bov; site C26 x 1.24625 y 0.66651 z -0.17764 occ C 1 beq = bov; site C27 x 1.25645 y 0.78931 z -0.28142 occ C 1 beq = bov; site C28 x 1.30602 y 0.66201 z -0.30232 occ C 1 beq = bov; site C29 x 1.31680 y 0.78197 z -0.40569 occ C 1 beq = bov; site C30 x 0.63426 y 0.75331 z 0.65118 occ C 1 beq = bov; site H11 x 0.48671 y 0.68606 z 1.43066 occ H 1 beq = bov; site H12 x 0.44392 y 0.78563 z 1.28572 occ H 1 beq = bov; site H13 x 0.49932 y 0.99867 z 1.37451 occ H 1 beq = bov; site H21 x 0.51581 y 0.43387 z 1.28586 occ H 1 beq = bov; site H22 x 0.57060 y 0.64590 z 1.37396 occ H 1 beq = bov; site H31 x 0.54032 y 0.99962 z 1.21409 occ H 1 beq = bov; site H32 x 0.48654 y 0.78110 z 1.12586 occ H 1 beq = bov; site H41 x 0.56068 y 0.43550 z 1.13381 occ H 1 beq = bov; site H42 x 0.61334 y 0.65809 z 1.22111 occ H 1 beq = bov; site H51 x 0.58173 y 1.00054 z 1.05525 occ H 1 beq = bov; site H52 x 0.53288 y 0.76213 z 0.96727 occ H 1 beq = bov; site H61 x 0.61200 y 0.43716 z 0.99164 occ H 1 beq = bov; site H62 x 0.66085 y 0.67168 z 1.08233 occ H 1 beq = bov; site H71 x 0.63416 y 1.00178 z 0.91428 occ H 1 beq = bov; site H72 x 0.58542 y 0.76542 z 0.82419 occ H 1 beq = bov; site H81 x 0.66452 y 0.43573 z 0.85278 occ H 1 beq = bov; site H82 x 0.71275 y 0.66390 z 0.94965 occ H 1 beq = bov; site H91 x 0.69253 y 0.99935 z 0.78735 occ H 1 beq = bov; site H101 x 0.73182 y 0.43909 z 0.74397 occ H 1 beq = bov; site H102 x 0.77328 y 0.67715 z 0.84758 occ H 1 beq = bov; site H111 x 0.76343 y 1.00461 z 0.68577 occ H 1 beq = bov; site H112 x 0.72135 y 0.77123 z 0.58157 occ H 1 beq = bov; site H121 x 0.80238 y 0.44049 z 0.64389 occ H 1 beq = bov; site H122 x 0.84530 y 0.68531 z 0.74077 occ H 1 beq = bov; site H131 x 0.82815 y 1.00300 z 0.57119 occ H 1 beq = bov; site H132 x 0.78385 y 0.76162 z 0.47506 occ H 1 beq = bov; site H141 x 0.86542 y 0.43915 z 0.52477 occ H 1 beq = bov; site H142 x 0.91010 y 0.68154 z 0.62001 occ H 1 beq = bov; site H151 x 0.88971 y 1.00350 z 0.45098 occ H 1 beq = bov; site H152 x 0.84456 y 0.76313 z 0.35575 occ H 1 beq = bov; site H161 x 0.92599 y 0.44010 z 0.40141 occ H 1 beq = bov; site H162 x 0.97112 y 0.68006 z 0.49716 occ H 1 beq = bov; site H171 x 0.95082 y 1.00464 z 0.32883 occ H 1 beq = bov; site H172 x 0.90584 y 0.76428 z 0.23307 occ H 1 beq = bov; site H181 x 0.98742 y 0.44102 z 0.28031 occ H 1 beq = bov; site H182 x 1.03217 y 0.68077 z 0.37678 occ H 1 beq = bov; site H191 x 1.01259 y 1.00555 z 0.20834 occ H 1 beq = bov; site H192 x 0.96854 y 0.76336 z 0.11211 occ H 1 beq = bov; site H201 x 1.05075 y 0.44290 z 0.16269 occ H 1 beq = bov; site H202 x 1.09463 y 0.68406 z 0.25990 occ H 1 beq = bov; site H211 x 1.07628 y 1.00781 z 0.09178 occ H 1 beq = bov; site H212 x 1.03288 y 0.76503 z -0.00535 occ H 1 beq = bov; site H221 x 1.11525 y 0.44575 z 0.04734 occ H 1 beq = bov; site H222 x 1.15877 y 0.68731 z 0.14509 occ H 1 beq = bov; site H231 x 1.14139 y 1.01104 z -0.02182 occ H 1 beq = bov; site H232 x 1.09697 y 0.77273 z -0.11980 occ H 1 beq = bov; site H241 x 1.17836 y 0.44762 z -0.07000 occ H 1 beq = bov; site H242 x 1.22307 y 0.68777 z 0.02665 occ H 1 beq = bov; site H251 x 1.20408 y 1.01193 z -0.14119 occ H 1 beq = bov; site H252 x 1.15821 y 0.77523 z -0.23753 occ H 1 beq = bov; site H261 x 1.23891 y 0.44674 z -0.19223 occ H 1 beq = bov; site H262 x 1.28479 y 0.68630 z -0.09746 occ H 1 beq = bov; site H271 x 1.26392 y 1.00907 z -0.26693 occ H 1 beq = bov; site H272 x 1.21780 y 0.77012 z -0.36133 occ H 1 beq = bov; site H281 x 1.29854 y 0.44244 z -0.31602 occ H 1 beq = bov; site H282 x 1.34422 y 0.68201 z -0.22187 occ H 1 beq = bov; site H291 x 1.28059 y 0.75227 z -0.48860 occ H 1 beq = bov; site H292 x 1.35393 y 0.68986 z -0.41504 occ H 1 beq = bov; site H293 x 1.32471 y 1.00117 z -0.39491 occ H 1 beq = bov; site H301 x 0.62803 y 0.54040 z 0.62220 occ H 1 beq = bov; site H302 x 0.64016 y 0.87226 z 0.58146 occ H 1 beq = bov; site H303 x 0.59493 y 0.82379 z 0.65736 occ H 1 beq = bov;

rigid point_for_site C1 ux 5.553 uy 2.745 uz 15.128 point_for_site C2 ux 6.814 uy 2.064 uz 14.618 point_for_site C3 ux 7.385 uy 2.725 uz 13.367 point_for_site C4 ux 8.671 uy 2.075 uz 12.878 point_for_site C5 ux 9.279 uy 2.703 uz 11.631 point_for_site C6 ux 10.625 uy 2.087 uz 11.265 point_for_site C7 ux 11.296 uy 2.703 uz 10.043 point_for_site C8 ux 12.650 uy 2.068 uz 9.736 point_for_site C9 ux 13.436 uy 2.688 uz 8.573 point_for_site C10 ux 14.849 uy 2.087 uz 8.513 point_for_site C11 ux 15.754 uy 2.709 uz 7.458 point_for_site C12 ux 17.145 uy 2.094 uz 7.362 point_for_site C13 ux 17.961 uy 2.690 uz 6.220 point_for_site C14 ux 19.344 uy 2.081 uz 6.038 point_for_site C15 ux 20.118 uy 2.688 uz 4.872 point_for_site C16 ux 21.498 uy 2.079 uz 4.666 point_for_site C17 ux 22.274 uy 2.689 uz 3.504 point_for_site C18 ux 23.657 uy 2.078 uz 3.312 point_for_site C19 ux 24.450 uy 2.686 uz 2.161 point_for_site C20 ux 25.840 uy 2.083 uz 1.997 point_for_site C21 ux 26.651 uy 2.691 uz 0.859 point_for_site C22 ux 28.045 uy 2.091 uz 0.711 point_for_site C23 ux 28.857 uy 2.706 uz -0.423 point_for_site C24 ux 30.243 uy 2.095 uz -0.600 point_for_site C25 ux 31.026 uy 2.706 uz -1.756 point_for_site C26 ux 32.401 uy 2.084 uz -1.973 point_for_site C27 ux 33.164 uy 2.684 uz -3.150 point_for_site C28 ux 34.536 uy 2.056 uz -3.368 point_for_site C29 ux 35.312 uy 2.642 uz -4.540 point_for_site C30 ux 12.709 uy 2.544 uz 7.233 point_for_site H11 ux 5.155 uy 2.256 uz 16.026 point_for_site H12 ux 4.760 uy 2.737 uz 14.367 point_for_site H13 ux 5.748 uy 3.796 uz 15.384 point_for_site H21 ux 6.603 uy 1.003 uz 14.401 point_for_site H22 ux 7.579 uy 2.057 uz 15.410 point_for_site H31 ux 7.575 uy 3.792 uz 13.578 point_for_site H32 ux 6.626 uy 2.706 uz 12.568 point_for_site H41 ux 8.489 uy 1.003 uz 12.691 point_for_site H42 ux 9.414 uy 2.109 uz 13.690 point_for_site H51 ux 9.405 uy 3.788 uz 11.790 point_for_site H52 ux 8.581 uy 2.604 uz 10.785 point_for_site H61 ux 10.492 uy 1.004 uz 11.095 point_for_site H62 ux 11.303 uy 2.169 uz 12.131 point_for_site H71 ux 11.431 uy 3.787 uz 10.208 point_for_site H72 ux 10.620 uy 2.613 uz 9.179 point_for_site H81 ux 12.510 uy 0.990 uz 9.537 point_for_site H82 ux 13.275 uy 2.124 uz 10.643 point_for_site H91 ux 13.541 uy 3.769 uz 8.787 point_for_site H101 ux 14.761 uy 1.002 uz 8.324 point_for_site H102 ux 15.320 uy 2.185 uz 9.504 point_for_site H111 ux 15.849 uy 3.791 uz 7.657 point_for_site H112 ux 15.277 uy 2.631 uz 6.470 point_for_site H121 ux 17.053 uy 1.005 uz 7.211 point_for_site H122 ux 17.682 uy 2.221 uz 8.315 point_for_site H131 ux 18.062 uy 3.778 uz 6.378 point_for_site H132 ux 17.394 uy 2.579 uz 5.282 point_for_site H141 ux 19.245 uy 0.993 uz 5.880 point_for_site H142 ux 19.927 uy 2.197 uz 6.966 point_for_site H151 ux 20.221 uy 3.775 uz 5.034 point_for_site H152 ux 19.527 uy 2.581 uz 3.948 point_for_site H161 ux 21.394 uy 0.992 uz 4.500 point_for_site H162 ux 22.085 uy 2.184 uz 5.592 point_for_site H171 ux 22.378 uy 3.775 uz 3.668 point_for_site H172 ux 21.691 uy 2.581 uz 2.576 point_for_site H181 ux 23.554 uy 0.991 uz 3.146 point_for_site H182 ux 24.232 uy 2.182 uz 4.246 point_for_site H191 ux 24.544 uy 3.774 uz 2.321 point_for_site H192 ux 23.883 uy 2.571 uz 1.224 point_for_site H201 ux 25.746 uy 0.995 uz 1.832 point_for_site H202 ux 26.398 uy 2.193 uz 2.940 point_for_site H211 ux 26.740 uy 3.780 uz 1.019 point_for_site H212 ux 26.100 uy 2.574 uz -0.088 point_for_site H221 ux 27.957 uy 1.004 uz 0.544 point_for_site H222 ux 28.597 uy 2.204 uz 1.658 point_for_site H231 ux 28.958 uy 3.791 uz -0.249 point_for_site H232 ux 28.296 uy 2.607 uz -1.366 point_for_site H241 ux 30.142 uy 1.008 uz -0.767 point_for_site H242 ux 30.818 uy 2.201 uz 0.335 point_for_site H251 ux 31.142 uy 3.790 uz -1.583 point_for_site H252 ux 30.435 uy 2.614 uz -2.682 point_for_site H261 ux 32.285 uy 0.998 uz -2.134 point_for_site H262 ux 33.000 uy 2.188 uz -1.053 point_for_site H271 ux 33.284 uy 3.770 uz -2.990 point_for_site H272 ux 32.561 uy 2.583 uz -4.067 point_for_site H281 ux 34.412 uy 0.971 uz -3.519 point_for_site H282 ux 35.125 uy 2.161 uz -2.445 point_for_site H291 ux 34.786 uy 2.489 uz -5.490 point_for_site H292 ux 36.309 uy 2.188 uz -4.632 point_for_site H293 ux 35.461 uy 3.725 uz -4.422 point_for_site H301 ux 12.691 uy 1.491 uz 6.909 point_for_site H302 ux 13.197 uy 3.127 uz 6.441 point_for_site H303 ux 11.671 uy 2.891 uz 7.289

Rotate_about_axies(@ 0.31684`_0.07758 ,@ 0.68206`_0.00637 ,@ -0.07666`_0.07044) Translate( @ 0.02032`_0.00017 , 0.25 , @ 0.02828`_0.00043)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4873450.7861231.3516890.57 (6)
C20.5277570.6484821.3052490.57 (6)
C30.5292780.7837751.1952050.57 (6)
C40.5710140.6523821.1505980.57 (6)
C50.5740330.7809761.0408480.57 (6)
C60.6201450.6563041.0069920.57 (6)
C70.6260240.7824210.8993650.57 (6)
C80.6734220.6538260.8706680.57 (6)
C90.6847460.7806530.7681010.57 (6)
C100.7385380.6586270.7610400.57 (6)
C110.7562770.7856970.6678290.57 (6)
C120.8086150.6608850.6576230.57 (6)
C130.8214490.7828160.5568550.57 (6)
C140.8720510.6593280.5391140.57 (6)
C150.8828580.7835270.4362890.57 (6)
C160.9329450.6600690.4164440.57 (6)
C170.9438960.7848710.3139700.57 (6)
C180.9943320.6609890.2953490.57 (6)
C191.0061260.7853680.1938220.57 (6)
C201.0572990.6630710.1776550.57 (6)
C211.0700070.7874290.0772500.57 (6)
C221.1216020.6657190.0624860.57 (6)
C231.1344160.7914910.0375660.57 (6)
C241.1852170.6675900.0548730.57 (6)
C251.196540.7925850.1568280.57 (6)
C261.2462490.6665080.1776400.57 (6)
C271.2564450.7893060.2814220.57 (6)
C281.306020.6620150.3023220.57 (6)
C291.3168020.7819670.4056870.57 (6)
C300.6342620.7533070.6511750.57 (6)
H110.4867130.6860621.4306620.57 (6)
H120.4439220.7856341.2857220.57 (6)
H130.4993210.9986661.3745120.57 (6)
H210.5158060.4338701.2858610.57 (6)
H220.5706050.6459021.3739580.57 (6)
H310.5403160.9996151.2140910.57 (6)
H320.4865440.7810961.1258610.57 (6)
H410.5606850.4354981.1338070.57 (6)
H420.6133450.6580881.2211070.57 (6)
H510.5817251.0005421.0552470.57 (6)
H520.5328760.7621330.9672730.57 (6)
H610.6119990.4371590.9916360.57 (6)
H620.6608540.6716841.0823340.57 (6)
H710.6341651.0017750.9142800.57 (6)
H720.5854240.7654180.8241920.57 (6)
H810.6645240.4357310.8527770.57 (6)
H820.7127490.6639020.9496510.57 (6)
H910.6925350.9993460.7873470.57 (6)
H1010.7318250.4390890.7439690.57 (6)
H1020.7732850.6771460.8475780.57 (6)
H1110.7634281.0046140.6857690.57 (6)
H1120.7213500.7712270.5815710.57 (6)
H1210.8023750.4404900.6438890.57 (6)
H1220.8452980.6853090.7407730.57 (6)
H1310.8281541.0029980.5711940.57 (6)
H1320.7838520.7616230.4750620.57 (6)
H1410.8654240.4391460.5247730.57 (6)
H1420.9101050.6815420.6200150.57 (6)
H1510.8897071.00350.4509760.57 (6)
H1520.8445610.7631330.3557520.57 (6)
H1610.9259910.4401000.4014070.57 (6)
H1620.9711190.6800570.4971600.57 (6)
H1710.9508171.0046380.3288310.57 (6)
H1720.9058440.7642760.2330730.57 (6)
H1810.9874170.4410200.2803110.57 (6)
H1821.0321730.6807670.3767790.57 (6)
H1911.0125921.0055480.2083430.57 (6)
H1920.9685440.7633630.1121140.57 (6)
H2011.050750.4428960.1626950.57 (6)
H2021.094630.6840580.2598960.57 (6)
H2111.076281.0078140.0917770.57 (6)
H2121.0328810.7650270.0053530.57 (6)
H2211.1152530.4457480.0473440.57 (6)
H2221.1587660.6873110.1450850.57 (6)
H2311.1413861.0110440.0218250.57 (6)
H2321.0969710.7727320.1197980.57 (6)
H2411.1783630.4476220.0700010.57 (6)
H2421.2230750.6877720.0266460.57 (6)
H2511.2040761.0119340.141190.57 (6)
H2521.1582130.7752320.2375320.57 (6)
H2611.2389120.4467390.1922250.57 (6)
H2621.2847890.6862980.0974640.57 (6)
H2711.2639211.0090750.2669290.57 (6)
H2721.2177990.7701210.3613290.57 (6)
H2811.2985380.4424390.3160210.57 (6)
H2821.3442220.6820060.2218720.57 (6)
H2911.2805910.752270.4885980.57 (6)
H2921.3539280.6898630.4150440.57 (6)
H2931.3247061.0011730.3949120.57 (6)
H3010.6280320.5403990.6221990.57 (6)
H3020.6401620.8722570.5814620.57 (6)
H3030.5949290.8237900.6573590.57 (6)
Bond lengths (Å) top
C1—C21.521C16—C171.524
C1—H111.097C16—H1611.104
C1—H121.099C16—H1621.102
C1—H131.100C17—C181.524
C2—C31.526C17—H1711.104
C2—H211.103C17—H1721.102
C2—H221.102C18—C191.524
C3—C41.522C18—H1811.104
C3—H311.104C18—H1821.102
C3—H321.102C19—C201.524
C4—C51.523C19—H1911.104
C4—H411.103C19—H1921.102
C4—H421.100C20—C211.524
C5—C61.525C20—H2011.104
C5—H511.104C20—H2021.102
C5—H521.101C21—C221.525
C6—C71.524C21—H2111.104
C6—H611.104C21—H2121.102
C6—H621.102C22—C231.524
C7—C81.527C22—H2211.104
C7—H711.104C22—H2221.102
C7—H721.101C23—C241.525
C8—C91.534C23—H2311.104
C8—H811.105C23—H2321.102
C8—H821.103C24—C251.525
C9—C101.536C24—H2411.104
C9—C301.531C24—H2421.103
C9—H911.107C25—C261.524
C10—C111.523C25—H2511.104
C10—H1011.105C25—H2521.102
C10—H1021.102C26—C271.526
C11—C121.524C26—H2611.104
C11—H1111.104C26—H2621.103
C11—H1121.100C27—C281.525
C12—C131.524C27—H2711.104
C12—H1211.104C27—H2721.102
C12—H1221.101C28—C291.523
C13—C141.522C28—H2811.103
C13—H1311.104C28—H2821.100
C13—H1321.102C29—H2911.097
C14—C151.524C29—H2921.099
C14—H1411.104C29—H2931.099
C14—H1421.102C30—H3011.102
C15—C161.523C30—H3021.098
C15—H1511.104C30—H3031.096
C15—H1521.102
(9MeC31H63) (S)-9-methyltriacontane top
Crystal data top
C32H66V = 1530.53 (4) Å3
Mr = 450.87Z = 2
Monoclinic, P21Dx = 0.978 Mg m3
a = 27.7815 (4) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80105 Å
b = 4.93381 (4) ÅT = 100 K
c = 12.3899 (2) ÅPowder, white
β = 115.6797 (8)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 6.279 r_exp 2.779 gof 2.260 iters 200000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C31Me9_100K.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80105 l h 0.1 start_X 1.5 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00178`_0.00007)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 9.81835067`_0.0368145852, 50, 50)

bkg @ 859.204491`_16.0232685 - 189.133371`_16.4097513 88.3360071`_9.02893335 - 17.6781093`_18.8980889 - 3.13639948`_10.0184436 0.32045688`_5.18564159 22.7601442`_10.8986666 - 13.784052`_6.24407892 - 9.53268768`_2.64780354 7.58430973`_5.26954887 - 8.24997639`_3.11718109 - 12.3362215`_2.00970358 7.49448353`_3.11368621 6.85346054`_2.27356602 - 19.014985`_1.21399383 PV (@, @, @, @, 1027.46938`_842.50817, 10.88087`_0.05744, 3.22652`_0.81853, 0.17288`_0.47346_LIMIT_MIN_0)

str local !phase_number 1

a @ 27.78145`_0.00044 b @ 4.93381`_0.00004 c @ 12.38987`_0.00021 al 90.0000 be @ 115.67967`_0.00077 ga 90.0000

MVW (901.756, 1530.52451`_0.0392801519, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm s400 2.34398`_0.04393 prm s040 863.14012`_17.03355 prm s004 64.10449`_1.66872 prm s220 29.63595`_2.94411 prm s202 19.40717`_0.50150 prm s022 80.33324`_13.58065 prm s301 9.00618`_0.23676 prm s121 53.79696`_5.19755 prm s103 47.75374`_1.12806 prm eta 0.12969`_0.00365 min 0 max 1

Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta)

PO(march1, 0.79967`_0.00135, march2, 1 0 0)

scale @ 0.000144529576`_3.91 e-007 r_bragg 4.7588773 space_group "P21"

site C1 x 0.48984 y 0.75431 z 1.34888 occ C 1 beq bov 0.3388`_0.0357 site C2 x 0.52748 y 0.61549 z 1.30645 occ C 1 beq = bov; site C3 x 0.52813 y 0.74977 z 1.19612 occ C 1 beq = bov; site C4 x 0.56702 y 0.61793 z 1.15543 occ C 1 beq = bov; site C5 x 0.56961 y 0.74803 z 1.04655 occ C 1 beq = bov; site C6 x 0.61293 y 0.62314 z 1.01796 occ C 1 beq = bov; site C7 x 0.61846 y 0.75038 z 0.91180 occ C 1 beq = bov; site C8 x 0.66294 y 0.62084 z 0.88837 occ C 1 beq = bov; site C9 x 0.67340 y 0.74869 z 0.78769 occ C 1 beq = bov; site C10 x 0.72372 y 0.62477 z 0.78577 occ C 1 beq = bov; site C11 x 0.74011 y 0.75145 z 0.69459 occ C 1 beq = bov; site C12 x 0.78941 y 0.62643 z 0.69034 occ C 1 beq = bov; site C13 x 0.80136 y 0.74888 z 0.59166 occ C 1 beq = bov; site C14 x 0.84906 y 0.62515 z 0.57981 occ C 1 beq = bov; site C15 x 0.85933 y 0.75078 z 0.47930 occ C 1 beq = bov; site C16 x 0.90656 y 0.62692 z 0.46548 occ C 1 beq = bov; site C17 x 0.91703 y 0.75394 z 0.36561 occ C 1 beq = bov; site C18 x 0.96437 y 0.62905 z 0.35231 occ C 1 beq = bov; site C19 x 0.97546 y 0.75501 z 0.25305 occ C 1 beq = bov; site C20 x 1.02311 y 0.62884 z 0.24154 occ C 1 beq = bov; site C21 x 1.03476 y 0.75334 z 0.14270 occ C 1 beq = bov; site C22 x 1.08260 y 0.62735 z 0.13200 occ C 1 beq = bov; site C23 x 1.09460 y 0.75262 z 0.03388 occ C 1 beq = bov; site C24 x 1.14277 y 0.62801 z 0.02391 occ C 1 beq = bov; site C25 x 1.15481 y 0.75489 z - 0.07384 occ C 1 beq = bov; site C26 x 1.20214 y 0.62796 z - 0.08643 occ C 1 beq = bov; site C27 x 1.21302 y 0.75434 z - 0.18605 occ C 1 beq = bov; site C28 x 1.25940 y 0.62429 z - 0.20160 occ C 1 beq = bov; site C29 x 1.26931 y 0.74692 z - 0.30321 occ C 1 beq = bov; site C30 x 1.31538 y 0.61447 z - 0.31923 occ C 1 beq = bov; site C31 x 1.32571 y 0.73423 z - 0.42050 occ C 1 beq = bov; site C32 x 0.62522 y 0.72602 z 0.66537 occ C 1 beq = bov; site H11 x 0.48985 y 0.65528 z 1.42817 occ H 1 beq = bov; site H12 x 0.44853 y 0.75382 z 1.27872 occ H 1 beq = bov; site H13 x 0.50134 y 0.96696 z 1.37258 occ H 1 beq = bov; site H21 x 0.51612 y 0.40071 z 1.28624 occ H 1 beq = bov; site H22 x 0.56825 y 0.61350 z 1.37939 occ H 1 beq = bov; site H31 x 0.53869 y 0.96582 z 1.21590 occ H 1 beq = bov; site H32 x 0.48745 y 0.74731 z 1.12261 occ H 1 beq = bov; site H41 x 0.55690 y 0.40143 z 1.13662 occ H 1 beq = bov; site H42 x 0.60719 y 0.62160 z 1.23021 occ H 1 beq = bov; site H51 x 0.57705 y 0.96738 z 1.06237 occ H 1 beq = bov; site H52 x 0.53057 y 0.73041 z 0.96832 occ H 1 beq = bov; site H61 x 0.60494 y 0.40426 z 1.00099 occ H 1 beq = bov; site H62 x 0.65152 y 0.63668 z 1.09797 occ H 1 beq = bov; site H71 x 0.62651 y 0.96927 z 0.92833 occ H 1 beq = bov; site H72 x 0.57994 y 0.73541 z 0.83196 occ H 1 beq = bov; site H81 x 0.65434 y 0.40285 z 0.86925 occ H 1 beq = bov; site H82 x 0.70030 y 0.62989 z 0.97188 occ H 1 beq = bov; site H91 x 0.68136 y 0.96686 z 0.80889 occ H 1 beq = bov; site H101 x 0.71691 y 0.40524 z 0.76751 occ H 1 beq = bov; site H102 x 0.75697 y 0.64134 z 0.87597 occ H 1 beq = bov; site H111 x 0.74695 y 0.97035 z 0.71339 occ H 1 beq = bov; site H112 x 0.70687 y 0.73710 z 0.60459 occ H 1 beq = bov; site H121 x 0.78338 y 0.40596 z 0.67556 occ H 1 beq = bov; site H122 x 0.82426 y 0.64969 z 0.77768 occ H 1 beq = bov; site H131 x 0.80785 y 0.96910 z 0.60697 occ H 1 beq = bov; site H132 x 0.76565 y 0.72846 z 0.50562 occ H 1 beq = bov; site H141 x 0.84259 y 0.40514 z 0.56406 occ H 1 beq = bov; site H142 x 0.88507 y 0.64598 z 0.66514 occ H 1 beq = bov; site H151 x 0.86606 y 0.97056 z 0.49550 occ H 1 beq = bov; site H152 x 0.82309 y 0.73199 z 0.39409 occ H 1 beq = bov; site H161 x 0.89968 y 0.40737 z 0.44866 occ H 1 beq = bov; site H162 x 0.94269 y 0.64450 z 0.55087 occ H 1 beq = bov; site H171 x 0.92399 y 0.97329 z 0.38261 occ H 1 beq = bov; site H172 x 0.88088 y 0.73657 z 0.28022 occ H 1 beq = bov; site H181 x 0.95732 y 0.40951 z 0.33523 occ H 1 beq = bov; site H182 x 1.00035 y 0.64582 z 0.43806 occ H 1 beq = bov; site H191 x 0.98248 y 0.97456 z 0.26978 occ H 1 beq = bov; site H192 x 0.93963 y 0.73744 z 0.16712 occ H 1 beq = bov; site H201 x 1.01608 y 0.40929 z 0.22490 occ H 1 beq = bov; site H202 x 1.05879 y 0.64622 z 0.32775 occ H 1 beq = bov; site H211 x 1.04168 y 0.97291 z 0.15917 occ H 1 beq = bov; site H212 x 0.99912 y 0.73516 z 0.05649 occ H 1 beq = bov; site H221 x 1.07564 y 0.40780 z 0.11518 occ H 1 beq = bov; site H222 x 1.11811 y 0.64472 z 0.21848 occ H 1 beq = bov; site H231 x 1.10128 y 0.97219 z 0.05035 occ H 1 beq = bov; site H232 x 1.05920 y 0.73403 z - 0.05278 occ H 1 beq = bov; site H241 x 1.13604 y 0.40845 z 0.00681 occ H 1 beq = bov; site H242 x 1.17819 y 0.64558 z 0.11066 occ H 1 beq = bov; site H251 x 1.16221 y 0.97398 z - 0.05586 occ H 1 beq = bov; site H252 x 1.11904 y 0.74056 z - 0.16020 occ H 1 beq = bov; site H261 x 1.19486 y 0.40884 z - 0.10378 occ H 1 beq = bov; site H262 x 1.23822 y 0.64370 z - 0.00069 occ H 1 beq = bov; site H271 x 1.22099 y 0.97279 z - 0.16808 occ H 1 beq = bov; site H272 x 1.17657 y 0.74123 z - 0.27113 occ H 1 beq = bov; site H281 x 1.25163 y 0.40517 z - 0.21796 occ H 1 beq = bov; site H282 x 1.29599 y 0.64024 z - 0.11695 occ H 1 beq = bov; site H291 x 1.27740 y 0.96582 z - 0.28668 occ H 1 beq = bov; site H292 x 1.23251 y 0.73239 z - 0.38748 occ H 1 beq = bov; site H301 x 1.30725 y 0.39576 z - 0.33503 occ H 1 beq = bov; site H302 x 1.35178 y 0.62982 z - 0.23458 occ H 1 beq = bov; site H311 x 1.29107 y 0.70973 z - 0.50741 occ H 1 beq = bov; site H312 x 1.36016 y 0.63778 z - 0.42651 occ H 1 beq = bov; site H313 x 1.33434 y 0.95238 z - 0.40741 occ H 1 beq = bov; site H321 x 0.61876 y 0.51433 z 0.63412 occ H 1 beq = bov; site H322 x 0.63068 y 0.84738 z 0.59719 occ H 1 beq = bov; site H323 x 0.58838 y 0.79756 z 0.66783 occ H 1 beq = bov;

rigid point_for_site C1 ux -10.609 uy 2.576 uz 20.314 point_for_site C2 ux -9.326 uy 1.895 uz 19.861 point_for_site C3 ux -8.712 uy 2.543 uz 18.623 point_for_site C4 ux -7.404 uy 1.897 uz 18.189 point_for_site C5 ux -6.744 uy 2.525 uz 16.968 point_for_site C6 ux -5.379 uy 1.916 uz 16.669 point_for_site C7 ux -4.652 uy 2.531 uz 15.479 point_for_site C8 ux -3.283 uy 1.900 uz 15.238 point_for_site C9 ux -2.449 uy 2.520 uz 14.110 point_for_site C10 ux -1.035 uy 1.921 uz 14.109 point_for_site C11 ux -0.088 uy 2.538 uz 13.088 point_for_site C12 ux 1.310 uy 1.933 uz 13.061 point_for_site C13 ux 2.175 uy 2.527 uz 11.956 point_for_site C14 ux 3.570 uy 1.927 uz 11.844 point_for_site C15 ux 4.398 uy 2.536 uz 10.718 point_for_site C16 ux 5.791 uy 1.935 uz 10.584 point_for_site C17 ux 6.621 uy 2.551 uz 9.465 point_for_site C18 ux 8.014 uy 1.945 uz 9.337 point_for_site C19 ux 8.858 uy 2.556 uz 8.225 point_for_site C20 ux 10.250 uy 1.944 uz 8.117 point_for_site C21 ux 11.107 uy 2.548 uz 7.010 point_for_site C22 ux 12.500 uy 1.937 uz 6.911 point_for_site C23 ux 13.363 uy 2.545 uz 5.812 point_for_site C24 ux 14.761 uy 1.941 uz 5.721 point_for_site C25 ux 15.623 uy 2.557 uz 4.626 point_for_site C26 ux 17.012 uy 1.941 uz 4.506 point_for_site C27 ux 17.852 uy 2.554 uz 3.390 point_for_site C28 ux 19.231 uy 1.922 uz 3.237 point_for_site C29 ux 20.055 uy 2.516 uz 2.099 point_for_site C30 ux 21.428 uy 1.872 uz 1.941 point_for_site C31 ux 22.262 uy 2.452 uz 0.807 point_for_site C32 ux -3.119 uy 2.380 uz 12.741 point_for_site H11 ux -11.037 uy 2.098 uz 21.204 point_for_site H12 ux -11.374 uy 2.554 uz 19.525 point_for_site H13 ux -10.428 uy 3.631 uz 20.563 point_for_site H21 ux -9.522 uy 0.830 uz 19.651 point_for_site H22 ux -8.591 uy 1.905 uz 20.681 point_for_site H31 ux -8.536 uy 3.614 uz 18.828 point_for_site H32 ux -9.441 uy 2.511 uz 17.797 point_for_site H41 ux -7.573 uy 0.824 uz 17.995 point_for_site H42 ux -6.696 uy 1.935 uz 19.029 point_for_site H51 ux -6.633 uy 3.611 uz 17.128 point_for_site H52 ux -7.401 uy 2.418 uz 16.091 point_for_site H61 ux -5.499 uy 0.832 uz 16.496 point_for_site H62 ux -4.744 uy 2.003 uz 17.566 point_for_site H71 ux -4.528 uy 3.615 uz 15.647 point_for_site H72 ux -5.286 uy 2.437 uz 14.584 point_for_site H81 ux -3.408 uy 0.820 uz 15.041 point_for_site H82 ux -2.701 uy 1.965 uz 16.174 point_for_site H91 ux -2.353 uy 3.601 uz 14.330 point_for_site H101 ux -1.115 uy 0.834 uz 13.922 point_for_site H102 ux -0.604 uy 2.023 uz 15.118 point_for_site H111 ux -0.010 uy 3.622 uz 13.281 point_for_site H112 ux -0.520 uy 2.447 uz 12.081 point_for_site H121 ux 1.233 uy 0.842 uz 12.913 point_for_site H122 ux 1.801 uy 2.068 uz 14.038 point_for_site H131 ux 2.262 uy 3.617 uz 12.110 point_for_site H132 ux 1.653 uy 2.406 uz 10.993 point_for_site H141 ux 3.486 uy 0.838 uz 11.685 point_for_site H142 ux 4.104 uy 2.050 uz 12.799 point_for_site H151 ux 4.487 uy 3.624 uz 10.882 point_for_site H152 ux 3.857 uy 2.423 uz 9.764 point_for_site H161 ux 5.701 uy 0.848 uz 10.413 point_for_site H162 ux 6.328 uy 2.042 uz 11.540 point_for_site H171 ux 6.712 uy 3.637 uz 9.638 point_for_site H172 ux 6.083 uy 2.445 uz 8.509 point_for_site H181 ux 7.921 uy 0.858 uz 9.163 point_for_site H182 ux 8.545 uy 2.048 uz 10.297 point_for_site H191 ux 8.952 uy 3.643 uz 8.395 point_for_site H192 ux 8.332 uy 2.449 uz 7.263 point_for_site H201 ux 10.155 uy 0.857 uz 7.948 point_for_site H202 ux 10.770 uy 2.050 uz 9.082 point_for_site H211 ux 11.200 uy 3.635 uz 7.177 point_for_site H212 ux 10.588 uy 2.438 uz 6.045 point_for_site H221 ux 12.408 uy 0.850 uz 6.740 point_for_site H222 ux 13.014 uy 2.043 uz 7.879 point_for_site H231 ux 13.449 uy 3.632 uz 5.979 point_for_site H232 ux 12.853 uy 2.433 uz 4.842 point_for_site H241 ux 14.677 uy 0.854 uz 5.547 point_for_site H242 ux 15.271 uy 2.048 uz 6.692 point_for_site H251 ux 15.721 uy 3.642 uz 4.810 point_for_site H252 ux 15.101 uy 2.466 uz 3.659 point_for_site H261 ux 16.914 uy 0.856 uz 4.329 point_for_site H262 ux 17.546 uy 2.039 uz 5.466 point_for_site H271 ux 17.966 uy 3.636 uz 3.574 point_for_site H272 ux 17.304 uy 2.469 uz 2.437 point_for_site H281 ux 19.114 uy 0.837 uz 3.071 point_for_site H282 ux 19.785 uy 2.021 uz 4.185 point_for_site H291 ux 20.180 uy 3.600 uz 2.267 point_for_site H292 ux 19.493 uy 2.424 uz 1.155 point_for_site H301 ux 21.298 uy 0.789 uz 1.781 point_for_site H302 ux 21.977 uy 1.968 uz 2.889 point_for_site H311 ux 21.775 uy 2.311 uz -0.165 point_for_site H312 ux 23.256 uy 1.984 uz 0.755 point_for_site H313 ux 22.421 uy 3.532 uz 0.937 point_for_site H321 ux -3.119 uy 1.330 uz 12.409 point_for_site H322 ux -2.601 uy 2.971 uz 11.974 point_for_site H323 ux -4.159 uy 2.724 uz 12.755

Rotate_about_axies(@ 0.68033`_0.07637, @ 0.43683`_0.00539, @ -0.56578`_0.06249) Translate(@ 0.51172`_0.00016, 0.28, @ -0.48107`_0.00035)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4898410.7543061.3488790.34 (4)
C20.5274780.6154861.3064530.34 (4)
C30.5281300.7497691.1961170.34 (4)
C40.5670180.6179341.1554260.34 (4)
C50.5696060.7480251.0465520.34 (4)
C60.6129340.6231421.0179630.34 (4)
C70.6184610.7503770.9118000.34 (4)
C80.6629380.6208380.8883700.34 (4)
C90.6733950.7486890.7876930.34 (4)
C100.7237230.6247650.7857690.34 (4)
C110.7401110.7514540.6945910.34 (4)
C120.7894050.6264280.6903410.34 (4)
C130.8013630.7488790.5916640.34 (4)
C140.8490580.6251520.5798120.34 (4)
C150.8593280.7507780.4793020.34 (4)
C160.9065640.6269240.4654810.34 (4)
C170.9170340.7539420.3656060.34 (4)
C180.9643730.6290550.3523140.34 (4)
C190.9754640.7550120.2530490.34 (4)
C201.0231150.6288440.2415410.34 (4)
C211.0347560.7533430.1427050.34 (4)
C221.0826020.6273470.1320030.34 (4)
C231.0946010.7526190.0338850.34 (4)
C241.1427710.6280070.0239060.34 (4)
C251.1548090.7548890.0738420.34 (4)
C261.2021390.6279560.0864290.34 (4)
C271.2130180.7543380.1860460.34 (4)
C281.25940.6242890.2016050.34 (4)
C291.2693070.7469230.3032080.34 (4)
C301.3153780.6144690.3192270.34 (4)
C311.3257060.7342350.4205000.34 (4)
C320.6252250.7260230.6653660.34 (4)
H110.4898460.6552841.4281730.34 (4)
H120.4485280.7538171.2787220.34 (4)
H130.5013450.9669571.3725770.34 (4)
H210.5161170.4007081.2862430.34 (4)
H220.5682530.6134961.3793890.34 (4)
H310.5386900.9658151.2159020.34 (4)
H320.4874520.7473101.1226080.34 (4)
H410.5569010.4014341.1366180.34 (4)
H420.6071930.6216011.2302120.34 (4)
H510.5770540.9673761.0623730.34 (4)
H520.5305680.7304060.9683180.34 (4)
H610.6049360.4042561.0009860.34 (4)
H620.6515220.6366831.0979740.34 (4)
H710.6265140.9692730.9283260.34 (4)
H720.5799400.7354090.8319580.34 (4)
H810.6543420.4028500.8692540.34 (4)
H820.7002980.6298870.9718780.34 (4)
H910.6813560.9668560.8088900.34 (4)
H1010.7169120.4052450.7675070.34 (4)
H1020.7569740.6413440.8759700.34 (4)
H1110.7469540.970350.7133870.34 (4)
H1120.7068670.7371000.6045860.34 (4)
H1210.7833850.4059630.6755630.34 (4)
H1220.8242650.6496910.7776830.34 (4)
H1310.8078460.9691030.6069710.34 (4)
H1320.7656460.7284630.5056170.34 (4)
H1410.8425940.4051410.5640570.34 (4)
H1420.8850650.6459780.6651380.34 (4)
H1510.8660580.9705610.4955000.34 (4)
H1520.8230930.7319870.3940860.34 (4)
H1610.8996760.4073690.4486580.34 (4)
H1620.9426880.6444990.5508700.34 (4)
H1710.9239930.9732860.3826050.34 (4)
H1720.8808760.7365710.2802180.34 (4)
H1810.9573240.4095150.3352250.34 (4)
H1821.0003480.6458170.4380600.34 (4)
H1910.9824780.9745630.2697800.34 (4)
H1920.9396300.7374360.1671150.34 (4)
H2011.0160820.4092920.2249010.34 (4)
H2021.0587860.6462180.3277460.34 (4)
H2111.0416820.9729060.1591670.34 (4)
H2120.9991190.7351570.0564930.34 (4)
H2211.0756410.4077960.1151820.34 (4)
H2221.118110.6447220.2184810.34 (4)
H2311.1012760.9721950.0503520.34 (4)
H2321.0591970.7340280.0527840.34 (4)
H2411.1360450.4084510.0068100.34 (4)
H2421.1781890.6455810.1106570.34 (4)
H2511.1622120.9739810.0558640.34 (4)
H2521.1190410.7405650.1602040.34 (4)
H2611.194860.4088400.1037800.34 (4)
H2621.238220.6437000.0006920.34 (4)
H2711.2209930.9727940.1680840.34 (4)
H2721.1765670.7412310.2711280.34 (4)
H2811.2516320.4051720.2179580.34 (4)
H2821.2959870.6402400.1169550.34 (4)
H2911.2773960.9658170.2866830.34 (4)
H2921.2325070.7323930.3874850.34 (4)
H3011.3072510.3957610.3350320.34 (4)
H3021.3517840.6298210.2345780.34 (4)
H3111.2910740.7097320.5074060.34 (4)
H3121.3601550.6377800.4265140.34 (4)
H3131.3343440.9523820.4074060.34 (4)
H3210.6187570.5143340.6341190.34 (4)
H3220.6306770.8473790.5971870.34 (4)
H3230.5883830.7975570.6678290.34 (4)
Bond lengths (Å) top
C1—C21.522C17—C181.524
C1—H111.098C17—H1711.104
C1—H121.099C17—H1721.102
C1—H131.100C18—C191.524
C2—C31.526C18—H1811.104
C2—H211.103C18—H1821.102
C2—H221.101C19—C201.524
C3—C41.522C19—H1911.104
C3—H311.104C19—H1921.102
C3—H321.102C20—C211.524
C4—C51.523C20—H2011.104
C4—H411.103C20—H2021.102
C4—H421.100C21—C221.524
C5—C61.524C21—H2111.104
C5—H511.104C21—H2121.102
C5—H521.101C22—C231.524
C6—C71.524C22—H2211.104
C6—H611.104C22—H2221.102
C6—H621.102C23—C241.525
C7—C81.527C23—H2311.104
C7—H711.104C23—H2321.102
C7—H721.101C24—C251.524
C8—C91.534C24—H2411.104
C8—H811.105C24—H2421.102
C8—H821.103C25—C261.525
C9—C101.536C25—H2511.104
C9—C321.531C25—H2521.102
C9—H911.107C26—C271.525
C10—C111.523C26—H2611.104
C10—H1011.105C26—H2621.103
C10—H1021.102C27—C281.524
C11—C121.524C27—H2711.104
C11—H1111.104C27—H2721.102
C11—H1121.100C28—C291.526
C12—C131.524C28—H2811.104
C12—H1211.104C28—H2821.103
C12—H1221.101C29—C301.525
C13—C141.522C29—H2911.104
C13—H1311.104C29—H2921.102
C13—H1321.102C30—C311.523
C14—C151.524C30—H3011.103
C14—H1411.104C30—H3021.100
C14—H1421.101C31—H3111.097
C15—C161.523C31—H3121.100
C15—H1511.104C31—H3131.099
C15—H1521.102C32—H3211.102
C16—C171.524C32—H3221.098
C16—H1611.104C32—H3231.096
C16—H1621.102
(7MeC29H59) (S)-7-methylnonacosane top
Crystal data top
C30H62V = 1436.77 (3) Å3
Mr = 422.81Z = 2
Monoclinic, P21Dx = 0.977 Mg m3
a = 28.0929 (4) ÅSynchrotron ID31 at ESRF radiation, λ = 0.80105 Å
b = 4.93250 (3) ÅT = 100 K
c = 10.36893 (12) ÅPowder, white
β = 90.4059 (6)°
Data collection top
Si 111 monochromatork =
h = l =
Special details top

Refinement. Atomic positions and cell parameters were optimized by DFT-D using the program Castep, as integrated into Accelrys Materials Studio 6.1, using the PBE functional, plane-wave energy cut off of 520 eV, and dispersion interactions via the TS scheme. The Materials Studio "ultrafine" geometry convergence criteria were adopted, with final Cartesian displacements of less than 5 x 10–4 Angstrom, a maximum force of 0.01 eV / Angstrom and maximum energy difference of 5 x 10–6 eV per atom. The DFT-optimized molecule was taken and a final fine tune of the structure performed via Rietveld refinement with Topas by a rigid-body optimization (3 rotations plus 2 translations) as returning the lattice parameters from the DFT (0 K) to the powder-diffraction values at 100 K moves the molecules slightly with respect to each other. The rigid-body refinement allows compensation for this.

comment: CASTEP calculation from Materials Studio task: GeometryOptimization xc_functional: PBE sedc_apply: true sedc_scheme: TS spin_polarized: false opt_strategy: Default page_wvfns: 0 cut_off_energy: 520.000000000000000 grid_scale: 2.000000000000000 fine_grid_scale: 3.000000000000000 finite_basis_corr: 2 finite_basis_npoints: 3 elec_energy_tol: 5.000000000000000 e-007 max_scf_cycles: 400 fix_occupancy: true metals_method: dm mixing_scheme: Pulay mix_charge_amp: 0.500000000000000 mix_charge_gmax: 1.500000000000000 mix_history_length: 20 nextra_bands: 0 geom_energy_tol: 5.000000000000000 e-006 geom_force_tol: 0.010000000000000 geom_stress_tol: 0.020000000000000 geom_disp_tol: 5.000000000000000 e-004 geom_max_iter: 400 geom_method: BFGS fixed_npw: false geom_modulus_est: 500.000000000000000 GPa calculate_ELF: false calculate_stress: true popn_calculate: false calculate_hirshfeld: false calculate_densdiff: false pdos_calculate_weights: false num_dump_cycles: 0

Topas Rietveld refinement instructions (*.inp file)

r_wp 4.740 r_exp 3.338 gof 1.420 iters 100000000 do_errors chi2_convergence_criteria 1 e-4

xdd lee_C29Me7_100K.xye xye_format x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

weighting = 1 / SigmaYobs2; LP_Factor(90)

lam ymin_on_ymax 0.00001 la 1 lo 0.80105 l h 0.1 start_X 1.3 finish_X 40 extra_X_right 0.05

Zero_Error(@, 0.00172`_0.00005)

Rs 800 Rp 45000

Full_Axial_Model(0.093, 2, @ 9.82151685`_0.0282585843, 50, 50)

bkg @ 577.867208`_9.72535378 - 142.624864`_9.65386489 76.7630773`_5.80926073 - 16.6725046`_11.2709561 - 2.34386074`_5.37119935 - 3.37464819`_3.49749429 16.7872353`_6.20391457 0.82353633`_2.94619864 - 15.6632132`_1.88117967 12.792622`_2.88972873 - 5.59170406`_1.34955276 - 5.64639839`_1.25857222 6.14495383`_1.51188278 3.10894685`_0.924466095 - 6.97856007`_0.58741571

PV (@, @, @, @, 798.33997`_521.32615, 10.99173`_0.03421, 3.08321`_0.70045, 0.00000`_0.31524_LIMIT_MIN_0)

str local !phase_number 1

a @ 28.09291`_0.00037 b @ 4.93250`_0.00003 c @ 10.36893`_0.00012 al 90.0000 be @ 90.40592`_0.00059 ga 90.0000

MVW (845.648, 1436.769`_0.0263752726, 100.000`_0.000)

macro Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta) {prm mhkl = H4 s400 + K4 s040 + L4 s004 + H2 K2 s220 + H2 L2 s202 + K2 L2 s022 + H K2 L s121 + H L3 s103 + H3 L s301; prm pp = D_spacing2 * Sqrt(Max(mhkl,0)) / 1000; gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th); lor_fwhm = 1.8/3.1415927 pp eta Tan(Th);}

prm s400 1.14676`_0.02109 prm s040 891.43579`_10.96262 prm s004 66.80936`_1.32444 prm s220 30.58450`_1.69336 prm s202 6.33568`_0.30611 prm s022 237.43747`_13.31283 prm s301 4.58887`_0.12909 prm s121 48.01492`_3.61760 prm s103 15.25145`_1.02082 prm eta 0.11699`_0.00283 min 0 max 1

Stephens_monoclinic(s400,s040,s004,s220,s202,s022,s301,s121,s103,eta)

PO(march1, 0.94657`_0.00155, march2, 0 0 1)

scale @ 0.000126639394`_2.86 e-007 r_bragg 1.89937929 space_group "P21"

site C1 x 0.50360 y 0.79707 z 1.32559 occ C 1 beq bov 1.2882`_0.0291 site C2 x 0.53977 y 0.65775 z 1.23939 occ C 1 beq = bov; site C3 x 0.54308 y 0.78283 z 1.10508 occ C 1 beq = bov; site C4 x 0.58033 y 0.64604 z 1.02105 occ C 1 beq = bov; site C5 x 0.58702 y 0.76907 z 0.88745 occ C 1 beq = bov; site C6 x 0.62864 y 0.63766 z 0.81681 occ C 1 beq = bov; site C7 x 0.64311 y 0.76624 z 0.68842 occ C 1 beq = bov; site C8 x 0.68996 y 0.63987 z 0.64204 occ C 1 beq = bov; site C9 x 0.71002 y 0.76377 z 0.51943 occ C 1 beq = bov; site C10 x 0.75716 y 0.64135 z 0.47650 occ C 1 beq = bov; site C11 x 0.77461 y 0.75976 z 0.34963 occ C 1 beq = bov; site C12 x 0.82086 y 0.63797 z 0.30064 occ C 1 beq = bov; site C13 x 0.83692 y 0.75914 z 0.17293 occ C 1 beq = bov; site C14 x 0.88295 y 0.63730 z 0.12201 occ C 1 beq = bov; site C15 x 0.89900 y 0.75867 z - 0.00552 occ C 1 beq = bov; site C16 x 0.94510 y 0.63644 z - 0.05585 occ C 1 beq = bov; site C17 x 0.96137 y 0.75722 z - 0.18338 occ C 1 beq = bov; site C18 x 1.00751 y 0.63520 z - 0.23353 occ C 1 beq = bov; site C19 x 1.02385 y 0.75638 z - 0.36096 occ C 1 beq = bov; site C20 x 1.07006 y 0.63437 z - 0.41072 occ C 1 beq = bov; site C21 x 1.08673 y 0.75538 z - 0.53777 occ C 1 beq = bov; site C22 x 1.13312 y 0.63381 z - 0.58648 occ C 1 beq = bov; site C23 x 1.15007 y 0.75544 z - 0.71326 occ C 1 beq = bov; site C24 x 1.19646 y 0.63427 z - 0.76225 occ C 1 beq = bov; site C25 x 1.21291 y 0.75587 z - 0.88950 occ C 1 beq = bov; site C26 x 1.25873 y 0.63137 z - 0.94078 occ C 1 beq = bov; site C27 x 1.27457 y 0.75049 z - 1.06916 occ C 1 beq = bov; site C28 x 1.31981 y 0.62148 z - 1.12147 occ C 1 beq = bov; site C29 x 1.33551 y 0.73550 z - 1.25078 occ C 1 beq = bov; site C30 x 0.60377 y 0.74708 z 0.58606 occ C 1 beq = bov; site H11 x 0.50132 y 0.69994 z 1.42057 occ H 1 beq = bov; site H12 x 0.51303 y 1.01097 z 1.34175 occ H 1 beq = bov; site H13 x 0.46784 y 0.79298 z 1.28202 occ H 1 beq = bov; site H21 x 0.57509 y 0.66309 z 1.28605 occ H 1 beq = bov; site H22 x 0.53078 y 0.44097 z 1.22999 occ H 1 beq = bov; site H31 x 0.55161 y 1.00039 z 1.11429 occ H 1 beq = bov; site H32 x 0.50790 y 0.77321 z 1.05747 occ H 1 beq = bov; site H41 x 0.61474 y 0.65084 z 1.07228 occ H 1 beq = bov; site H42 x 0.57143 y 0.42925 z 1.01059 occ H 1 beq = bov; site H51 x 0.59363 y 0.98877 z 0.89670 occ H 1 beq = bov; site H52 x 0.55377 y 0.74962 z 0.83136 occ H 1 beq = bov; site H61 x 0.65986 y 0.64180 z 0.88180 occ H 1 beq = bov; site H62 x 0.62078 y 0.42059 z 0.80083 occ H 1 beq = bov; site H71 x 0.64996 y 0.98372 z 0.70702 occ H 1 beq = bov; site H81 x 0.71664 y 0.65666 z 0.72009 occ H 1 beq = bov; site H82 x 0.68428 y 0.42029 z 0.62689 occ H 1 beq = bov; site H91 x 0.71456 y 0.98429 z 0.53363 occ H 1 beq = bov; site H92 x 0.68405 y 0.74232 z 0.44004 occ H 1 beq = bov; site H101 x 0.78439 y 0.67028 z 0.55225 occ H 1 beq = bov; site H102 x 0.75301 y 0.41991 z 0.46596 occ H 1 beq = bov; site H111 x 0.77916 y 0.98102 z 0.36055 occ H 1 beq = bov; site H112 x 0.74668 y 0.73367 z 0.27552 occ H 1 beq = bov; site H121 x 0.84914 y 0.66467 z 0.37368 occ H 1 beq = bov; site H122 x 0.81649 y 0.41671 z 0.28933 occ H 1 beq = bov; site H131 x 0.84151 y 0.98001 z 0.18452 occ H 1 beq = bov; site H132 x 0.80843 y 0.73367 z 0.10037 occ H 1 beq = bov; site H141 x 0.91140 y 0.66257 z 0.19467 occ H 1 beq = bov; site H142 x 0.87836 y 0.41623 z 0.11042 occ H 1 beq = bov; site H151 x 0.90359 y 0.97954 z 0.00598 occ H 1 beq = bov; site H152 x 0.87058 y 0.73320 z - 0.07837 occ H 1 beq = bov; site H161 x 0.97342 y 0.66172 z 0.01719 occ H 1 beq = bov; site H162 x 0.94048 y 0.41537 z - 0.06735 occ H 1 beq = bov; site H171 x 0.96600 y 0.97829 z - 0.17179 occ H 1 beq = bov; site H172 x 0.93302 y 0.73194 z - 0.25633 occ H 1 beq = bov; site H181 x 1.03579 y 0.66027 z - 0.16038 occ H 1 beq = bov; site H182 x 1.00289 y 0.41412 z - 0.24522 occ H 1 beq = bov; site H191 x 1.02841 y 0.97725 z - 0.34936 occ H 1 beq = bov; site H192 x 0.99557 y 0.73070 z - 0.43410 occ H 1 beq = bov; site H201 x 1.09821 y 0.65925 z - 0.33709 occ H 1 beq = bov; site H202 x 1.06544 y 0.41329 z - 0.42251 occ H 1 beq = bov; site H211 x 1.09121 y 0.97645 z - 0.52618 occ H 1 beq = bov; site H212 x 1.05869 y 0.72969 z - 0.61160 occ H 1 beq = bov; site H221 x 1.16109 y 0.65889 z - 0.51236 occ H 1 beq = bov; site H222 x 1.12860 y 0.41273 z - 0.59846 occ H 1 beq = bov; site H231 x 1.15452 y 0.97632 z - 0.70127 occ H 1 beq = bov; site H232 x 1.12210 y 0.73016 z - 0.78727 occ H 1 beq = bov; site H241 x 1.22464 y 0.66036 z - 0.68873 occ H 1 beq = bov; site H242 x 1.19209 y 0.41320 z - 0.77395 occ H 1 beq = bov; site H251 x 1.21793 y 0.97637 z - 0.87733 occ H 1 beq = bov; site H252 x 1.18445 y 0.73302 z - 0.96236 occ H 1 beq = bov; site H261 x 1.28743 y 0.65563 z - 0.86861 occ H 1 beq = bov; site H262 x 1.25375 y 0.41049 z - 0.95189 occ H 1 beq = bov; site H271 x 1.28022 y 0.97079 z - 1.05797 occ H 1 beq = bov; site H272 x 1.24561 y 0.72907 z - 1.14067 occ H 1 beq = bov; site H281 x 1.34862 y 0.64614 z - 1.04988 occ H 1 beq = bov; site H282 x 1.31424 y 0.40102 z - 1.13054 occ H 1 beq = bov; site H291 x 1.36875 y 0.64144 z - 1.28372 occ H 1 beq = bov; site H292 x 1.34189 y 0.95510 z - 1.24520 occ H 1 beq = bov; site H293 x 1.30841 y 0.70273 z - 1.32584 occ H 1 beq = bov; site H301 x 0.56969 y 0.82233 z 0.62259 occ H 1 beq = bov; site H302 x 0.61215 y 0.86741 z 0.50009 occ H 1 beq = bov; site H303 x 0.59838 y 0.53587 z 0.55485 occ H 1 beq = bov;

rigid point_for_site C1 ux 13.194 uy 3.621 uz 18.797 point_for_site C2 ux 14.218 uy 2.935 uz 17.904 point_for_site C3 ux 14.337 uy 3.566 uz 16.519 point_for_site C4 ux 15.391 uy 2.892 uz 15.649 point_for_site C5 ux 15.605 uy 3.512 uz 14.272 point_for_site C6 ux 16.780 uy 2.862 uz 13.542 point_for_site C7 ux 17.212 uy 3.507 uz 12.221 point_for_site C8 ux 18.530 uy 2.878 uz 11.744 point_for_site C9 ux 19.118 uy 3.498 uz 10.484 point_for_site C10 ux 20.444 uy 2.888 uz 10.043 point_for_site C11 ux 20.959 uy 3.482 uz 8.738 point_for_site C12 ux 22.261 uy 2.876 uz 8.234 point_for_site C13 ux 22.737 uy 3.484 uz 6.920 point_for_site C14 ux 24.033 uy 2.878 uz 6.396 point_for_site C15 ux 24.509 uy 3.487 uz 5.084 point_for_site C16 ux 25.807 uy 2.879 uz 4.566 point_for_site C17 ux 26.289 uy 3.485 uz 3.254 point_for_site C18 ux 27.588 uy 2.878 uz 2.738 point_for_site C19 ux 28.072 uy 3.486 uz 1.427 point_for_site C20 ux 29.373 uy 2.879 uz 0.915 point_for_site C21 ux 29.866 uy 3.486 uz -0.392 point_for_site C22 ux 31.172 uy 2.881 uz -0.893 point_for_site C23 ux 31.673 uy 3.491 uz -2.197 point_for_site C24 ux 32.979 uy 2.888 uz -2.701 point_for_site C25 ux 33.466 uy 3.498 uz -4.010 point_for_site C26 ux 34.756 uy 2.879 uz -4.538 point_for_site C27 ux 35.226 uy 3.477 uz -5.859 point_for_site C28 ux 36.500 uy 2.836 uz -6.398 point_for_site C29 ux 36.966 uy 3.409 uz -7.729 point_for_site C30 ux 16.122 uy 3.433 uz 11.150 point_for_site H11 ux 13.111 uy 3.132 uz 19.776 point_for_site H12 ux 13.465 uy 4.672 uz 18.978 point_for_site H13 ux 12.196 uy 3.614 uz 18.337 point_for_site H21 ux 15.203 uy 2.948 uz 18.396 point_for_site H22 ux 13.958 uy 1.869 uz 17.793 point_for_site H31 ux 14.584 uy 4.636 uz 16.628 point_for_site H32 ux 13.356 uy 3.532 uz 16.017 point_for_site H41 ux 16.350 uy 2.902 uz 16.188 point_for_site H42 ux 15.134 uy 1.826 uz 15.527 point_for_site H51 ux 15.798 uy 4.593 uz 14.381 point_for_site H52 ux 14.679 uy 3.430 uz 13.682 point_for_site H61 ux 17.647 uy 2.868 uz 14.223 point_for_site H62 ux 16.553 uy 1.795 uz 13.363 point_for_site H71 ux 17.410 uy 4.576 uz 12.427 point_for_site H81 ux 19.268 uy 2.946 uz 12.560 point_for_site H82 ux 18.364 uy 1.798 uz 11.574 point_for_site H91 ux 19.252 uy 4.583 uz 10.644 point_for_site H92 ux 18.400 uy 3.407 uz 9.654 point_for_site H101 ux 21.198 uy 3.016 uz 10.836 point_for_site H102 ux 20.320 uy 1.798 uz 9.921 point_for_site H111 ux 21.094 uy 4.571 uz 8.864 point_for_site H112 ux 20.185 uy 3.368 uz 7.962 point_for_site H121 ux 23.045 uy 2.993 uz 8.999 point_for_site H122 ux 22.131 uy 1.787 uz 8.104 point_for_site H131 ux 22.873 uy 4.571 uz 7.053 point_for_site H132 ux 21.947 uy 3.373 uz 6.160 point_for_site H141 ux 24.822 uy 2.988 uz 7.157 point_for_site H142 ux 23.897 uy 1.790 uz 6.263 point_for_site H151 ux 24.645 uy 4.574 uz 5.216 point_for_site H152 ux 23.721 uy 3.376 uz 4.321 point_for_site H161 ux 26.592 uy 2.989 uz 5.331 point_for_site H162 ux 25.670 uy 1.791 uz 4.434 point_for_site H171 ux 26.426 uy 4.573 uz 3.387 point_for_site H172 ux 25.503 uy 3.375 uz 2.490 point_for_site H181 ux 28.372 uy 2.987 uz 3.504 point_for_site H182 ux 27.451 uy 1.790 uz 2.604 point_for_site H191 ux 28.207 uy 4.573 uz 1.560 point_for_site H192 ux 27.288 uy 3.374 uz 0.661 point_for_site H201 ux 30.153 uy 2.987 uz 1.686 point_for_site H202 ux 29.236 uy 1.791 uz 0.780 point_for_site H211 ux 29.999 uy 4.574 uz -0.259 point_for_site H212 ux 29.089 uy 3.374 uz -1.165 point_for_site H221 ux 31.947 uy 2.990 uz -0.117 point_for_site H222 ux 31.038 uy 1.793 uz -1.030 point_for_site H231 ux 31.805 uy 4.578 uz -2.060 point_for_site H232 ux 30.898 uy 3.381 uz -2.972 point_for_site H241 ux 33.760 uy 3.002 uz -1.931 point_for_site H242 ux 32.849 uy 1.800 uz -2.835 point_for_site H251 ux 33.614 uy 4.583 uz -3.871 point_for_site H252 ux 32.677 uy 3.400 uz -4.773 point_for_site H261 ux 35.552 uy 2.984 uz -3.782 point_for_site H262 ux 34.609 uy 1.792 uz -4.666 point_for_site H271 ux 35.392 uy 4.561 uz -5.730 point_for_site H272 ux 34.423 uy 3.386 uz -6.608 point_for_site H281 ux 37.299 uy 2.943 uz -5.648 point_for_site H282 ux 36.336 uy 1.751 uz -6.505 point_for_site H291 ux 37.901 uy 2.941 uz -8.068 point_for_site H292 ux 37.153 uy 4.490 uz -7.658 point_for_site H293 ux 36.215 uy 3.262 uz -8.515 point_for_site H301 ux 15.162 uy 3.808 uz 11.525 point_for_site H302 ux 16.376 uy 4.034 uz 10.267 point_for_site H303 ux 15.967 uy 2.396 uz 10.814

Rotate_about_axies(@ -0.61127`_0.05781, @ 0.46336`_0.00434, @ 0.46904`_0.05988) Translate(@ 0.02499`_0.00015, 0, @ -0.47307`_0.00042)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5036040.7970661.3255941.29 (3)
C20.5397740.6577461.2393881.29 (3)
C30.5430790.7828291.1050791.29 (3)
C40.5803260.6460421.0210551.29 (3)
C50.5870190.7690700.8874551.29 (3)
C60.6286400.6376550.8168131.29 (3)
C70.6431150.7662350.6884171.29 (3)
C80.6899560.6398690.6420401.29 (3)
C90.7100230.7637730.5194311.29 (3)
C100.7571620.6413500.4764991.29 (3)
C110.7746150.7597640.3496351.29 (3)
C120.8208650.6379750.3006421.29 (3)
C130.8369200.7591430.1729261.29 (3)
C140.8829460.6372990.1220091.29 (3)
C150.8990020.7586740.0055161.29 (3)
C160.9451030.6364420.0558531.29 (3)
C170.9613740.7572180.1833791.29 (3)
C181.0075110.6351950.2335251.29 (3)
C191.0238530.7563830.3609591.29 (3)
C201.0700630.6343710.4107211.29 (3)
C211.0867280.7553800.5377751.29 (3)
C221.1331210.6338060.5864821.29 (3)
C231.1500710.7554430.7132561.29 (3)
C241.1964630.6342680.7622541.29 (3)
C251.2129120.755870.8894991.29 (3)
C261.2587260.6313730.9407831.29 (3)
C271.2745670.7504881.069161.29 (3)
C281.3198120.6214801.1214691.29 (3)
C291.3355130.7354991.2507811.29 (3)
C300.6037670.7470820.5860611.29 (3)
H110.5013210.6999411.4205751.29 (3)
H120.5130341.0109681.341751.29 (3)
H130.4678390.7929841.2820191.29 (3)
H210.5750930.6630931.2860521.29 (3)
H220.5307780.4409741.2299891.29 (3)
H310.5516101.0003861.1142911.29 (3)
H320.5079040.7732101.0574681.29 (3)
H410.6147450.6508401.0722751.29 (3)
H420.5714300.4292511.0105931.29 (3)
H510.5936250.9887670.8966971.29 (3)
H520.5537680.7496190.8313651.29 (3)
H610.6598620.6418000.8818031.29 (3)
H620.6207820.4205870.8008311.29 (3)
H710.6499550.9837200.7070221.29 (3)
H810.7166400.6566640.7200851.29 (3)
H820.6842770.4202860.6268921.29 (3)
H910.7145560.9842950.5336341.29 (3)
H920.6840500.7423180.4400431.29 (3)
H1010.7843860.6702850.5522521.29 (3)
H1020.7530070.4199150.4659591.29 (3)
H1110.7791640.9810240.3605541.29 (3)
H1120.7466840.7336720.2755221.29 (3)
H1210.8491450.6646680.3736831.29 (3)
H1220.8164920.4167150.2893341.29 (3)
H1310.8415090.9800140.1845211.29 (3)
H1320.8084280.7336670.1003661.29 (3)
H1410.9114040.6625730.1946681.29 (3)
H1420.8783570.4162250.1104151.29 (3)
H1510.9035910.9795430.0059841.29 (3)
H1520.8705790.7331950.0783671.29 (3)
H1610.9734210.6617170.0171951.29 (3)
H1620.9404790.4153680.0673501.29 (3)
H1710.9659980.9782940.1717861.29 (3)
H1720.9330210.7319430.2563291.29 (3)
H1811.0357940.6602680.1603801.29 (3)
H1821.0028860.4141170.2452151.29 (3)
H1911.0284060.9772520.3493631.29 (3)
H1920.9955710.7307010.4341011.29 (3)
H2011.0982060.6592460.3370891.29 (3)
H2021.0654380.4132910.4225071.29 (3)
H2111.0912090.9764490.5261781.29 (3)
H2121.0586910.7296940.6115981.29 (3)
H2211.1610890.6588860.5123651.29 (3)
H2221.1286020.4127260.5984631.29 (3)
H2311.154520.9763160.7012711.29 (3)
H2321.1221040.7301620.7872751.29 (3)
H2411.224640.6603590.6887261.29 (3)
H2421.1920870.4132010.7739501.29 (3)
H2511.2179320.9763690.8773331.29 (3)
H2521.184450.7330250.9623631.29 (3)
H2611.2874320.6556330.8686071.29 (3)
H2621.2537480.4104940.9518881.29 (3)
H2711.2802220.9707921.057971.29 (3)
H2721.2456120.7290691.140671.29 (3)
H2811.3486210.6461381.0498761.29 (3)
H2821.314240.4010251.1305381.29 (3)
H2911.3687480.6414371.2837181.29 (3)
H2921.3418860.9551031.2451991.29 (3)
H2931.3084050.7027331.3258421.29 (3)
H3010.5696890.8223290.6225851.29 (3)
H3020.6121550.8674050.5000881.29 (3)
H3030.5983780.5358710.5548521.29 (3)
Bond lengths (Å) top
C1—C21.522C16—C171.523
C1—H111.098C16—H1611.102
C1—H121.100C16—H1621.104
C1—H131.099C17—C181.524
C2—C31.527C17—H1711.104
C2—H211.101C17—H1721.102
C2—H221.103C18—C191.524
C3—C41.523C18—H1811.102
C3—H311.104C18—H1821.104
C3—H321.102C19—C201.524
C4—C51.525C19—H1911.104
C4—H411.100C19—H1921.102
C4—H421.104C20—C211.524
C5—C61.528C20—H2011.102
C5—H511.104C20—H2021.104
C5—H521.101C21—C221.524
C6—C71.533C21—H2111.104
C6—H611.103C21—H2121.102
C6—H621.105C22—C231.524
C7—C81.536C22—H2211.102
C7—C301.530C22—H2221.104
C7—H711.107C23—C241.525
C8—C91.523C23—H2311.104
C8—H811.102C23—H2321.102
C8—H821.105C24—C251.524
C9—C101.524C24—H2411.102
C9—H911.104C24—H2421.104
C9—H921.100C25—C261.525
C10—C111.524C25—H2511.104
C10—H1011.102C25—H2521.102
C10—H1021.104C26—C271.525
C11—C121.523C26—H2611.103
C11—H1111.104C26—H2621.104
C11—H1121.102C27—C281.525
C12—C131.524C27—H2711.104
C12—H1211.102C27—H2721.102
C12—H1221.104C28—C291.523
C13—C141.523C28—H2811.100
C13—H1311.104C28—H2821.103
C13—H1321.102C29—H2911.099
C14—C151.523C29—H2921.099
C14—H1411.102C29—H2931.097
C14—H1421.104C30—H3011.096
C15—C161.524C30—H3021.098
C15—H1511.104C30—H3031.102
C15—H1521.102
 

Acknowledgements

We thank the ESRF and the SNBL for provision of experimental time on beamlines ID31 and BM01A, respectively.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBagnères, A.-G., Lorenzi, M. C., Dusticier, G., Turillazzi, S. & Clément, J.-L. (1996). Science, 272, 889–892.  PubMed Google Scholar
First citationBagnères, A.-G. & Morgan, E. D. (1991). Experientia, 47, 106–111.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBonavita-Cougourdan, A., Rivière, G., Provost, E., Bagnères, A.-G., Roux, M., Dusticier, G. & Clément, J.-L. (1996). Comput. Biochem. Physiol. 113B, 313–329.  CAS Google Scholar
First citationBruker AXS (2008). TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationClark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogra, 220, 567–570.  Web of Science CrossRef CAS Google Scholar
First citationCoelho, A. A. (2003). J. Appl. Cryst. 36, 86–95.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. (2001). J. Insect Physiol. 47, 485–493.  PubMed CAS Google Scholar
First citationDani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. (2001). Anim. Behav. 62, 165–171.  Web of Science CrossRef Google Scholar
First citationDapporto, L., Fondelli, L. & Turillazzi, S. (2006). Biochem. Syst. Ecol. 34, 617–625.  Web of Science CrossRef CAS Google Scholar
First citationDavid, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFitch, A. (2004). J. Res. Natl Inst. Stand. Technol. 109, 133–142.  Web of Science CrossRef CAS Google Scholar
First citationFitch, A. (2007). Solid State Phenom. 130, 7–14.  CrossRef CAS Google Scholar
First citationGibbs, A. G. (2002). J. Insect Physiol. 48, 391–400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoodman, J. M. (1997). J. Chem. Inf. Model. 37, 876–878.  CrossRef CAS Web of Science Google Scholar
First citationIkedou, K., Yamamoto, H., Nagashima, H., Nemoto, N. & Tashiro, K. (2005). J. Phys. Chem. B, 109, 10668–10675.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahav, S., Soroker, V., Hefetz, A. & Vander Meer, R. K. (1999). Naturwissenschaften, 86, 246–249.  Web of Science CrossRef CAS Google Scholar
First citationLockey, K. H. (1988). Comput. Biochem. Physiol. B, 89, 595–645.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartin, S. & Drijfhout, F. (2009). J. Chem. Ecol. 35, 1151–1161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMyers, A. G., Yang, B. H., Chen, H., McKinstry, L., Kopecky, D. J. & Gleason, J. L. (1997). J. Am. Chem. Soc. 119, 6496–6511.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalin, L., Brunelli, M., Pattison, P. & Fitch, A. N. (2007). Z. Kristallogr. 222, 487–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRuther, J., Sieben, S. & Schricker, B. (2002). Naturwissenschaften, 89, 111–114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSinger, T. L. (1998). Am. Zool. 38, 394–405.  CAS Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2010). Acta Cryst. B66, 544–558.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTkatchenko, A. & Scheffler, M. (2009). Phys. Rev. Lett. 102, 073005.  Web of Science CrossRef PubMed Google Scholar
First citationUngar, G., Stejny, J., Keller, A., Bidd, I. & Whiting, M. C. (1985). Science, 229, 386–389.  CrossRef PubMed CAS Web of Science Google Scholar
First citationUngar, G. & Zeng, X. (2001). Chem. Rev. 101, 4157–4188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamamoto, H., Nemoto, N. & Tashiro, K. (2004). J. Phys. Chem. B, 108, 5827–5835.  Web of Science CrossRef CAS Google Scholar
First citationZanetti, P., Dani, F. R., Destri, S., Fanelli, D., Massolo, A., Moneti, G., Pieraccini, G. & Turillazzi, S. (2001). J. Insect Physiol. 47, 1013–1020.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 2| Part 5| September 2015| Pages 490-497
ISSN: 2052-2525